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Abstract

The task of entity state tracking aims to auto-
matically analyze procedural texts – texts that
describe a step-by-step process (e.g. a baking
recipe). Specifically, the goal is to track vari-
ous states of the entities participating in a given
process. Some of the challenges for this NLP
task include annotated data scarcity and anno-
tators’ reliance on commonsense knowledge
to annotate implicit state information. Zhang
et al. (2021) successfully incorporated com-
monsense entity-centric knowledge from Con-
ceptNet into their BERT-based neurosymbolic
architecture. Since English mostly encodes
state change information in verbs, we attempted
to test whether injecting semantic knowledge of
events (retrieved from the state-of-the-art Verb-
Net parser) into a neural model can also im-
prove the performance on this task. To achieve
this, we adapt the methodology introduced by
Zhang et al. (2021) for incorporating symbolic
entity information from ConceptNet to the in-
corporation of VerbNet event semantics. We
evaluate the performance of our model on the
ProPara dataset (Mishra et al., 2018). In ad-
dition, we introduce LEXIS, our purely sym-
bolic model for entity state tracking that uses a
simple set of case statements, and is informed
mostly by linguistic knowledge retrieved from
various computational lexical resources. Our
approach is inherently domain-agnostic, and
our model is explainable and achieves state-of-
the-art results on the Recipes dataset (Bosselut
et al., 2017).

1 Introduction

Language understanding in humans requires at
least the knowledge of the semantics of events
and entities. One needs to know the sequences of
subevents that together make up a ‘throwing’ event,
as well as the causal and temporal relationships
between the subevents that distinguish a ‘throw-
ing’ event from a ‘pouring’ event, or a ‘running’
event. Furthermore, reasoning about entities that

are participating in these events requires a deep
understanding of the properties of an entity. It is
the distinction between such entity properties that
enables us, for example, to distinguish between
‘throwing a ball’ vs. ‘throwing a Molotov cock-
tail’. In contrast to humans, many high-performing
NLP models do not depend on explicit knowledge
of events and entities to process natural language;
rather, they rely on the surface forms and patterns
of word co-occurances in colossal amounts of lan-
guage data to learn the mechanics of language as
well as the interpretation of linguistic forms. Since
human knowledge and reasoning capabilities bene-
fit from knowledge of events and entities, we sug-
gest that a neural model may also benefit from such
explicit symbolic knowledge. This requires suc-
cessful incorporation of such symbolic knowledge
into a subsymbolic system.

Explicit semantic knowledge, such as entity
knowledge extracted from ontologies, has often
been used in the field of natural language ground-
ing, where the connection between natural lan-
guage and the physical world is sought (Bisk et al.,
2020). There are yet other NLP tasks that are likely
to benefit from explicit semantic knowledge as well,
such as tasks focusing on machine comprehension
of how things work (e.g. how plants make food),
or how a certain physical result is achieved (e.g.
how to make pizza using some ingredients). The
NLP task that focuses on the machine reading com-
prehension of texts describing processes is called
Procedural Text Understanding (Huang et al., 2021;
Tandon et al., 2019; Mishra et al., 2019). One of
the subtasks in this field is Entity State Tracking
(Mishra et al., 2018; Bosselut et al., 2017; Faghihi
and Kordjamshidi, 2021; Amini et al., 2020; Gupta
and Durrett, 2019), formally defined as: Given a
paragraph P that describes a process, and an en-
tity e that is one of the participants in that process,
did the state of e change during the process? If
so, what was the type of change that occurred to e
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(usually to be chosen among a desired set of types
of state change)? When did the change happen (i.e.
at which time step during the process)? And finally,
what was the locus of change (i.e. the location of e
before and after the change) (Mishra et al., 2018)?

