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Abstract

As the size of the pre-trained language
model (PLM) continues to increase, numerous
parameter-efficient transfer learning methods
have been proposed recently to compensate for
the tremendous cost of fine-tuning. Despite
the impressive results achieved by large pre-
trained language models (PLMs) and various
parameter-efficient transfer learning (PETL)
methods on sundry benchmarks, it remains un-
clear if they can handle inputs that have been
distributionally shifted effectively. In this study,
we systematically explore how the ability to de-
tect out-of-distribution (OOD) changes as the
size of the PLM grows or the transfer meth-
ods are altered. Specifically, we evaluated var-
ious PETL techniques, including fine-tuning,
Adapter, LoRA, and prefix-tuning, on three dif-
ferent intention classification tasks, each uti-
lizing various language models with different
scales.

1 Introduction

Pre-trained language models (PLM), which are pre-
trained on large-scale corpora using transformer-
based architectures (Vaswani et al., 2017), have
achieved groundbreaking success on sundry bench-
marks (Wang et al., 2019b; Rajpurkar et al., 2016;
Wang et al., 2019a), establishing themselves as the
standard neural model in countless applications.
Moreover, language models pre-trained with larger
parameters on a rich volume of corpora tend to ex-
hibit more intriguing potentials, such as the ability
to capture world knowledge (Petroni et al., 2019),
generate codes (Poesia et al., 2022), and even solve
mathematical problems (Henighan et al., 2020), on
top of understanding linguistic knowledge (e.g.,
semantic or syntactic). To explore the apex of pre-
trained language models (PLMs), the size of PLMs
is growing exponentially and has reached billions
to a trillion (Brown et al., 2020; Chowdhery et al.,
2022; Fedus et al., 2022; Hoffmann et al., 2022).

Under these circumstances, the conventional
method for transferring PLMs to a target task
(i.e., fine-tuning) is now infeasible as it entails
prohibitive costs to train and store the entire pa-
rameters of large PLMs for every desired task.
To mitigate this issue, several recent parameter-
efficient transfer learning (PETL) methods have
been proposed to improve task scalability. For in-
stance, adapter-based (Houlsby et al., 2019; Hu
et al., 2022) approaches insert small neural mod-
ules into each layer of the PLM and update those
lightweight modules in the training phase. Inspired
by the recent success of textual prompts (Brown
et al., 2020), prompt-based methods (Li and Liang,
2021; Lester et al., 2021; Shin et al., 2020) concate-
nate extra tunable tokens to the front of the input or
hidden layers and update prepended soft prompts
in the training phase.

Despite these breakthroughs in NLP, even very
recent anomaly detection studies (Cho et al., 2022;
Shen et al., 2021) are still limited to relatively small
bi-directional PLMs (e.g., BERT, RoBERTa). Thus,
how large-scale PLMs or auto-regressive PLMs
cope with outliers is uncharted territory, naturally
begging the following questions:
• Q1: Does increasing model size improve OOD
detection performance without model parameters?
• Q2: If so, does scaling the size of PLM makes
the model robust enough to utilize them without
any additional process?
• Q3: Do fine-tuning and various PETL method-
ologies display differences in OOD detection per-
formance according to the size of PLMs?
• Q4: Can the OOD detection methods from previ-
ous works (usually for the bi-directional PLMs) be
transferred to auto-regressive PLMs (GPT)?

To resolve these questions, this paper investi-
gates the capability of large PLMs as outlier de-
tectors from various perspectives. Specifically, we
compare the robustness to outliers with various
transfer learning techniques on several OOD bench-
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marks: Full fine-tuning, LoRA (Hu et al., 2022),
Adapter (Houlsby et al., 2019), and prefix-tuning
(Li and Liang, 2021) on various auto-regressive
PLMs with different sizes, i.e., GPT2-S, M, L, XL
(Radford et al., 2019), GPT-Neo (Black et al., 2021)
and GPT-J (Wang and Komatsuzaki, 2021). From
in-depth investigations, we share several intriguing
observations: (1) As the size of the PLM increases,
the performance improves without any update of
model parameters. However, it is still challeng-
ing to use it without supervision since their perfor-
mances still lag far behind compared to the fine-
tuned small PLM (i.e., BERT-base). (2) PETLs out-
perform fine-tuning with sufficiently large PLMs
in both IND and OOD metrics. (3) Lastly, lever-
aging the information of the last hidden represen-
tation, which is the most prevailing method for
bi-directional PLM in recent OOD detection, does
not transfer well in auto-regressive PLM, requiring
a novel representation extracting technique. We
believe that these findings will help future anomaly
detection studies.

