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Abstract

Some applications of artificial intelligence
make it desirable that logical formulae be con-
verted computationally to comprehensible nat-
ural language sentences. As there are many
logical equivalents to a given formula, finding
the most suitable equivalent to be used as input
for such a “logic-to-text" generation system is
a difficult challenge. In this paper, we focus on
the role of brevity: Are the shortest formulae
the most suitable? We focus on propositional
logic (PL), framing formula minimization (i.e.,
the problem of finding the shortest equivalent
of a given formula) as a Quantified Boolean
Formulae (QBFs) satisfiability problem. We ex-
periment with several generators and selection
strategies to prune the resulting candidates. We
conduct exhaustive automatic and human eval-
uations of the comprehensibility and fluency
of the generated texts. The results suggest that
while, in many cases, minimization has a posi-
tive impact on the quality of the sentences gen-
erated, formula minimization may ultimately
not be the best strategy.

https://gitlab.nl4xai.eu/eduardo.
calo/brevity-PL

1 Introduction

Logical formulae (LFs) are essential for scholars
in many scientific fields, such as artificial intelli-
gence and linguistics (e.g., formal semantics). For
instance, some explainable artificial intelligence
(XAI) methods (e.g., Guidotti et al., 2018) use LFs
to provide interpretable and faithful explanations to
black-box models. However, one of the drawbacks
of these XAI methods is that their output formulae
might be complex, hindering their understandabil-
ity. Grasping the meaning of formulae is also hard
for students of logic, especially when they are ex-
posed to formalisms they are not yet accustomed to
(Rector et al., 2004). Natural language generation

(NLG) methods can be employed to simplify and
translate LFs into understandable text in natural lan-
guages (NLs), effectively providing explanations
for them.

Recently, NLG has made remarkable progress.
In particular, in the context of data-to-text gener-
ation, good results have been achieved in differ-
ent domains and datasets, such as sport (e.g., the
ROTOWIRE dataset (Wiseman et al., 2017; Thom-
son et al., 2020)), restaurant (e.g., the E2E Chal-
lenge (Smiley et al., 2018; Dušek et al., 2020)),
or WebNLG (Gardent et al., 2017). However, the
texts produced in these contexts are often relatively
poor in logical and rhetorical structure. Moreover,
neural language models still fail to encode the se-
mantics of logical formulae (Traylor et al., 2021b)
and acquire analytical and deductive logical rea-
soning capabilities (Ryb et al., 2022). In particular,
they struggle with logical connectives, where they
fail to differentiate between conjunction and dis-
junction (Traylor et al., 2021a). Logic-to-text gen-
eration thus addresses an area of natural language
processing where further progress is much needed.

One way in which the task of generating NL from
complex LFs could be facilitated is by simplifying
the input. We are interested in understanding the
factors that make a formula more or less suitable
as an input for a generator. In our work, we fo-
cus on brevity. The concept of brevity has long
been a topic of linguistic discussion, dating back
to at least Grice (1975), where Grice’s submaxim
of brevity states that shorter utterances should be
favored over longer ones, avoiding unnecessary ver-
bosity. Brevity has loomed large in computational
accounts of language use as well, especially in the
modeling of the human production of referring ex-
pressions (see §6 for discussion), a research area
known as referring expressions generation (REG).
Brevity could also be useful in our situation, in
which case a shorter formula, instead of a lengthier
logical equivalent, once verbalized using an NLG
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algorithm, might lead to NL sentences that are more
fluent and easier to understand.

In this paper, we study the role of brevity in logic-
to-text generation, focusing on propositional logic
(PL), a formalism for which logical equivalence is
decidable. We formulate propositional logic for-
mula minimization (i.e., finding the shortest logi-
cal equivalent of a given formula) as a Quantified
Boolean Formulae (QBFs) satisfiability problem
and employ the algorithm introduced in Calò and
Levy (2023) that consistently identifies the shortest
equivalents for a given formula.

It is not a foregone conclusion that the shortest
formula must always lead to the best verbalization
in English. To see this, suppose the input to the
generator is of the form ¬p ∨ ¬q. If the Sheffer
stroke, |, (i.e., the NAND operator) is a permitted
symbol, then the same information can be written
more briefly as p|q, yet a “direct" verbalization of
the former formula (e.g., Not p or not q) could well
be more comprehensible and fluent than a direct
verbalization of the latter (e.g., It is not the case
that p and q), because the Sheffer stroke does not
have a convenient shorthand in English.

