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Abstract
Prior work has shown that coupling sequen-
tial latent variable models with semantic on-
tological knowledge can improve the repre-
sentational capabilities of event modeling ap-
proaches. In this work, we present a novel,
doubly hierarchical, semi-supervised event
modeling framework that provides structural
hierarchy while also accounting for ontolog-
ical hierarchy. Our approach consists of
multiple layers of structured latent variables,
where each successive layer compresses and
abstracts the previous layers. We guide this
compression through the injection of struc-
tured ontological knowledge that is defined
at the type level of events: importantly, our
model allows for partial injection of seman-
tic knowledge and it does not depend on ob-
serving instances at any particular level of
the semantic ontology. Across two different
datasets and four different evaluation metrics,
we demonstrate that our approach is able to
out-perform the previous state-of-the-art ap-
proaches by up to 8.5%, demonstrating the
benefits of structured and semantic hierarchi-
cal knowledge for event modeling.

1 Introduction

Intuitively, there is a hierarchical nature to complex
events: e.g., on Fig. 1, there are two events, one
involves going to the hospital and another one is
getting treatment. Even if important portions may
differ, but these two situations have one abstract
concept in common: Cure (of a disease). Clearly,
there is a connection among the events reported
in a situation and they all contribute to a bigger
goal (“Cure” in this case). The main purpose of
our work is to exploit this nature of connection
to improve event modeling. However, much like
linguistic structure, this event structure is generally
not directly observed, making it difficult to learn
event models that reflect this hierarchical nature.

For high-level inspiration, we look to past ap-
proaches in syntactic modeling (Collins, 1997;

Medical_InterventionMedical_Condition

Cure

Semantic
Knowledge

Bill went to hospital Doctors started treatment

Figure 1: Complex events can be hierarchical. The pur-
ple boxes represent the events themselves (as would
be reported in a news story). Blue dashed boxes
are annotated semantic frames & the orange dashed
box is the more abstract, general frame connecting
the “Medical_Condition” and “Medical_Intervention”
events. Events and frames are sequentially connected.

Klein and Manning, 2003; Petrov et al., 2006): we
can approach hierarchical event modeling through
structured learning, or through richer (semantic)
data. A structural approach accounts for the hi-
erarchy as part of the model itself, such as with
hierarchical random variables (Cheung et al., 2013;
Ferraro and Van Durme, 2016; Weber et al., 2018;
Huang and Ji, 2020; Gao et al., 2022). Richer se-
mantic data provides hierarchical knowledge, such
as event inheritance or composition, as part of the
data made available to the model and learning algo-
rithm (Botschen et al., 2017; Edwards and Ji, 2022;
Zhang et al., 2020).

In this work, we provide an approach that ad-
dresses both of these notions of hierarchical event
modeling jointly. Fundamentally, our model is
an encoder-decoder based hierarchical model com-
prised of two layers of semi-supervised latent vari-
able sequence. The first layer encodes the events
to semantic frames and the next layer compresses
down the semantic frames to a more abstract con-
cept. We call these the base and compression layers,
respectively. The base layer operates over the event
sequence (the gray boxes in Fig. 1); when available,
our base layer also considers auxiliary semantic in-
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formation, such as automatically extracted seman-
tic frames (the blue dashed boxes in Fig. 1). Mean-
while, the compression layer compresses down the
semantic frames to a more abstract concept (orange
dashed box in Fig. 1) using an existing structued
semantic resource (in our paper, FrameNet). Our
work can be thought of as extending previous work
in semi-supervised event modeling (Rezaee and
Ferraro, 2021) to account for both structural and
semantic hierarchy.

Joining both the structural and semantic ap-
proaches together poses a number of challenges.
First, getting reliable, wide-coverage semantic
event annotations can be a challenge. Development
of semantic annotation resources is time consum-
ing and expensive (Baker et al., 1998; O’Gorman
et al., 2016).1 Part of our solution should leverage
existing semantic annotation resources.

Second, although event extraction capabilities
have steadily improved, enabling automatically pro-
duced annotations to be used directly (Padia et al.,
2018; Huang and Huang, 2021), these tools still
produce error-laden annotation, especially on out-
of-domain text. While rich latent variable methods
have been previously developed, adapting them to
make use of noisy event extractions can be a chal-
lenge. Our learning approach must still be able
to handle imperfect extractions. Recent work has
shown how neural sequence approaches can do
so (Rezaee and Ferraro, 2021), but there remains a
question of how to generalize this. Part of our solu-
tion should allow for hierarchical semi-supervision.

We present a hierarchical latent variable encoder-
decoder approach to address these challenges. We
ground our work in the FrameNet semantic frame
ontology (Baker et al., 1998), from which we ex-
tract possible abstract frames from sequences of
inferred (latent) frames. This lets us leverage ex-
isting semantic resources. We develop a semi-
supervised, hierarchical method capable of han-
dling noisy event extractions. Our approach en-
ables learning how to represent more abstract frame
representations. Our contributions are:

• We provide a novel, hierarchical, semi-
supervised event learning model.

• We show how to use an existing rich seman-
tic frame resource (FrameNet) to provide both

1While prompt-based label semantics (Hsu et al., 2022;
Huang et al., 2022) are recent successful ways of enabling
lower resource learning, these generally are tied to specific
tasks and may be limited by what exemplars are given.

observable event frames and less observable ab-
stract frames in a neural latent variable model.

• Our model can use FrameNet to give a more
informed signal by leveraging compression of
events when predicting what event comes next,
what sequence of events follows an initial event,
and missing/unreported events.

• With pre-training only, our model can gener-
ate event embeddings that better reflect seman-
tic relatedness than previous works, evincing a
zero-shot capability.

• We perform comprehensive ablations to show
the importance of different factors of our model.

Our code is available at https://github.com/

dipta007/SHEM.

2 Related Works

Our work draws on event modeling, latent gener-
ative modeling, lexical and semantic knowledge
ontologies, and hierarchical modeling.

2.1 Event Modeling
There have been several efforts to understand
events and their relationships with broader seman-
tic notions. Previous research has explored the use
of hierarchical models based on autoencoders for
script generation, such as the work of Weber et al.
(2018). In contrast to their work, instead of a chain-
like hierarchy, we have used a multi-layer hierarchy
to compress the events to abstract processes. Addi-
tionally, our approach allows for semi-supervised
training, if such labels are available. Our work has
shown that using semi-supervision helps the model
to generalize better on both layers. In a related
study, Rezaee and Ferraro (2021) used the Gumbel-
Softmax technique and partially observed frames to
model event sequences and generate contextualized
event frames. While their approach is capable of
generalizing each event in a sequence, the number
of predicted frames in the sequence is equivalent to
the number of events. Thus, unlike our approach,
it was not designed to compress or generalize the
overall event sequence.

Bisk et al. (2019) demonstrated the effectiveness
of event modeling for generating a concrete con-
cept from an abstract one, using the example of
cooking. Several studies in recent years have uti-
lized event modeling to predict event types (Chen
et al., 2020; Pepe et al., 2022; Huang and Ji, 2020).
These studies focus on identifying the action and
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Figure 2: An overview of Semantically-informed Hierarchical Event Modeling (SHEM). The orange dashed boxes
are observed frames & the blue dashed boxed are masked frames. Top right: a frame is sampled with the injection of
observed frames. Bottom right: semantic knowledge graph is shown for 4 nodes with only “Inheritance” relations.

object involved in an event, where the action repre-
sents the activity being performed and the object is
the entity affected by the action.

2.2 Latent Generative Modeling
Latent generative modeling is a widely-used
method for representing data x through the use
of high-level, hidden representations f . Specifi-
cally, we express the joint probability p(x, f) as
p(x, f) = p(x|f)p(f). Especially when f is not
fully observed, this factorization can productively
be thought as a soft grouping or clustering of the
data in x. This equation will serve as the founda-
tion for our approach.

