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Abstract

How does the word analogy task fit in the mod-
ern NLP landscape? Given the rarity of com-
parable multilingual benchmarks and the lack
of a consensual evaluation protocol for contex-
tual models, this remains an open question. In
this paper, we introduce MATS: a multilingual
analogy dataset, covering forty analogical rela-
tions in six languages, and evaluate human as
well as static and contextual embedding perfor-
mances on the task. We find that not all ana-
logical relations are equally straightforward for
humans, static models remain competitive with
contextual embeddings, and optimal settings
vary across languages and analogical relations.
Several key challenges remain, including creat-
ing benchmarks that align with human reason-
ing and understanding what drives differences
across methodologies.

https://github.com/ATILF-UMR7118/MATS

1 Introduction

Ever since the work of Mikolov et al. (2013b), anal-
ogy solving has been a staple of public outreach in
NLP: It has been featured both in science communi-
cation1 and in the classroom.2 This task consists in
finding a target word b2, given a cue word b1 it is
related to, and another pair of words a1 and b2 that
express the same relation. For example, we can ask
what is the word that relates to “king” in the same
manner that “woman” relates to “man”: This target
ought to be “queen”.

The introduction of pre-trained contextualized
embeddings (Peters et al., 2018) opened up a new
research area where to expand prior knowledge
about static models. This includes the analogy
task. Suggestions have been put forward as to how

1E.g., it is discussed by the Computerphile YouTube chan-
nel, cf. https://youtu.be/gQddtTdmG_8?t=662.

2To take an example, see the Winter 2017 NLP lectures at
Stanford, https://youtu.be/ASn7ExxLZws?t=3257.

to best adapt it: Ushio et al. (2021) propose to
use a prompt-based method, whereas Vulić et al.
(2020) and Lenci et al. (2022) try to derive static
embeddings from BERT to fall back on the algo-
rithm of Mikolov et al. (2013b). However, much
work remains to be done to properly contrast and
compare the performance of contextual and static
embedding models on the analogy task. Another
observation to be made is that reliable compar-
isons across languages are rare. On the one hand,
datasets for English—such as the GATS (Google
Analogy Test Set, Mikolov et al., 2013a) and BATS

(Balanced Analogy Test Set, Gladkova et al., 2016)
benchmarks—have been adapted or translated to
a wide variety of languages. On the other hand,
approaches specifically focusing on establishing
multilingual comparisons are, to our knowledge,
limited to Grave et al. (2018), Ulčar et al. (2020),
and Peng et al. (2022)—none of which considers
contextual embeddings.

How do embeddings—and in particular contex-
tual models—perform on the analogy task beyond
English? In the present paper, we argue that a
principled approach to comparing embeddings on
the analogy task across languages consists in cre-
ating resources designed to be directly compara-
ble. The most natural way of achieving this is by
relying on manual translations, so as to retain a
certain degree of control on the output quality and
to produce resources that are maximally compa-
rable. Given the weaknesses of GATS outlined by
Gladkova et al. (2016), the more reasonable start-
ing point for these translations would be the BATS

dataset. These considerations effectively rule out
the only similar dataset that we know of, by Ulčar
et al. (2020), where analogies accept only one valid
answer, as in GATS.

To that end, we introduce MATS, a Multilin-
gual Analogy Test Set for six languages: Dutch,
French, German, Italian, Mandarin, and Spanish,
derived from the original BATS dataset of Glad-
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kova et al., spanning across 40 analogical relations
equally partitioned between inflectional, deriva-
tional, lexicographic and encyclopedic. Using this
new benchmark, we observe that different adap-
tations of the analogy task to mBERT contextual
embeddings need not yield comparable results: Not
only do we observe different performances when
deriving static embeddings from contextual models
and when using prompts, we also see that the exact
wording of the prompt significantly impacts the
model’s behavior. We also share some anecdotal
evidence questioning the validity of approaches to
this task that assume there is a single gold answer—
trained linguists attempting to solve this task often
provide answers that do not match any of the ex-
pected targets, which further validates that single-
target analogy benchmarks are ill-suited.

2 Related Works

Analogy, and specifically the offset approach of
Mikolov et al. (2013b), has inspired the field at
large (e.g., Roller et al., 2014; Bonami and Paperno,
2018; Ethayarajh, 2019; Chen et al., 2022). How-
ever, this approach has been criticized for method-
ological and ethical reasons (Bolukbasi et al., 2016;
Linzen, 2016; Rogers et al., 2017; Schluter, 2018;
Garg et al., 2018; Adewumi et al., 2022).

Two groups of related analogy datasets are often
cited: those adapted from GATS (Google Analogy
Test Set, Mikolov et al., 2013a) and those derived
from BATS (Balanced Analogy Test Set, Gladkova
et al., 2016). The latter distinguishes itself from
the former on two major characteristics: First, it
is designed for a balanced assessment of perfor-
mances on the analogies and covers a larger col-
lection of analogical relations; second, it admits
multiple valid answers whenever relevant. These
differences aim to mitigate some of the flaws Glad-
kova et al. (2016) perceived in GATS: The emphasis
of this dataset on balance is intended to provide
a more accurate picture of a model’s capabilities
when it comes to word analogy solving, and the
inclusion of multiple answers aims to mitigate the
impact of spelling variation and dataset limitations.