Following this line of thought, several questions
arise: When verbalizing an input logical formula
into English, is it useful to start by finding the
shortest formula that is equivalent to the input? Is
the resulting text comprehensible to humans? How
do we choose among the pool of potential shortest
equivalent candidates?

The last question specifically opens up the issue
of selecting the optimal translation, given that all
potential shortest candidates are exactly of the same
length. In our work, we experiment with several
deterministic rule-based generators (thus control-
ling for faithfulness) and a number of selection
strategies based on linguistic criteria, ranging from
heuristics to neural metrics, to prune the resulting
NL candidates. Finally, we conduct comprehensive
automatic and human evaluations to assess compre-
hensibility and fluency of the generated texts.

2 Background

Logical Optimization Extensive research has
been conducted on optimizing complex Boolean
expressions, particularly in the field of electronic
circuits, where practical considerations (i.e., a more
complicated circuit with more logic gates takes up
more physical space and produces more heat) make
it paramount to find the smallest possible circuit,

and hence the shortest possible (i.e., “minimal")
formula representing its content. Popular methods
for minimization include the Quine-McCluskey al-
gorithm (Quine, 1952, 1955; McCluskey, 1956),
Karnaugh maps (Karnaugh, 1953), the Petrick’s
method (Petrick, 1956), and the Espresso heuristic
logic minimizer (Brayton et al., 1982). However,
most work has focused on a limited set of canonical
forms, such as conjunctive normal form (CNF) or
disjunctive normal form (DNF). For our purposes
(i.e., studying the interactions between logic and
language), we need a general approach where a
larger set of connectives and a wider variety of
logical structures can be taken into account.

Quantified Boolean Formulae Quantified
Boolean Formulae (QBFs) are an extension of
propositional logic, where universal and existential
quantifications over Boolean variables are allowed
(Kleine Büning and Bubeck, 2009). Any QBF ϕ can
be rewritten in a canonical prenex conjunctive nor-
mal form (PCNF) without any loss in expressivity,
as follows. Let B be a finite set of Boolean vari-
ables, and Q = {∀,∃}. A QBF ϕ over B in PCNF

is given by ϕ := Q1B1.Q2B2 . . . QnBn.ψ, where
Qi ∈ Q, Bi ⊆ B, and ψ is a Boolean formula over
B in CNF. The part including only quantifiers and
bound variables Q1B1.Q2B2 . . . QnBn is called
the prefix, and ψ is called the matrix.

The QBF satisfiability problem (Giunchiglia
et al., 2009) involves determining the truth of a
given QBF ϕ. For example, given the QBF ϕ :=
∃x1, . . . , xn.∀y1, . . . , ym.∃z1, . . . , zt.ψ, ϕ is true
iff, there exists a truth assignment to x1, . . . , xn,
such that, for all truth assignments to y1, . . . , ym,
there exists a truth assignment to z1, . . . , zt such
that ψ is true. To solve this problem, several QBF

solvers have been developed.1 Practical applica-
tions of QBFs include AI, logic, planning, and
games (Cashmore and Fox, 2010; Diptarama and
Shinohara, 2016; Shukla et al., 2019). In our study,
we utilize QBFs to encode and solve PL formula
minimization.

Logic-to-Text Generation Logic-to-text gener-
ation is the task of generating NL text, starting
from a logical formalism (e.g., propositional logic,
description logic, or first-order logic). Although
the bulk of recent work on NLG (see e.g., Gatt
and Krahmer (2018) for a survey) has focused on
other areas, generating text from logic nonetheless

1http://www.qbflib.org
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has a long tradition, with approaches ranging from
rule-based methodologies (Wang, 1980; De Roeck
and Lowden, 1986; Calder et al., 1989; Shieber
et al., 1989; Shemtov, 1996; Carroll and Oepen,
2005; Mpagouli and Hatzilygeroudis, 2009; Cop-
pock and Baxter, 2010; Butler, 2016; Flickinger,
2016; Kasenberg et al., 2019) to statistical (Wong
and Mooney, 2007; Lu and Ng, 2011; Basile, 2015)
and neural models (Manome et al., 2018; Hajdik
et al., 2019; Chen et al., 2020; Liu et al., 2021;
Wang et al., 2021; Lu et al., 2022).