Maximizing log-likelihood is known to be com-
putationally challenging in this context. Kingma
et al. (2014) later used a variational autoencoder
(Kingma and Welling, 2013, VAE) in a semi-
supervised manner to learn latent variables, divid-
ing the dataset into observed and unobserved labels.
In our case, instances are partially observed (rather
than fully observed or not). Huang and Ji (2020)
used a VAE both to prevent overfitting on seen
event types and to enable prediction of novel types.

2.3 Lexical and Semantic Resources
Multiple resources, such as PropBank (Gildea
and Jurafsky, 2002), OntoNotes (Hovy et al.,
2006), AMR (Banarescu et al., 2013), Verb-
Net (Schuler, 2005), and FrameNet (Baker et al.,
1998), provide annotations related to event se-
mantics. Many consider predicate-argument se-
mantics, such as defining who is performing (or

experiencing) an event, and various ways that
event may occur. FrameNet provides detailed
predicate-argument characterizations and multi-
faceted relations linking different frames together,
such as frame subtyping (e.g., inheritance), tem-
poral/causal (e.g., precedes, causative), and com-
positionality (e.g., uses, subframe). Consider the
AGRICULTURE frame from Fig. 2: FrameNet de-
fines an inheritance relation between it and a AT-
TEMPT_OBTAIN_FOOD_SCENARIO, which can be
thought of as a container grouping together frames
all related to a broader scenario of attempting to
obtain food, such as HUNTING_SCENARIO. A sce-
nario container frame provides a notion of compo-
sitionality, defining potential correlations or alter-
natives among frames. Due to these rich semantics,
we focus on FrameNet in this paper as an exemplar.

Prior research has shown the utility of FrameNet
in predicting the relationship between predi-
cates (Aharon et al., 2010; Ferraro et al., 2017);
frame-directed claim verification (Padia et al.,
2018); and text summarization (Guan et al., 2021;
Han et al., 2016; Chowanda et al., 2017). Un-
fortunately, while document-level frames have
been of long-standing interest within targeted do-
mains (Sundheim, 1992, 1996; Ebner et al., 2020;
Du et al., 2021), development of task agnostic
document-level frames has been limited. E.g.,
while FrameNet defines these compositional-like
scenario frames, annotation coverage is limited: In
the FrameNet 1.7 data used to train frame parsers,
out of nearly 29,000 fulltext annotations, there are
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only 28 annotated “scenario” frames.

3 Method

Our core aim is to provide a hierarchical
event model that incorporates both structural
and semantic hierarchy. We call our model
SHEM (Semantically-informed Hierarchical Event
Modeling). An overview is in Fig. 2, where an
observed event sequence (green xi) is latently mod-
eled as multiple sequences of semantic frames (fi
and hj), augmented by a semantic resource.

We examine the strengths and limitations of
structural and semantic hierarchy. Our experiments
explore the effect of compressing the number of
frames on ability to predict what happens next in
an event sequence, and, given an initial seed event,
how an event sequence is likely to unfold. We
also extend our work to show how our model can
produce better intrinsic event representations.

3.1 Model Setup

Our model is a sequence-to-sequence hierarchi-
cal model (§3.3). It is comprised of two layers (a
base and a compression layer) of an encoder & de-
coder (§3.2). During training (§3.4), we provide
the model partially observed semantic frames in
the base layer in order to guide it in encoding event
sequences into latent variables. In the compression
layer, we use ontologically-defined frame relations
to extract semantically similar frames from the pre-
dicted frame of the first layer. These semantically
similar frames guide the compression layer of the
model to infer appropriate abstract frames.

3.2 Input and Output

The input to our model is event sequences.
Each sequence is defined by M event tuples
(x1, x2, ...xM ). For comparability (Weber et al.,
2018; Rezaee and Ferraro, 2021), we represented
each event as a tuple xm of four lexical words:
a predicate, a subject, an object, and an optional
event modifier. We assume an event tuple can be
associated with a more general semantic frame. For
example, in Fig. 2, the first event (“work farmers
in field”) can be linked to the FrameNet AGRI-
CULTURE frame. We assume that each event can
be linked but do not require this. Some frames
might be masked, subject to a fixable observation
probability. This allows us to test how our model
behaves when semantic data may be missing or in-
correct (due to, e.g., an extraction error); in Fig. 2,

this can be seen for the event “track animals in for-
est” event, where a potential corresponding frame—
“Hunting_Scenario”—is masked. This results in
a corresponding sequence of (partially) observed
frames (f∗1 , f

∗
2 , ...f

∗
M ). The base layer uses these

event tuples (xi) to softly predict the frames (fi)
and then reconstruct the input sequence based upon
those inferences. To capture additional semantic
knowledge, both in traning and testing, we query
FrameNet to extract more abstract frames (hi) for
the predicted frames from the base layer, such as
“Attempt_obtain_food_scenario.” The compression
layer uses that abstract frame hi with the original
event frames fi to softly group the events; for addi-
tional training signal, the compression layer is also
trained to reconstruct the original event sequence.

Encoder The base layer embeds each token in the
input event sequence, while, by default, the com-
pression layer embeds each predicted frame from
the base layer. An attention module is used to find
the important parts of event sequences during pre-
diction of frames. As our experiments validate,
the encoder can be flexible, e.g., a bi-GRU or a
Transformer-based large language model.

Decoder This is a standard auto-regressive model
that generates tokens of an event sequence from left
to right. Unless otherwise specified, the predicted
frame embeddings are given as input to the decoder.
See App. A.1 for additional details.

3.3 Hierarchical Model

We use two layers of an encoder-decoder: (i) a base
layer (fis in Fig. 2) and (ii) a compression layer
(hjs in Fig. 2). The base layer is responsible for
encoding the input event sequence into a sequence
of semantic frames, while the compression layer
is responsible for re-encoding the base layer’s se-
mantic frames into more abstract representations.
In Fig. 2, the base layer must infer “Agriculture” &
“Hunting_Scenario” from the input and observed
frames; the compression layer must associate those
frames with “Attempt_obtain_food_scenario.” Our
model is extendable to an arbitrary number of com-
pression layers. Experiments with multiple com-
pression layers showed that a single compression
layer was sufficient for strong performance.

Given our encoder-decoder setup, inferring
frame values means sampling a discrete random
variable within a neural network. This must be
done at both the base and compression layers. To
do so, we sample frames from an ancestral Gumbel-
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Softmax distribution (Jang et al., 2016; Rezaee and
Ferraro, 2021): each sampled frame fi depends on
the previously sampled frame fi−1 and an attention
weighted embedding of that layer’s encoder rep-
resentation. Due to space, we refer the reader to
Rezaee and Ferraro (2021).

Base Layer The base layer encodes the event se-
quences in the same number of latent variables
with the guidance of the observed frames. On the
base layer, partially observed frames are fed to the
model. These frames depend on the observation
probability; e.g., 40% observed frames mean that
60% of the event frames will be masked, and the
remaining 40% would be observable by the model
as guidance. This masking, which we formalize
as part of our experiments, reflects the fact that we
may not always have access to sufficient semantic
knowledge. To guide the base layer, a one-hot en-
coding of the observed frames is “injected” (added
to the Gumbel-Softmax parameters), as done by
Rezaee and Ferraro (2021). The number of frames
is the same as the number of event sequences, so
one frame for each node is passed.

Compression Layer Rezaee and Ferraro (2021)
showed that providing some frame injection guid-
ance helps learning. The compression layer aims
to provide guidance to the modeling through fewer,
more abstract semantic frames. However, while
this is possible for the base layer, where we as-
sume every event tuple could have a frame, we do
not assume this for the compression layer. This in
part is reflective of the lack of annotated training
samples for some of these more abstract frames
(see §2.3), limited beyond-sentence frame extrac-
tion tools, and our own motivation to not require
beyond-sentence annotation or extraction tools.