Datasets similar to BATS exist in Japanese and
Icelandic (Karpinska et al., 2018; Friðriksdót-
tir et al., 2022), whereas GATS has been trans-
lated in Portuguese, Hindi, French, Polish, and
Spanish (Hartmann et al., 2017; Grave et al.,
2018; Cardellino, 2019). Other independently con-
structed datasets do exist (e.g., Venekoski and

Vankka, 2017; Svoboda and Brychcín, 2018)—
crucially, covering all languages of interest to this
study: in Chinese (Jin and Wu, 2012; Chen et al.,
2015; Li et al., 2018), Dutch (Garneau et al., 2021),
English (Turney 2008; Mikolov et al. 2013b, a.o.),
French (Grave et al., 2018), German (Köper et al.,
2015), Italian (Berardi et al., 2015), and Spanish
(Cardellino, 2019). On the other hand, these re-
sources were created by different research groups
and may contain items that are not easily compara-
ble or of lesser quality.3

Similar to our approach, Grave et al. (2018) and
Ulčar et al. (2020) both conduct multilingual com-
parisons of word embeddings on the analogy task,
whereas Peng et al. (2022) study how analogies
behave under cross-lingual mappings. All three
works rely on GATS-style benchmarks (where only
one valid target is admissible for each analogy rela-
tion); all are more limited in the scope of analogies
they cover than BATS-style datasets; none study
how contextual embeddings fit in this picture. This
last point is partly due to the initial conception of
the task for static models: Plenty of works discuss
why static models develop linear analogies (Arora
et al., 2016; Ethayarajh et al., 2019; Allen and
Hospedales, 2019; Fournier and Dunbar, 2021)—
similar evidence has yet to emerge for contextual
models. As such, some studies delineate its rele-
vance to static embeddings (e.g., Apidianaki, 2022),
but it has been adapted to contextual models (Vulić
et al., 2020; Ushio et al., 2021; Lenci et al., 2022).

3 The Multilingual Analogy Test Set

To study how analogy fares in a multilingual con-
text, we introduce a Multilingual Analogy Test Set
(MATS), adapted from BATS (Gladkova et al., 2016)
for Dutch, French, German, Italian, Mandarin, and
Spanish. This analogy benchmark is structured
in two tiers: Individual sub-categories instantiat-
ing specific analogical relations (e.g., country—
capital) are grouped into four general categories,
namely Inflection, Derivation, Encyclopedia, and
Lexicography. The former two correspond to mor-
phological relations, such as the relation between
two inflected forms of a word or the relation be-
tween a verb and the corresponding agent noun.
The latter two are more closely aligned to common-
sense reasoning and include relations such as syn-
onymy or the relation between the name of a coun-

3E.g., the French dataset of Grave et al. (2018) mixes gram-
matical and social gender in masculine–feminine analogies.
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try and that of its capital city. The original resource
by Gladkova et al. (2016) emphasizes balance by
ensuring that each of the four super-sections con-
tains exactly 10 sub-sections, and that each of the
10 sub-sections contains exactly 50 instances of
the same analogical relation; analogy quadruples
are created by exhaustively iterating across pairs
of instances. This totals to 98,000 distinct analogy
quadruplets to test models on, around five times
as many items as what is mentioned in Ulčar et al.
(2020), and mitigates concerns of class imbalance.

Direct translations from the original BATS

were taken as starting points before performing
language-specific adaptations (cf. infra); we refer
the reader to Gladkova et al. (2016) for supplemen-
tary details. In all languages, unidiomatic direct
translations and analogically invalid pairs were re-
moved. Multi-word expressions (MWE) were also
removed,4 before padding all categories except E03
to 50 pairs following the relation of each category.
An overview of the outcome with examples and
figures can be found in Table 1. We break down the
choices per language in the following paragraphs.

Dutch The encyclopedic section E03 was local-
ized using Dutch provincies and their capital cities.

French The inflectional section I03 was replaced
with gender inflection of adjectives since com-
paratives are periphrastic constructions (e.g., jolie
‘cute’, plus jolie ‘cuter’). The derivational section
D01 was replaced with denominal adjectives using
the suffix -el, as the formation of privatives using
suffixes is not a productive morphological opera-
tion. The encyclopedic section E03 was localized
using a random selection of 50 French départe-
ments and their capital cities, barring those that
would be tokenized as MWE.

German The encyclopedic section E03 was lo-
calized with German Länder and their capital cities.

Italian The inflectional section I03 was replaced
with gender inflection of adjectives, since Italian
comparatives are periphrastic constructions (e.g.,
bella ‘cute’, più bella ‘cuter’). The derivational
section D01 was replaced with noun diminutives
using the suffixes -ino, -ina, for the same reason as
in French. The encyclopedic section E03 was lo-
calized using Italian regioni and their capital cities.

4Note this is a departure from BATS. This is for practical
purposes, as we are also testing on static embeddings.