There are two main challenges in solving this
problem. First, the size of annotated data for this
task is usually small since achieving reasonable
inter-annotator agreement for the task is hard, mak-
ing it expensive and time-consuming. Second,
when facing implicit information, annotators fre-
quently resort to commonsense knowledge – knowl-
edge that state-of-the-art NLP models are not ex-
plicitly aware of. Existing models for this chal-
lenging problem use some flavor of learning-based
approaches to NLP (see Section 2). One of the
existing approaches that is closest in theory to ours
is KOALA (Zhang et al., 2021) – a neurosymbolic
model encoding entity-centric knowledge into a
neural network that is used to track entity states
and locations during a process. We re-implemented
this model and adopted it as our baseline. One of
our contributions in this work is offering a method
for encoding symbolic event semantic knowledge
into a neural model. In practice, we are proposing
an approach to expose a neural model to sequences
of latent universal concepts composing an event,
allowing the network to learn from the spelled out
event semantics as well as the surface forms of the
events realized mostly as verbs.

In addition to our neurosymbolic model (SKIP:
Semantic Knowledge In Procedural text under-
standing), we have also developed a purely sym-
bolic model1 called LEXIS. Error analysis and abla-
tion tests on this model demonstrate other sources
of external knowledge that show promise for in-
clusion in a neural model in future work. In ad-
dition, we show that our theory and approach are
dataset- and domain-independent, and can be used
in any NLP task where knowledge of event seman-
tics plays a major role for humans to achieve the
goal of the task. We will also briefly illustrate our
explanation module for LEXIS.

We evaluated SKIP on the ProPara dataset
(Mishra et al., 2018), and LEXIS on both the
ProPara and Recipes (Bosselut et al., 2017)
datasets2. LEXIS achieved a new state-of-the-art

1Here, purely symbolic is used as opposed to sub-symbolic
models that learn by example. (Garcez et al., 2019; Hamilton
et al., 2022)

2The reason we did not evaluate SKIP on the Recipes
dataset was that we only exposed SKIP to the knowledge

performance on the Recipes dataset (70.1% F1,
improving over the existing state-of-the-art model
by 11.7%), and SKIP performed better than our
adopted neurosymbolic baseline model, (71.8% F1,
improving over the re-implemented baseline model
by 4.1%)3.

Our contributions are two-fold: (1) We adapt the
methodology introduced by Zhang et al. (2021) for
incorporating symbolic entity-centric knowledge
to the incorporation of VerbNet event semantics.
We extract and encode event semantic knowledge
for injection into a neural network, and present
SKIP, an end-to-end neurosymbolic model devel-
oped using this method, in conjunction with data
augmentation and transfer learning techniques. (2)
We present a general knowledge-based approach to
text understanding using existing NLP resources,
and present LEXIS, a purely symbolic model we
developed for entity state tracking that achieves a
new state-of-the-art on the Recipes dataset, with an
architecture that is adaptable to different genres of
natural language text, and is explainable4.

2 Related Work

This work is inspired by the concept of event se-
mantics and event structure offered by the Genera-
tive Lexicon theory, in efforts such as Pustejovsky
and Moszkowicz (2011), Mani and Pustejovsky
(2012), and Brown et al. (2022), where event struc-
ture is enriched to encode and dynamically track
object attributes that are modified during an event.
The idea is that a complex event can be decom-
posed into simpler ordered subevents that explicitly
label the transitions between entity states.

With regard to Entity State Tracking, most recent
existing models mainly rely on large language mod-
els (Amini et al., 2020; Faghihi and Kordjamshidi,
2021; Zhang et al., 2021), while earlier models
(prior to 2020) rely on neural (Gupta and Durrett,
2019; Das et al., 2018; Du et al., 2019) or learning-
based approaches (Ribeiro et al., 2019). The only
existing neurosymbolic model (to our knowledge)
is KOALA (Zhang et al., 2021), which retrieves

extracted directly from the VerbNet parser, which does not
shed light on the types of state change the model is expected
to predict in the Recipes dataset. We have access to such
knowledge and will perform this evaluation in future work.

3Our code is publicly available at https://github.
com/ghamzak/SKIP (for SKIP) and https://github.com/
ghamzak/Lexis (for LEXIS).

4Disclaimer: the models developed and introduced in this
work are for research purposes only and are not to be trusted
in real-world applications.
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informative knowledge triples from ConceptNet
(Speer et al., 2017) and performs knowledge-aware
reasoning while tracking the entities. To compen-
sate for data scarcity, they perform (raw) data aug-
mentation by automatically retrieving the top 50
Wikipedia articles closest in content and writing
style to the raw paragraphs in the ProPara dataset
(using tf-idf). This augmented corpus of raw proce-
dural texts is then used to perform transfer learning,
fine-tuning a BERT encoder in two stages, first on
raw procedural texts collected from Wikipedia, and
then further fine-tuning it on the raw text from the
dataset. The whole model follows a multi-stage
training schema (more details in section 3.1).