To provide guidance, but prevent reliance on
potentially missing auxiliary semantic knowledge,
we extract the inferred frames from the base
layer with the external frame ontology (rather
than whatever frames may have been provided to
the model). For each inferred frame fi, we ex-
tract possible abstract frames using the FrameNet
relations defined for it. E.g., since there is a
frame relation between AGRICULTURE and AT-
TEMPT_OBTAIN_FOOD_SCENARIO, if fi is AGRI-
CULTURE, ATTEMPT_OBTAIN_FOOD_SCENARIO

may be an abstract frame. In the case of multiple ab-
stract frames, one single frame is chosen randomly.
A special frame token (not in FrameNet) is passed
if no related frames can be extracted. Each com-

pression node hj has an attention module, attending
over the base layer’s inferred frames f1, . . . , fM ,
helping capture ontological hierarchy.

While the compression layer can serve as an
event model in its own right (due its own decoder),
its primary purposes are to help capture the on-
tological hierarchy and provide feedback to the
base layer. It does this directly (predict the ex-
tracted abstract frames, given the base layer’s in-
ferred frames as input), and via its decoder.

Guidance for Abstract Frames To guide the com-
pression layer to learn more abstract frames and
help the base layer generalize, we injected the
FrameNet-defined parents of the frames predicted
from the base layer. E.g., if the base layer predic-
tion is “Temporary_Stay” and a related frame is
“Visiting,” we inject both to the compression layer.
In contrast to existing work relying on single sam-
ples, early experiments showed that averaging two
Gumbel-Softmax samples yielded better results.

3.4 Training

During training, input is passed to the base layer
with partially observed frames depending on the
observation probability. The first layer encoder
encodes the input sequence with the guidance of
the partially observed frames to generate a latent
variable representation (fi). This predicted latent
variable (fi) is then passed through the decoder
to regenerate text. The predicted frames from the
first layer and their parent frames are passed to the
second layer encoder; it then encodes it to fewer
numbers of latent variables, (hj) which is used in
the decoder. Loss is computed at both layers.

We employ a linear combination of three dif-
ferent loss functions: the reconstruction loss, the
KL divergence loss, and a frame classification loss.
The reconstruction loss is used to generate the in-
put event sequence based on the inferred latent
variables from each layer. The KL divergence loss
calculates the KL divergence between the prior
and variational distributions for each layer. Finally,
the frame classification loss guides the base layer
to accurately classify the observed frames. See
App. A.3 for a full formulation of our loss.

4 Experimental Setup

We describe the dataset, then baselines (§4.1), we
used for our core experiments. We explored the ef-
fectiveness of latent parent frames (§5.1) and frame
relations (§5.2). We show how our model accounts
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for missing events (§5.3). To further show the effec-
tiveness of our model, we show how to extend our
approach to provide effective representations for
event similarity tasks (§5.4). We provide supple-
mentary results and experiments in the appendix.

Dataset We used a part of the Concretely An-
notated Wikipedia dataset (Ferraro et al., 2014),
which is a version of English Wikipedia that pro-
vides automatically produced FrameNet semantic
frame parses to enable easier subsequent examina-
tion of semantic frames. This has existing splits
of training (457k), validation (16k), and test (21k)
event sequences, where each training sequence has
at least one extracted frame. For comparability
with past approaches, we truncated documents to
the first 5 events. We used a vocabulary size of 40k
for event sequences (predicates and arguments) and
the 500 most common semantic frames, which is
consistent with prior work and has more than 99%
coverage of automatically extracted frame types.

4.1 Implementation and Baselines

We use five latent variables in the base layer and
three in the compression layer; these values were
determined in early dev experiments. We represent
the probability of observing an event’s frame on the
base layer with an observation probability ε. With
ε likelihood, an event’s frame will be observed, and
with (1 − ε) probability, an event’s frame will be
masked. This is meant to emulate how sufficiently
accurate, extractable semantic knowledge may not
always be available. This ε was fixed prior to train-
ing each model. Frames are only observed dur-
ing training, and never during evaluation. More
implementation details, including specific hyper-
parameter values and architectural decisions, are
in App. A.2. We present extensive ablation ex-
periments in App. C. These experiments provide
further insight into our modeling decisions.

Baselines Most of our experiments (§ 5.1 to 5.3)
compare our model with the existing methods:
First, HAQAE (Weber et al., 2018), which em-
ploys a single layer, chain-based method for hi-
erarchical modeling. It is designed purely as an
unsupervised approach, and so we cannot provide
frame guidance to it. We retrained this model on
our event sequences. Second, SSDVAE (Rezaee
and Ferraro, 2021): this is most similar to ours
and effectively just the base layer. For fairness,
we use the same hidden state size and pre-trained
embeddings across our models and baselines.

Model ε Perplexity (↓) INC Score (↑)
HAQAE - 21.38 ± 0.25 24.88 ± 1.35
SSDVAE

0.9
19.84 ± 0.52 35.56 ± 1.70

ours: inf. frame 19.39 ± 0.3 41.35 ± 4.25
SSDVAE

0.7
21.19 ± 0.76 39.08 ± 1.55

ours: inf. frame 20.26 ± 1.36 35.86 ± 3.43
SSDVAE

0.5
31.11 ± 0.85 40.18 ± 0.90

ours: inf. frame 22.16 ± 1.62 37.3 ± 3.33
SSDVAE

0.4
33.12 ± 0.54 47.88 ± 3.59

ours: inf. frame 24.02 ± 1.28 43.25 ± 4.97
SSDVAE

0.2
33.31 ± 0.63 44.38 ± 2.10

ours: inf. frame 30.15 ± 2.73 49.53 ± 1.56

Table 1: Perplexity (lower is better) and Wikipedia In-
verse Narrative Cloze Score (higher is better) for test
data. Per observation probability (ε), the best is in italic
form. The best overall is bold form. See §5.1.

5 Result and Discussion

We compute standard event modeling metrics: per-
plexity, to measure how well the model can predict
the next event, and inverse narrative cloze (INC)
score (Weber et al., 2018). In INC, a single seed
event is given, and the model must select what
the next five events are to follow it. The model
is given six choices (giving random performance
accuracy of 16.7%). Both have been used by our
baselines and allow us to assess the effectiveness
of our model. We average results over four runs
with different seeds, unless otherwise specified.

5.1 Is Frame Inheritance Sufficient?

We first investigate whether frame inheritance is
sufficient for learning our hierarchical model. We
report the inferred frame variant previously de-
scribed: the base layer first infers the latent frames;
then we extract the parents of those inferred frames;
and we then inject both these parent frames and
base layer predicted frames in the compression
layer. The compression layer is dependent on the in-
ferred frames, rather than lexical signal. Results are
in Table 1 (supplemental results in Tables 6 and 7 in
the appendix). We also experimented with a lexical
variant, where the input to the compression layer
is an embedding of the original input event tuple
rather than the inferred frames. Due to space con-
straints, these detailed comparisons are in App. B.1.
The compression layer alone has suboptimal perfor-
mance on both lexical and inferred frame models,
but the signal from compression layer helped the
base layer to achieve better performance. Both
SSDVAE and HAQAE (no compression layer) did
worse for all observation probabilities. This shows
the inferred frames and semantic relations from the
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base layer are important for hierarchical modeling.2

Our model’s base layer perplexity consistently
outperformed the other models. Additionally, we
see that our approach is better able to handle lower
supervision than SSDVAE: as the observation prob-
ability decreases (fewer observed semantic frames),
perplexity increases drastically for SSDVAE. In
contrast, if we look at the “ours: inf. frames” per-
plexity, we see that any performance degradation in
our model is less severe, and that in all cases our ap-
proach still outperforms the previous SOTA results.
This shows the effectiveness of the compression
layer in guiding the base layer reconstruction, even
with limited semantic observation.

