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Abstract

In this work we build upon negative results
from an attempt at language modeling with pre-
dicted semantic structure, in order to establish
empirical lower bounds on what could have
made the attempt successful.1 More specifi-
cally, we design a concise binary vector rep-
resentation of semantic structure at the lexical
level and evaluate in-depth how good an incre-
mental tagger needs to be in order to achieve
better-than-baseline performance with an end-
to-end semantic-bootstrapping language model.
We envision such a system as consisting of a
(pretrained) sequential-neural component and
a hierarchical-symbolic component working to-
gether to generate text with low surprisal and
high linguistic interpretability. We find that (a)
dimensionality of the semantic vector represen-
tation can be dramatically reduced without los-
ing its main advantages and (b) lower bounds
on prediction quality cannot be established via
a single score alone, but need to take the distri-
butions of signal and noise into account.

1 Introduction

It is well-established by now that large pretrained
Transformer language models (LMs) can obtain de-
tectable knowledge about linguistic structure from
raw text distributions (Jawahar et al., 2019; Tenney
et al., 2019a, inter alia), thus continuing a long
line of research in collecting solid empirical ev-
idence for the Distributional Hypothesis (Harris,
1954; Firth, 1957). This is often presented in stark
contrast to symbolic linguistic theories and repre-
sentations, which put more emphasis on higher-
level structural principles. In practice, purely neu-
ral models have achieved groundbreaking perfor-
mances in a wide range of NLP tasks (Devlin et al.,
2019; Brown et al., 2020) in a much more scal-
able manner than seems to be possible with sym-
bolic ones. Still, theoretical linguistic questions

1Our experimental code is available at https://
github.com/jakpra/SufficiencyLowerBounds.

But the test may prove to be more sensitive
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Figure 1: Example of incremental semantic graph slices
obtained from a PTG graph and information flow in a
(hypothetical) semantic-bootstrapping LM. In this ex-
ample, the dark-red-shaded token ‘to’ is the current LM
target; the light-yellow-shaded cells to the left and be-
low directly influence the LM decision as in P+22; and
the pink arrow marked with ? stands for the intermedi-
ate slice prediction step, for which we want to establish
sufficiency lower bounds.

about the relationship between neural implemen-
tation and higher-level symbolic patterns are far
from being answered definitively. A common crit-
icism of purely distributional models is that they
generally lack grounding, because they do not have
access to the external world, while meaning is in-
herently a relation between a linguistic form and
a communicative intent about something external
to language (Bender and Koller, 2020; Trott et al.,
2020; Merrill et al., 2021; Lenci, 2023).2

We aim to contribute to this discussion by build-
ing upon results by Prange et al. (2022, henceforth
P+22), who found that incremental LM perplexity
can be significantly improved by providing hier-
archical semantic structure as an additional token-
level input (fig. 1 and §2.1). Indeed, the integration
of symbolic and distributional approaches has long
been seen as a possible and necessary step towards
the full legitimacy of Distributional Semantic Mod-
els (DSMs) as models of meaning (Boleda and Her-
belot, 2016; Emerson, 2020), and there is recently

2But see Abdou et al. (2021) for a more optimistic view,
backed by empirical results.
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more and more evidence supporting the benefits of
hybrid neuro-symbolic models (e.g., Li and Sriku-
mar, 2019; Li and Rush, 2020), especially for com-
positional and long-tail generalization (Weißenhorn
et al., 2022; Prange et al., 2021) and interpretability
(Opitz and Frank, 2022).

P+22’s results seem to suggest that at least some
aspects of symbolic semantic structure may not be
contained in the incremental LM’s representation—
i.e., that these aspects might constitute an instance
of grounding, which is helpful for language under-
standing, but not fully learnable from text alone.
Alternatively, we consider the possibility that the
crucial semantic information could be learned, ex-
tracted, or induced to a sufficient extent, if only
explicit supervision were provided at training time.
The notion of sufficiency, in our case, relates to
the potential of improving over a baseline LM (§3).
This paints a grand vision of semantic bootstrap-
ping, i.e., a scenario in which the LM first com-
mits to local semantic structure based on the re-
vealed sentence prefix (pink ? arrow in fig. 1) and
then uses its prediction to reduce the next token’s
perplexity. The work by P+22 established upper
bounds by using an oracle setup where rich seman-
tic structure inputs are known to be correct, not
only during training but also at test time. As the
main contribution of this work, assuming the local
semantic bootstrapping scenario is feasible at all,
we look instead for lower bounds on what would
constitute sufficient substance and accuracy in pre-
dicted semantic structure for such an improved end-
to-end neuro-symbolic LM.