The main difference between KOALA and SKIP
is the type of external symbolic knowledge intro-
duced to the model. Whereas KOALA only lever-
ages entity-centric knowledge, we introduce event
semantic knowledge based on the Generative Lexi-
con theory and its implementation in the VerbNet
lexical resource (Schuler, 2005; Brown et al., 2018,
2019). This allows the model to have access to
direct and explicit knowledge about entity state
transitions for all the participants in an event, the
roles of each participant in the event, as well as
causal relationships and temporal links between
subevents (Brown et al., 2022).

On the Recipes dataset, Zhang et al. (2021) eval-
uate only for location prediction, because location
change is one of the state change types needed by
ProPara as well. To enable prediction for the rest
of the state change types required by the Recipes
dataset , a previously lacking knowledge resource
has recently become available (Kazeminejad et al.,
2022) which explicitly provides the lexical seman-
tic components indicating state changes such as
changes in temperature or form, giving our sym-
bolic model (LEXIS) an edge over other competing
models5.

3 Methodology

Following Zhang et al. (2021), we develop SKIP
by neural encoding of symbolic knowledge and al-
lowing the model to selectively pay more attention
to knowledge that is conducive to more accurate
predictions. As mentioned in section 1, our main
contribution is proposing a way to make a neu-
ral model utilize event semantic knowledge in its
predictions, and use the obtained neurosymbolic

5Again, we have not yet exposed SKIP to this knowledge
resource, but this will be done in future work.

model for downstream NLP tasks where knowledge
of event semantics tends to be beneficial according
to linguistic theory.

In order to obtain logical representations of
subevent semantics as well as temporal and causal
relations between the subevents for encoding into
our neural model, we rely on VerbNet – a large En-
glish verb lexicon which expands event semantics
into sequences of subevents. To automate this pro-
cess, we use the state-of-the-art VerbNet semantic
parser (Gung, 2020; Gung and Palmer, 2021) and
obtain the symbolic logical representations for indi-
vidual sentences corresponding to the steps in each
process. These logical representations, illustrated
in Table 1, are the horsepower of our approach.

¬Degradation_Material_Integrity(e1, The sediment)

¬Has_Physical_Form(e1, The sediment, V_Final_State)

Degradation_Material_Integrity(e2, The sediment)

Has_Physical_Form(e2, The sediment, V_Final_State)

Table 1: Logical representations generated by the Verb-
Net parser for the sentence “The sediment breaks down.”
The span ‘breaks down’ is identified as the verb, and
verb sense disambiguation classifies it as belonging to
the VerbNet class break-45.1.

In VerbNet, verbs are classified into different
classes based on similarities in their syntactic and
semantic behavior. For example, all verbs be-
longing to the break-45.1 class (Table 1) indi-
cate some sort of physical change of state that
leads to the breaking into parts of a Patient argu-
ment. Different syntactic frames may incorporate
more information such as the causal agent of the
event, or the instrument used by the causal agent to
achieve the result. The set of semantic predicates
adopted by the VerbNet lexicon (such as Degrada-
tion_Material_Integrity or Has_Physical_Form in
Table 1) are universal eventive concepts that lead
human cognitive contsrual of events, and are based
on cognitive linguistic theories such as Force Dy-
namics (Talmy, 1988; Croft, 2015, 2017; De Mul-
der, 2021). More details on event semantic knowl-
edge extraction will follow in 3.2.

The VerbNet-extracted event semantic knowl-
edge is then translated into natural language so that
it is neurally encodable. We choose this method
of encoding over direct encoding of the logical
representations, because LLMs such as BERT are
already familiar with the structure of natural lan-
guage, and we want to hone this existing power
instead of introducing a whole new representation
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system which might be harder to learn, especially
given the small size of the dataset. In order to
acquaint a vanilla text encoder with the language
translated from the event semantic logical represen-
tations, we fine-tune a BERT encoder (Kenton and
Toutanova, 2019) on the translated knowledge ex-
tracted for the training data. This will be explained
in more detail in 3.3.