Looking at INC, with either a lot (ε = 0.9)
or a little (ε = 0.2) of semantic observations,
our approach outperforms the existing approaches,
demonstrating the ability to model longer event se-
quences. The best overall INC performance occurs
with our hierarchical model with a low amount
of supervision. This is a good result, as it sug-
gests our model can make use of limited semantic
extractions and still provide effective long-range
modeling. When some, but not necessarily most, of
the frames may be observed, the non-hierarchical
SSDVAE approach provides strong performance.
This suggests that while frame inheritance (e.g.,
IS-A type relations) can be helpful for certain ele-
ments of hierarchical event modeling, it is not suf-
ficient. However, as we will see in the next section,
more considered use of semantic relations defined
in FrameNet can drastically boost our model’s per-
formance, surpassing SSDVAE.

5.2 Relations Beyond Inheritance
We have shown that inheritance relations are help-
ful but not sufficient. As FrameNet reflects other
relations, like causation, (temporal) ordering, and
multiple forms of containment/composition, we
explore whether six different frame relations signif-
icantly affect the predictive abilities of our model.

We also consider two special cases: first,
whether different types of relations are comple-
mentary by grouping these select relations.3 We
refer to this as grouping in Table 2. Second,
whether the compositional “scenario” frames in

2In particular, Fig. 4 in the appendix shows how the com-
pression layer can demonstrate its own generative capabilities,
in addition to providing supervisory signal to the base layer.

3We aggregate frames connected via the Inheritance, Us-
ing, Precedes, Causative_of, Inchoative_of, and Subframe
relations. We selected these given their direct connections to
well-studied relationships across event semantics.

Model Frame Relation ε
Next Event Event Sequence Pred.

Pred. (Perplexity) (Wiki INC Accuracy)
HAQAE - - 21.38 ± 0.25 24.88 ± 1.35
SSDVAE - 0.9 19.84 ± 0.52 35.56 ± 1.70

ours

Inheritance

0.9

19.39 ± 0.53 41.35 ± 4.25
Using 19.39 ± 0.51 43.23 ± 2.51

Precedes 19.57 ± 0.58 41.43 ± 3.02
Causative_of 19.42 ± 0.57 41.38 ± 2.23
Inchoative_of 19.28 ± 0.32 41.35 ± 3.47

Perspective_on 19.76 ± 0.97 40.53 ± 2.04
Subframe 18.91 ± 0.15 40.35 ± 2.91
grouping 19.44 ± 0.5 40.76 ± 2.86

scenario-only 18.81 ± 0.5 42.29 ± 2.86
SSDVAE - 0.2 33.31 ± 0.63 44.38 ± 2.10

ours

Inheritance

0.2

30.15 ± 2.73 49.53 ± 1.56
Using 31.37 ± 2.08 49.72 ± 1.73

Precedes 32.62 ± 1.65 47.92 ± 2.25
Causative_of 31.82 ± 3 49.85 ± 0.84
Inchoative_of 32.65 ± 1.4 48.03 ± 3.35

Perspective_on 33.2 ± 1.47 47.85 ± 3.53
Subframe 32.78 ± 2.09 47.88 ± 3.31
grouping 28.17 ± 2.26 48.88 ± 1.37

scenario-only 32.01 ± 0.7 48.1 ± 2.22

Table 2: Using frame relations beyond inheritance for
the compression layer can lead to drastic improvements
in both perplexity (lower is better) and Wikipedia In-
verse Narrative Cloze Score (higher is better). See §5.2.
For detailed result with all the layers, please refer to ap-
pendix (Apps. B.2 to B.4).

FrameNet provide a strong signal (scenario-only
in Table 2). In FrameNet, frames that introduce
a broader, abstract concept rather than an isolated
one can be labeled as a “scenario” frame: e.g.,
COMMERCE_SCENARIO consists of buying, sell-
ing, business, having an agreement, and so on. For
this, we only extracted an abstract frame for the
compression layer if it was labeled as a “scenario.”

We trained separate models (with three random
seeds) for each frame relation to explore the effect
of individual frame relations on the result. We fo-
cus on higher (ε = 0.9) and lower (ε = 0.2) frame
observation cases. Table 2 shows our main results,
with detailed results in the appendix (Apps. B.2
to B.4). Lower observation (ε = 0.2) is consis-
tently better than the previous state-of-the-art on
the base and overall versions. For ε = 0.9, base
layer performance is generally improved. This reaf-
firms our previous results that even with limited
semantic guidance, the compression layer provides
valuable feedback to the base layer.

The results for the two special relations in Ta-
ble 2 (grouping and scenario-only) are consistent
with our previous results—our approach outper-
forms the state-of-the-art result. Neither grouping
nor the scenario-only variant provides large ad-
ditional benefit beyond the individual frames in
that group. Given this and the small variation in
base layer performance depending on what frame
relations we use, these results suggest that the ex-
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Model ε
Perplexity (Masked Test Data)

Base Alone Compression Alone Base+Compr.
SSDVAE

0.9
152.44 ± 3.45 - -

grp 61.1 ± 1.83 94.76 ± 1.96 76.08 ± 0.76
scn 63.48 ± 4.43 80.94 ± 7.44 71.6 ± 4.12

SSDVAE
0.7

163.08 ± 4.52 - -
grp 63.5 ± 3.49 86.23 ± 0.7 73.98 ± 2.04
scn 60.06 ± 1.68 78.36 ± 4.52 68.58 ± 2.3

SSDVAE
0.5

182.63 ± 6.11 - -
grp 79.74 ± 1.79 83.81 ± 0.96 81.75 ± 1.13
scn 76.01 ± 5.56 78.7 ± 1.63 77.33 ± 3.65

SSDVAE
0.4

201.55 ± 4.1 - -
grp 84.17 ± 4.45 81.49 ± 0.14 82.8 ± 2.13
scn 73.77 ± 7.87 80 ± 1.89 76.77 ± 4.89

SSDVAE
0.2

212.93 ± 2.54 - -
grp 89.73 ± 4.67 77.32 ± 0.72 83.28 ± 2.38
scn 83.86 ± 2.74 81.2 ± 1.17 82.52 ± 1.93

Table 3: Perplexity (lower is better) for the grouped and
scenario-based models in the scenario-masked evalua-
tion. For each ε, the best score is italicized. Best over-
all is bold. These results indicate how our approach can
make use of related frames to better model sequences
involving missing events. See §5.3.

istence of broader assocations that these relations
enable are very helpful. This would suggest that
semantically-aware event modeling could benefit
from broader semantic resource coverage, with fu-
ture work examining how best to encode the seman-
tics of any particular relation.

5.3 Predicting Missing Events

Previously, we have looked at how using the ob-
servation probability can help us mask frames and
semi-supervised learning. In this experiment, we
examine the robustness of our model with respect
to missing events in an input sequence along with
the frame masking depending on observation prob-
ability. We first identify sequences (in our training,
dev, and test data) where two events have different
frames fi and fj that are contained within the same
scenario frame. We train normally, but to evaluate,
we remove an event ej associated with a scenario-
connected frame fj from the input. Given this
impoverished input, we require the model to gener-
ate the full, unmodified sequence. By construction,
the missing event is not a randomly missing event:
it is, according to the semantic ontology, semanti-
cally related to another event in that sequence. To
compare our model with SSDVAE, we have trained
SSDVAE with the same data and evaluated with
the same masked input and full event regeneration.

Given their strong performance, we examine the
grouped and scenario-based models. Results, av-
eraged across three seeds, are in Table 3: grp is
the model with a group of FrameNet relations, scn
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Figure 3: Relative perplexity improvement of the
scenario-based model vs. the grouped model; higher
is better. The scenario model improves across observa-
tion levels when important events are missing.

is the model with scenario sub-frames and SSD-
VAE is the SSDVAE model with different evalu-
ation. To show the consistent benefits of our ap-
proach, we report results computed just from the
base decoder, just from the compression decoder,
and from a score combined from both the base
and compression decoders. When an important
event is masked, the scenario-based model nearly
always outperforms the grouped model across ob-
servation levels. Our model can leverage training
time scenario-related frame associations to better
predict a missing event. Also, for all observation
probabilities, both of our model’s (grp & scn) in-
dividual and combined layer outperform SSDVAE.
We suspect this is because SSDVAE does not have
a hierarchical abstraction mechanism, so when one
event is not present, the related frame is also miss-
ing. This shows the capability of the hierarchical
structure of our model to understand and encapsu-
late the abstract meaning of an event sequence.