2 Probing OOD Robustness

2.1 Backbones and Models

To investigate the trend of OOD performance under
varying scales of PLM, we consider three factors
during backbone selection. They should be (1)
publicly available, (2) reasonably large, and (3)
share identical structures to eliminate factors other
than size. Since recent large PLMs utilize auto-
regressive objectives due to their computational
complexity, we adopt six auto-regressive PLMs
as the backbone of our experiments accordingly:
GPT2 (S,M,L,XL), GPT-Neo, and GPT-J.

For the parameter-efficient transfer methods,
we selected two methods: two adapter-based and
one prompt engineering-based. Namely, Adapter
(Houlsby et al., 2019), LoRA (Hu et al., 2022), and
Prefix-tuning (Li and Liang, 2021) are selected
for the adapter approach, which is compatible with
classification tasks, for the prompt approach. We
also report the performance of linear evaluation,
i.e., single layer perceptron (SLP) on top of PLMs,
and fine-tuning, which act like a lower-bound and
upper-bound, respectively.

2.2 Dataset and Metrics

Dataset. We evaluate our model on two datasets,
CLINC150 and Banking77, widely used in OOD
detection. CLINC150 dataset (Larson et al., 2019)

contains 150 class labels (15 intents for 10 do-
mains), while Banking77 dataset (Casanueva et al.,
2020) consists of fine-grained 77 bank-related in-
tents. Following the experimental settings from pre-
vious works (Cho et al., 2022; Zhang et al., 2022;
Shu et al., 2017; Fei and Liu, 2016; Lin and Xu,
2019), we validate our models in two different sce-
narios: far-OOD setting and close-OOD setting.
For CLINC dataset, we train our model with the
whole training dataset and test with an indepen-
dent OOD test split from CLINC dataset, which
does not overlap with 150 classes in the training
dataset. Outliers in CLINC OOD split are distribu-
tionally far from the training distribution (Zhang
et al., 2022), so it is relatively easy to discern. For
Banking77, we partition the dataset into 2 disjoint
datasets (i.e., IND / OOD dataset) based on the
class label. Since both IND and OOD datasets orig-
inated from the equivalent dataset, they share sim-
ilar distributions and properties, making the task
more demanding. Thus, we refer to a CLINC OOD
setting as far-OOD and split settings in Banking as
close-OOD settings, respectively.
Metrics. To evaluate IND performance, we mea-
sured the classification accuracy. And for OOD per-
formance, we adopt two metrics commonly used
in recent OOD detection literature:
• FPR@95. The false-positive rate at the true-
positive rate of 95% (FPR@95) measures the prob-
ability of classifying OOD input as IND input when
the true-positive rate is 95%.
• AUROC. The area under the receiver operating
characteristic curve (AUROC) is a threshold-free
metric that indicates the ability of the model to
discriminate outliers from IND samples.

2.3 OOD Evaluation Methods
Evaluation in OOD detection is done via a scoring
function, which outputs the appropriateness of the
input into a single scalar value (p). Then we com-
pare p with the pre-set threshold δ to determine
whether the input is an outlier or not:

Iδ(x) =

{
IND p(x) ≥ δ
OOD p(x) < δ,

(1)

In this paper, we evaluate the performance of
our method in 4 different evaluation methods,
which can be categorized into 2 higher branches:
representation-based and logit-based.

Logit-based approaches exploit the PLM’s predic-
tion result extracted from the classification layer as
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(a) Performance on far-OOD setting. (b) Performance on close-OOD setting.

Figure 1: OOD detection performance of PLMs without updating the model parameters.

their primary information to discern outliers. Logit-
based approaches are simple and have their own
dominance in computational cost since it pursues
OOD detection and general classification nigh si-
multaneously.
• MSP is a baseline method in this branch that
employs the maximum softmax probability to score
the appropriateness of the given input, based on the
idea that the model will output more certain output
(higher probability) to a normal sample (Hendrycks
and Gimpel, 2017):

p(x) =
efi(x)

ΣN
j=1e

fj(x)
, (2)

where fi(x) refer to as max value from the classifi-
cation layer (max logit value).
• Energy is a variant of MSP, which calibrates logit
value based on energy function (Liu et al., 2020):

p(x) = −E(x; f) = T · log ΣN
i ef(x)/T . (3)