Concretely, we conduct two analyses: First,
we make P+22’s original formulation of seman-
tic graph slices (SGS) more parsimonious (§5). We
extract binary vectors (B-SGS) representing only
bare-bones (unlabeled and unanchored) structural
relations (§5.2) and find that they are sufficient for
improving LM perplexity over a strong baseline in
the oracle setting (§5.3). Second, we measure how
the language modeling benefits of B-SGS are af-
fected by increasing levels of noise, aiming to emu-
late various imperfect taggers (§6). Interestingly, a
comparison of two different shuffling mechanisms
(§6.2) as well as a simple pilot tagger (§6.1) re-
veals that how errors are distributed throughout
the data is much more important than overall er-
ror rate. Based on our observations, we establish
sufficiency lower bounds of B-SGS for use in a se-
mantic bootstrapping LM. We begin by providing

the reader with relevant background information
from the literature (§2), defining concisely what
we mean by sufficiency lower bounds (§3), and
describing our data set and general experimental
setup (§4). Finally, we discuss our findings and
limitations within the bigger picture of ongoing
research directions (§7).

2 Background

2.1 Language Modeling with Linguistic
Graph Slices

P+22 proposed a type of ensemble language model,
consisting of a pretrained Transformer and a neu-
ral encoder of symbolic linguistic structure, both
jointly predicting the next token in a sentence,
given the revealed prefix. They extract token-level
“slices” from sentence-level graphs.

An incremental linguistic graph slice is defined
as a connected subgraph minimally including a
node directly anchored in the target token (or a
preceding token if no such node is available) and
extending vertically to include parents, grandpar-
ents, and children, horizontally to include left sib-
lings, and diagonally to include children’s par-
ents (“co-parents”) and parents’ siblings (“aunts”).
This is illustrated in fig. 1: The original sentence-
level graph is shown above the sentence, and ex-
tracted token-level slices are shown below. Slices
are then encoded as fixed-length vectors, includ-
ing both edge label information and token an-
chor information. Out of two encoding methods,
R-GCN (Schlichtkrull et al., 2018) and a simple
concatenation- and averaging-based one, the lat-
ter is much faster at roughly equal model size and
roughly equal LM quality, so we choose it in our
experiments. In essence, the embeddings of all pre-
ceding tokens related to the target token in one of
the structural ways listed above (parents, siblings,
etc), as well as their one-hot-encoded edge labels,
are concatenated in a specific pre-defined order. If
there are multiple instances of a given relation, or
multi-token anchors, their vector representations
are averaged. Missing relations are zero-padded.
The final slice vector is fed through a simple feed-
forward encoder in order to compute logits over
the vocabulary, which are finally added to the LM’s
logits before softmax normalization. The resulting
distribution is used to compute the loss (during
training) or predict the next token (at test time).

In their study, P+22 compared linguistic repre-
sentations of several different flavors, including
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syntactic and dependency frameworks. Here we
focus on two semantic frameworks, PTG and EDS
(§4.1), which structurally go beyond bilexical de-
pendencies, and thus we use the term semantic
graph slice (SGS). We further extend P+22’s work
by explicitly comparing their oracle setup against
several versions of SGS with varying degrees of
richness and correctness, stemming from either sig-
nal reduction (§5), automatic prediction (§6.1), or
controlled noise induction (§6.2).

2.2 Related Work

Linguistic Analyses of LMs. A large number of
studies in the LM literature has been dedicated to
the analysis of the linguistic knowledge they en-
code. A common methodology employs probing
tasks, where a simple model is asked to solve a
task requiring linguistic knowledge using a rep-
resentation derived from a LM with little or no
specific linguistic supervision. If the model is suc-
cessful, we then can infer that the LM encodes that
knowledge (see Linzen et al., 2016; Tenney et al.,
2019a,b; Hewitt and Liang, 2019; Liu et al., 2019;
Wu et al., 2020; Chersoni et al., 2021; Geiger et al.,
2021, inter alia). Probes can be particularly insight-
ful when applied contrastively to sets of minimal
sentence pairs that differ in their grammatical ac-
ceptability (Warstadt et al., 2020; Hu et al., 2020;
Kim et al., 2019). Our approach of treating seman-
tic structure as an input rather than an output of a
neural LM is orthogonal to probing, but can sim-
ilarly be used for inferences about what kind of
knowledge is (not) already encoded in the baseline
model. Recently, an interpretability method based
on contrastive explanations (Jacovi et al., 2021)
has been proposed to explain LM predictions on
sets of minimal sentence pairs that differ in their
grammatical acceptability, showing that the salient
tokens for the LM preference of the correct form
are quite well aligned with human knowledge of
grammatical phenomena (Yin and Neubig, 2022).