Mandarin Given the typological differences
with English, we removed the whole section con-
cerning inflectional morphology and completely
reshaped the one on derivational morphology. In
particular, given that derivation by means of af-
fixes is a very productive process (Packard, 2000),
we selected eight affixes, namely -度 ‘-ness/-ity’,
-化 ‘-ize’, -性 ‘-ness/-ity’, -学 ‘-ology’, -主义 ‘-
ism’, -儿 ‘prosodic suffix’, -机 ‘instrument’, 小-
‘diminutive prefix/small/young’, and created corre-
sponding categories. We set the focus of D09 on
agent formation from verbs, much like D08 in all
other languages, whereas for D10 we took inspira-
tion from Li et al. (2018) focusing on reduplication
of monosyllabic verbs having ‘a bit’ as semantic
nuance. In the lexicographic category, we exploited
elastic words (Guo, 1938; Duanmu, 2007) to build
L08. We filled it using the list of elastic words in
the Appendix of Dong (2015), focusing only on
free monomorphemic adjectives and their corre-
sponding long forms. The encyclopedic section
E03 was localized using Chinese省 and their cap-
ital cities. We incorporated the original E06 in
D08 and replaced it with a category on nouns and
their respective classifiers, disregarding the general
classifier个 that is not semantically informative.

Spanish The inflectional section I03 was re-
placed with gender inflection of adjectives since
Spanish comparatives are periphrastic construc-
tions (e.g., linda ‘cute’, más linda ‘cuter’). The
derivational section D01 was replaced with noun
diminutives using the suffixes -ito, -ita, for the
same reasons as in French and Italian. The ency-
clopedic section E03 was localized using Spanish
comunidades autónomas and their capital cities.

4 Setting Baseline Expectations

We first focus on establishing the difficulty of our
analogy benchmark, and how it compares to the
English BATS. We provide a human baseline and
static embedding scores on MATS.

Human Performance One aspect rarely ad-
dressed in analogy benchmarks is that of how con-
sensual and accurate they are. Yet, some analogy
relations are fundamentally debatable: For instance,
whether “tonne” is to “kilogram” as “flower” is
to “petal” depends on one’s exact definition of a
meronymic relation.5 As such, the assumptions or
intuitions of a given resource’s designer may or

5These pairs are both in the L06 subcategory of BATS.
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I01 Tag : Tage día : dias jour : jours dio : dèi rol : rollen ✗

I02 Rat : Räte voz : voces bail : baux base : basi vlo : vlooien ✗

I03 süß : süßer barato : barata chanceux : chanceuse colto : colta oud : ouder ✗

I04 rein : reinste feo : feísimo drôle : drôlissime (33) duro : durissimo rijk : rijkst ✗

I05 hören : hört crear : crea dire : dit godere : gode vraagen : vraagt ✗

I06 teilnehmen : teilnehmend creer : creyendo gérer : gérant gestire : gestendo leren : lerend ✗

I07 sehen : gesehen decir : dicho croire : cru perdere : perso hoor : gehoord ✗

I08 glaubend : glaubt girando : gira lisant : lit succedendo : succede gaand : gaat ✗

I09 fragend : gefragt uniendo : unido ratant : raté capendo : capito vragend : gevraagd ✗

I10 wird : geworden ejecuta : ejecutado suit : suivi sente : sentito volgt : gevolgd ✗

D01 Arm : armlos cabeza : cabecita culture : culturel stella : stellina ego : egoloos 强: 强度
D02 fähig : unfähig edito : inédito pair : impair certo : incerto zeker : onzeker 国际:国际化
D03 Kind : kindlich real : realmente fort : fortement ampio : ampiamente feest : feestelijk 重要:重要性
D04 mäßig : übermäßig poblado : sobrepoblado aigu : suraigu umano : sovrumano vol : overvol 语言: 语言学
D05 fest : Festigkeit fijo : fijeza fou : folie raro : rarità vast : vastheid 自由: 自由主义
D06 geben : wiedergeben mandar : remandar lire : relire spedire : rispedire bouwen : herbouwen 虫: 虫儿
D07 haften : haftbar evitar : evitable jeter : jetable vivere : vivibile eeten : eetbaar 打火: 打火机
D08 tun : Täter diseñar : diseñador tuer : tueur gestire : gestore boksen : bokser 孩子:小孩子
D09 reduzieren : Reduktion acusar : acusación priver : privation mutare : mutazione inspireren : inspiratie 开发:开发员
D10 erklären : Erklärung elevar : elevamiento licencier : licenciement pagare : pagamento verklaren : verklaring 想: 想想

L01 Kuh : Wirbeltier/... ganso : pájaro/... caille : vertébré/... ape : insetto/... coyote : carnivoor/... 猫头鹰: 鸟/...
L02 Foto : Bild/... sofá : mueble/... bureau : objet/... pompelmo : frutto/... jas : eenheid/... 架: 家具/...
L03 Boot : Post/... color : blanco/... mois : décembre/... canzone : inno/... tasse : gral/... 甜点: 蛋糕/...
L04 Bart : Haar agua : oxígeno/... océan : eau neve : acqua/... staal : ijzer/... 旗:纸/...
L05 Kalb : Vieh/... cantante : coro/... juré : jury pecora : gregge kal : vee/... 鹅:群
L06 Byte : Bit guitarra : cuerda/... film : épisode/... corpo : petto/... euro : cent 门: 铰链/...
L07 ängstlich : entsetzt/... amar : adorar/... poney : cheval triste : depresso/... aap : gorilla 湿: 浸泡/...
L08 Fahrrad : Rad madre : mamá marché : bazar roccia : sasso vader : papa 勇:勇敢
L09 heiß : frostig/... claro : oscuro sec : humide/... sano : pazzo/... jong : gaga/... 甜: 酸/...
L10 tot : lebendig sucio : limpio chute : montée dopo : prima west : oost 内:外