Representation-based approaches, on the other
hand, employ the hidden representation from PLM
as their primary source. Since the size of the hidden
representation is larger and inheres more copious
information, they generally yield a more precise
decision than logit-based approaches. However,
they require more inference time to derive a final
score. We employed Mahalanobis distance-based
and cosine similarity-based methods in this branch.
• Mahalanobis distance refers to the distance be-
tween the specific distribution and the input. In
OOD detection, we estimate the gaussian distribu-
tion of the training dataset and utilize the minimum
Mahalanobis distance to score the input suitability

(Lee et al., 2018):

p(x) = (h− µk)
⊤Σ−1(h− µk), (4)

where training distribution is (N (µi,Σ) for i ∈
i = {1, 2, · · · , |C|}), and k refers to a index of
minimum mahalanobis distance.
• Cosine Similarity method utilizes the cosine
distance between the representation of the given
input (z(x)) and the nearest neighbor z(xnn) (Tack
et al., 2020):

p(x) = sim(z(x), z(xnn)) (5)

3 Analysis

In this section, we share several intriguing findings
and insights from various settings.

3.1 OOD Robustness of PLMs without
Supervision.

In this experiment, we investigate the OOD detec-
tion capability of PLMs without parameter tuning.
Precisely, we extract the final layer representation
from each frozen PLM and evaluate their perfor-
mance via representation-based evaluation meth-
ods. (Logit-based evaluation methods are not used
as they require additional training of the classifi-
cation layer.) Figure 1 summarizes the results in
two scenarios (i.e., far-OOD and close-OOD). We
verified the correlation between the size of PLMs
and their OOD detection ability, but utilizing them
without parameter supervision is roughly impossi-
ble since they still lag far behind the small super-
vised methods (i.e., BERT-base with Mahalanobis
evaluation) in a barebone setting. Moreover, perfor-
mance improvement from the scaling saturates in a
more harsh setting (i.e., close-OOD), displaying an
unbridgeable gap with the fine-tuned model.
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Figure 2: OOD detection performance of PLMs without updating the model parameters.

Setting Backbone
Evaluation Method

MSP Energy Mahal. Cosine

CLINC
Setting

GPT2-S 93.22 95.79 77.63 76.34
GPT2-M 95.41 97.63 82.42 79.82
GPT2-L 96.21 97.77 96.93 97.57
GPT2-XL 96.48 97.99 97.28 97.66
GPT-Neo 96.04 97.72 96.59 97.64
GPT-J 97.34 98.50 97.91 98.20

Banking
Split 25%

GPT2-S 90.12 91.32 75.32 73.11
GPT2-M 91.74 92.78 78.03 76.56
GPT2-L 93.02 93.45 92.44 93.41
GPT2-XL 94.29 94.95 93.24 94.10
GPT-Neo 93.83 94.85 92.79 93.88
GPT-J 94.11 95.10 93.66 94.80

Table 1: AUROC of each PLMs trained with LoRA. En-
ergey function consistently outperforms other methods .

3.2 Evaluation methods for auto-regressive
PLMs.

Many recent OOD works (Zhou et al., 2021; Shen
et al., 2021) leverage hidden representation-based
evaluation, as they generally surpass logit-based
evaluations (Podolskiy et al., 2021). The reason-
able conjecture behind their success is that hid-
den representations have more copious information
than the logit value. However, in auto-regressive
PLMs, logit-based evaluations (i.e., MSP and En-
ergy) outperform representation-based methods
(i.e., Mahalanobis distance and cosine similarity),
as shown in Table 1. The reasonable conjecture
for this phenomenon is due to the characteristic
of the language model. Unlike bi-directional mod-
els (e.g., BERT, RoBERTa, DeBERTa), decoder
models (e.g., GPT and its variants) do not have
[CLS] embedding, which assembles the token em-
beddings to capture holistic information (Devlin

et al., 2019; Kim et al., 2021). Therefore, auto-
regressive PLMs generally utilize the last token
embedding as a final feature embedding replacing
[CLS] embedding of encoder-based models. While
the last token of GPT is befitted for predicting the
next token, however, it cannot extract the holistic
semantics of the sentence suitably, unlike [CLS]
embedding. We believe extracting a better repre-
sentation through various pooling (Wang and Kuo,
2020) methods might be a possible avenue for auto-
regressive models to improve the OOD robustness
further.