It is not surprising that the base layer, with
more feedback during training and greater repre-
sentational capacity, is a better language model
than the compression layer on its own. Still,
the compression layer provides active benefits:
we summarize the relative improvement of the
scenario-based model over the grouped model
in Fig. 3. We compute this from just the base
layer, or from both the base and compression lay-
ers. A positive number means that the scenario-
based model was better able to (re)generate a full
event sequence compared to the grouped model.
Except for very high observation probability on
the base layer, the scenario-based model con-
sistently outperformed the grouped one when
semantically-relevant events were missing. The
grouped model, which covers multiple frame rela-
tions, can better model sequences when events are
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not missing. While this may seem intuitive, notice
how using the compression layer is able to reverse
this pattern and let the scenario-based model out-
perform the grouped one, highlighting the benefit
that the compression layer can bring.

5.4 Improved Event Similarity

We have shown that both structural and semantic hi-
erarchy can be beneficial when predicting the next
event in a sequence, “rolling out” a longer sequence
from an initial seed, and accounting for semanti-
cally missing events. In our final experiment, we
use the latent frame representation to improve the
overall event representation. We evaluate on three
similarity datasets, comparing to the state-of-the-
art (Gao et al., 2022). In two of the datasets, there
are two event pairs and the task is to determine
which pair is more similar (measured by accuracy);
the third involves scalar human assessment scores
for how related two events are (Spearman correla-
tion). Data are only for evaluation, and all training
is done as “pre-training.” As such, our experiments
demonstrate the ability to capture semantic infor-
mation in our latent variable representation, and to
perform in an evaluation-only (zero-shot) predic-
tion of semantically-related events.

Gao et al. (2022) presents SWCC, a
simultaneous, weakly supervised, contrastive
learning and clustering framework for event
representation learning. They combine a clustering
loss with the popular contrastive learning approach
of InfoNCE (Oord et al., 2018). Every “query”
point x (an event tuple) has positive (similar)
instances z1, ..., zR, and negative (dissimilar)
instances zR+1, ..., zS . Using a temperature-
annealed similarity function on model-computed
embeddings, e.g., cosine similarity on embeddings
from a LLM, a probability distribution is computed
over the positive and negatives (conditioned on
the query). Average cross-entropy is optimized to
predict the positive vs. negative instances.

This contrastive loss nicely augments our
model’s existing training objective from §3.4. We
pre-train our hierarchical model on the same par-
tially observable frame-annotated data from §4, us-
ing that model to extract a representation for an
event, and computing the cosine similarity between
two representations. We form a representation by
concatenating the decoder’s final token embedding
and the latent frames from the compression layer.
To prevent frame representations overfitting to the

Model
Hard Similarity (Accuracy %) Transitive Score

SimilarityOriginal Extended
SWCC (16) 78.91 ± 1.31 69.2 ± 0.93 0.82 ± 0
SWCC (256) 81.09 ± 0.43 72.55 ± 1.53 0.82 ± 0

Ours 83.26 ± 2.29 78.63 ± 2.95 0.77 ± 0.04

Table 4: Evaluation on Similarity Tasks. SWCC (256)
are Gao et al.’s reported results, using a batch size of
256. Given the importance that batch size can have
with contrastive learning, we ran Gao et al.’s model
with a batch size 16 (the same batch size of our model).
We report this as SWCC (16). See §5.4.

Training Variant
Hard Similarity (Accuracy %) Transitive Score

SimilarityOriginal Extended

Ours (16)
Contrastive + LM 83.26 ± 2.29 78.63 ± 2.95 0.77 ± 0.04
Contrastive only 67.18 ± 1.79 72.75 ± 2.06 0.72 ± 0.02

LM only 67.83 ± 14.39 62.15 ± 16.52 0.56 ± 0.04

SWCC (16)
Contrastive + MLM 78.91 ± 1.31 69.2 ± 0.93 0.82 ± 0

Contrastive only 78.48 ± 0.83 67.33 ± 0.19 0.78 ± 0.05
MLM only 25.87 ± 1.31 16.78 ± 0.7 0.55 ± 0.04

Table 5: Ablation study of our model and SWCC.

predicates, rather than arguments, we applied a
predicate-specific dropout of 70% on the encoder.
Our hierarchical model provides a straightforward
way to adopt contrastive loss; this hierarchical na-
ture is not explicit in SSDVAE or HAQUE. Adapt-
ing these approaches to the contrastive learning
setup is beyond the scope of our work.

Our results are in Table 4. We have run SWCC
with a batch size of 16, which is the same as ours.
Our model surpasses SWCC on two of the tasks,
showing it is not only capable of event language
modeling but also capable of generating better
event representations. We have also run an ablation
study on SWCC and our model; the results are on
Table 5. The results show that neither contrastive
nor LM/MLM loss are as strong as both together.
We see that the LM component in our approach is
important to overall performance.

6 Conclusion

We have presented a hierarchical event model that
accounts for both structural and ontological hier-
archy across an event sequence. We use automat-
ically extracted semantic frames to guide the first
level of concept, and then use FrameNet relations
to guide abstraction and generalization. We showed
improvements across multiple tasks and evaluation
measures within event modeling. We showed im-
provements in next event prediction, longer range
event prediction, missing event regeneration, and
event similarity. We believe that future work can
use this abstraction concept for summarization,
topic modeling, or other downstream tasks.
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7 Limitations

Our approach enables modeling observed event se-
quences through the lens of a structured semantic
ontology. Though our models have shown superior
performance to leverage event frames, they still suf-
fer from the bottleneck of the information passed
to the compression layer. Additionally, while these
resources do exist, their coverage is not universal,
and have historically been developed for English.
Our experiments reflect this.

While the observance of frames is not, strictly
speaking, a requirement of our model, our experi-
ments focused on those cases when such an ontol-
ogy is available during training.

Throughout our experiments, we use pretrained
models/embeddings. We do not attempt to control
or mitigate any biases these may exhibit or propa-
gate.

Our work does not involve human subjects re-
search, data annotation, or representation/analysis
of potentially sensitive characteristics. As such,
while we believe the direct potential risks of our ap-
proach are minimal we acknowledge that the joint
use of pretrained models and structured semantic
ontologies could result in undesired or biased se-
mantic associations.
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A Additional Model and Implementation
Details

A.1 Model Details

For our input data, events are separated by a
<TUP> token, and in case of missing values

in an event frame, is replaced with a special
<NOFRAME> token.

As mentioned in the main paper, like any auto-
regressive model, previously generated decoder
output and previous input texts are given as in-
put to the decoder. An attention module is used
to find the important words from the given latent
embeddings predicted by encoder. Each layer tries
to reconstruct the input text, and loss was gener-
ated individually for each layer, which then accu-
mulated and back-propagated through the whole
model, updating the model parameters.

A.2 Implementation Details

The values of γ1 and γ2 are set to 0.1 by experi-
menting on the validation set. 2 Gumbel-softmax
samples are used to average the encoder. We use
the Adam (Kingma and Ba, 2014) optimizer with
a learning rate of 0.001. A batch size of 64 has
been used with a gradient accumulation of 8. Early
stopping has been used with patience of 10 on the
validation perplexity score.

For comparability, our core event modeling re-
sults use recurrent encoders and decoders. We use
pretrained Glove-300 embeddings to represent each
lexical item in an event tuple. An embedding size
of 500 has been used for frame embeddings. Two
layers of bidirectional GRU have been used for the
encoder, and two layers of uni-directional GRU
have been used for the decoder. Both are used with
512 hidden sizes. Gradient clipping of 5.0 has been
used to prevent gradient exploding. 0.5 has been
used as the Gumbel-softmax temperature.

Similarly, our experiments involving event simi-
larity (§5.4) use BART (Lewis et al., 2019) as our
encoder and decoder module.