One of the complicating factors for this task is
the problem of logical-form equivalence (Appelt,
1987; Shieber, 1988, 1993), which implies that ev-
ery logical formula is equivalent to infinitely many
other formulae, where the question of whether two
formulae are logically equivalent is, in many for-
malisms (e.g., first-order logic), undecidable. In the
present paper, we circumvent this problem by fo-
cusing on a decidable fragment of logic, as did, e.g.,
van Deemter and Halldórsson (2001) and Minock
(2014) before us in different ways.

In a closely related work, Calò et al. (2022)
manipulate a given first-order formula to obtain
logically equivalent simplified versions via logical
equivalence laws, yet their algorithm is not guaran-
teed to return the shortest formula.

3 Algorithm

To solve our PL minimization problem, we lever-
age the QBF-based algorithm presented in Calò and
Levy (2023). We define formula length as the num-
ber of symbols (i.e., predicates and connectives,
parentheses excluded) contained in a formula.

In outline, given (i) a PL formula ψ and (ii) a
functionally complete set C of PL connectives, the
algorithm produces the set P = {ψ′

1, . . . , ψ
′
n} of

all those PL formulae such that (a) ψ and ψ′
i are

logically equivalent, (b) ψ′
i does not contain any

connectives that are not members of C, and (c) there
does not exist any strictly shorter sentence χ satis-
fying (a) and (b).

The strength of the QBF-based algorithm is that
it computes a scheme Tn of all candidates ψ′

i

of length n, instead of checking each one of ψ′
i

for equivalence with ψ. Tseitin transformation
(Tseitin, 1983) is used to encode the equivalence
of Tn and ψ as a QBF formula, which is checked
for satisfiability (see Section 2) by a QBF solver
(Tentrup, 2019). The algorithm can find all ψ′

i ∈ P
of a certain length n. By making several calls to

the QBF solver, increasing n, we make sure that the
first found solution is a minimal solution.

The fact that the algorithm computes a unique
scheme for all candidates of length n makes it very
efficient, compared with other straightforward ap-
proaches. We refer the reader to Calò and Levy
(2023) for details on the implementation.

4 Experiments

Our experimentation strategy can be summarized as
follows: (i) we simplify the input formulae using
the algorithm described in §3, (ii) we realize all
the outputs using different generators, and (iii) we
prune the resulting candidate realizations using a
number of selection strategies.

We use three rule-based generators: (i) a BASE-
LINE, (ii) the system presented in Ranta (2011),
and (iii) LOLA (Calò et al., 2022). BASELINE is
a system that generates near-literal translations of
the formulae. Ranta performs some syntactic op-
timization (e.g., flattening, aggregation, etc.) to
improve fluency. LOLA is an extension of Ranta
that performs heuristic logical optimization based
on standard equivalence laws to the input formula
before verbalizing it. The generators were evalu-
ated for faithfulness (i.e., whether the generated
text conveys all and only the information of the
input formula) in Calò et al. (2022) and shown to
guarantee faithful translations. We refer the reader
to Ranta (2011) and Calò et al. (2022) for more
details on the systems.

For pruning, we experiment with the following
five selection strategies: (i) length in number of
words, (ii) pseudo-perplexity using BERT (Devlin
et al., 2019), (iii) pseudo-SLOR using BERT, (iv)
perplexity (PPL) using GPT-2 (Radford et al., 2019),
(v) SLOR using GPT-2.2 SLOR (Syntactic Log-Odds
Ratio; Pauls and Klein, 2012; Kann et al., 2018)
is a metric based on negative log-likelihood that
penalizes highly probable unigrams. In detail, the
score given by SLOR consists of the log probability
of a sentence under a given language model, nor-
malized by unigram log probability and sentence
length. The intuition behind the normalizations is
that a rare token should not bring down the sen-
tence’s score and shorter sentences should not be
preferred over equally fluent longer ones. In our
case, this should help us make fairer comparisons,
as the length of the sentences generated by the re-

2We use bert-large-cased and gpt-2-large, respec-
tively.
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alizers varies considerably, and logical variables
and constants (e.g., x, y, etc., which a language
model treats as unigrams), which appear regularly
in our sentences, have a unigram probability much
higher than the other tokens in the lexicon. We
compute PPL and SLOR with BERT, following the
methodologies described in Salazar et al. (2020)
and Lau et al. (2020) for masked language models.

