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Abstract

In this paper we investigate the application
of active learning to semantic role labeling
(SRL) using Bayesian Active Learning by Dis-
agreement (BALD). Our new predicate-focused
selection method quickly improves efficiency
on three different specialised domain corpora.
This is encouraging news for researchers want-
ing to port SRL to domain specific applica-
tions. Interestingly, with the large and diverse
OntoNotes corpus, the sentence selection ap-
proach, that collects a larger number of predi-
cates, taking more time to annotate, fares better
than the predicate approach. In this paper, we
analyze both the selections made by our two
selections methods for the various domains and
the differences between these corpora in detail.

1 Introduction

The majority of natural language processing (NLP)
systems are reliant on manual annotations to train
supervised models. Although semi-supervised and
unsupervised methods are frequently employed to
help adapt models to new domains, human anno-
tation remains the gold standard for quality input.
Due to the high cost of human annotation, espe-
cially if the task requires expert knowledge, and
the time-intensive process, this can be daunting for
many applications.

Active learning (AL) has been shown to reduce
annotation requirements for a variety of NLP tasks
(Zhang et al., 2022) by selecting more informative
instances that are most likely to fill gaps in the
model’s knowledge.

In this paper, we focus specifically on the NLP
task of semantic role labeling (SRL). The goal of
SRL is to identify and label the who, what, and
when of predicates in a sentence. This information
can be used as features in downstream applications
such as information extraction (MacAvaney et al.,
2017), machine translation (Marcheggiani et al.,
2018), and features prominently in Abstract Mean-

ing Representation (AMR) applications (Banarescu
et al., 2013).

In this paper, we propose a new selection strategy
tuned for SRL that is based off of previous methods
of using model dropout to approximate a Gaussian
process (Siddhant and Lipton, 2018). We compare
this to prior work on AL selection for SRL (Myers
and Palmer, 2021) on four corpora in a variety of
domains: ecology, earthquakes, clinical notes, and
the large multi-genre OntoNotes corpus.

Since sentences in most domains typically con-
tain multiple predicates, there are often redundan-
cies in choosing predicates to annotate on the sen-
tence level. Although a sentence may contain a
particularly informative predicate, annotating high-
frequency verbs such as "be" that co-occur in the
sentence may not be beneficial. We instead use a
method to select specific predicate-argument struc-
tures and compare the impact on performance as
compared to selecting whole sentences instead.

This method is a natural extension that allows
us to even better leverage the focused annotation
that active learning offers by using a more granular
approach. While we find consistent early bene-
fit in the more domain-specific corpora, this finer-
grained approach proves to be slower for the more
diverse OntoNotes.

We also explore the statistical differences be-
tween these corpora, the selections our algorithm
makes, and test a variety of selection batch sizes in
order to shed light on expectations for use in future
domains.

2 Background

Proposition Bank (PropBank) (Palmer et al., 2005)
is verb-oriented semantic representation consisting
of a predicate and its arguments. Predicates are
given a roleset ID, which distinguishes the sense
of the word, such as play.01 (to play a game) or
play.02 (to play a role). Each roleset has its own
list of permissible semantic roles, or arguments, for
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play.01
play a game

ARG0 player
ARG1 game
ARG2 equipment
ARG3 opponent

Table 1: PropBank roleset for play.01

that predicate, such as ARG0 (typically the agent
of the action). Additionally, all rolesets support the
use of a set of modifier arguments such as location
(ARGM-LOC) and direction (ARGM-DIR). These
arguments are annotated for the constituent spans
of the sentence. For example:

[ARG0 I] [Pred played] [ARG1 chess] [ARG3 against
him].

Active learning is an iterative process by which
data is selected for annotation using the model’s
own confidence. After initially training the model
on a small amount of annotated data (referred to as
the seed set), each unlabeled instance is predicted
by the model and those that the model is least cer-
tain about (conventionally, by the model’s outputs)
are presumed to be more informative to learn from
than those that the model has high certainty about.
The uncertain instances can then be manually anno-
tated and added into the training pool for the next
training iteration. This process can repeast until
either the performance is no longer significantly
increasing or time/budget has been exhausted.