E01 Lima : Peru Bagdad : Irak Damas : Syrie Kiev : Ucraina Zagreb : Kroatië 安曼: 约旦
E02 Iran : Persisch Camboya : jemer Égypte : arabe Marocco : berbero/... Cuba : Spaans 伯利兹: 英语
E03 München : Bayern (13) Barcelona : Cataluña (11) Nîmes : Gard (50) Roma : Lazio (17) Maastricht : Limburg (10) 西安:陕西 (27)
E04 Marx : Deutsch Homero : griego Tolstoi : russe Pascal : francese Hegel : Duits 孟子:中国
E05 Dante : Dichter Depp : actor/... Lincoln : président Hawking : fisico/... Locke : filosoof 孔子:哲学家
E06 Ente : Küken cigüeña : cigoñino daim : faon ape : larva eend : eendje/... 筷子:双/...
E07 Kuh : muhen lobo : aúlla hyène : rire cane : abbaiare ezel : balken/... 猫: 喵/...
E08 Wal : Meer/... castor : río bovin : étable corvo : nido/... beer : kooi/... 狐狸: 洞穴
E09 Kirsch : rot/... peonía : roja/... sel : blanc tè : nero/... bloed : rood 蚂蚁:黑色/...
E10 Stier : Kuh niño : niña roi : reine leone : leonessa opa : oma 老公: 老婆

Tot 1,963 1,961 1,983 1,967 1,960 1,477

Table 1: MATS: examples per subcategory. All subcategories contain 50 pairs, except if specified in (parentheses).

may not match with that of the community in gen-
eral. Rare words may also factor in performances
and dialectal variation can entail differences in
spelling or vocabulary. Lastly, translation-based
resources like ours may contain ambiguous cues
and unknown cultural references.

So as to derive a human-level performance point
of reference, for each language, we ask two trained
linguists to manually solve 3 analogy items per
subcategory, as well as two non-linguists for En-
glish6 (cf. Appendix A). Annotators need not speak
the same dialect, nor the dialect of the translators.
While this may impact the reliability of the annota-
tions, we choose to do so for two reasons. Firstly,
the multiplicity of valid targets in the original BATS

dataset was intended as a means to mitigate exist-
ing variations in the language at hand. Secondly,
embeddings trained on large crawled corpora of

6Results on English throughout this paper correspond to
scores on Gladkova et al.’s BATS.

internet texts will often span multiple dialects, and
therefore factoring in linguistic variation provides
a more principled point of comparison.

Annotators are provided with three of the four
terms and ask them to propose a valid fourth term.
We then measure (i) their accuracy on the task (i.e.,
the proportion of analogy items that were solved
by the annotators with a valid fourth term in MATS)
and (ii) their agreement rate (i.e., the proportion of
analogy items where the two annotators produced
the same answer).

Results in Table 2 show three global trends: (i)
mistakes are made on almost all categories, (ii)
linguistic training does help, and (iii) annotators’
responses do not match 24%–46% of the time.
Though these agreement scores may seem low,
one ought to expect some variation across speakers
in their ability to solve analogies—in part due to
their familiarity with lexical semantics, in part due
to dialectal variations between annotators, and in

273



Avg. accuracy Agreement
I D E L all I D E L all

en ℓ 1.00 0.97 0.72 0.63 0.83 1.00 0.87 0.57 0.23 0.67

¬ℓ 0.93 0.77 0.55 0.43 0.68 0.87 0.60 0.55 0.21 0.56

de 0.93 0.78 0.62 0.50 0.71 0.85 0.58 0.43 0.28 0.54

es 0.83 0.83 0.77 0.56 0.75 0.77 0.77 0.54 0.32 0.60

fr 0.88 0.97 0.70 0.48 0.76 0.83 0.93 0.52 0.30 0.65

it 0.97 0.93 0.75 0.57 0.80 0.93 0.86 0.81 0.42 0.76

nl 0.93 0.78 0.67 0.37 0.69 0.98 0.80 0.61 0.18 0.64

zh — 0.85 0.62 0.35 0.61 — 0.83 0.57 0.43 0.61

all 0.92 0.86 0.67 0.49 — 0.89 0.78 0.51 0.30 —

Table 2: Manual annotations of MATS/BATS samples. ℓ/¬ℓ: higher education in/not in linguistics.

part due to actual cases of linguistic ambiguity. In
particular, we remark that both E and L include
analogies that are less straightforward to solve for
a human as compared with I and D, and some sub-
categories leave room for different interpretations
due to their open-ended nature as described earlier.
This is reflected in the overall lower accuracy and
agreement scores for these two categories. In fact,
annotators that indicate having looked up some of
the analogy terms only report so for E and L. Cru-
cially, performances on L are systematically the
lowest, suggesting that this category is less in line
with human reasoning.7

Static Embeddings Performance We now turn
to static embeddings, which have been traditionally
the target of analogy benchmarks. We consider two
sets of available pre-trained static embeddings: the
fastText models of Grave et al. (2018),8 and the
CoNLL-2017 Shared Task word2vec models (Ze-
man et al., 2017);9 we set aside the CoNLL-2017
Chinese embeddings, as they correspond to tradi-
tional characters, whereas our resource is written
in simplified characters.

