@inproceedings{pan-etal-2023-query,
title = "Query Generation Using {GPT}-3 for {CLIP}-Based Word Sense Disambiguation for Image Retrieval",
author = "Pan, Xiaomeng and
Chen, Zhousi and
Komachi, Mamoru",
editor = "Palmer, Alexis and
Camacho-collados, Jose",
booktitle = "Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.starsem-1.36",
doi = "10.18653/v1/2023.starsem-1.36",
pages = "417--422",
abstract = "In this study, we propose using the GPT-3 as a query generator for the backend of CLIP as an implicit word sense disambiguation (WSD) component for the SemEval 2023 shared task Visual Word Sense Disambiguation (VWSD). We confirmed previous findings {---} human-like prompts adapted for WSD with quotes benefit both CLIP and GPT-3, whereas plain phrases or poorly templated prompts give the worst results.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pan-etal-2023-query">
<titleInfo>
<title>Query Generation Using GPT-3 for CLIP-Based Word Sense Disambiguation for Image Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaomeng</namePart>
<namePart type="family">Pan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhousi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mamoru</namePart>
<namePart type="family">Komachi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="family">Camacho-collados</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this study, we propose using the GPT-3 as a query generator for the backend of CLIP as an implicit word sense disambiguation (WSD) component for the SemEval 2023 shared task Visual Word Sense Disambiguation (VWSD). We confirmed previous findings — human-like prompts adapted for WSD with quotes benefit both CLIP and GPT-3, whereas plain phrases or poorly templated prompts give the worst results.</abstract>
<identifier type="citekey">pan-etal-2023-query</identifier>
<identifier type="doi">10.18653/v1/2023.starsem-1.36</identifier>
<location>
<url>https://aclanthology.org/2023.starsem-1.36</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>417</start>
<end>422</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Query Generation Using GPT-3 for CLIP-Based Word Sense Disambiguation for Image Retrieval
%A Pan, Xiaomeng
%A Chen, Zhousi
%A Komachi, Mamoru
%Y Palmer, Alexis
%Y Camacho-collados, Jose
%S Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F pan-etal-2023-query
%X In this study, we propose using the GPT-3 as a query generator for the backend of CLIP as an implicit word sense disambiguation (WSD) component for the SemEval 2023 shared task Visual Word Sense Disambiguation (VWSD). We confirmed previous findings — human-like prompts adapted for WSD with quotes benefit both CLIP and GPT-3, whereas plain phrases or poorly templated prompts give the worst results.
%R 10.18653/v1/2023.starsem-1.36
%U https://aclanthology.org/2023.starsem-1.36
%U https://doi.org/10.18653/v1/2023.starsem-1.36
%P 417-422
Markdown (Informal)
[Query Generation Using GPT-3 for CLIP-Based Word Sense Disambiguation for Image Retrieval](https://aclanthology.org/2023.starsem-1.36) (Pan et al., *SEM 2023)
ACL