3.1 Neurosymbolic Framework

The base architecture of SKIP (shown in Figure 1)
is developed on top of KOALA (Zhang et al., 2021),
which we adopted as our baseline model. As ex-
plained in Section 2, our major point of departure
is the introduction of event semantics to the model,
and, for that matter, a method to obtain such repre-
sentations for free. Before attending to our differ-
ences, however, we present a brief overview of our
similarities with the KOALA framework.

Following KOALA, we perform multi-stage train-
ing to obtain our text and knowledge encoders.
To get contextualized embeddings for raw input
paragraphs, we train a text encoder specialized
in understanding procedural texts by fine-tuning
a vanilla BERT encoder on a tf-idf-retrieved corpus
of raw procedural texts from Wikipedia, and then
on the raw paragraphs from the ProPara dataset.
SKIP duplication of KOALA ends here. To obtain
a knowledge encoder, since our sources of external
knowledge are different, our knowledge extraction
methods are different as well (see 3.2). Naturally,
our post-knowledge-extraction translation rules are
also different, with the event semantic translation
rules being arguably more complex, the first reason
being that the entities are always represented in
triples, while events could be intransitive, transi-
tive, or ditransitive, each requiring a different type
of translation.

After knowledge translation, a knowledge en-
coder is obtained by training a vanilla BERT en-
coder on the knowledge translations (more de-
tails to follow in 3.3), learning to make sense
of VerbNet-style event semantics, as well as
ConceptNet-style entity semantics (see Figure 2).
In the final training stage, SKIP (like KOALA)
leverages an encoder-decoder architecture, and per-
forms state tracking and location prediction in two
separate yet parallel subtasks (as shown in Fig-
ure 1). The training objective of the model is to
jointly optimize state and location prediction, as
well as knowledge selection, which is attending to

and selecting the best knowledge pieces that are
instrumental in state and location prediction.

As shown in Figure 1, the state tracking mod-
ule is endowed with a knowledge injector (see 3.4
for more details), a bi-LSTM state decoder, and a
conditional random field (CRF) layer since we are
performing multi-class classification for multiple
target state change types. For location prediction,
we use the same architecture except for the CRF
layer which is changed to a linear classifier, be-
cause the model is learning to predict only one
location for a given entity at a given time step in
a given paragraph. Of course the learned weights
and the knowledge triples selected by the attention
module will be different from those in the state de-
coder, because the attention will need to attend to
different predictor variables for state tracking and
location prediction.

In the location prediction module, given that
there are M location candidates for paragraph P (all
nominal phrases and words extracted from P using
a POS-tagger), the location decoder is executed M
times, and the linear classification layer outputs a
score for each location candidate at each time step
t based on the decoder’s hidden states. Using a
Softmax function, the probability distribution for
each location candidate for entity e at time-step t in
paragraph P is obtained, and a loss function is used
to train the optimal model for location prediction.

3.2 Event Semantic Knowledge Extraction

This paper describes the extraction and incorpora-
tion of event semantic knowledge into our neural
architecture. For entity-centric knowledge extrac-
tion from ConceptNet, we simply follow Zhang
et al. (2021): for each target entity, we find Con-
ceptNet nodes representing the concept using exact
string matching and fuzzy matching, finding the
most similar nodes based on embedding distance.
The extracted knowledge triples, which are two en-
tities and the relation between them, are then trans-
lated into natural language using handcrafted rules
that translate the relations, enabling fine-tuning for
developing the knowledge encoder.

For SKIP, we selected a subset of VerbNet se-
mantic predicates that are indicative of the types
of state changes of interest for the ProPara dataset:
Move, Create, and Destroy. It is imperative to
note that selected subsets can change to match
the requirements of the task at hand. For each
sentence Xt in paragraph P and for entity e, the
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Figure 1: An overview of our model, adopted from Zhang et al. (2021). Compared to the baseline model, the sources
of symbolic knowledge have been updated to include event semantics from VerbNet. Note that in the location
prediction module (on the left), the whole module is applied to each entity separately and in parallel at each time
step. While the text encoder is obtained by fine-tuning a BERT encoder on raw procedural texts from Wikipedia and
the ProPara dataset, the knowledge encoder (see Figure 2) is obtained by fine-tuning a BERT encoder on various
combinations of knowledge: knowledge from VerbNet only, from ConceptNet only, and from both.