For the experiments, we consider the Grade
Grinder Corpus (GGC; Barker-Plummer et al.,
2011), a parallel corpus where each NL sentence is
paired with multiple logically equivalent formulae.
We retrieve all PL formulae that are parsable by the
generators we use. We first simplify the formulae
using the algorithm described in §3 and obtain, for
each formula, a set of logical equivalents, maxi-
mally reduced in terms of length. Out of 1092 PL

formulae, 680 got simplified; the others were al-
ready in their shortest form. Table 1 shows some
descriptive statistics. As a concrete example, start-
ing from the following GGC formula containing 10
symbols:

(Tet(a)∧Tet(c)) → ¬(¬Large(a)∧¬Large(c))

we end up with these shortest equivalents, with the
number of symbols reduced to 7:3

Large(a) ∨ ((Tet(c) ∧ Tet(a)) → Large(c))

(Tet(c) → Large(c)) ∨ (Tet(a) → Large(a))

(Tet(c) ∧ Tet(a)) → (Large(c) ∨ Large(a))
. . .

µ σ Min. Max.

Original 7.12 2.62 1 18
Minimized 5.52 1.97 1 11

Table 1: Statistics on the length of the GGC formulae
before and after minimization.

We proceed with translating the resulting formu-
lae into English using the three rule-based gener-
ators. Additionally, we also translate the original
GGC formula with the three generators.

At the logic level, all potential candidates are
exactly of the same length. Therefore, once NL sen-
tences are generated, we prune the candidates by
(i) scoring them using the five selection strategies

3We list just some of the equivalents, as the algorithm
returns many more formulae of length 7 in the actual output.

mentioned above, (ii) selecting the one with the
lowest score for each strategy. After this process,
for each GGC input formula, we end up with 18 re-
alizations: 15 after the pruning process (3 realizers
× 5 selection strategies), plus 3 from translating
the original GGC formula with the three realizers.
Table 2 presents some examples.

5 Evaluation

5.1 Automatic Evaluation

We set up an automatic evaluation comparing the
translations by the 18 systems presented in §4 vs.
the ground truth NL references associated with the
original input formulae in the GGC. We use six
automatic metrics, three of which are based on
n−gram overlap, namely, BLEU (Papineni et al.,
2002),4 METEOR (Banerjee and Lavie, 2005), and
ROUGE-L (Lin, 2004), and three on BERT, namely,
BERTScore (Zhang et al., 2020),5 BLEURT (Sellam
et al., 2020), a learned metric based on human rat-
ings,6 and SBERT (Reimers and Gurevych, 2019).7

For all the metrics except SBERT, we use the imple-
mentations provided by HuggingFace (Wolf et al.,
2020).8 Table 3 summarizes the results obtained.

Several trends emerge from analyzing the table.
The results hint that formula minimization gener-
ally improves the translations, as the scores (partic-
ularly n−gram-based metrics) for the systems that
get the minimized versions of the formulae as input
are generally higher than the others. Different selec-
tion strategies score very similarly, sometimes with
negligible differences. The difference in behavior
between semantics-based and n−gram-based met-
rics corroborates the findings in Calò et al. (2022).
Excluding BLEURT, whose low results are proba-
bly due to the nature of the data on which it was
pre-trained and the lack of fine-tuning on our side,
the results of semantics-based metrics are compa-
rable across the systems, especially when it comes
to BERTScore. This can be seen as a confirmation
that the generated texts are paraphrases of the GGC

ground truth references. However, BERTScore’s
results need to be taken with a grain of salt, since
BERT-like models are known for missing semantic

4We adopt the SacreBLEU (Post, 2018) implementation for
improved reproducibility.

5We use the model roberta-large_L17_no-idf.
6We use the model bleurt-base-128 without fine-tuning.
7We compute cosine similarity after obtaining sentence

embeddings with the model all-distilroberta-v1.
8https://huggingface.co/evaluate-metric
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System + Selection Strategy Translation

Orig. BASELINE If f is large, then f is a cube or if f is large, then f is a dodecahedron.
Orig. Ranta At least one of these holds: - if f is large, then f is a cube

- if f is large, then f is a dodecahedron.
Orig. LOLA f is not large, f is a cube, f is not large or f is a dodecahedron.
Minim. BASELINE BERT SLOR f is a dodecahedron or if f is large, then f is a cube.
Minim. Ranta GPT PPL If f is large, then f is a cube or f is a dodecahedron.
Minim. LOLA Length f is not large, f is a cube or f is a dodecahedron.