Incremental Supertagging and Parsing. Pre-
dicting linguistic structure incrementally has been
explored especially in the context of strongly-
formulated lexico-syntactic grammar formalisms
like CCG, in the form of incremental supertagging
(Hassan et al., 2009; Ambati et al., 2015; Stanoje-
vić and Steedman, 2019, 2020). Having word-level
structural categories built in to the formalism has
many advantages for both modeling efficiency and
linguistic interpretability. But also Penn Treebank-

style constituency syntax trees can be parsed in-
crementally using, e.g., language model grammars
(Sartran et al., 2022; Dyer et al., 2016) or word-
level beam search (Stern et al., 2017). Finally,
another line of work aims to backpropagate lin-
guistic knowledge into the LM itself by optimizing
incremental structure prediction as an auxiliary ob-
jective (Qian et al., 2021; Glavaš and Vulić, 2021;
Kitaev et al., 2022).

Model Explanations and Cognitive Predictions
using Linguistic Symbols. Hale et al. (2018)
proposed a method relying on probabilistic gen-
erative grammars (Dyer et al., 2016) and word-
synchronous beam search that allows to extract
predictive metrics of processing difficulty, such as
surprisal and entropy. The authors showed that, us-
ing such metrics as predictors in a regression model,
it was possible to predict the amplitude effects of
several components of naturalistic EEG. Ek et al.
(2019) enhance a LSTM-based LM with syntactic,
semantic tags and dependency tree depth features,
and reported that the additional linguistic knowl-
edge did not increase the correlation with human
ratings in a sentence acceptability task, although
syntactic tags and dependency tree depth were help-
ful for lowering perplexity. Stanojević et al. (2021)
used CCG-based predictors to improve a regres-
sion model of fMRI time course in six different
brain regions, over and above predictors obtained
with a simple context-free phrase structure gram-
mar. Finally, Opitz and Frank (2022) presented
a technique to partition the BERT sentence em-
beddings into different sub-embeddings, each one
covering meaningful semantic aspects of sentences
as represented in the Abstract Meaning Representa-
tions (AMR) framework. Experiments on zero-shot
sentence and argument similarity tasks proved that
the approach maintains a high-level of correlation
with human judgements, while making the sentence
embeddings interpretable.

3 Sufficiency Lower Bounds

We introduce the concept of sufficiency3 lower
bounds on the strength of a data signal ξ in order
for a system Σ, which takes ξ as an input, to reach
a certain performance threshold θ. In this work,
the system Σ is a neuro-symbolic LM as proposed

3We do not consider necessity lower bounds here. I.e., we
do not say that data signals of worse substance than our lower
bounds cannot be sufficient. We say that distributions of at
least lower-bound quality are probably sufficient.
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by P+22 (§2.1), ξ is an SGS vector representation
(§5) for each (sub)word token in a text corpus D,
and θ is the baseline LM performance (measured as
surprisal, §4.3). Establishing such bounds is impor-
tant because ξ’s richness may need to be reduced
in one way or another—either by theoretical design
(because small, simple representations and models
are desirable; §5), or by practical necessity (due
to unavoidable noise in predicting ξ; §6). A main
takeaway from our exploratory study is that it is
important to identify (i.e., define or measure) can-
didate bounds in a way that considers the signal’s
configuration as a whole, rather than focusing on a
single aggregate metric.4 Approached empirically,
this involves computing (multivariate) distributions
over ξ as instantiated in a data set D, such that
when the system Σ is run on D, the quality of its
output is at least θ (i.e., it outperforms a baseline).
Simply put, if the signal ξ surpasses the sufficiency
lower bound in D, it will likely enable the system
Σ to reach performance θ or better.

4 Experimental Setup

4.1 Data
We use the jointly-annotated corpus of the cross-
framework meaning representation parsing (MRP)
shared tasks (Oepen et al., 2019, 2020), which con-
sists of large parts of the English Wall Street Jour-
nal corpus. In particular, we examine two symbolic-
structured linguistic representation frameworks,
Prague Tectogrammatical Graphs (PTG; Sgall
et al., 1986; Böhmová et al., 2003; Hajič et al.,
2012) and Elementary Dependency Structures
(EDS; Oepen and Lønning, 2006; Flickinger, 2000;
Copestake et al., 2005), each of them focusing on
different aspects of semantic predicate-argument
structure. EDS derives from Minimal Recursion
Semantics (MRS) and thus rather explicitly en-
codes nominal/referring expressions due to MRS’
foundation in variable binding. PTG, on the other
hand, is somewhat more guided by syntax and
(case-)semantic roles. We use the same training
split as P+22, but deviate slightly in using only
the first 500 sentences of their development set
and reporting most of our results and analyses on
this subset. This is because we are reporting in-
cremental results and wish to reserve substantial

4This somewhat circular-looking reasoning warrants full
disclosure: We were already proponents of holistic, detailed
evaluations over single-number benchmarks before this study,
but were still surprised by most of our results, particularly the
contrast between §6.1 and §6.2.

unseen data for unbiased full evaluation in future
work. For comparison, we report a limited amount
of aggregate scores over the test set in table 2.