Across our experiments, we have used NVIDIA
RTX 2080Ti or NVIDIA RTX 6000 for training.
It takes around 16 hours to train with our current
batch size on our dataset.

A.3 Loss Formulation

In constructing our training loss function, we take
inspiration from the methodology outlined in the
study conducted by (Rezaee and Ferraro, 2021).
However, our model differs in that it incorporates
two hidden layers, as opposed to the single latent
layer utilized in the aforementioned study. Each
layer we calculate the loss for both layers indi-
vidually. This is done by allowing each layer j,
to reconstruct the input text using its own latent
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variables, Lrj . To prevent overfitting, we incor-
porate KL terms in our loss function denoted as
LKLj . Additionally, for the base layer we include a
classification term, designated as Lc.

L = α1 ∗ Lr1 + α2 ∗ Lr2︸ ︷︷ ︸
Text Reconstruction

+ β1 ∗ LKL1 + β2 ∗ LKL2︸ ︷︷ ︸
Regularization

+ γ ∗ Lc.︸ ︷︷ ︸
Observed Frame Classification

(1)

The reconstruction and KL losses depend on
the random variables inferred at each level: for the
base level (j = 1), the losses depends on the frames
sampled at the base level f1, . . . , fn, while the com-
pression losses (j = 2) depend on h1, . . . , hM ).
Our latent variable model learns a variational distri-
bution q, from which it can infer appropriate values
for fi and hj . With this, we compute

Lr1 = Eq(f1,...,fN )[log p(x|f1, . . . , fN )] (2)

Lr2 = Eq(h1,...,hM )[log p(x|h1, . . . , hM )] (3)

LKL1 = Eq(f1,...,fN )[log p(f1, . . . , fN )] (4)

LKL2 = Eq(h1,...,hM )[log p(h1, . . . , hM )] (5)

Lc = −
N∑

i=1:f∗
i is obs.

log q(f∗i |fi−1). (6)

In Lc, note that f∗i represents the correct value of
the ith frame. The reconstruction and frame classi-
fication losses can be computed via a cross-entropy
loss (per output token for the reconstruction losses,
and per predicted frame in the frame classification
loss).

B Additional Results

B.1 Is Frame Inheritance Sufficient?

The detailed results for the experiment described
in §5.1 are reported in Table 6 (Perplexity Score)
and Table 7 (INC).

Detailed per-layer perplexity is reported in Ta-
ble 6, augmenting the results in Table 1. Our
model’s base layer perplexity consistently outper-
formed the other models. However, the perplexity
of the compression layer was higher. This sug-
gests that while incorporating hierarchical layers or
knowledge may not be sufficient for generating the
event sequence, it provides useful, less-than-full
supervised feedback to the base layer.

Model ε
Perplexity (Test Data)

Base Compression Total
HAQAE - - - 21.38 ± 0.25
SSDVAE

0.9
- - 19.84 ± 0.52

ours: inf. frame 19.39 ± 0.3 26.52 ± 0.55 22.68 ± 0.41
ours: lexical 19.12 ± 0.53 31.43 ± 1.1 24.51 ± 0.39

SSDVAE
0.7

- - 21.19 ± 0.76
ours: inf. frame 20.26 ± 1.36 27.45 ± 0.5 23.57 ± 0.84

ours: lexical 21.52 ± 1.48 35.19 ± 0.95 27.5 ± 0.93
SSDVAE

0.5
- - 31.11 ± 0.85

ours: inf. frame 22.16 ± 1.62 32.59 ± 2.86 26.62 ± 2.13
ours: lexical 25.02 ± 1.31 39.44 ± 0.44 31.41 ± 0.77

SSDVAE
0.4

- - 33.12 ± 0.54
ours: inf. frame 24.02 ± 1.28 32.82 ± 1.44 28.07 ± 1.24

ours: lexical 27.06 ± 0.94 40.46 ± 2.74 33.05 ± 0.56
SSDVAE

0.2
- - 33.31 ± 0.63

ours: inf. frame 30.15 ± 2.73 34.81 ± 2.81 32.84 ± 1.84
ours: lexical 33.6 ± 1.84 44.64 ± 1.44 38.72 ± 1.59

Table 6: Per-word perplexity for test data (lower is bet-
ter). For each observation probability (ε), the best per-
plexity is in italic form. The best of all of them is bold
form. See App. B.1

For INC, we look to the lexical variant, where
our model’s base layer outperforms the previous
result with having the best of all the observation
probabilities. However, the results for the compres-
sion layer underperformed the inferred variant, in-
dicating that incorporating lexical signals may have
a negative impact on the performance of the genera-
tion model. Overall, this suggests that the inferred
frames and ontological relations from the base
layer are important for hierarchical modeling.

We have reported an average change in the INC
score of the base layer over the combined layer
on Fig. 4. The gray and orange bars represent the
two variants: inferred frames and lexical signal,
respectively. Each bar is the average of the score
change from the combined layer to the base layer
(combined layer score – base layer score). Here, a
negative score means that the base layer is better
than the combined one. This figure shows if the use
of compression layer has a positive impact on the
INC score or not. First, for the inferred frames, the
addition of a compression layer has improved the
INC score by an effective margin on the base layer.
This shows that the semantic frames have helped
the model’s base layer to understand the process
better. On the other hand, for the lexical signal, the
combined layer has a better INC score. This shows
that having the lexical signal on the compression
layer has a better and equal effect on both layers.
In conclusion, the addition of a compression layer
improves the model’s capability of understanding
event sequences and generalizing.

365



-3

-2

-1

0

1

2

0.2 0.4 0.5 0.7 0.9

Observation Probability

A
v

er
ag

e 
C

ha
ng

e
 U

si
ng

 C
o

m
pr

es
si

on
 L

ay
er

Inferred Frames Lexical Signal

Figure 4: Average Change in INC score from combined
layer to base layer, where a negative score means the
base layer was better than the combined one and vice
versa. The gray and orange bars indicate whether the
input to the compression layer is inferred frames or lex-
ical signal, respectively. In all cases, inferred frames
has a better effect on base layer and lexical signal has
improved combined layer’s performance.

B.2 The Effect of Individual Frame Relations

The detailed results for the experiment described
in §5.2 are reported on Table 8 (Perplexity Score)
and Table 9 (Wikipedia Inverse Narrative Score).

B.3 Are scenario subframes better than other
frame properties?

The detailed results for the experiment reported in
Table 2 are shown in Table 10 (Perplexity Score)
and Table 11 (INC).

B.4 The Effect of Grouping Frame
Properties

The previous section showed that performance of
our model can be further improved by using tar-
geted frame relations. Here, we investigate whether
grouping of different frame relations could have a
more significant impact on generalization.

Using §5.2, we identified six frame-relations as
the most important ones: Inheritance, Using, Pre-
cedes, Causative_of, Inchoative_of, and Subframe.
We used this group of frame relations to extract
the parent frames from the predicted frames of the
base layer. With their parent frames, these frames
were passed to the compression layer to learn to
associate the semantically similar frames.