subevents translation
¬has_location(A,B) A moves towards
has_location(A,B) destination B
be(A) A is destroyed
¬be(A)

¬be(A) A is created
be(A)

Table 2: Sample translation rules for extracted informa-
tive subevents from VerbNet.

model reads all the generated subevents in order,
and keeps those that satisfy the following two con-
ditions: (1) the VerbNet semantic predicate is a
member of the hand-selected subset of VerbNet
predicates6; and (2) one of the arguments in the
subevent has an overlap in surface form with the en-
tity e. Finally, the retained subevents are translated
into natural language using a set of handcrafted
translation rules, such that the translation exposes
the type of state change undergone by entity e at
time step t. Table 2 has one example for each of
the state change types.7

3.3 Event Semantic Knowledge Encoding
As shown in Figure 2, after extracting symbolic
event semantic knowledge from VerbNet, we fine-

6For a complete list of these selected VerbNet predicates,
see Appendix A in Kazeminejad (2023)

7For the complete list of translation rules see Appendix E
in Kazeminejad (2023).

tune a BERT encoder on the extracted knowledge
with the aim of familiarizing the BERT encoder
with the vocabulary and style of translations of
knowledge statements. Subevents have important
structural information which we preserve in our
fine-tuning stage by separating the argument spans
and the translation of the chosen semantic predi-
cates. We use BERT special tokens for token-level
separation [SEP], and begin the translated sentence
by the BERT [CLS] special token to mark sentence-
level detachment. For example, for the sentence
‘The sound waves hit an object’, the first argument
is a Theme corresponding with the span ‘The sound
waves’, and the second one is a Goal corresponding
with the span ‘an object’. Since the subevents in
the first row in Table 2 apply to this sentence , the
translated sentence with preserved structure will
be [CLS] The sound waves [SEP] moves towards
destination [SEP] an object [SEP]. For fine-tuning,
we modify the conventional masked language mod-
eling (MLM) objective to fit the structural features
of the extracted event semantic knowledge from
VerbNet (Figure 3).

Since BERT has a bi-directional architecture, we
iteratively mask out tokens and ask the encoder to
predict the masked tokens given the unmasked to-
kens (see Figure 3). This allows the BERT encoder
to better understand the relationships between dif-
ferent entities (realized as arguments) and between
entities and events (translated into a sequence of
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Figure 2: Developing a knowledge encoder model by fine-tuning a BERT encoder on event semantic knowledge
extracted from VerbNet subevents

tokens with explicit state change information). Fol-
lowing the empirical results obtained by Zhang
et al. (2021), if the arguments are multi-word, we
mask 50% of the argument tokens at a time to make
sure the model is trainable. For the translation of
the semantic predicate, we mask out all the tokens
at once, because the set of semantic predicates in
VerbNet is a closed one, and we want the model to
learn the meaning of the predicate at once and as
a whole. Such fine-tuning enables the encoder to
learn to model the structural information conveyed
in the retained subevents.

3.4 Attentive Knowledge Infusion

Having obtained the knowledge encoder, in the
final training stage, the contextualized represen-
tations of the extracted (and translated) symbolic
knowledge from both VerbNet and ConceptNet are
calculated by mean pooling over the knowledge
encoder outputs for all tokens.

Even though we have tried to keep only the in-
formative subevents, not all of them may end up
being useful in guiding the model to predict correct
labels. To enable the model to select the most rel-
evant knowledge, the knowledge injector module
injects encoded knowledge into the model before
each decoder as a query to attend to the encoded
knowledge, helping the model attend to knowledge
relevant to the context paragraph. Each decoder
is equipped with an input gate to select informa-
tion from the original input and the injected knowl-
edge. Zhang et al. (2021) empirically found out
that such gate integration performs better than sim-
ply concatenating the encoded text and knowledge.
The training objective is to maximize the attention
weights of all “relevant” triples. By the end of train-
ing and during inference, the model is expected to
better identify the relevance between knowledge
and prediction targets. Finally, the overall loss
function is computed as the weighted sum of the
loss functions for the three sub-tasks: state track-

ing, location prediction, and relevant knowledge
selection.