We compute results on MATS, using the offset

7It is also worth discussing the gap between English lin-
guists and other languages: Beyond the variance that one
expects given the very small sample size that was manually
annotated, our English linguist annotators both use similar
orthographic conventions as the original BATS resource; both
also report a more extensive use of online search tools in case
of doubts than annotators of other languages. Similar favor-
able conditions were never met for other languages. In short,
the lower performances we observe for our resources should
not be entirely imputed to them being translations.

8These cover 157 languages, including the seven of the
present study. Note that their Chinese model corresponds to a
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(a) fastText models from Grave et al. (2018).
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Figure 1: Static models performance (3CosAdd, Equa-
tion (1)).

method of Mikolov et al. (2013b), a.k.a. 3CosAdd:

b∗
2 = argmax

w
cos (w,b1 + a2 +−a1) (1)

This method consists in predicting as a target
b∗
2 the word w whose embedding w is the most

codirectional to the offset-based approximation
b1 + a2 − a1. The starting point of this approach
is the assumption that for any two pairs of words
instantiating the same semantic relation a1, a2 and
b1, b2, their corresponding embeddings should be
related by means of a stable offset. In other words,
we assume that there exists a vector x such that

mixture of traditional and simplified characters.
9Available at http://vectors.nlpl.eu/repository/.
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a1 + x = a2 and b1 + x = b2, or equivalently
a2 − a1 = b2 − b1, which we can reformulate to
solve for b2 as b2 = b1+a2−a1. This method can
therefore be seen as a direct assessment of whether
analogical relations are encoded as stable offsets
in the embedding space. In this work, we specifi-
cally rely on the vecto library implementation of
3CosAdd.10

Results in Figure 1 show that fastText models
perform better than CoNLL-2017 word2vec models,
confirming the known trend (e.g., Bojanowski et al.,
2017; Lenci et al., 2022). The noteworthy low per-
formances on the L category across the board can
be imputed to its lesser quality. In particular, fast-
Text models score much higher for I and D, the
two categories with morphological relations, likely
thanks to their learning of character n-gram repre-
sentations rather than word type representations—
which makes fastText models overall more in line
with manual annotations.

Beyond these general observations, language
also impacts the scores we observe. For instance,
the high scores observed for English word2vec on
the I category are never attested for word2vec mod-
els in other languages—which can be pinned on
the rather simplistic inflectional system in English.
Both Dutch models along with the CoNLL-2017
French model perform surprisingly poorly. In the
case of Dutch, this is likely due to training data lim-
itations: Zeman et al. (2017) report training Dutch
models on fewer than 3B words, whereas all other
languages were trained on over 5B words.

Discussion The experiments conducted in Sec-
tion 4 have helped us establish baseline expecta-
tions. Much of what we observe echoes previous
findings: The improvement of fastText models on
I and D analogy items was already documented
in Bojanowski et al. (2017), and Levy and Gold-
berg (2014) or Gladkova et al. (2016) already high-
lighted lower performances on E and L analogies.

What is novel beyond these replicated findings
is the observation that humans also struggle with E
and L analogies. This can account in part for the
lower performances observed for these categories.
This also suggests that more lenient benchmarks
like BATS, which allow multiple valid answers, are
preferable to stricter ones, such as GATS.

10https://vecto.space/

Sents Tokens Bytes Types

de 300M 4.472B 28.448B 1.042M
en 300M 6.698B 35.396B 0.502M
es 300M 8.294B 46.133B 0.702M
fr 300M 6.058B 33.114B 0.581M
it 300M 7.266B 41.666B 0.631M
nl 300M 4.269B 24.320B 0.678M
zh 300M 15.594B 92.836B 1.531M

Table 3: Oscar corpora statistics. The last column tallies
unique word types occurring at least 50 times.

5 Analogies and Contextual Embeddings

We now turn to benchmarking a contextual archi-
tecture, viz. uncased mBERT (Devlin et al., 2019).
By definition, such architecture computes contex-
tual representations of words: Unlike static em-
beddings, contextual embeddings vary depending
on the entire input sequence. The default use-case
intended for these models pertains to token-level
semantics—whereas analogy benchmarks evaluate
word-type-level semantics. One word may have dif-
ferent meanings depending on context—depending
on which context we use, results on the task may
vary drastically. This complicates the use of these
representations for the analogy task, by introduc-
ing the need of deriving some form of type-level
judgment from token-level representations.

Static Representations from mBERT One pos-
sible approach to testing a contextual model on
the analogy task consists in deriving word type
representations from mBERT, and proceeding as
one would with static embeddings. To determine
which word types we need vectors for, we con-
struct reference corpora of 300M sentences per
language sampled from Oscar (Ortiz Suárez et al.,
2019), and retrieve all word types with at least 50
occurrences.11 All corpora were case-folded and
tokenized using spaCy.12 For Mandarin, we nor-
malized all characters to their simplified form using
OpenCC.13 Corpora statistics are shown in Table 3.

We experiment with layer pooling and two dif-
ferent means of deriving static word-type vectors.
Singleton embeddings are derived by embedding

11This would correspond to a reasonable frequency filtering
with word2vec embeddings, and matches what we used in
supplementary experiments in Appendix C.