Table 2: Some translations from the original formula (Large(f) → Cube(f)) ∨ (Large(f) → Dodec(f)).

System + Selection Strategy n−gram-based Metrics Semantics-based Metrics

METEOR ROUGE-L SacreBLEU BERTScore BLEURT SBERT

Orig. BASELINE 0.5514 0.4386 10.8638 0.9051 −0.0916 0.7819
Orig. Ranta 0.5654 0.4697 12.1577 0.9082 −0.1099 0.7464
Orig. LOLA 0.5655 0.5012 14.0046 0.9115 −0.0492 0.7672
Minim. BASELINE Length 0.5639 0.4955 14.7115 0.9129 −0.0131 0.7935
Minim. BASELINE BERT PPL 0.5677 0.4977 14.8686 0.9123 0.0028 0.7928
Minim. BASELINE BERT SLOR 0.5652 0.4980 14.8386 0.9129 −0.0151 0.7926
Minim. BASELINE GPT PPL 0.5752 0.4999 14.9506 0.9122 −0.0017 0.7916
Minim. BASELINE GPT SLOR 0.5717 0.5077 14.5815 0.9136 0.0008 0.7935
Minim. Ranta Length 0.5802 0.5037 15.5895 0.9130 0.0126 0.7794
Minim. Ranta BERT PPL 0.5807 0.5143 15.1632 0.9123 0.0077 0.7720
Minim. Ranta BERT SLOR 0.5865 0.5099 15.6208 0.9132 0.0117 0.7797
Minim. Ranta GPT PPL 0.5759 0.5020 15.3613 0.9120 0.0092 0.7720
Minim. Ranta GPT SLOR 0.5780 0.5005 15.3833 0.9132 0.0141 0.7792
Minim. LOLA Length 0.5722 0.5050 15.5769 0.9133 −0.0005 0.7805
Minim. LOLA BERT PPL 0.5771 0.5137 15.2999 0.9134 −0.0028 0.7769
Minim. LOLA BERT SLOR 0.5811 0.5131 15.3199 0.9133 −0.0006 0.7800
Minim. LOLA GPT PPL 0.5689 0.4995 15.0712 0.9132 0.0048 0.7756
Minim. LOLA GPT SLOR 0.5709 0.4967 15.3573 0.9132 −0.0107 0.7799

Table 3: Performance of the 18 systems against the GGC ground truth references according to the automatic metrics.

nuances, such as negation (Ettinger, 2020), which
is crucial for evaluating our task.

5.2 Human Evaluation

We conduct a human evaluation to understand the
impact of formulae minimization on the transla-
tions. We recruit a group of 42 human evaluators
and ask them to give feedback on (i) comprehensi-
bility (i.e., whether the message conveyed by the
sentence is understandable and not open to multi-
ple interpretations), and (ii) fluency (i.e., whether
the sentence sounds like a natural English sentence
and is grammatically correct). These are central re-
quirements to look for, as text generated from logic
can be extremely disfluent and incomprehensible
(e.g., a literal translation from a formula), while
still being faithful to the input.

Evaluators are asked to rate the comprehensibil-
ity and fluency of each translation on a 7−point
Likert scale (Likert, 1932). If comprehensibility
receives a score < 4, participants are asked to give
the motivations for which the sentence is hard to un-
derstand (i.e., ambiguity, complexity, or length of
the sentence, or other). See Appendix A for more

information on how we conduct the evaluation and
the instructions given to the evaluators.

We sample 48 references from the GGC and se-
lect translations of the corresponding formula by 6
systems. The systems we choose are Orig. BASE-
LINE, Orig. Ranta, and Orig. LOLA and Minim.
BASELINE BERT SLOR, Minim. Ranta BERT SLOR,
and Minim. LOLA BERT SLOR (henceforth, Minim.
BBS, Minim. RBS, and Minim. LBS, respectively;
see §4). Among the minimized variants, we choose
BERT SLOR for two reasons: (i) BERT-based scor-
ing seems to perform slightly better than the other
selection strategies (see §5.1), and (ii) given that
SLOR and PPL scores are nearly identical across
systems, we opt for SLOR for theoretical reasons
(see §4). After the selection, we end up with a total
of 48 (references) × 6 (systems) = 288 experimen-
tal items.