Previous work has shown that neural networks
tend to be overconfident in their predictions, owing
to their nonlinearity and tendency to overfit (Gal
and Ghahramani, 2016)(Dong et al., 2018). There-
fore, more recent work (Siddhant and Lipton, 2018)
(Shen et al., 2017) has explored using Bayesian
Active Learning by Disagreement (Houlsby et al.,
2011) (BALD) rather than model outputs as a way
of selecting informative instances for active learn-
ing for SRL and other NLP tasks. By using dropout
during prediction, multiple forward passes can be
treated as Monte Carlo draws from a stochastic
model. The instances that have more disagreement
amongst the predictions are considered to be more
informative for the model to learn from.

Myers and Palmer (2021) applied BALD to SRL
by calculating disagreement among five forward
passes of the trained model using dropout, break-

ing down agreement scores by individual argument
labels. We describe this in more detail in Section
4.1. The active learner used two alternative meth-
ods to select sentences: 1) using the average dis-
agreement score amongst all predicates in the sen-
tence (BALD-AP) or 2) by choosing the sentences
that contain the single lowest scoring predicate
(BALD-LSP). Since BALD-LSP performed best,
we compare our predicate-focused BALD strategy
against this method on both corpora used previ-
ously (OntoNotes and THYME Colon) as well as
two new geoscience corpora from the ClearEarth
project (Duerr et al., 2016).

3 Data

We aim to provide a demonstration of active learn-
ing for SRL across a variety of domains and sub-
languages (Kittredge, 1982). Some knowledge
domains exhibit narrow lexical, syntactic, and se-
mantic structures that distinguish them from more
general-purpose domains. This can lower perfor-
mance dramatically when testing with an off-the-
shelf general purpose model. Special techniques
that take these domain specific-structures into ac-
count are needed for adapting NLP tools to these
domains, as illustrated below.

THYME Colon is comprised of unstructured clin-
ical notes relating to treatment of colon cancer
(Albright et al., 2013). This corpus contains spe-
cialised medical vocabulary for a narrow domain
and a large number of formulaic sentences, such as
the following example:

Pathology demonstrated a tubular ade-
noma with moderate dysplasia.

This contains medical terminology (tubular ade-
noma, dysplasia) as well as a non-standard use of
demonstrate, which includes the shortening of The
pathology report to simply pathology. This particu-
lar framing re-occurs frequently in THYME Colon,
sometimes with show or reveal instead, and occa-
sionally including the word report as in pathology
report.

We also used two distinct geoscience domains
from the ClearEarth project (Duerr et al., 2016):

• Earthquakes consists of 41k tokens of text
from Wikipedia and education texts, and a
glossary. This text includes specialised sci-
entific language relating to earthquakes and
plate tectonics, but also discussion of the his-
tory of the field at a high school reading level
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and content related to disasters. For example:
The ways that plates interact depend on their
relative motion and whether oceanic or conti-
nental crust is at the edge of the lithospheric
plate.

• Ecology consists of 83k tokens of text from
Wikipedia, educational websites, an ecology
glossary, and Encyclopedia of Life. The sci-
entific content covers genetics, evolution, re-
production, and food chains. For examples:
Anguis fragilis is an example of ovo-viviparity.
and Alternatively, transcription factors can
bind enzymes that modify the histones at the
promoter.

OntoNotes 5.0 (Weischedel et al., 2013) spans
multiple genres, largely consisting of news sources,
but also including telephone conversations, text
from the New Testament, weblogs, and Usenet.
This popular corpus serves as a broad purpose cor-
pus for us, as opposed to the other more specialised
domains.

We use a version of OntoNotes that does not
include files that had no manual PropBank annota-
tion performed. There still exist sentences within
this version of the data that had only partial annota-
tion, but we consider this to have a relatively small
impact on performance.