4.2 Model Implementation

Our models (see §2.1 for a conceptual overview)
and experiments are implemented in Python, build-
ing on P+22’s codebase.5 In addition to standard
neural language modeling libraries used therein
(PyTorch, huggingface), we also leverage the
Pyro-PPL library (Bingham et al., 2018) to imple-
ment the variational autoencoder (§6.1).

We follow P+22 in using GPT-2 (Radford et al.,
2019, 124M parameters) as the pretrained incre-
mental language model and a simple multilayer per-
ceptron (MLP) to encode and project slice vectors
into the vocabulary. These logits are then added
to the LM’s before taking the softmax to obtain
the final next-token prediction distribution. During
training, tokens are sampled from a categorical dis-
tribution and contribute to the VAE’s overall ELBO
loss. While this technically is a slight difference to
P+22, who used categorical cross-entropy loss, we
are able to closely reproduce their reported base-
line perplexity on the test set (≈ 46 ± 0.1). As the
language modeling baseline we finetune GPT-2 in
the target domain (on the raw WSJ text) without
any exposure to SGS, as did P+22.

4.3 Evaluation

We measure language modeling performance in
terms of surprisal or perplexity (PPL), which is
computed as the exponential of the model’s token-
averaged negative log-likelihood (NLL).6 When-
ever we report aggregate performance over all data,
we use PPL (tables 2 and 3), but in the detailed
analysis of smaller subsets of data we switch to
NLL for better readability (fig. 6). For both met-
rics, lower is better. To evaluate B-SGS correctness,
we consider binary micro-accuracy over individual
vector dimensions, macro-accuracy over tokens, as
well as edge precision, recall, and F1-score.

5 Representation Distillation: What
makes semantic structure valuable to
language modeling?

Currently well-known as a popular and effective
deep learning technique (e.g., Polino et al., 2018;
Sanh et al., 2019), distillation (of neural models)

5
https://github.com/jakpra/LinguisticStructureLM

6See Limitations section for shortcomings of this metric.
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aims to reduce redundancy and unwieldiness (§5.1)
while retaining core information. Here we apply
a similar concept to a family of symbolic linguis-
tic representations, SGS. Rather than relying on a
blackbox training process to transfer knowledge
from a large pretrained model to a smaller model,
we manually design a less detailed variant of SGS,
which we call B-SGS (§5.2). We use ground-truth
B-SGS as additional input to the incremental LM
as before and find that it does constitute a lower
bound of sufficient richness (§5.3).

5.1 Unparsimoneousness of Fully Labeled and
Anchored SGS

While the very rich SGS representation used by
P+22 (which, here, we call F(ull)-SGS; §2.1 and
fig. 2 top) proved to be a very potent next token
predictor, this power comes at the cost of being
rather unwieldy and, as it turns out, redundant.

As input. Recall from §2.1 that, in F-SGS, pre-
ceding tokens that are semantically related to each
target token (via edges in the graph) are encoded by
concatenating their embeddings (in a specific order
and with zero-padding to preserve their structural
relation, e.g., parent vs. sibling, see §2.1). It is ob-
vious at first glance that this quickly leads to very
large slices and models (P+22 report an average
influx in models size of 50-60 million parameters
for SGS encoding alone). Furthermore, linguistic
formalisms vary greatly in the number of semantic
relation types (edge labels) they distinguish: e.g.,
10 in EDS vs. 72 in PTG. And while this num-
ber does not seem to be directly associated with
model performance, it still makes the comparison
somewhat blurry. In addition to their excessive
size, F-SGS vectors also seem to be partially re-
dundant with a pretrained LM, since P+22 found
in their ablation experiments that the correct edge
label assignment is not essential for achieving high
language modeling performance.

As output. In addition to oracle-augmented lan-
guage modeling, a major use case of SGS we work
towards is to incrementally predict them (cf. §1
and §6). This is, however, a non-trivial structured
prediction problem. It consists at least of edge
prediction and relation classification (cf. Liu et al.,
2019). And while on the surface, this is reminiscent
of a task that could be solved with an edge-factored
parser (Kiperwasser and Goldberg, 2016; Dozat
and Manning, 2017), our scenario is much more
complex due to the multitude of structural relations
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Figure 2: Deriving Full and Binary semantic graph slice
(SGS) vectors from the PTG subgraph for the token ‘to’
in fig. 1. The continuous anchor dimension would be
filled, e.g., in the SGS for the tokens ‘test’ and ‘prove’,
which each share the rest of their slice with their respec-
tive preceding tokens. Node 5⃝ in the slice for ‘may
prove’ is an example of a co-parent.