Looking at the perplexity results (Table 12) of
this experiment, we can see that the base layer out-
performs both baselines across observation lavels.
Additionally, while we see the intuitive result that
higher levels of frame observation during training

Model ε
Wikipedia INC (Test Data)

Base Compression Total
HAQAE - - - 24.88 ± 1.35
SSDVAE

0.9
- - 35.56 ± 1.70

ours: inf. frame 41.35 ± 4.25 27.25 ± 1.02 40.11 ± 1.88
ours: lexical 41.35 ± 3.19 35.41 ± 2.56 42.83 ± 1.47

SSDVAE
0.7

- - 39.08 ± 1.55
ours: inf. frame 35.86 ± 3.43 26.31 ± 2.92 34.26 ± 3.43

ours: lexical 35.61 ± 4.72 32.68 ± 6.12 37.01 ± 6.59
SSDVAE

0.5
- - 40.18 ± 0.90

ours: inf. frame 37.3 ± 3.33 23.61 ± 1.34 35.13 ± 3.01
ours: lexical 37.8 ± 3 37.11 ± 3.14 39.85 ± 3.01

SSDVAE
0.4

- - 47.88 ± 3.59
ours: inf. frame 43.25 ± 4.97 23.65 ± 1.34 40.46 ± 4.71

ours: lexical 39.2 ± 1.23 34.79 ± 4.75 40.06 ± 2
SSDVAE

0.2
- - 44.38 ± 2.10

ours: inf. frame 49.53 ± 1.56 25.15 ± 4.34 46.65 ± 1.55
ours: lexical 46.53 ± 2.84 37.55 ± 2.8 46.41 ± 3.71

Table 7: Wikipedia Inverse Narrative Cloze Score for
test data (higher is better). For each observation proba-
bility (ε), the best score is in italic form. The best of all
of them is bold form. See App. B.1

Model Frame Relation ε
Perplexity (Test Data)

Base Compression Total
HAQAE - - - - 21.38 ± 0.25
SSDVAE -

0.9

- - 19.84 ± 0.52

ours

Using 19.39 ± 0.51 25.34 ± 0.22 22.16 ± 0.37
Precedes 19.57 ± 0.58 25.83 ± 0.25 22.48 ± 0.25
Metaphor 19.62 ± 0.75 25.21 ± 0.49 22.24 ± 0.63
See_also 19.55 ± 0.72 25.71 ± 0.39 22.42 ± 0.54

Causative_of 19.42 ± 0.57 25.75 ± 0.46 22.36 ± 0.53
Inchoative_of 19.28 ± 0.32 26.01 ± 0.85 22.39 ± 0.52

Perspective_on 19.76 ± 0.97 25.64 ± 0.57 22.5 ± 0.75
Subframe 18.91 ± 0.15 26.03 ± 0.42 22.19 ± 0.27

ReFraming_Mapping 19.56 ± 0.94 26.63 ± 1.81 22.81 ± 0.62
SSDVAE -

0.2

- - 33.31 ± 0.63

ours

Using 31.37 ± 2.08 38.55 ± 5.72 34.72 ± 3.23
Precedes 32.62 ± 1.65 45.33 ± 0.74 38.45 ± 1.25
Metaphor 32.92 ± 2.08 42.07 ± 5.83 37.18 ± 3.5
See_also 31.83 ± 2.78 41.78 ± 5.55 36.44 ± 3.79

Causative_of 31.82 ± 3 40.01 ± 6.23 35.67 ± 4.41
Inchoative_of 32.65 ± 1.4 42.42 ± 3.55 37.21 ± 2.21

Perspective_on 33.2 ± 1.47 44.18 ± 1.26 38.28 ± 0.34
Subframe 32.78 ± 2.09 45.25 ± 0.7 38.51 ± 1.52

ReFraming_Mapping 31.34 ± 2.76 36.57 ± 2.9 34.06 ± 3.15

Table 8: Per-word perplexity for test data (lower is bet-
ter). For each observation probability (ε), the best per-
plexity is in italic form. The best of all of them is bold
form. See App. B.2

improves perplexity, we see the largest relative im-
provments for ε = 0.5 and ε = 0.4. This suggests
that our hierarchical model is able to effectively
leverage the semantic ontology, even when 40% of
events do not have observed frames.

We see broadly similar patterns for inverse nar-
rative cloze, with our approach outperforming both
baselines. First, our performance is highest with
the lowest observation level. Second, aside from
when 90% of the events have observed frames, as
ε decreases, so does our model’s variance, while
the previous state-of-the-art’s increases. Taken to-
gether, these results suggest that our model is bet-
ter able to use the provided semantic ontology and
make better longer range predictions, even with lim-
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Model Frame Relation ε
Wikipedia INC (Test Data)

- Base Compression Total
HAQAE - - - - 24.88 ± 1.35
SSDVAE -

0.9

- - 35.56 ± 1.70

ours

Using 43.23 ± 2.51 26.68 ± 0.63 40.92 ± 1.85
Precedes 41.43 ± 3.02 26.38 ± 1.51 40.03 ± 1.66
Metaphor 41.92 ± 3.93 24.22 ± 1.53 38.8 ± 2.17
See_also 42.67 ± 1.49 27.08 ± 0.24 41.13 ± 0.81

Causative_of 41.38 ± 2.23 26.3 ± 1.05 40.47 ± 1.79
Inchoative_of 41.35 ± 3.47 26.67 ± 1.33 40 ± 2.34

Perspective_on 40.53 ± 2.04 26.38 ± 0.67 39.55 ± 1.75
Subframe 40.35 ± 2.91 25.7 ± 0.48 38.42 ± 2.32

ReFraming_Mapping 43.8 ± 4.02 26.7 ± 1.21 42.15 ± 3.19
SSDVAE -

0.2

- - 44.38 ± 2.10

ours

Using 49.72 ± 1.73 21.77 ± 1.1 45.93 ± 1.62
Precedes 47.92 ± 2.25 20.67 ± 0.29 42.72 ± 1.58
Metaphor 47.25 ± 3.81 21.12 ± 0.95 42.77 ± 3.27
See_also 47.77 ± 3.61 21.2 ± 1.15 43.72 ± 2.78

Causative_of 49.85 ± 0.84 21.5 ± 2.41 45.45 ± 2.03
Inchoative_of 48.03 ± 3.35 21 ± 0.74 43.95 ± 2.61

Perspective_on 47.85 ± 3.53 20.42 ± 0.3 43.08 ± 3.12
Subframe 47.88 ± 3.31 20.33 ± 0.52 42.38 ± 1.86

ReFraming_Mapping 49.05 ± 1.54 22.23 ± 0.58 45.45 ± 0.44

Table 9: Wikipedia Inverse Narrative Cloze Score for
test data (higher is better). For each observation proba-
bility (ε), the best score is in italic form. The best of all
of them is bold form. See App. B.2

Model ε
Perplexity (Test Data)

Base Compression Total
HAQAE - - - 21.38 ± 0.25
SSDVAE

0.9
- - 19.84 ± 0.52

scenario-only 18.81 ± 0.36 25.61 ± 1.23 21.94 ± 0.5
SSDVAE

0.7
- - 21.19 ± 0.76

scenario-only 18.75 ± 0.3 26.82 ± 0.47 22.42 ± 0.21
SSDVAE

0.5
- - 31.11 ± 0.85

scenario-only 23.79 ± 1.29 31.43 ± 7.44 28.7 ± 2.04
SSDVAE

0.4
- - 33.12 ± 0.54

scenario-only 25.54 ± 2.34 36.87 ± 6.01 30.63 ± 3.52
SSDVAE

0.2
- - 33.31 ± 0.63

scenario-only 32.01 ± 0.7 45.28 ± 0.7 38.07 ± 0.55

Table 10: Per-word perplexity for test data (lower is
better). For each observation probability (ε), the best
perplexity is in italic form. The best of all of them is
bold form. See App. B.3

ited observations. Together with the perplexity im-
provements, these results reaffirm our assumption
that the compression layer gives a subtle but strong
signal that improves generative performance.

C Ablation Study

C.1 Impact of parameter sharing of encoder
and decoder

To find out the importance of multiple encoders
and decoders on two layers, we have used shared
parameters on both of them and see the effect on the
result. The result for this experiment (oursencdec)
is reported on Table 14. We can see a substantial
drop in the result, especially on the INC score for
low perplexity scores (0.5, 0.4, 0.2).