Evaluation was performed on the standard test
subset for each respective corpus.

4 Methods

We simulated active learning using AllenNLP’s
(Gardner et al., 2018) implementation of a state-
of-the-art BERT-based SRL model (Shi and Lin,
2019).

In order to simulate active learning on each of
these corpora, we partitioned the training subset of
each corpus into 200 random sentences for seeding
the learner, with the remainder used as the initial
"unlabeled" pool for selection. The initial 200 seed
sentences were the same across the three selection
methods tested for each respective corpus.

After initially training on the seed set, we then
select a batch of either 100 predicates or a number
of sentences containing approximately 100 pred-
icates to add to the training pool using the BALD

PREDICATES or BALD SENTENCES strategy described
below in Section 4.1 or by choosing 100 random
predicates to simulate a passive learning approach.

Results are reported on the test subset of the re-
spective corpora and the model was retrained with
the extended training pool. We continue iterations
of selection and re-training until either all the data
has been selected and moved into the training pool,
or the experiment performances have sufficiently
plateaued.

Our training procedure for this model used 25
epochs or stopped early with a patience of 5 based
on the validation data for the relevant corpus.

4.1 Selection Methods

We use the BALD-LSP method tuned for SRL as
described in Myers and Palmer (2021), which we
will refer to in this paper as BALD SENTENCES for
comparison.

After a model is trained, this method uses 10%
dropout during 5 forward passes in order to gen-
erate multiple predictions for each instance in the
unlabeled pool. For each predicate-argument struc-
ture in a sentence and each argument label type
present in the predictions, we calculate how many
of the 5 predictions do not match the mode pre-
dicted span. If all five predictions have different
spans for an ARG1, for example, then this results in
the highest possible disagreement score for ARG1.

After disagreement scores are calculated for each
argument label, these scores are averaged to pro-
duce a score for the predicate. If there is only one
predicate in a sentence, this is the score for the
sentence. If a sentence has multiple predicates, the
sentence is assigned the score of the predicate that
had the most disagreement. The sentences with the
highest scores are selected to be included in the
next round of training.

Our BALD PREDICATES method is a more granular
extension of this previous work. We use the same
idea of scoring individual argument spans based
on agreement and averaging them into a single
score for a given predicate instance, but we do
not combine the scores of all predicates within a
given sentence. We instead use the score to choose
specific predicate instances to add to the training
pool

We also compare these two active learning meth-
ods against a passive baseline of selecting random
predicate instances.

5 Results

We present the learning curves of the different se-
lection methods for the four corpora are presented
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Figure 1: Performance of selection method by approx-
imate number of predicates in the training pool on
THYME Colon dataset.

Figure 2: Performance of selection method by approx-
imate number of predicates in the training pool on
ClearEarth Ecology dataset.

in Figures 1, 2, 3, and 4. Natural variability in
training the model produces some amount of noise,
most prominently during the early iterations. In or-
der to improve readability of these learning curves,
we applied a Savitzky–Golay filter using a window
of 15 data points and using a cubic polynomial.

We see consistent benefits of the BALD PREDI-

CATES method at different points depending on the
corpus.

For Colon, Ecology, and Earthquakes we be-
gin to see consistent improvement for the BALD

PREDICATES method over the other methods by ap-
proximately 1,500-2,000 predicates. On the other
hand, for OntoNotes, it only catches up to random
selection around 4,500 predicates and begins to
improve over it around 7,000 predicates. For this
corpus, BALD SENTENCES performs better.

Figure 3: Performance of selection method by approx-
imate number of predicates in the training pool on
ClearEarth Earthquakes dataset.

Figure 4: Performance of selection method by approx-
imate number of predicates in the training pool on
OntoNotes.

6 Analysis of Selections

In order to better understand the differences be-
tween the selection processes used and their vari-
ance across datasets, we examine the selections
within each batch.