3.3 PETLs VS. Fine-tuning

In this experiment, we investigate the performance
gap between various PETL methods (i.e., Adapter,
LoRA, prefix-tuning) and model fine-tuning. To
compare the performance of each method under
similar circumstances, we set every PETL method
to utilize a similar number of parameters sufficient
enough to reach maximum accuracy. Moreover,
we utilized the energy function to evaluate each
method as they displayed the best performance
among other evaluation methods, i.e., cosine, Ma-
halanobis, and MSP, in the previous experiments.
Table 2 summarizes the results.

From this experiment, we observed that PETL
methods are more robust than fine-tuning with
reasonably large PLMs (i.e., GPT-J). Specifically,
most PELT methods on GPT-J outperform fine-
tuning with proper tunable parameters. Neverthe-
less, size is not the ultimate answer. While it is
clear that the scale of a model is an essential factor
in OOD robustness, larger models are still vulnera-
ble to close-OOD inputs. The capability to detect
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Setting Method # Params.
Backbone

GPT2
(S)

GPT2
(M)

GPT2
(L)

GPT2
(XL)

GPT
Neo

GPT-J

CLINC
(far-ood)

Linear (SLP) 0% 83.03 87.39 88.47 89.55 89.44 91.94
Fine-tuning 100% 96.84 97.71 98.24 98.33 98.01 98.41

LoRA
0.1% 95.00 96.54 97.66 97.72 98.14 97.79
0.5% 96.41 96.04 97.52 97.45 98.12 97.89
1% 96.13 95.89 97.61 97.40 98.11 98.50

Adapter
0.1% 96.62 97.52 97.74 97.71 97.81 96.80
0.5% 95.64 97.07 97.86 96.94 97.98 98.37
1% 95.79 97.63 97.77 97.99 98.12 98.50

Prefix
0.1% 95.53 96.93 96.38 97.88 90.25 98.55
0.5% 96.91 96.96 97.78 97.88 89.81 97.92
1% 96.97 97.50 97.69 97.81 88.98 98.62

Banking
split 25%

(close-ood)

Linear (SLP) 0% 72.97 75.17 80.46 77.59 86.55 89.12
Fine-tuning 100% 90.06 92.06 93.14 93.23 92.54 93.73

LoRA
0.1% 91.18 91.74 94.65 94.58 94.29 95.82
0.5% 91.16 92.98 94.54 94.04 94.55 94.65
1% 91.39 92.39 93.45 93.59 94.81 95.29

Adapter
0.1% 91.97 93.24 94.90 94.69 93.26 95.59
0.5% 92.90 92.63 95.18 95.24 93.61 95.83
1% 91.32 92.78 95.41 94.95 94.41 95.37

Prefix
0.1% 91.22 91.92 93.96 93.48 81.9 94.93
0.5% 91.85 92.55 93.84 93.34 80.82 93.99
1% 92.09 92.65 94.38 93.74 89.66 94.39

Table 2: AUROC of various PETL methods with various number of parameters evaluated by the energy function.

far-OOD inputs (far from the training distribution)
improves proportionally as the size grows, while
the ability to identify close-OOD input improves
rather trivially. PLM’s vulnerability to close-OOD
has already been reported in other studies (Zhang
et al., 2022), and this may be related to shortcut
learning (Geirhos et al., 2020) that predicts with
high probability by looking at specific words. Gen-
erating OOD data with particular keywords or uti-
lizing another pretext task, such as (Moon et al.,
2021), can be worthy approaches to alleviate such
phenomena. A suitable OOD approach is neces-
sary to alleviate the aforementioned issue, as it
can further boost the robustness. We conduct addi-
tional experiments with PETLs on three different
numbers of tunable parameters: 0.1%, 0.5%, and
1% of the PLM parameters. Figure 2 summarizes
the results. With sufficient parameters to reach
maximum performance, there is no meaningful dif-
ference or improvement within each methodology.
Also, empirically, we confirmed that LoRA is the
most stable during learning and that prefix-tuning
fluctuates severely according to learning.