Model ε
Wikipedia INC (Test Data)

Base Compression Total
HAQAE - - - 24.88 ± 1.35
SSDVAE

0.9
- - 35.56 ± 1.70

scenario-only 42.29 ± 1.79 25.38 ± 1.84 39.86 ± 1.82
SSDVAE

0.7
- - 39.08 ± 1.55

scenario-only 38.79 ± 4.11 26.83 ± 7.32 32.91 ± 7.29
SSDVAE

0.5
- - 40.18 ± 0.90

scenario-only 37.59 ± 5.61 22.06 ± 1.01 35.59 ± 4.71
SSDVAE

0.4
- - 47.88 ± 3.59

scenario-only 40.91 ± 2.19 22.15 ± 1.37 37.99 ± 1.86
SSDVAE

0.2
- - 44.38 ± 2.10

scenario-only 48.1 ± 2.22 20.54 ± 0.1 43.3 ± 2.33

Table 11: Wikipedia Inverse Narrative Cloze Score for
test data (higher is better). For each observation proba-
bility (ε), the best score is in italic form. The best of all
of them is bold form. See App. B.3

Model ε
Perplexity (Test Data)

Base Compression Total
HAQAE - - - 21.38 ± 0.25
SSDVAE

0.9
- - 19.84 ± 0.52

grouping 19.44 ± 0.5 31.36 ± 0.85 24.69 ± 0.64
SSDVAE

0.7
- - 21.19 ± 0.76

grouping 20.13 ± 1.45 29.7 ± 0.51 24.43 ± 0.84
SSDVAE

0.5
- - 31.11 ± 0.85

grouping 21.52 ± 0.72 31.62 ± 0.51 26.08 ± 0.39
SSDVAE

0.4
- - 33.12 ± 0.54

grouping 23.42 ± 0.59 30.16 ± 4.2 27.45 ± 0.66
SSDVAE

0.2
- - 33.31 ± 0.63

grouping 28.17 ± 2.26 34.17 ± 0.98 31 ± 1.31

Table 12: Per-word perplexity for test data (lower is
better). For each observation probability (ε), the best
perplexity is in italic form. The best of all of them is
bold form. See App. B.4

C.2 Impact of parameter sharing of frame
embedding

To determine the importance of multiple frame em-
bedding weights for each layer, we have used one
shared frame embedding layer across both layers.
We compute results across three seeds. The result
for this experiment (oursframe) is reported on Ta-
ble 14. Similar to the encoder-decoder, we can see
a substantial decrease in the INC score.

C.3 Impact of summation or concatenation
of both layer encoding

To illustrate if both layer encodings altogether can
improve the result, we have done two experiments,
one with the summation of both layers encodings
(ourssum) and another with only concatenation of
both layer encodings (ourscat). Both experiments’
results are reported on Table 14. Both of the models
have a large drop on INC, which demonstrates the
importance of the performance of the individual
encoding.

367



Model ε
Wikipedia INC (Test Data)

Base Compression Total
HAQAE - - - 24.88 ± 1.35
SSDVAE

0.9
- - 35.56 ± 1.70

grouping 40.76 ± 2.86 28.23 ± 1.04 39.4 ± 1.59
SSDVAE

0.7
- - 39.08 ± 1.55

grouping 38.09 ± 5.6 26.55 ± 0.51 37.83 ± 5.08
SSDVAE

0.5
- - 40.18 ± 0.90

grouping 39.5 ± 3.45 25.61 ± 0.96 37.86 ± 2.56
SSDVAE

0.4
- - 47.88 ± 3.59

grouping 43.83 ± 1.75 24.79 ± 0.43 42.16 ± 1.43
SSDVAE

0.2
- - 44.38 ± 2.10

grouping 48.88 ± 1.37 26.64 ± 0.98 46.81 ± 1.67

Table 13: Wikipedia Inverse Narrative Cloze Score for
test data (higher is better). For each observation proba-
bility (ε), the best score is in italic form. The best of all
of them is bold form. See App. B.4
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Model ε
Perplexity (Test Data) Wikipedia INC (Test Data)

Base Compression Total Base Compression Total
HAQAE - - - 21.39 ± 0.25 - - 24.88 ± 1.35
SSDVAE

0.9

- - 19.84 ± 0.52 - - 35.56 ± 1.70
oursencdec 26.25 ± 0.12 26.59 ± 0.13 26.42 ± 0.12 38.35 ± 1.66 38.42 ± 1.53 38.28 ± 1.65
oursframe 20.94 ± 0.86 37.01 ± 1.55 27.83 ± 0.85 41.82 ± 2.44 28.37 ± 4.09 39.97 ± 1.16
ourssum 18.63 ± 0.24 32.02 ± 4.46 24.38 ± 1.59 40.88 ± 0.25 36.15 ± 11.71 42.65 ± 5.02
ourscat 19.34 ± 1.04 31.25 ± 2.07 24.54 ± 0.23 44.05 ± 0.61 25.43 ± 4.73 37.53 ± 4.54

SSDVAE

0.7

- - 21.19 ± 0.76 - - 39.08 ± 1.55
oursencdec 27.15 ± 0.64 27.61 ± 0.64 27.38 ± 0.64 40.68 ± 1.78 40.37 ± 1.27 40.52 ± 1.43
oursframe 20.77 ± 0.2 38.75 ± 1.18 28.37 ± 0.33 41.38 ± 3.48 33.22 ± 4.4 41.71 ± 2.75
ourssum 19.51 ± 0.5 30.37 ± 3.29 24.33 ± 1.61 41.68 ± 1.25 31.77 ± 10.34 40.92 ± 5.04
ourscat 20.17 ± 0.42 30.04 ± 2.89 24.59 ± 1.09 43.42 ± 1.53 28.15 ± 5.53 39.63 ± 3.45

SSDVAE

0.5

- - 31.11 ± 0.85 - - 40.18 ± 0.90
oursencdec 26.54 ± 1.68 28.79 ± 1.55 27.65 ± 1.61 37.02 ± 5.75 37.03 ± 5.7 36.9 ± 5.9
oursframe 19.55 ± 0.89 37.84 ± 1.72 27.19 ± 0.98 45.48 ± 3.63 27.9 ± 1.68 40.7 ± 3.55
ourssum 19.15 ± 0.38 30.58 ± 1.28 24.19 ± 0.57 41.03 ± 1.32 43.37 ± 2.03 46.83 ± 1.55
ourscat 19.59 ± 0.22 30.39 ± 1.49 24.4 ± 0.6 41.45 ± 2.05 26.12 ± 4 38.57 ± 5.59

SSDVAE

0.4

- - 33.12 ± 0.54 - - 47.88 ± 3.59
oursencdec 25.56 ± 0.53 28.03 ± 0.47 26.77 ± 0.5 36.52 ± 3.06 36.23 ± 2.85 36.57 ± 2.97
oursframe 19.6 ± 1.16 38.03 ± 0.74 27.29 ± 0.58 38.13 ± 2.55 26.78 ± 3.21 37.18 ± 0.73
ourssum 18.79 ± 0.98 32.09 ± 1.27 24.56 ± 1.04 43.33 ± 0.88 37.47 ± 14.06 45.82 ± 4.8
ourscat 18.74 ± 0.83 32.1 ± 2.14 24.52 ± 1.14 42.28 ± 3.73 32.37 ± 9.64 43.2 ± 2.66

SSDVAE

0.2

- - 33.31 ± 0.63 - - 44.38 ± 2.10
oursencdec 25.62 ± 0.31 30.85 ± 0.17 28.12 ± 0.1 38.1 ± 3.1 38.32 ± 3.37 38.27 ± 3.22
oursframe 18.63 ± 0.75 38.68 ± 0.36 26.84 ± 0.65 41.45 ± 2.33 29.62 ± 0.98 40.43 ± 2.95
ourssum 17.1 ± 0.21 29.19 ± 3.06 22.33 ± 1.31 39.25 ± 4.42 31.65 ± 11.88 40.45 ± 7.24
ourscat 17.21 ± 0.65 29.6 ± 2.78 22.56 ± 1.18 38.55 ± 0.41 20.45 ± 9.19 29.77 ± 9.34

Table 14: Wikipedia Inverse Narrative Cloze Score for test data (higher is better). For each observation probability
(ε), the best score is in italic form. The best of all of them is bold form. See App. C.1, App. C.2, App. C.3
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