4 Experiments

We evaluate SKIP on the ProPara dataset (Mishra
et al., 2018), which is an entity state tracking
dataset developed by AI2, containing 488 human-
authored paragraphs describing scientific processes,
with an 80/10/10 data split. While state change
types (Move, Create, and Destroy) were expertly
annotated, entity location annotation was crowed-
sourced, resulting in lower quality and consistency.
We perform document-level evaluation on ProPara,
using the official evaluation code 8.

In re-implementing the baseline model (KOALA),
we only changed the batch size, downsizing from
32 to 16 due to hardware limitations9. KOALA’s
reported results along with our re-implementation
results are demonstrated in the first two rows of
Table 3.

The whole model contains 235M parameters in-
cluding 2 BERT encoders. In LM fine-tuning, we
used the uncased BERTBASE model, and manu-
ally tuned hyper-parameters, setting the batch size
to 16 and learning rate to 5× 10−5. While we used
the same text encoder developed by Zhang et al.
(2021), our knowledge encoder was different. It
was trained for 2 epochs on external knowledge.
In the final training stage, we used a batch size of
10 and a learning rate of 3 × 10−5 on the Adam
optimizer. The hidden size of the LSTMs was set
to 256 and the dropout rate to 0.4. We performed
early stopping with an impatience of 20 epochs,
by evaluating changes in model accuracy over the
dev set (∼1.5 GPU hours). We selected the best
checkpoint in prediction accuracy on the dev set.

As shown in Table 3, our three main exper-
imental settings included changes to the source

8https://github.com/allenai/
aristo-leaderboard/tree/master/propara/evaluator

9TITAN Xp GPU with 12 GB Memory

393

https://github.com/allenai/aristo-leaderboard/tree/master/propara/evaluator
https://github.com/allenai/aristo-leaderboard/tree/master/propara/evaluator


Figure 3: Translation and masking of one VerbNet-extracted subevent for the entity ‘rain’, indicating that “rain is
created by rain clouds”.

Model Precision Recall F1
KOALA reported results 77.7% 64.4% 70.4%
KOALA reimplementation (baseline) 73.0% 63.1% 67.7%
SKIP – fine-tuned on VN only 76.5% 67.6% 71.8%
– fine-tuned on both VN and CN 72.0% 61.4% 66.3%
– fine-tuned on CN only 74.1% 63.3% 68.3%

Table 3: The top two rows show the reported and re-implementation results of the KOALA model. The bottom three
rows demonstrate the results of our three main experimental settings, where the knowledge encoder used in model
training is obtained by fine-tuning on VN (VerbNet) only, CN (ConceptNet) only, or both. These are all evaluations
on the ProPara dataset.

of semantic knowledge in developing our knowl-
edge encoder. SKIP performed better compared to
the baseline in the experimental setting where the
source of knowledge for developing the knowledge
encoder was only VerbNet event semantics. Note
that we use both entity and event knowledge during
the final training stage, and it is only the changes
in knowledge source for LM fine-tuning to obtain
different knowledge encoders that leads to the best
experimental results.

5 Discussion

Our experimental results were interesting in two
ways. First, the fact that LM fine-tuning on both
VerbNet and ConceptNet lowers the performance
compared to fine-tuning on only one knowledge
source could be an indication that, given the size of
the data, two different sources of knowledge seems
to confuse the knowledge encoder more than help-
ing it. Secondly, comparing fine-tuning on VerbNet
only vs. ConceptNet only, the former proved to be
more effective. This might indicate that knowledge
of event semantics may better help the model track
entity states and locations during a process, just
as we had initially hypothesized based on lexical
semantic theories. While entity-centric knowledge
may give the model a better understanding of enti-
ties and their properties, such as their typical loca-

tion, state changes are eventive concepts and often
lexically encoded in verbs. Since VerbNet provides
explicit labels for transitions between entity states,
a successful VerbNet parse ensures explicit sym-
bolic knowledge which clarifies the types of state
change lexically encoded in verbs.