(not just parents), the possibility of multiple parents
for each node, abstract nodes not directly anchored
in a single token, as well as incrementality. In-
deed, it is more akin to supertagging (Bangalore
and Joshi, 1999; Clark and Curran, 2004, §2.2) but
without the formal guarantees of a mildly context-
sensitive grammar formalism like TAG or CCG. In
our early exploration with simple multilayer per-
ceptron (MLP) classifiers and a combination of
loss functions (categorical cross-entropy for labels;
cosine similarity and/or attention loss for token-
to-token anchoring), we found it very difficult to
train a model to convergence. We suspect that full
SGS prediction warrants more complex modeling,
optimization, and inference mechanisms, which we
leave to future work.

5.2 Reducing SGS to Binary Structural
Relations

The challenges described above prompt us to dras-
tically simplify the SGS encoding. We propose
to collapse both edge labels and anchor-token em-
beddings into mere binary indicators of whether
an edge of a given structural relation type (flat
subword continuation, parent, sibling, grandparent,
aunt, child, co-parent) exists, resulting in binary
semantic graph slices, or B-SGS (fig. 2).7

7While each node may have multiple relatives of the same
type (e.g., 2 parents and 3 siblings), a single binary dimension
for each type could only indicate the existence of at least one
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A P P+ O S T C R

UD .11 .34 0. .24 .31 .17 .34 0.
DM .33 .48 .21 .19 .24 .09 .25 .21

PTG .43 .75 .07 .69 .42 .41 .41 .10
EDS .30 .69 .51 .17 .29 .09 .26 .22

Table 1: Relation-wise density of B-SGS vectors in the
development set. A: continued anchor, P: parent, P+: 2
or more parents, O: grandparent, S: sibling, T: aunt, C:
child, R: co-parent. UD and DM are shown for reference
(cf. Liu et al., 2019, §6.1).

Data statistics. We report average density of ma-
jor SGS dimensions (= relation types) in table 1.
Note in particular that EDS and PTG differ sub-
stantially in the types of structures they encode,
with PTG being denser on average. EDS is quite
similar to DM because they are both derived from
the same underlying formalism. In contrast to EDS,
PTG, and DM graphs, which are generic DAGs,
UD graphs are strictly bilexical dependency trees,
leading to necessarily empty P+ and R dimensions.

5.3 Validating LM Performance with Oracle
B-SGS

Setup. We train for up to 10 epochs, with early
stopping based on development set perplexity. See
§4 for more details.

Results. Table 2 shows that although B-SGS per-
plexity is slightly worse than with F-SGS—which
is to be expected given the drastic reduction of the
input signal—it still clearly outperforms the non-
symbolic baseline. This suggests that the most cru-
cial signal contributed by SGS in general is, in fact,
the bare-bones hierarchical structure itself. And
while P+22’s ablation analysis already suggested
that the grouping into different edge labels may
be less important, it is quite surprising that even
the information about which other tokens the target
token is hierarchically-related to is not necessary
to improve language modeling with SGS.

A possible explanation can be found in the fact
that the baseline LM already has extensive gra-
dient representation of parts-of-speech, syntactic
functions, and semantic roles (namely, in its dense
hidden states and attention distributions). What it

such instance. We follow P+22 in allocating additional ‘low-
resolution’ dimensions for certain relation types to indicate the
existence of 2 or more relatives. This is illustrated for parents
(P+) in table 1 but otherwise omitted (e.g., from fig. 2) for
simplicity. Note that a node having multiple parents is distinct
and independent from it having one or more co-parents (i.e.,
other parents of the node’s children).

PTG EDS

Pretrained GPT-2 59.3
Domain-finetuned (baseline) 46.1

Gold F-SGS 26.8 24.7
Gold B-SGS (ours) 33.9 28.0

Table 2: Comparing test set LM perplexity (lower is
better) with our Binary slices against Fully labeled/
anchored ones (P+22).

might be lacking, then, is any discrete representa-
tion, and in particular a commitment to discrete and
complex semantic structure seems to be beneficial.

Gold B-SGS is thus a sufficiency lower bound.