4 Conclusion and Future Work

In this study, we showed that the scale of the lan-
guage model is an important factor in OOD ro-
bustness. Moreover, we also showed that various
methodologies outperform fine-tuning when ap-
plied to sufficiently large PLM. Our follow-up work
seeks to create a methodology that allows large
PLMs to be more robust to OOD input. The per-
formance improvement that can be achieved by the
size of PLM and OOD technique is orthogonal. In
line with the growing size of PLM, the OOD tech-
nique needs to be developed in a more parameter-
efficient way. As such, developing a proper OOD
technique compatible with the parameter-efficient
transfer methods is our proper goal.
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Appendix

A Related Work

Parameter-Efficient Transfer Learning is draw-
ing considerable attention lately, emerging as an
alternative strategy to fine-tuning. Compared to
fine-tuning, parameter-efficient transfer methods
show superiority in the number of trainable param-
eter usage while achieving performance analogous
to fine-tuning. Depending on the characteristics of
the methods, parameter-efficient transfer methods
can be categorized into Adapter-based and Prompt-
Engineering approaches.

Adapter (Houlsby et al., 2019; Pfeiffer et al.,
2021) refers to a lightweight neural module in-
jected within each layer of PLM. The structure of
the adapter generally consists of a bottleneck layer
(down-projection and up-projection), a nonlinear
function, a normalization layer, and a residual con-
nection. The adapter has many different variants
due to numerous design choices, such as the order
or specifics of each component (e.g., which nor-
malization technique will be used) and where the
adapter will be attached. For example, LoRA (Hu
et al., 2022) inserts low-rank decomposition matri-
ces in each weight in self-attention (Vaswani et al.,
2017) (i.e., query, key, and value).

Another line of work, prompt engineering, casts
the existing task as a text generation problem to
fully leverage the capability of PLMs to predict
the appropriate word in the given sentence. This
approach requires an empirical endeavor of opti-
mizing the prompt to maximize a PLM’s perfor-
mance. Earlier works exploit handcrafted manual
prompts (Schick and Schütze, 2021; Jiang et al.,
2020) or by providing demonstrations to PLM 1

(Brown et al., 2020; Raffel et al., 2020; Gao et al.,
2021; Zhao et al., 2021). More recent work re-
places the manual prompt with a soft prompt (Li
and Liang, 2021; Lester et al., 2021; Shin et al.,
2020; Liu et al., 2021), a machine trainable contin-
uous vector. The soft prompt is a more modular
and versatile method that evades additional latency
in the inference phase because it detaches the ad-
ditionally trained parameters and solely employs
the final output of the trained parameters as the
prompt.

While former parameter-efficient transfer meth-
ods showed noticeable achievements, their evalu-
ations generally assume the train and test distribu-

1also termed as in-context learning.

tions are identical (i.e., i.i.d. assumption); however,
this condition is rarely satisfied in real-world sce-
narios due to the diversity and volatility of user
input. Consequently, if the model can not correctly
handle distribution-shifted malicious input and mis-
conceives it as an in-distribution (IND) example, it
may lead to fatal accidents.

Despite its practical importance, how large
PLMs or parameter-efficient transfer learning cope
with unknown input is poorly understood. This
work aims to understand language models’ capabil-
ities to detect outliers through parameter-efficient
transfer learning methods.

B Parameter-Efficient Transfer Learning

Adapter The adapter approach inserts small train-
able adapter modules between transformer layers
while the parameters of the original network remain
fixed. The adapter module uses a bottleneck archi-
tecture which projects the input dimension h to a
lower-dimensional space specified by bottleneck
dimension r, followed by a nonlinear activation
function, and a up-projection to initial dimension
h. In this work, we attach adapter modules in two
places, i.e., after the projection following multi-
head attention and after the two feed-forward lay-
ers, following original implementation in (Houlsby
et al., 2019). Also, we use relu as a nonlinear func-
tion and layer normalization (Ba et al., 2016).
LoRA LoRA injects trainable low-rank matrices
into transformer layers to approximate the weight
updates. For a pre-trained weight matrix W ∈
Rh×k, LoRA decompose ∆W = WdownWup

where Wdown ∈ Rh×r,Wup ∈ Rr×k are trainable
parameters. Specifically we attach LoRA in weight
matrices in the self attention module. Specifically
we attached LoRA to query and key vector follow-
ing the original implementation.
Prefix-Tuning Prefix tuning prepends l tunable
prefix vectors to the keys and values of the multi-
head attention at every layer. Following the original
implementation, we reparametrize the prefix matrix
of dimension h by a smaller matrix of dimension r
composed with a large feedforward neural network
with tanh as a nonlinear function.

C Expanded Configuration Details

C.1 Common Environment
For the experiments, 4 Tesla V100 SXM2 32GB
GPUs are used. The batch size is 8 per GPU. When
the GPU is too small for the batch size, we set
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dataset #domain #intent #data (train/val/test/ood)

CLINC 10 15 15000/3000/4500/1000
Banking 1 77 7812 / 1520 / 3040

Table 3: Dataset statistics.