6.1 Diversity
By selecting multiple predicates or sentences in
each iteration, we expect that there may be redun-
dancies. For example, if the model has never seen
a given predicate, it will likely have low confidence
in its predictions for it. We present a study of the
diversity of the selections over time.

We first observe the amount of redundancy
within BALD PREDICATES. This method is choosing
multiple instances of the same predicate lemma,
as observed in Figure 5. In the two ClearEarth
corpora we have analysed in this regard, which
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both ran to completion on the training data, ap-
proximately 25 of the 100 predicates are duplicates
in the early phase of active learning and with re-
dundancy getting worse as the process gets closer
to completion. The results for Colon contain ap-
proximately similar amounts of redundancy for the
duration we trained it.

While there may sometimes be value in selecting
the same lemma in order to obtain multiple senses
of the same predicate, minimising this could prove
beneficial. Future work could be done to study
the effect of limiting the selection batch to unique
lemmas.
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Figure 5: Number of unique predicate lemmas selected
in each batch by the BALD PREDICATES method over
iterations.

Additionally, the BALD PREDICATES method is ca-
pable of selecting multiple instances from the same
sentence. While this may be beneficial, it’s also
possible that learning from just one predicate in the
sentence will provide information that can improve
agreement on other instances in the sentence.

We have found that for Colon, a randomly se-
lected batch of 100 predicates contains 3 duplicate
sentences on average, while the selections by BALD

PREDICATES contain only 1 duplicate on average. For
the Ecology corpus, both methods pick 3 duplicate
sentences on average. This appears indicative that
this is not a significant factor that necessitates cor-
rection.

Furthermore, we are interested in the sentence-
level semantic redundancies within batches. Us-
ing the pre-trained all-mpnet-base-v2 model (Song
et al., 2020), we can calculate the average pairwise
cosine similarity between the unique sentences
within batches. In Figure 6, we find that both ac-
tive learning methods contain more sentence-level
similarity on average (0.26) than what is chosen
through random selection (0.19) from the THYME
Colon corpus.

We can see clear signs of the active learner
choosing sentences that would be wasteful to have
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Figure 6: Average pairwise cosine similarity of se-
lected sentences in each batch over iterations on THYME
Colon.

annotated. In one such batch, BALD SENTENCES

selected 29 out of the 52 sentences where the
sentences were all of the same basic form, but with
varying AJCC cancer staging designations:

With available material: AJCC ypT1N0MX
With available surgical material [AJCC pT3N2Mx]

On the other hand, the difference in selection
diversity is less pronounced on the other datasets.
In Figure 7, we show the similarity in the selections
on ClearEarth Ecology, where all methods average
0.20 across the iterations.
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Figure 7: Average pairwise cosine similarity of selected
sentences in each batch over iterations on ClearEarth
Ecology.

6.2 Vocabulary Coverage
We hypothesised that a contributor to BALD PRED-

ICATES’s performance may be a rapid coverage of
vocabulary, as predicates that involve unseen vocab-
ulary could result in more disagreement. In Figure
8, we show the percentage of the unique vocabulary
of the training set that is within the training pool as
selections are made.
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Across the datasets, we see varying results in
how much BALD PREDICATES expedites vocabulary
coverage. We find that BALD PREDICATES is not
tending to choose unseen vocabulary compared to
selecting predicates randomly for Ecology. On the
other hand, active learning greatly accelerates this
for Ontonotes, even after performance has largely
plateaued. For THYME Colon, active learning pro-
vides an initial boost to vocabulary, but around the
time that the performance plateaus, this decelerates
below random.

6.3 Disagreement

For BALD PREDICATES, we calculate an average dis-
agreement score for each selected batch. While
early batches primarily contain predicates for
which all predictions are in full disagreement, we
see this disagreement trend downwards as perfor-
mance plateaus. This is presented in Figure 9.