12https://spacy.io/
13https://pypi.org/project/OpenCC/
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(b) Context-sample embeddings.

Figure 2: Static mBERT: overall results (3CosAdd).

word types as if they were simple sentences com-
prised of a single word and control tokens ([CLS]
and [SEP]); we then sum across the whole sequence,
and average over the layer representations of inter-
est. For context-sample embeddings, we retrieve
the first 10 contexts of occurrence of every word
type14 to compute the average embedding of that
word type. In both cases, we draw representations
from layers 0–1 (input embeddings), 12–13 (output
vectors), 0–13 (all layers), 1–5, 5–9, and 9–13.

Overall accuracy results are displayed in Fig-
ure 2; results per category are available in Ap-
pendix B, Figure 7. Context-sample embeddings
almost systematically outperform or equal the sin-
gleton approach for all layer groups and languages.
Mandarin performs surprisingly well, and scores
for all languages on the L category are extremely
poor. With singleton embeddings, lower layers
tend to perform better, which matches with previ-
ous studies (Vulić et al., 2020; Lenci et al., 2022),
but performances for Mandarin are better when
considering the embedding layer, whereas all other
languages benefit most from pooling across the
first four Transformer layers. On the other hand,
European-language context-sample embeddings
yield their highest performances with middle or
top layers. We suspect that Mandarin has a very
regular segmentation for D items, whereas Latin-
alphabet languages may have different segmenta-
tions for otherwise regular suffixal construction,
and therefore require some computation in order to
properly reconstruct formal regularities. Scores per
category provided in Figure 7, Appendix B confirm
that much (almost all) of the performance attested

14We choose 10 contexts in order to strike a reasonable
balance between diversity of contexts and computational costs.
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Figure 3: mBERT prompt-based performance.

for Mandarin is indeed driven by the D category.

Prompt-based Approaches Contextualized em-
beddings can also be tested by converting the task
to a prompt format. We draw inspiration from the
methodology of Ushio et al. (2021), but frame our
analogies as an unmasking task. We fill a three-slot
template T that contains a mask with three given
analogy cues a1, b1, and a2, and perform unmask-
ing given the resulting sequence T (a1, b1, a2). We
measure a model’s zero-shot accuracy by consider-
ing whether the unmasked word-pieces match with
any of the listed valid targets’ word-pieces.

All relevant templates are listed in Table 4. All
templates were formulated by native speakers. In
the case of targets split across multiple word-pieces,
we include one mask token per word-piece; as such
prompt scores are stricto sensu upper bounds.

Given the relative novelty of prompt-based ap-
proaches, we explore whether results are reliable
across small changes of the prompts, such as the
presence of quotation marks around analogy terms.
Results in Figure 3 show that, besides English, per-
formances are often lower than what we observed
previously, and especially low on the I category.
Prompts only outperform static vectors on the L
category, which we established to be less reliable.
Using quotes alleviates this trend, with a more pro-
nounced effect on I and D. The higher English
BATS scores are likely due to the large proportion
of English training samples in mBERT.

We also test how behavior changes across seman-
tically equivalent templates, using four alternative
German templates, along with the effects of en-
quoting analogy terms. These templates are listed
in Table 5. Results are displayed in Figure 4; the
alternative template T4 corresponds to the default
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Unquoted Quoted

de a1 verhält sich zu b1 wie a2 zu [MASK]. “a1” verhält sich zu “b1” wie “a2” zu “[MASK]”.
es a1 es a b1 como a2 es a [MASK]. “a1” es a “b1” como “a2” es a “[MASK]”.
fr a1 est à b1 ce que a2 est à [MASK]. “a1” est à “b1” ce que “a2” est à “[MASK]”.
it a1 sta a b1 come a2 sta a [MASK]. “a1” sta a “b1” come “a2” sta a “[MASK]”.
nl a1 staat tot b1 zoals a2 staat tot [MASK]. “a1” staat tot “b1” zoals “a2” staat tot “[MASK]”.
zh a1与b1的关系就像a2与[MASK]的关系。 「a1」与「b1」的关系就像「a2」与「[MASK]」的关系。

Table 4: Templates for prompt-based approach.

Unquoted Quoted

T1 de a1 ist für b1 was a2 für [MASK] ist. “a1” ist für “b1” was “a2” für “[MASK]” ist.
T2 a1 ist so zu b1 wie a2 zu [MASK] ist. “a1” ist so zu “b1” wie “a2” zu “[MASK]” ist.
T3 a1 steht in Relation zu b1 so wie a2 zu [MASK]. “a1” steht in Relation zu “b1” so wie “a2” zu “[MASK]”.
T4 a1 verhält sich zu b1 wie a2 zu [MASK]. “a1” verhält sich zu “b1” wie “a2” zu “[MASK]”.

Table 5: Alternative German templates.
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Figure 4: Prompt-based performance of mBERT, using
alternative German templates.

T 2 T 3 T 4

T1 5.7 8.1 7

T2 8.5 9.7

T3 15.2

(a) Unquoted templates.

T 2 T 3 T 4

T1 31.2 35.9 25.7

T2 46.2 45.1

T3 45.4

(b) Quoted templates.