5.1 Error Analysis

An error analysis on the test set showed that 52.49%
of the state change type misclassifications were in
fact correct model predictions and incorrect gold
annotations, with a further 6.69% examples where
both the gold and predicted labels were incorrect.
To illustrate, given the two subsequent time steps
‘Animals eat plants.’ and ‘Animals make waste.’,
for the target entity ‘plants’, the gold labels include
two Move events, one at each time step: first from
an unknown location to ‘animal’, and then from
‘animal’ to an unknown location. In contrast, SKIP
predicts a Destroy event at the end of the first
time-step. Arguably, an entity that is eaten and
converted to waste is destroyed, because it has lost
its physical integrity, such as a glass that breaks.
What returns to nature is not a plant anymore, but
waste. This assumption is also confirmed elsewhere
in the data. For example, in the sentence ‘They
absorb nitrates from the soil into their roots.’, the
gold label for the entity ‘nitrates’ is Destroy. This
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both suggests inconsistency in human annotation,
and the accuracy of SKIP.

Overall, the error analysis demonstrates that the
annotation task for entity state tracking is quite
complex and challenging, and obtaining acceptable
inter-annotator agreement is hard. A knowledge-
aware model such as SKIP could be quite benefi-
cial for annotation quality control.

5.2 Purely Symbolic Entity State Tracking
Model

LEXIS was designed based on an approach to sim-
ulate the cognitive construal of events by humans.
This approach is inherently domain-independent
and can be readily adapted to other natural lan-
guage domains or NLP tasks. As an example model
founded on this approach, LEXIS relies on the same
informative subevents and semantic features from
VerbNet that benefited SKIP. In addition, Prop-
Bank SRL is used as a backoff for gaps in VerbNet
parses. For more details on an earlier version of
LEXIS, see (Kazeminejad et al., 2021a)10.

In addition to the ProPara dataset, we also
evaluated LEXIS on the Recipes dataset, which
contains 866 human-annotated recipes, with an
80/10/10 data split, with each recipe contain-
ing an average of 8.8 sentences. Recipes state
change types include changes in composition,
cookedness, temperature, rotation, shape,
cleanliness, and accessibility, as well as
location. Apparently, there is very little overlap
with ProPara state change types of interest. Nei-
ther are these state change types normally found in
VerbNet. However, we were able to use the recently
developed semantic layer added to the VerbNet
lexicon that includes more fine-grained semantic
features specific to each verb, hence called verb-
specific features (Kazeminejad et al., 2022). For in-
stance, the Other_cos-45.4 class with more than
300 verb members is generally about some physical
change of state occurring to a Patient argument.
These semantic components provide details such
as the physical property that is changing (e.g. tem-
perature, speed, intensity, etc.), or the final state of
the Patient entity (e.g. ±clean, ±open, etc) that
LEXIS can use to predict state change types.

LEXIS also uses spaCy (Honnibal et al., 2020)
dependency parsing and POS tagging for conjunc-
tion analysis, compound identification, extracting

10However, keep in mind that the latest version of this
system that is referenced here is yet to be published.

objects of prepositions and heads of noun phrases.
ConceptNet was used to identify whether an entity
is ontologically considered locative, and also to per-
form fuzzy search (using the spaCy large model) to
find the most likely typical location if not explicitly
mentioned in a given sentence. We also used fast-
coref (Toshniwal et al., 2021), a high-performing
generalizable domain-independent coreference res-
olution module, to identify co-referring entities
given a paragraph, and substitute pronominal forms
with their content word counterpart. Finally, we
used the the logical rule of location transitivity to
enable the model to update entity locations accord-
ingly.

On the ProPara dataset, LEXIS achieves an over-
all F1 score of 55.6% on the test set.

P R F1
72.8 45.0 55.6

Table 4: LEXIS results on the ProPara dataset

On the Recipes dataset, LEXIS achieves a new
state-of-the-art both in F1 score and accuracy (see
Table 5).

Model P R F1 Acc
Lexis 67.9 72.4 70.1 94.6
SGR* 69.3 50.5 54.8 -
KOALA 60.1 52.6 56.1 -
REAL** 55.2 52.9 54.1 -
IEN† 58.5 47.0 52.2 -
NCET† 56.5 46.4 50.9 -
NPN‡ - - 44.64 55.05

Table 5: LEXIS evaluation results on the test set of the
Recipes dataset. * (Tang et al., 2022); ** (Huang et al.,
2021); † (Tang et al., 2020); ‡ (Bosselut et al., 2017).