Although performance on OntoNotes has largely
plateaued around an F-score of 79 by 7.5k training
predicates, we know that training this model on the
full dataset yields another 4 points. Since the dis-
agreement scores of batches chosen by BALD PRED-

ICATES is still over 70%, this seems indicative of the
additional further performance to be gained, albeit
at a slow pace that gets little value for the effort. In
contrast, Colon plateaued around 82, but the bene-
fits of annotating the remaining 50k predicates only
provides an additional increase of 1 point. With the
disagreement score having fallen below 45%, this
points toward an appropriate stopping point.

7 Corpus Analysis

Although the new predicate selection method of-
fers immediate benefit over BALD SENTENCES for the
three sublanguage corpora, this is inconsistent with
the result on OntoNotes, where selecting BALD SEN-

TENCES is more advantageous until about 7k pred-
icates. In order to better understand the possible
reasons for this, we compare the make-up and distri-
bution of the corpora. These statistics are presented
in Table 2.

We use PropBank roleset ID’s as our measure of
polysemy, since we have gold standard annotation
for them in all 4 corpora. Note that PropBank sense
distinctions are fairly coarse-grained and were gen-
erally only created when there were differences
between senses with respect to the semantic roles.
VerbNet (Schuler, 2005), FrameNet (Baker et al.,
1998) and WordNet (Miller, 1995) would all give

much higher polysemy counts.
The largest and most diverse corpus in our ex-

periments is OntoNotes, although we find that in
terms of ratio of total tokens to predicates, unique
rolesets, and unique tokens, OntoNotes is statisti-
cally more similar to the THYME Colon Cancer
corpus than to either of the ClearEarth corpora.
OntoNotes and Colon contain approximately one
unique roleset per 376-403 tokens, whereas Earth-
quakes and Ecology contain one per 39 and 60
tokens, respectively.

Since OntoNotes covers a wider diversity of text
types, it’s unsurprising that it contains a much more
diverse set of senses compared to the other corpora.
While a lemma like "take" shows up with 25 dif-
ferent senses in OntoNotes, it only shows up in 8
senses in Colon.

For OntoNotes, only 30% of predicate occur-
rences are monosemous within the context of the
corpus, whereas this figure is between 54%-61%
for the other three corpora. 6% of the unique pred-
icate lemmas within OntoNotes are seen in 3 or
more rolesets, while this is true of only 2% of the
set of lemmas in each of the other corpora.

We believe this polysemy factor may contribute
to the predicate selection method being dispropor-
tionately slower to improve the learning curve on
OntoNotes compared to the more focused domain
corpora. BALD PREDICATES may be disadvantaged
by more frequently choosing these rare senses even
though they make up proportionally less of the
training data and provide less value in terms of
performance, but further investigation is needed.

OntoNotes Colon Earthquakes Ecology
Tokens 2.2 mil 522k 41k 83k
Unique tokens per token 44.55 36.88 8.42 10.43
Predicates 301k 57k 7.5k 15k
Tokens per predicate 7.41 9.11 39.63 60.45
Avg sentence length 18.74 11.33 23.39 24.48
Unique rolesets 5535 1389 1046 1376
Tokens per roleset 403 376 39 60
Predicate lemmas
with 1 roleset

3829
(83.33%)

1340
(90.24%)

985
(91.20%)

1416
(92.73%)

Predicate lemmas
with 2 rolesets

494
(10.75%)

112
(7.54%)

73
(6.76%)

80
(5.24%)

Predicate lemmas
with 3+ rolesets

272
(5.92%)

33
(2.22%)

22
(2.04%)

31
(2.03%)

Monosemous predicate
occurences

29.95% 55.02% 53.53% 60.94%

Table 2: Statistics about the four corpora.

8 Batch Sizes

Each iteration of active learning includes selecting
an arbitrary number of instances to query. The num-
ber may be static, or dynamic with larger batches
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Figure 8: Percent coverage of training vocabulary in by number of predicates in training pool.

being selected in the early training process and
smaller batches later on.