Figure 5: Prediction agreement (in %).

template for German in Figure 3. Quoted variants
always outperform their unquoted counterparts; the
model struggles most with the I and D categories.
Yet, templates contrast starkly: E.g., by using the
unquoted template T1 instead of T2, performance
on E more than doubles, but this does not carry
on with their quoted counterparts. In Figure 5, we
tabulate how often predictions for the same analogy
quadruple match across templates: Predictions of
the mBERT uncased model tend to differ more often
than they match, and this is much more pronounced
with unquoted templates. In all, this model is sen-
sitive to the exact wording of the prompt (cf. also
Webson and Pavlick, 2022).

Discussion To sum up some key observations, we
find mBERT ranks in between existing fastText and
word2vec pre-trained embeddings. Results on the L
category tend to be very low (except in the prompt-
based approach). Scores for mBERT are highly
dependent on methodology: Whether to include
quotation marks in a prompt, or which layers static
representations are derived from produce different
effects across languages and categories.

All of this suggests that how to test contextual
models like mBERT with analogies remains an open
question. We observed different patterns across
different languages and different methodologies.
Some trends do emerge: For instance, static em-
beddings derived from mBERT do not appear to
encode lexicographic and encyclopedic relations in
any meaningful way, and Mandarin static mBERT

embeddings are extremely apt at capturing deriva-
tional relationships, owing to their regular spelling.
Likewise, recall that mBERT is not trained uni-
formly on all languages: This is most likely the rea-
son why performance on English is higher. Prompt-
based approaches, on the other hand, appear to
capture E and L categories best, whereas I and D
analogies are often poorly handled. This is the op-
posite of what we observed with human annotators
in Section 4, which are more accurate on I and D
rather than E and L items. Also worrying is the
high volatility of the behavior: Prompt wording, or
minor differences such as the presence or absence
of quotes, can account for stark differences in the
response patterns of mBERT.

For every methodological choice we explored—
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which language and type of analogy to study,
whether to use embeddings or prompts, how to de-
rive the embeddings, or how to phrase the prompts—
we observe distinct and often conflicting results.
This is a direct consequence of the more com-
plex architecture used in mBERT: The more varied
means of probing and interacting with this model at
our disposal also entail that we get a more diverse
set of observations. As such, one can expect similar
remarks to hold for other tasks. Establishing rea-
sonable means of deciding which observations to
select is both a captivating area for further inquiry
and beyond the scope of this paper.

6 Conclusions

In this paper, we have presented a Multilingual
Analogy Test Set, a resource five times larger than
prior comparable datasets, with which we have
looked at the analogy task in a multilingual context
and studied how it fits in the modern NLP land-
scape. The dataset allows for a comparable multi-
lingual evaluation of embedding models across a
wide range of semantic analogy relations. Manual
evaluation showed that the quality of MATS data in
specific languages is comparable to the original En-
glish BATS. We saw that not all analogy types are
equally straightforward not only to computational
models but also to humans, and that behavior on
the task depends on the language, the embedding
model, and the methodology involved. This also
entails that static model behavior is not a reliable
indicator of what contextual models might yield.

We have been able to establish some trends
across most of the methodological approaches we
adopted here. In particular, from this work, we can
outline three major conclusions. First, that not all
categories are equally straightforward for humans
(Section 4); this also explains why lower perfor-
mances are attested on semantic analogies across
most of our experiments. Second, that static models
remain competitive with multilingual embedding
models such as mBERT (Sections 4 and 5)—which
replicates the conclusions of Lenci et al. (2022).
Third, that equally valid prompts can yield vastly
differing results (Section 5)—or more broadly, that
different methodologies for adapting the analogy
task to contextual embeddings can yield conflict-
ing results. These conclusions also entail some
practical guidelines for future work. In particular,
there is a need to factor in human uncertainty as to
what the correct target is; moreover, when adopting

a prompt-based approach, testing a diverse array
of prompts is necessary to properly establish how
volatile a model’s behavior is and how much vari-
ance in performance we should expect.

As such, a number of key challenges remain in
the field of analogy solving, such as devising bench-
marks that more closely match human intuitions
or providing an explanatory framework for the dis-
crepancies observed across prompts and method-
ologies. There are other aspects we have left open,
such as whether the analogy task is suitable for
lexical semantic evaluation (cf. Appendix C). We
look forward to conducting future work in these
directions, as well as expanding our observations
to other architectures and methodologies.
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A Manual Annotation Details

All annotators in Section 4 are volunteers and col-
leagues of the authors (or acquaintances, in the case
of the two non-linguist English annotators), and are
native speakers of the languages at hand. Provided
instructions are shown in Figure 6.

Each row is an incomplete analogy, please add your
guess for the missing fourth term in a new column.
For instance, given the three cues "king", "queen",
"man", the fourth term ought to be "woman", since king
is to queen as man is to woman.

You can do multiple guesses, please put the one you’re
most confident about in first.
For instance if you have a row where the three first
columns are:
squirrel, squirrels, platypus
then fill the fourth column with
platypuses/platypi/platypodes
if you think "platypuses" is the most likely fourth term,
but that "platypi" and "platypodes" are likely to be valid
answers.
All of your guesses should be single words.

You are allowed to google things up if it helps: we are
testing whether you can recover the relation, rather than
whether you’d win at Jeopardy!.