6 Noise Robustness: How accurate should
bootstrapped semantic structure be in
order to improve a LM?

In a pilot experiment, we integrate into the P+22
model B-SGS prediction. As illustrated in fig. 3,
this is an intermediate step, the output of which
is now used as input to next-token prediction in-
stead of the ground truth slice. We find that while
our relatively simple model (§6.1) produces B-SGS
outputs of seemingly reasonable overall quality (in
terms of micro-accuracy and F-score), they are not
sufficient for supporting LM performance. This
prompts us to actively search for lower bounds
of sufficient correctness by artificially inducing
various types and levels of noise into gold B-SGS
inputs (§6.2). We do find several bounds, but learn
that what makes them sufficient has less to do with
their single-number correctness and more with intri-
cate details of their overall noise distribution (§6.3).

6.1 Pilot Prediction

Setup. Since we are interested in lower bounds
and we are running an exploratory study, we do
not perform extensive model engineering. The fol-
lowing description is purely intended for clarity
and replicability rather than as a state-of-the-art
model proposal. We decide on a variational autoen-
coder (VAE; Kingma and Welling, 2013), where
sampling from the latent space mediates between
the LM’s hidden state and the sigmoid-activated
B-SGS dimensions (fig. 3). This setup is motivated
by the high uncertainty involved in the task (we pre-
dict the symbolic structure of a token that has not
been observed yet, and there may be much genuine
ambiguity). All encoders, decoders, and projec-
tors within the VAE, besides GPT-2, are simple
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Figure 3: Our simple variational autoencoder model.
We project the encoding of observed (solidly shaded)
previous words w<i into latent space and sample hidden
states z⃗i. Predicted graph slices g⃗i and target tokens
ŵi are supervised during training but unobserved at
test time. P+22 used ground truth slices g⃗∗i instead of
predicted ones. The standard LM is a component in
both versions.

feed-forward MLPs. B-SGS prediction is trained
deterministically with binary cross-entropy loss.8

We train the slice predictor for up to 10 epochs with
early stopping based on dev set F-score, and then
train the SGS-augmented LM as before.

Results. As shown in fig. 4, SGS prediction per-
formance is best in layers 8 (PTG) and 9 (EDS).
This is in line with previous studies on probing
semantic structure (e.g., Liu et al., 2019; Jawahar
et al., 2019; Tenney et al., 2019a), which obtained
the best performances in middle/high layers. How-
ever, even these best predictions cannot outperform
the finetuned LM baseline in the augmented lan-
guage modeling setting (compare black solid and
red dashed lines in fig. 5).

Validation. Prediction micro-accuracies (.84 for
PTG, .90 for EDS; last row table 3) are in the
same order of magnitude as Liu et al. (2019)’s bi-
nary edge prediction results for UD and DM, two
representation frameworks featured in the litera-
ture much more frequently than PTG and EDS.
Although there are many differences in task and ex-
perimental setup (dependencies vs. constituencies,
single-parent vs. B-SGS prediction; cf. table 1),
we find this to be a valuable sanity check for both
us and the reader in lieu of a proper baseline.

6.2 Artificial Noise

Why is our pilot system not sufficient? Maybe
prediction accuracy just needs to be better? We
investigate by using shuffled gold B-SGS as in-
puts to the LM and systematically altering several
characteristics of the shuffling routine. This style of

8We also experimented with Bernoulli sampling, but to no
success.
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Figure 4: Graph slice prediction performance on the
development set by LM layer. P = precision (propor-
tion predicted edges correct), R = recall (gold edges
predicted), F = F1-score (harmonic mean of P and R).

control task is inspired by Hewitt and Liang (2019);
Dubossarsky et al. (2018).

We consider two different shuffling mechanisms:
(a) Shuffling the node-to-word anchor mapping of
graphs before vector extraction (i.e., which slice
corresponds to which word token, cf. P+22). This
guarantees well-formed graphs but may be too op-
timistic since we only shuffle within each sentence.
Thus we also consider a more aggressive option:
(b) Randomly switching bits (= whether or not a
given edge type exists) in the slice vectors extracted
from gold graphs.

For both, we also produce varying degrees of
noise. Namely, whenever we are about to shuffle a
graph anchor or vector bit, we decide to instead re-
tain the correct assignment with probability pGold.

Results. Table 3 shows how the different shuf-
fling conditions affect B-SGS correctness. As ex-
pected, within-sentence graph anchor shuffling is
generally much more optimistic than bit-switching.
By definition, pGold directly determines micro-
accuracy in bit-switched slices, whereas in anchor-
shuffled slices, pGold is more closely correlated
with macro-accuracy. LM perplexity of each condi-
tion is shown in fig. 5. Note that the signal strength
of bit-switching is symmetric around .5. This is
an intuitive corollary of it being a binary signal
(though macro-accuracy and F-score naturally con-
tinue to decline with pGold < .5, as shown exem-
plarily for values .1 and 0.).