BERT-base
CLINC150 Full

ACC ↑ FPR-95 ↓ AUROC ↑
Shu et al. (2017) 94.51±0.45 23.33±1.27 95.92±0.05

Li et al. (2021) 96.1±0.37 10.6±0.26 97.72±0.03

Zeng et al. (2021) 94.19±0.28 23.4±1.97 95.75±0.2

Zhou et al. (2021) 95.79±0.13 10.7±0.95 97.6±0.11

Shen et al. (2021) 96.66 10.88 97.43
Cho et al. (2022) 96.96±0.39 6.67 ±0.51 98.27 ±0.16

Table 4: Results of each model trained on the
CLINC150 dataset. The best performance in each met-
ric is indicated in bold.

batch size to 4 and the number of gradient accu-
mulation steps to 2. We implemented our model
based on Transformers (Wolf et al., 2020) library
by Huggingface. Additionally, we used deepspeed
(Rajbhandari et al., 2020) to train models. Specifi-
cally, we used ZeRO2 with cpu offload on a 240GB
RAM CPU. In this setting, fine-tuning GPT-J on
CLINC150 full dataset takes about 7.1 GPU hours
per epoch. We used AdamW (Loshchilov and Hut-
ter, 2019) optimizer with epsilon 1e-6 and weight
decay 0.1. Furthermore, we apply the cosine an-
nealing scheduler. For GPT-neo, the minimum
learning rate is 0. For GPT-J, the minimum learn-
ing rate is the one fifth of maximum learning rate.

C.2 Number of Trainable-Parameter

For each method, a feed-forward layer is added at
the end of the model. In this section, we will calcu-
late the number of additional trainable parameters
of each training methods discussed in this paper.
Biases are omitted for better readability.
Adapter Adapter method adds four feed-forward
layers per transformer layer in the model. Two of
them are down-projection layers, and the others are
up-projection layers. When the original embedding
size of the model is h, the bottleneck dimension is
r, and the number of transformer layers is L, the
number of the trainable parameters of these layers
is calculated as 4Lhr, excluding the bias of the
added layers.
LoRA Similar to adapter, LoRA also adds feed-
forward layers per transformer layer. Therefore,
the number of the trainable parameters of 4Lhr.
However, the number of parameters are less than
adapter if h and r is the same, since LoRA does

not use bias of the feed-forward layers.
Prefix-Tuning There are two trainable elements
in prefix tuning. The first one is the prefix em-
beddings. When the number of prefixes is l, and
the embedding size is h, lh parameters are used
by the prefixes. Second, the reparametrization ma-
trix is also trained. The down-projection matrix
has hr parameters, when the reduced dimension
for reparametrization is r. The up-projection ma-
trix has 2Lhr parameters. As a result, there are
h(2Lr + l) trainable parameters on prefix tuning
approach.

C.3 Hyper-parameter Search
Tab 5 summarizes hyper parameters for each
model.

D Selecting SOTA OOD Method.

The Tab.4 summarizes the results with recently
proposed OOD approaches on BERT-base with
CLINC dataset. The best performing model (Cho
et al., 2022) is selected as the baseline.
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Method Parameters Values

LoRA
Learning rate 2e-4 (GPT-Neo), 5e-5 (GPT-J)
Bottleneck dim 8 (GPT-Neo / 0.1%), 80 (GPT-Neo / 1%), 12 (GPT-J /0.1%), 128 (GPT-J / 1%)
Location query, value

Adapter
Learning rate 8e-5 (GPT-Neo / 0.1%), 1e-4 (GPT-Neo / 1%), 5e-5 (GPT-J), 5e-4 (GPT-J / 0.1%), 1e-4 (GPT-J / 1%)
Bottleneck dim 6 (GPT-Neo / 0.1%), 80 (GPT-Neo / 1%), 11 (GPT-J /0.1%), 128 (GPT-J / 1%)
Location after Multi-head, after Feed-forward,

Prefix-tuning
Learning rate 2E-4 (GPT-Neo), 5E-5 (GPT-J)
Bottleneck dim 12 (GPT-Neo / 0.1%), 160 (GPT-Neo / 1%), 20 (GPT-J /0.1%), 256 (GPT-J / 1%)
Prefix length 5, 10, 20

Table 5: Hyper-parameter search for each model.
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