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Abstract

While many real-life tasks require reasoning
over multi-step sequential instructions, collect-
ing fine-grained annotations for each interme-
diate step can be prohibitively expensive. In
this work, we study how general pretrained
sequence-to-sequence transformers perform un-
der varying types of annotation for sequen-
tial instruction understanding. We conduct ex-
periments using T5 (Raffel et al., 2020) on a
commonly-used multi-step instruction under-
standing dataset SCONE (Long et al., 2016)
that includes three sub-tasks. First, we show
that with only gold supervision for the final step
of a multi-step instruction sequence, depending
on the sequential properties of different tasks,
transformers may exhibit extremely bad perfor-
mance on intermediate steps, in stark contrast
with their performance on the final step. Next,
we explore two directions to relieve this prob-
lem. We show that with the same limited anno-
tation budget, using supervision uniformly dis-
tributed across different steps (instead of only
final-step supervision), we can greatly improve
the performance on intermediate steps with a
drop in final-step performance. Further, we
explore a contrastive learning approach to pro-
vide training signals on intermediate steps with
zero intermediate gold supervision. This, how-
ever, achieves mixed results. It significantly
improves the model’s bad intermediate-step
performance on one subtask, but also shows
decreased performance on another subtask.

1 Introduction

Transformer-based sequence-to-sequence mod-
els (Vaswani et al., 2017; Raffel et al., 2020) have
shown remarkable performance on many natural
language understanding tasks including seman-
tic parsing (Yu et al., 2018), dialog state track-
ing (Budzianowski et al., 2018), procedure text
understanding (Dalvi et al., 2018) etc. However,

∗∗Work partially conducted during an internship at Google.

much of this success relies on fine-grained anno-
tations. For example, many instruction-following
datasets (Long et al., 2016) contain the correspond-
ing parse or label for every single instruction show-
ing their immediate effects. However, such data can
be hard to collect in practice because even seem-
ingly simple and straightforward tasks can involve
multiple steps,1 making the collection of detailed
annotations expensive and time-consuming.

For these scenarios, many earlier works applied
task-specific methods to provide additional induc-
tive biases about the sequential nature of these in-
structions (Suhr and Artzi, 2018; Muhlgay et al.,
2019). These methods need substantial prior knowl-
edge and can be harder to generalize to new do-
mains.2 In this work, first, we provide a case study
to explore whether transformer-based seq2seq mod-
els trained only using end-step supervision (i.e.,
gold supervision is given only at the very end of
the entire sequence) can naturally handle these se-
quential instructions without task-aware specific
architecture changes. We conduct experiments on
the SCONE dataset (Long et al., 2016) including
three different subtasks. The input of each exam-
ple contains a sequence of instructions. During
training, the model only observes the final state
(label) after executing all the instructions, while
for evaluation, the model needs to predict both the
final states and all the intermediate states. We use
T5 (Raffel et al., 2020) as our baseline model. In-
terestingly, we observe mixed trends on the three
different subtasks of SCONE depending on their
different sequential properties. On two out of three
tasks (SCENE and TANGRAMS), T5 models demon-
strate good performance on the intermediate steps.

1For example, map instructions for how to reach the closest
supermarket may involve a number of turns, cooking instruc-
tions may involve adding multiple different spices, etc.

2The prior knowledge is usually injected by either knowing
the exact parses or grounded actions of each instruction, or by
using a world simulator that can execute the instructions and
facilitates RL-based approaches.
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On ALCHEMY, however, the performance on in-
termediate steps is extremely bad, in stark contrast
with their decent performance on final steps. Such
behavior reveals that the model does not learn to
understand the instructions sequentially and is not
maintaining a correct intermediate state. Therefore,
while these models may do well on instructions
similar to the training examples, they can also fail
miserably on instructions shorter or longer than the
instructions they are trained on.

Hence, we next explore two potential mitigations
to this problem. We first study an alternative label-
ing schema. We find that if the same amount of
labels are uniformly sampled across multiple steps
instead of only coming from the last step, the model
can have substantially better performance at inter-
mediate steps, despite a drop of the performance
on the final step. This can be a favorable behavior
if the target application has more focus on inter-
mediate steps. However, re-collecting labels may
not always be practical. Therefore, for scenarios
where only final-step labels are accessible, we also
explore a contrastive learning based approach to
improve the intermediate-state performance with-
out additional gold labels. Specifically, we use a
contrastive learning loss to encourage an alignment
between the change in the predicted states and the
most recent instruction, and provide useful training
signals on the intermediate steps. However, we
see mixed results from this approach. While it can
significantly improve the low intermediate-step per-
formance on ALCHEMY, it decreases performance
on SCENE and does not further improve other mod-
els that already have decent performance. Finally,
we discuss the limitation of this approach and point
out that the lack of precise regularization to capture
the fine-grained state differences may be the reason
behind the mixed results, which makes it hard to
further improve strong baselines already showing
sequential understanding abilities (as in SCENE).