Participants and experimental items are ran-
domly assigned to one of six groups and rotated
through a 6 (systems) × 6 (participant groups)
Latin square (Fisher, 1925). This guarantees that
every item is shown to approximately the same
number of participants, that every participant is
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shown the same number of items (48), and that
participants only see one system translation per
original formula.

5.3 Results

The overall comprehensibility and overall fluency
of each translation are computed as the means
of the ratings given by the evaluators on the two
dimensions. The inter-annotator agreements for
both dimensions are low (comprehensibility: Krip-
pendorff’s α = 0.329; fluency: Krippendorff’s
α = 0.282). We find a very strong positive cor-
relation between the two dimensions (Pearson’s
r = 0.89; p≪ 0.001), indicating that more fluent
translations are also more comprehensible.

Figure 1 shows the boxplot with the distribu-
tion of the ratings on comprehensibility and flu-
ency for all the systems. The translations from
Minim. RBS receive the highest mean on both com-
prehensibility (µ = 5.19) and fluency (µ = 4.89).
One-way ANOVA analyses reveal that for both com-
prehensibility and fluency, the differences between
systems are statistically significant (comprehensi-
bility: F (5, 282) = 21.72; p ≪ 0.001; fluency:
F (5, 282) = 13.39; p≪ 0.001).
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3

4
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6

7 System
Orig. BASELINE

Orig. RANTA

Orig. LoLa

Minim. BASELINE BERT SLOR

Minim. RANTA BERT SLOR

Minim. LoLa BERT SLOR

Dimension
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at
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n 

m
ea
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Figure 1: Boxplot with the distribution of translations’
mean ratings across systems, for both comprehensibility
and fluency.

Tukey’s HSD tests for multiple comparisons
show comparable results on the two dimensions.
In general, Orig. LOLA is not significantly differ-
ent from all the minimized variants. This suggests
that human evaluators did not perceive a difference
between settings where the input was manipulated
using equivalence laws (à la LOLA) and settings
where QBF minimization was used. Moreover, the
tests show that all the minimized variants do not
significantly differ from each other. This may be

an indication that formula minimization plays an
important role beforehand and the choice of the
realizer used for translation does not matter much.
Lastly, we notice less variance when BERT SLOR

variants are involved, especially in comprehensibil-
ity with Ranta and LOLA.

We compute correlations between the human rat-
ings and the score assigned by BERTScore, ROUGE-
L, and SBERT to the questions rated by the evalua-
tors, for both comprehensibility and fluency. Fig-
ure 2 shows the scatterplots and Table 4 the nu-
merical results. The results are comparable across
the two dimensions and we find low, but statisti-
cally significant positive correlations with human
judgments on both comprehensibility and fluency.
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Figure 2: Scatterplots with the correlations between
translations’ mean ratings on comprehensibility and flu-
ency and scores assigned by the automatic metrics.

BERTScore ROUGE-L SBERT

Comprehensibility 0.331 0.315 0.223
Fluency 0.342 0.302 0.205

Table 4: Correlations between human ratings and au-
tomatic metrics on comprehensibility and fluency. All
results are computed using Pearson’s r and are statisti-
cally significant (p < 0.001).

We shed some light on the reasons why cer-
tain translations achieve low comprehensibility by
inspecting the responses to the follow-up ques-
tions that were presented when comprehensibility
is rated poorly (see §5.2). In most cases, low in-
telligibility corresponds to ambiguities detected in
the translation (selected 330 times). Next comes
the complexity of the linguistic structure (306), and
finally the length of the translation (110). Other
reasons are also chosen (118). We break down in
Table 5 the detailed figures per system. We clearly
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Orig. BASELINE Orig. Ranta Orig. LOLA Minim. BBS Minim. RBS Minim. LBS

Ambiguity 119 56 48 39 33 35
Complexity 110 58 46 38 28 26
Length 46 13 11 14 7 9
Other 33 26 14 15 12 18

Table 5: Figures for the reasons of translations’ low comprehensibility per system.

Sentence If b is a tetrahedron, then b is a tetrahedron and it is not the case that c is a tetrahedron.

Interpretation 1 (If b is a tetrahedron, then b is a tetrahedron) and (it is not the case that c is a tetrahedron).
Interpretation 2 If (b is a tetrahedron), then (b is a tetrahedron and it is not the case that c is a tetrahedron).