First, we identify conditions that beat the
domain-finetuned LM baseline from fig. 5, and
then consult table 3 to find their corresponding slice
quality. This results in the following sufficiency
lower bounds (marked with asterisks in table 3):
Shuffled graphs with pGold ∈ {.9, .8, .7, .6, .5}
for both PTG and EDS as well as pGold ∈
{.4, .3, .2, .1, 0.} for EDS; and bit-switched vec-
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Figure 5: Dev set perplexity (lower is better) of noise-
interpolated B-SGS LMs.

tors with pGold ∈ {.9, .8, .2, .1, 0.}, which can be
generalized |pGold − .5| ≥ .3.

6.3 Detailed Analysis

Unexpectedly, shuffled slices with clearly worse
overall accuracy than predicted ones (table 3) sill
yield much better perplexity (fig. 5). This leads us
to the following hypotheses which we address in or-
der. For brevity, we focus only the comparison be-
tween predicted and bit-switched with pGold = .8,
because this condition seems to be a good trade-off
between matching or slightly beating the PPL base-
line and realism in terms of closeness to predicted
in terms of overall accuracy. Consider fig. 6.

Hypothesis: The noise of shuffled slices is uni-
formly distributed over tokens whereas the noise of
predicted slices is distributed similarly as baseline
LM surprisal.
Average F-score of predicted B-SGS does in-
deed decrease as baseline LM surprisal increases
(fig. 6b). However, contrary to our expectation, the
same is true for the F-score of uniformly shuffled
slices (fig. 6d)! Thus, the distribution of F-score
means over suprisal bins alone does not explain the
difference.

Hypothesis: Due to high-surprisal tokens having
low B-SGS correctness, we create a noisy feedback
loop which worsens LM surprisal in particular for
already high-surprisal words (open-class content
words) without gaining enough advantage on low-
surprisal words.
We find quite the opposite: Both predicted and
shuffled slices help in particular for very-high-
surprisal tokens, despite the higher average slice
noise (fig. 6c+e). In contrast, predicted slices tend
to slightly increase surprisal for low-surprisal to-
kens. And since low-BL-surprisal tokens make up
the vast majority of the data (fig. 6a), this slight in-
crease might be enough to confuse the LM beyond
baseline. Another crucial factor might be variance

PTG EDS

MaA MiA F LB MaA MiA F LB

Gold 1.00 1.00 1.00 * 1.00 1.00 1.00 *

Shuffled graph anchors
pGold = .9 >.99 >.99 >.99 * .95 .99 .97 *
pGold = .8 .88 .97 .94 * .81 .97 .91 *
pGold = .7 .60 .93 .86 * .65 .95 .84 *
pGold = .6 .54 .92 .83 * .53 .93 .76 *
pGold = .5 .36 .87 .72 * .34 .88 .63 *
pGold = .4 .23 .83 .64 ? .25 .87 .56 *
pGold = .3 .18 .81 .60 − .19 .85 .49 *
pGold = .2 .12 .80 .56 − .17 .84 .48 *
pGold = .1 .10 .79 .55 ? .14 .83 .44 *
pGold = 0. .08 .78 .53 − .13 .82 .41 *

Bit-switched vectors
pGold = .9 .17 .90 .81 * .17 .90 .75 *
pGold = .8 .02 .80 .66 * .02 .80 .58 *
pGold = .7 <.01 .70 .53 ? <.01 .70 .44 ?
pGold = .6 <.01 .60 .42 − <.01 .60 .34 −
pGold = .5 0. .50 .32 − 0. .50 .26 −

...
...

...
pGold = .1 0. .10 .05 * 0. .11 .05 *
pGold = 0. 0. <.01 <.01 * 0. .01 .02 *

Predicted .18 .84 .68 − .29 .90 .68 −

Table 3: Correctness F1-score (F), accuracy at the macro
(token-level, MaA) and micro (bit-level, MiA) levels)
of B-SGS with various levels of noise (measured on the
dev set). The LB columns indicate whether a condition
is a sufficiency lower bound (*=yes, ?=maybe, −=no),
i.e., if its corresponding PPL beats the baseline (fig. 5).

in slice correctness, which is generally much higher
in predicted slices than in shuffled ones (fig. 6b+d).

Most affected words. We manually inspect the
data to get an idea of how predicted B-SGS benefits
the LM the most. The top 10 tokens in terms of
both baseline NLL and ∆ NLL (bottom right re-
gion of fig. 6c) are dominated by (recurring) named
entities and dates, which are likely just an artifact
of overfitting. After filtering these out, we find that
the highest-baseline-NLL tokens are mostly nouns,
adjectives, and verbs that are either rare themselves
(e.g., hopscotched, instrumentation) or used in a
rare construction (paying thin compliments). In
contrast, both PTG and EDS B-SGS reduce NLL
the most for verbs, particularly in participle con-
structions (dividing, has begged, will be relocated).