Figure 6: Instruction provided to annotators.

B Detailed Results for Static mBERT

We provide per-category results for singleton and
context-sample vectors on MATS in Figure 7. Key
insights from Section 5 also hold for individual cat-
egories: Context-sample embeddings outperform
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(d) Derivation, context-sample embeddings.
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(f) Encyclopedia, context-sample embeddings.
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(g) Lexicography, singleton embeddings.
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(h) Lexicography, context-sample embeddings.

Figure 7: Static representations from mBERT: detailed results. All subplots share the same scale.

Param. Values Optimum on MATS
de es fr it nl zh

window {5, 10, 20} 20 20 20 5 20 20
neg. examples {5, 10, 20} 10 20 5 20 20 20
shrink {⊤,⊥} ⊥ ⊥ ⊥ ⊤ ⊥ ⊤
min freq. {5, 50} 5 50 50 50 50 50
epochs {1, 5} 5 5 5 5 5 5

Table 6: Hyperparameter search space.

singleton embeddings, and optimal layer groups
vary across languages and categories.

C Supplementary Experiment: Analogy
vs. Semantic Similarity

An aspect we have not broached in the main body
of this article is to what extent the analogy task
is suitable to assess the semantic quality of the
representations.

To answer this, we train 72 word2vec models

per language with varying hyperparameters (cf. Ta-
ble 6), on top of the static vectors derived from
mBERT in Section 4 as well as similar static embed-
dings from the cased variant of mBERT, for a total
of 24 mBERT-based static models per language.15

Models were trained with gensim (Řehůřek and
Sojka, 2010), using the reference corpus from Sec-
tion 5. We then compare MATS overall accuracy
scores to paired word cosine vs. human ratings
correlation scores on the WS353 translations from
Barzegar et al. (2018).

Results are displayed in Figure 8, and suggest
that our static and contextual models behave differ-
ently. In the case of the former, the two benchmarks
are not necessarily correlated (Table 7): While one
can argue a trend exists for Italian and German,
such a position is not supported for other languages.

15We ignore English to compare among translated bench-
marks only.
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Figure 8: Behavior on MATS vs. on WS353.

de es fr it nl zh

w
2v

cor. 0.42598 0.26613 0.29494 0.45498 -0.08502 0.15261
p-val. 0.00019 0.02385 0.01190 0.00006 0.47765 0.20061

B
E

R
T cor. 0.75217 0.78522 0.59913 0.64957 0.76174 0.29913

p-val. 0.00002 0.00001 0.00198 0.00059 0.00002 0.15562

Table 7: Spearman correlation, WS353 vs. MATS.

As for mBERT, correlations appear to be reliable for
all languages but Mandarin; note however that we
have fewer observations than for word2vec. Fur-
thermore, we notice little variation with word2vec,
as highlighted by the clusters we get in Figure 8a.

In all, the behavior of earlier static models on
lexical tasks such as similarity and analogy need
not match with that of modern contextual embed-
dings. This also transpired in our earlier exper-
iments: When comparing performances by cat-
egory, the patterns we observe across categories
seem quite specific to the architectures we test.

D Computational Costs

Throughout this paper, experiments involving
mBERT have been performed using a single V100
GPU. This includes computing static embeddings
and prompt-based scores. For the former, we ob-
served variation across languages—e.g., Mandarin
context-sample embeddings required over a day,
but Dutch only took 4 hours. For the latter, process-
ing one template took under 2 hours.

All other computations were run on clusters of
40 CPU cores. This includes training the word2vec
models used in Appendix C, as well as running
MATS and BATS evaluations for all static embed-
dings. Word2vec training scripts generally finished
in under 4 hours. Evaluation runtimes on MATS and
BATS depend on language, category, and vocabu-
lary size, and range from under an hour to under a
day per category (I, D, E, or L) and per model.

E Limitations

One limitation of our study is the inherent noisiness
of the translations. Despite the language-specific
adaptions, MATS is based on direct translations of
BATS which was designed for English, and as such
may not be entirely equivalent to a resource that has
been specifically designed for the target languages.
Gladkova et al. (2016) furthermore implemented
datapoint selection criteria (such as a frequency-
based filtering of target words) that we have not
replicated in this work. Another element of quality
control to address concerns the manual annotations
in Section 4: Due to material limitations, annota-
tions cover a very limited portion of the dataset and
were conducted remotely.

Additionally, we only tested a few models in
our study—word2vec and fastText for static em-
beddings and mBERT for contextual embeddings.
This may not be representative of the full range of
pre-trained language models, especially contextual
ones. A similar point holds for the grid-search eval-
uation conducted in Appendix C. There are some
word2vec hyperparameters we have not looked at
and that could impact performances on both tasks:
chief of which the dimension of the embeddings
and the training corpus. More generally, expanding
the number of models tested in future work could
provide a more comprehensive understanding of
the analogy task.

Another limitation is the lack of language diver-
sity in our study. With the exception of Mandarin,
all the languages we translated BATS into are Indo-
European languages belonging to two sub-families
(West Germanic or Romance languages).

Finally, the high computational power required
to train the numerous word2vec models with vary-
ing hyperparameters in Section C (cf. Appendix D)
both contributes to carbon emissions and limits the
replicability of this work.
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