2 Background and Baseline Performances

Problem and Evaluation Setup. We focus on
sequential instruction following tasks, more specif-
ically, state tracking or state prediction with multi-
step instructions. Given an initial state and a se-
quence of instructions, the model needs to pre-
dict the states after the execution of each in-
struction. Formally, the training set Dtrain =
{(inst ij=1..m, statei0, state

i
m)|ni=1} contains n ex-

amples. Each example consists of a sequence of m

instructions and two states, the initial state state0,
and the final state statem after executing all the
m instructions. The training objective is to pre-
dict the final state statem given the initial state and
all the previous instructions. The evaluation sets
Deval = {(inst ij=1..m, stateij=0..m)|n′

i=1} contain
not only the initial and the final state, but also all
the intermediate states statej after every instruc-
tion inst j . This allows us to evaluate the models’
performance in two ways: (1) the exact-match ac-
curacy at the final state (accfinal), similar to the
training setup; and (2) the exact-match accuracy at
all the states from state1 to statem (accall).

Dataset. We use the SCONE dataset as it con-
tains three different subtasks: ALCHEMY, SCENE

and TANGRAMS (Long et al., 2016), and covers a
diverse set of different states and instructions. For
every example in these three subtasks, the instruc-
tion contains 5 steps. See Appendix A for examples
and a detailed dataset introduction.

Baseline Performances with Final-Step Super-
vision. We use T5-base (Raffel et al., 2020) as
our main model.3 At each step, to get the predic-
tion of statei, the model will receive an input con-
taining the concatenation of the initial state state0
and all the instructions from inst1 till inst i. More
hyperparameter and preprocessing details are in
Appendix A and B. The performance is shown in
Table 1. First, if we follow the traditional setup
for previous papers to use gold labels across all the
steps (the first row), fine-tuned T5 models without
any task-specific tricks can already achieve strong
performance on accfinal, reaching competitive per-
formance on all three subtasks compared to all
previous methods (including Shi et al. (2022) who
also uses pre-trained Transformer-based models)
using similar supervision, and the performance on
ALCHEMY is even higher. By using all the gold
labels across steps, the performances are substan-
tially higher than the results only using final-step
supervision. This observation is also connected to
the observation in Wies et al. (2023) and Yu et al.
(2023), where they notice the decomposition of
complex tasks makes learning easier. When we
only use final-step supervision (the second row),
both accall and accfinal decrease substantially. How-
ever, the trends on different subtasks are different.
On SCENE and TANGRAMS, the accall is equal or

3Preliminarily, we also conduct our experiments on other
scales of T5 (i.e., T5-small and T5-large), but they do not
show better performance on our tasks.
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Models Supervision ALCHEMY SCENE TANGRAMS
accfinal accall accfinal accall accfinal accall

T5-base All steps 77.0±0.9 86.6±0.5 72.9±1.8 84.9±0.7 60.1±2.4 79.0±0.8

T5-base Final step 70.0±1.7 58.0±3.8 60.5±2.9 71.7±3.8 14.2±4.5 22.3±6.2

+CL Final step 70.7±2.4 72.4±4.4 62.5±2.3 60.8±2.0 14.7±6.7 29.0±12.1

T5-base Uniformly sampled steps 62.8±3.0 80.0±1.3 54.3±1.5 75.2±0.8 23.7±3.2 60.2±2.5

Shi et al. (2022) All steps 75.4 - 72.3 - 60.0 -
Suhr and Artzi (2018) All steps 62.7 - 62.0 - 62.4 -
Yeh and Chen (2019) All steps+Annotated programs 76.1 - 75.1 - 72.5 -

Table 1: Model performance on the SCONE dataset. The numbers in this table are mean and std over 10 runs.