Original Formula Tet(b) → (Tet(b) ∧ ¬Tet(c))

Table 6: An ambiguous translation and its possible interpretations.

notice that manipulating the input formula helps
improve the comprehensibility of the sentences, as
the number of problematic cases decreases with
LOLA and the minimized variants. We proceed
with a manual check of the translations and report
some interesting cases.

A noteworthy example of ambiguity is presented
in Table 6. The sentence can have (at least) two
interpretations. We need to resort to the original
formula in the GGC to disambiguate the sentence
and retrieve the intended meaning, which corre-
sponds to the second interpretation. The sentence
is generated by Orig. BASELINE. Other systems
greatly improve the translation’s comprehensibility,
e.g., the corresponding translation by Minim. LBS

b is not a tetrahedron or c is not a tetrahedron is
rated much higher by the evaluators (µ = 4.43 vs.
µ = 2.86).

Problematic cases pertaining to the complexity
and length of the sentence include those presenting
bulleted lists. Evaluators are ambivalent about
their use: Some systematically give high scores
to sentences containing bulleted lists, while
others severely criticize them. One example that
particularly baffled the evaluators is the following,
as it contains nested levels of indentation:

At least one of these holds:
• d is a dodecahedron and d is small
• all these hold:

– d is not a dodecahedron or d is not small
– a is small

Further, we inspect in which circumstances for-
mula minimization leads to better translations. We
consider the scores on comprehensibility9 of the

9We get similar results when we look at fluency.

translations by Orig. BASELINE vs. Minim. BBS,
and Orig. Ranta vs. Minim. RBS. We select
the top 10 instances where the score difference is
the highest. We do not consider LOLA to keep
the analysis controlled, as LOLA performs fur-
ther logical manipulation before verbalization. We
manually inspect the original and minimized for-
mulae, and find out, unsurprisingly, that the out-
puts are improved mostly thanks to redundancy
removal (e.g., repeated predicates and double nega-
tion) from the input. As an example, the GGC

formula ¬(BackOf(c, a) → ¬FrontOf(c, e)) ∧
FrontOf(c, e) gets translated by Orig. Ranta as
It is not the case that if c is in back of a, then c is
not in front of e and c is in front of e. After mini-
mization, the resulting formula FrontOf(c, e) ∧
BackOf(c, a) gets translated by Minim. RBS as c
is in front of e and in back of a, gaining 2.71 points
in comprehensibility.

6 Conclusion

We have studied the role of brevity in logic-to-
text generation. We employed a state-of-the-art (in
terms of speed) QBF-based algorithm (Calò and
Levy, 2023) that always finds the shortest equiv-
alents to an input PL formula. We verbalized the
outputs experimenting with several realizers and se-
lection strategies to study whether the translations
from shorter formulae are more comprehensible
and fluent than those from their longer logically
equivalent counterparts.

The results of our evaluations suggest that ma-
nipulating the original input formula (using logical
equivalence laws as in LOLA or via minimization)
improves the sentences generated. Our study taught
us some other lessons as well. For example, the free
text comments that our evaluators provided suggest
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that there is a need to (i) take measures to mitigate
ambiguity in the generated sentences (see also Ta-
ble 5 and Table 6), and (ii) further improve fluency,
despite the fact that both Ranta and LOLA already
take some measures to do it (the former performing
syntactic optimizations and the latter performing
both syntactic and logical optimizations).

In conclusion, is brevity valid as a principle that
guides logic-to-text generation? A comparison
with referring expressions generation (REG) might
be helpful here. Researchers in REG build compu-
tational models of the choices that human speakers
make when referring. Early REG algorithms (Dale,
1992) always generated the shortest expression that
singles out the intended referent. However, such
brevity-oriented REG algorithms have been found
both computationally infeasible (Dale and Reiter,
1995) and dissimilar to the approaches followed by
human speakers. Recent REG models all strike a
compromise between brevity and a number of other
factors (Van Deemter, 2016); they can be seen as
approximating brevity to different degrees. It is
conceivable, likewise, that future work on logic-to-
text generation ends up following a similar pattern.
For example, although the results reported in this
paper suggest that brevity has a role to play, fu-
ture logic-to-text algorithms might achieve even
better performance by deviating from brevity to
some extent. Perhaps brevity in logic-to-text gener-
ation should be weighed less heavily in some com-
municative situations, just as speakers are known
to generate more elaborate referring expressions
when referential situations are complex (Koolen
et al., 2011; Paraboni and van Deemter, 2014).