7 Discussion and Conclusions

We proposed a general framework for semantically-
enriched language modeling. Our proposal aims
to provide a new perspective on qualitative distri-
butional linguistic analysis, expanding upon prior
work in linguistic analysis of neural models in sev-
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surprisal (∆ NLL), binned by baseline (BL) NLL. × markers are means and lines within boxes are medians.

eral ways (§7.1). We implemented and tested this
framework with GPT-2 and semantic graph slices
(SGS) from two formalisms, finding interesting
patterns with potential impact for meaning repre-
sentation design and low-resource modeling (§7.2).

7.1 General Framework

Probing and related methods evaluate language
models based on their ability to predict linguistic
representations from text. Although this is a rela-
tively practical setup which has already produced
many fascinating and replicable findings, it has the
disadvantage that results need to be interpreted rel-
ative to both the linguistic framework governing
the output and the specific probing architecture. In
contrast, the approach of Prange et al. (2022) takes
linguistic representations as an input and evaluates
the language model directly on its native language
modeling task. The main problem with their oracle
setup is that it is unrealistic to have ground truth
linguistic structures available at test time.

We argue for unifying the advantages of both
directions, by considering what is in essence a
concatenation of the two: a pipeline in which the
output of a structure prediction model (similar to
probing, except that it may be supervised) is fed
back into the LM, enabling comparable evaluation
on the raw text itself. This makes it possible to
identify shortcomings of the LM and/or benefits
of the linguistic representation quantitatively and
qualitatively, by modifying either the probing archi-
tecture or the linguistic representation itself until
LM performance starts or stops improving. The
lower bounds of this continuum in particular (in
contrast to upper bounds) have many theoretical
and practical implications, since they separate the
wheat from the chaff when it comes to the effi-

ciency/effectiveness trade-off for model and rep-
resentation. Our definition of sufficiency lower
bounds in terms of the signal’s data distribution
in §3 is intentionally kept high-level and flexible
to stimulate adaptations of the idea for a variety
of use cases. While here we take an exclusively
empirical approach, the framework may lend itself
to formally-provable accounts as well.

7.2 Concrete Take-aways

In our experiments with GPT-2 (§5 and §6), we
were able to crystallize the simple (unlabeled and
unanchored) discrete hierarchical semantic struc-
ture of PTG and EDS as both beneficial to language
modeling and robust to certain types of noise. We
also found, though, that measuring prediction qual-
ity via a single aggregate score hides important
aspects of the distributions of signal and noise, to
the extent of potentially nullifying LM improve-
ments. While the respective structures of PTG and
EDS differ from each other in terms of density, re-
lations encoded (§5.2), prediction accuracy (§6.1),
and LM benefit (§6.2), the types of words they help
the LM with the most are similar (§6.3).

As a nice side-effect from §5, removing the ex-
plicit token anchoring from SGS also makes it more
applicable to unanchored semantic representations
such as AMR (Banarescu et al., 2013). Note, how-
ever, that we still need some source of basic anchor-
ing information (e.g., from an automatic aligner) in
order to assign a slice to each token.

Finally, based on our findings in §6.3 that rare
high-surprisal words most positively affected by
even noisily SGS-enhanced language modeling, we
are hopeful that our method may be particularly
helpful for the Zipfian tail at a small cost to the
majority of data.
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Limitations

No guarantees. As stated in §3 and substanti-
ated in §6, sufficiency lower bounds tend to be non-
trivial, multifaceted configurations. We explore this
to some extent (we find, e.g., that overall correct-
ness scores alone, without variance, are not reliable
identifiers of sufficiency lower bounds), but not
exhaustively. To make stronger guarantees rather
than just optimism, we need to precisely define
when a candidate distribution is ‘similar enough’
to a known lower bound (e.g., via goodness-of-fit).

Practicability of semantic bootstrapping. We
do not present a complete working system yet. It
could be that sufficiently distributed performance
can only be achieved with more intricate struc-
tured decoding mechanisms (e.g., Viterbi or beam
search), which would negatively affect running
time and thus usability as an end-to-end LM.

Limited evaluation of LM quality. Our eval-
uation of LM quality has been limited to the ef-
fects of the predicted graph slices on the per-
plexity metric. Alternative evaluations adopting
psycholinguistically-inspired metrics, such as the
correlation with human norms collected from cloze
completion tasks, might yield different results (Hao
et al., 2020).
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