A series of ablation tests on the ProPara dataset
showed that the best model performance was
achieved when all the proposed knowledge com-
ponents were included in the model. In addition,
following VerbNet and PropBank parses which had
the greatest impact11, the single component with
the most significant impact on LEXIS results used
the verb-specific features (the semantic layer re-
cently added to VerbNet), the removal of which
lowered model performance by 3.5% (F1).

In addition, an error analysis of the model
showed that within the 24.5% prediction mis-

11Note that the first version of LEXIS (Kazeminejad et al.,
2021b) only used VerbNet parses.
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matches, only 7.18% were due to cross-label con-
fusion. For the main part, the mismatches were
either false negatives or false positives, with the
false negatives being about two times the number
of false positives. This is due to the design of the
model which tends to avoid labeling if there is any
ambiguity or uncertainty. In other words, the model
is deterministic by design.

Regarding explainability, LEXIS contains an ex-
planation module which traces back on the predic-
tion path and explains every step in making deci-
sions, including the provenance of that decision.
For instance, for the sentence ‘They are buried in
sediment’, LEXIS predicts a Move event for the
entity ‘plants’, from an unknown location to ‘sedi-
ment’. Here is what the explanation module gener-
ates:
The verb ‘bury’ is in put-9.1-1 VerbNet class.
(provenance: VerbNet parser).
‘they’ moves to ‘sediment’. (provenance: VerbNet
parser).
‘they’ refers to ‘plants’. (provenance: fast-coref).
‘plants’ move to ‘sediment’. (provenance: substitu-
tion).

6 Conclusions and Future Work

We presented a method to extract event semantic
knowledge and encode it in neural architectures for
NLP applications where event semantics theoreti-
cally promises to enhance the predictive power of
the model. We showed that this method was effec-
tive in SKIP – our neurosymbolic model designed
for procedural text understanding. Our error anal-
ysis demonstrated that SKIP can be relied on to
perform annotation quality control. Furthermore,
LEXIS, our purely symbolic entity state tracking
model designed based on our domain-independent
approach, achieved a new state-of-the-art on the
Recipes dataset. We explained why this approach
is domain-independent and can be adapted to other
domains and NLP tasks.

In future work, we would like to expand our neu-
rosymbolic model to use other sources of linguistic
knowledge that proved useful in LEXIS ablation
tests. It would also be interesting to assess the
success of this approach in other NLU tasks, such
as causal inference and textual entailment, where
event semantic knowledge is again theoretically
important.

Limitations

Since our methodology relies heavily on the Verb-
Net lexicon and parser, the inherent limitations and
shortcomings of them percolate into our model as
well. VerbNet classes are designed to generalize
over and abstract away from some semantic aspects
of verbs in order to achieve meaningful classes.
Therefore, we can rely on VerbNet only when the
type of semantic knowledge we intend to obtain is
included in existing VerbNet semantic predicates.
For example, ProPara state change types have coun-
terparts in VerbNet semantic predicates, while the
Recipes dataset state change types do not. As ex-
plained in 5.2, we resorted to verb-specific features
to obtain the type of semantic knowledge needed
to predict state changes for Recipes.

VerbNet’s coverage imposes a second limitation.
Some verbs are missing from the lexicon (e.g. ‘mi-
grate’), leading to empty parses. Some other verbs
may exist in the lexicon but a certain sense of them
is missing. For example, at the time of developing
the VerbNet labeled data, the locative sense of the
verb ‘be’ was missing from the lexicon, and by
extension from the labeled data. In such cases, the
parser assigns that verb to an alternative class with
a different sense of the same verb lemma (in this
case to seem-109-1-1).

Finally, the amount of VerbNet training data is
relatively small (compared to PropBank (Kings-
bury and Palmer, 2002) or AMR (Banarescu et al.,
2013)), leading to misclassifications due to sparse
data. All of these limitations can be improved by
expanding the coverage of the VerbNet lexicon, and
expanding and updating the VerbNet labeled data
accordingly.
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