To maximally benefit from the model’s feedback,
in an ideal setup, each iteration would query for
only one new instance, thereby minimizing the like-
lihood of selecting a batch of sentences with redun-
dant information (Schohn and Cohn, 2000). Unfor-
tunately, this leads to the process of active learning
being significantly slower due to needing to re-train
a model more often. Additionally, annotating a sen-
tence at a time with long breaks in between may
cost additional time on the part of the annotator due
to mental context-switching and needing to load
up appropriate software and resources. It would
be more efficient for them to be able to annotate
numerous examples in a row.

Our previous experiments testing the BALD PRED-

ICATES method show positive results when selecting
100 predicates in a batch. This small batch size re-
quires about 60 iterations before the learning curve
plateaus for the Colon corpus. We examine the ef-
fect of larger batches on the learning curves for the
THYME Colon and the two ClearEarth corpora.

8.1 Results

We used the BALD PREDICATES selection strategy
with varying sizes of 100, 500, and 1000 query
instances. These results are presented for three

datasets in Figure 10, using datapoints on intervals
of 1000 predicates.

Interestingly, changing the batch size has differ-
ing impacts on the datasets we examined this for.
The THYME Colon corpus suffers very little from
scaling all the way to 1000 predicates per selection
batch. The results on Earthquakes show the clearest
need for small batch sizes, while Ecology exhibits
shifting performance over the course of iterations.

9 Conclusion and Future Work

In this paper, we’ve demonstrated that active learn-
ing can reduce annotation requirements for seman-
tic role labeling across multiple domains by em-
ploying Bayesian Active Learning by Disagree-
ment and using dropout to provide variability in pre-
dictions from the model. These predictions can be
used to estimate the model’s confidence in its pre-
dictions and select informative training instances
to annotate.

Selecting predicate instances through the BALD

PREDICATES method offers significant improvement
in efficiency for THYME Colon, ClearEarth Earth-
quakes and Ecology, which have very focused do-
mains. This method does not provide the same per-
formance increase on the more general OntoNotes
over the previous BALD SENTENCES, which selects
whole sentences.
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# training predicates

Figure 9: Average disagreement in selected batches decreases as iterations continue, while F-score increases and
plateaus.

We have provided a statistical comparison of
these corpora and offered some possible reasons
for the divergence in performance, including a
notable difference in polysemy within OntoNotes
compared to the rest of the corpora.

Additionally, we examined the diversity of the
selected predicates and sentences for BALD PREDI-

CATES. Although these results vary across the differ-
ent datasets, it indicates a couple potential avenues
of future improvement. Reducing sentence-level
semantic similarity seems of particular relevance to
the THYME Colon corpus. We have also identified
redundancies in the predicates chosen in each batch
by BALD PREDICATES.

We also presented the change in model predic-
tion disagreements over iterations as compared to
model performance, which could be beneficial to
determine when the costs of further annotation out-
weigh the additional gains that the model can pro-
vide.

Since the choice of how many selections to take
on each iteration cannot be tuned for in real-world
use of active learning, we have attempted to shed
light on the levels of impact to expect on several
different corpora, which vary in how sensitive they
are to larger batches. We find that further investi-
gation is needed to determine the most significant
factors causing these differences so that future ap-
plications of active learning to SRL can predict
the most ideal selection batch size that balances
performance against training time for their target
domain.

Limitations

While it reduces annotation costs, AL can be com-
putationally intensive and its success is correlated
to the number of training iterations. Whether this
will be a net savings for a given project may vary
from case to case, depending on computing re-
source availability and annotator costs. The work-
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Figure 10: Performance of using BALD PREDICATES, selecting varying numbers of predicates per iteration.

flow of annotating and re-training may not be fea-
sible in the budgetary constraints that inherently
make AL desirable over randomly annotating train-
ing data.

Partial SRL annotation of sentences or docu-
ments may not be desirable in projects that simul-
taneously annotate other things, such as AMRs
or coreference, which rely on whole-sentence or
whole-document annotation.
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