We hope that future research, in which logical
formulae and their natural language “translations"
are embedded in well-understood practical tasks,
for example in logic teaching or XAI, may shed
further light on these questions.

Limitations

In the present paper, we have concentrated on PL.
The first natural extension of this work would be
to see if the QBF-based algorithm (or similar meth-
ods) could scale up to other (more expressive) for-
malisms, e.g., first-order logic. This would open
up a range of interesting research questions, as in
first-order logic, equivalence is in general unde-
cidable. As a first step, an approach based on the
use of a first-order theorem prover (e.g., VAMPIRE

(Riazanov and Voronkov, 2002)) to check logical

equivalence could be explored. This would not
guarantee total coverage but might handle the vast
majority of cases.

Our work has focused on four common logical
operators, i.e., negation, conjunction, disjunction,
and implication. When including other operators,
such as the biconditional or the Sheffer stroke, the
results could differ. For example, given that the
Sheffer stroke is functionally complete on its own,
we could have very short formulae but that may
result in incomprehensible or disfluent texts.

Our conclusions are drawn from a limited num-
ber of realizers sharing similar properties (i.e., all
of them are rule-based and derived from the system
originally presented in Ranta (2011)). On the other
hand, because of this, we were able to perform con-
trolled generation and zoom in on the impact of
minimization, which would not be straightforward
in other settings, e.g., neural.

Moreover, we have only tackled English as NL.
Brevity is drastically language-dependent and ex-
perimenting with other (especially typologically
diverse) languages could bring different results.

Finally, the evaluation process could be further
refined, as hinted by some comments we received
in the human evaluation. For instance, some sug-
gest that working within practical domains, espe-
cially with the help of pictures, would have eased
the work of the evaluators.
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A Details on Human Evaluation

We conduct the human evaluation via Prolific.10

The 42 evaluators we recruit are all native speakers
of English and completed at least high school. They
are paid £3 for an estimated workload of 20 min-
utes. Figure 3 presents the instructions provided to
the evaluators and an example sentence.

10https://www.prolific.co/
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Thank you very much for participating in this experiment!

It will take approximately 20 minutes to fill in this survey. If you do wish to participate, your response
will be handled anonymously: The information in this study will only be used in ways that will not reveal
who you are. You will not be identified in any publication from this study or in any data files shared with
other researchers. Your participation in this study is confidential. If at any point you would like to stop,
you can close this form and your response will be deleted.

I have read the above information and understand the purpose of the research and that data will be
collected from me. I agree that data gathered for the study may be published or made available, provided
my name or other identifying information is not used.

⃝ I confirm this.
⃝ I do not confirm this and I want to withdraw from participation.

The purpose of the experiment is to assess the quality of some automatically generated English sentences
concerning geometrical shapes and their properties. We are interested in receiving feedback on (i)
comprehensibility (i.e., do you understand precisely the message conveyed by the sentence?), and (ii)
fluency (i.e., does the sentence sound natural to you?).

We will present to you 48 sentences, and for each, we would like to know your feedback on the
aforementioned aspects. In detail, you will have to answer the following questions:

1. How comprehensible is the sentence? By a comprehensible sentence, we mean that it is
understandable and does not have multiple interpretations.

2. How fluent is the sentence? By a fluent sentence, we mean that it sounds like a natural English
sentence and is grammatically correct.

Please, note down the definitions of comprehensibility and fluency, in case you want to refer to them later.

Here’s an example:

Sentence:
If it is not the case that c is a cube, then a is a tetrahedron, and if it is not the case that d is a cube, then b
is a cube.

Comprehensibility
1⃝ 2⃝ 3⃝ 4⃝ 5⃝ 6⃝ 7⃝
Fluency
1⃝ 2⃝ 3⃝ 4⃝ 5⃝ 6⃝ 7⃝

Why do you think that the sentence is hard to understand?
(In the real questionnaire, this appears only if comprehensibility < 4)
Note: with ‘the sentence is ambiguous’, we mean ‘the sentence has multiple meanings’.

⃝ The sentence is ambiguous
⃝ The sentence is too long
⃝ The language structure is too complex
⃝ Other:

Now it is your turn!

Figure 3: The instructions provided to the evaluators during our human evaluation.
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