Task Instructions

ALCHEMY Instruction i: throw out the right most
orange chemical
Instruction i+1: throw out 2 units of the
purple chemical

SCENE Instruction i: he disappears
Instruction i+1: the person in all orange
moves one step right

TANGRAMS Instruction i: remove the first figure
Instruction i+1: swap the first and third
figures

Table 2: Example instructions from the three subsets in
SCONE. Due to the heavy use of coreference, changing
the order of instructions in SCENE and TANGRAMS
can lead to different results, while a larger number of
examples in ALCHEMY are interchangeable as they may
refer to independent actions for different beakers.

higher than accfinal, showing that the models al-
ready have a tendency to track the semantics on
intermediate steps and early steps are easier than
later steps. On the contrary, the accall performance
on ALCHEMY is substantially lower than accfinal.
Such low performance indicates that after training
on the ALCHEMY, despite the decent accfinal, the
model does not always maintain a correct state in
the intermediate steps.

Why are the trends different across subtasks?
The three subtasks in SCONE are designed to fo-
cus on different linguistic phenomena (Long et al.,
2016). Here, we argue these different designs cause
T5 to correctly understand the sequential nature of
the instructions on SCENE and TANGRAMS and
achieve good accall, but not on ALCHEMY. Due
to the focus on the coreference across steps (see
Table 2 and dataset descriptions in Appendix A),
instructions in SCENE and TANGRAMS are more
sensitive in their order, because switching the or-
der of instructions can break the coreference and
lead to different outcomes. Specifically, only 39%
of the instruction pairs in ALCHEMY are non-
interchangeable in their orders, compared to 62%

in SCENE and 85% in TANGRAMS.4 These non-
interchangeable instructions encourage the model
to keep tracking the state change in a correct se-
quential way. Otherwise, as in ALCHEMY, the
model may not have a strong incentive to follow
the order of the instructions and understand them
sequentially. Nonetheless, our finding here is not a
dataset design problem, as many real-life instruc-
tions can have the same property, but more about
analyzing the effect of differing dataset proper-
ties. Additionally, these results can be seen as em-
pirical evidence about how or whether fine-tuned
seq2seq models form internal meaning represen-
tations when only final-supervision is given, com-
plementing the study by Li et al. (2021). Models
with internal meaning representations should have
higher accall than accfinal as representations at later
steps are built on representations at earlier steps
so they will be more error-prone. Therefore, our
experiments imply that the exact behavior may de-
pend on the nature of the fine-tuning tasks. On
ALCHEMY, the model shows no significant evi-
dence of maintaining a reliable meaning representa-
tion, while on the other two tasks, the model shows
hints of maintaining a meaning representation even
with final step supervision.

3 Intermediate State Prediction with
Uniformly Sampled Annotations

One of the major reasons behind the poor perfor-
mance in Sec. 2 is that all the gold labels are at the
final step, so for the intermediate steps, there is no
strong supervision to ensure a desirable behavior.
While for many applications, final-step labels are
indeed more natural to collect, in this section, we
explore if a better annotation strategy can improve
the performance with the same amount of labeling
budget. Specifically, we replace the final-step-only
supervision with the same amount of supervision

4These statistics are manually estimated by the authors
from 100 randomly-sampled instruction pairs from each task.
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distributed uniformly across different steps. Such
labels can reduce the gap between training and eval-
uation, and the model can receive supervision at
intermediate steps. The results with such uniformly
sampled labels are shown in the fourth row of Ta-
ble 1. Compared to the final-step supervision re-
sults, we notice a substantial improvement on accall
on all three subtasks, but there is a drop on accfinal
on two subtasks (ALCHEMY and SCENE). There-
fore, the preference between uniformly-distributed
labels and end-step only labels depends on the final
target. Additionally, there still exist many applica-
tions where the intermediate labels are difficult to
collect or there is no budget to re-annotate labels.
For those cases, we next describe our exploration
to improve accall without additional gold labels.

4 Intermediate State Prediction with
Contrastive Learning

Method. In Sec. 2, our baseline T5 predicts all
the intermediate states independently, similar to the
re-translation strategy (Arivazhagan et al., 2020) in
streaming MT. However, it ignores the strong cor-
relation of predictions over different steps, which
partially leads to weak intermediate-step results.
Next, we use contrastive learning to leverage such
correlation without gold labels.

We first introduce the notations. We denote the
function learned by the seq2seq transformer as
f(state0, inst1, . . . , inst i) = pstatei . Here statei
and inst i are input tokens representing the state
representation at step i and the instruction at step i
respectively. pstatei is the model prediction of the
state at step i, which is a sequence of categorical
distributions. The length of the sequence is the
total number of tokens of the state representation,
and each categorical distribution is over the vocabu-
lary. For two consecutive steps, the seq2seq model
produces two predictions pstatei and pstatei+1 .

Our main intuition is to leverage the observa-
tion that “There is a strong correlation between
the change in two consecutive states and the in-
struction of that step.” To implement this idea,
we compute two sets of vectors, one for the dif-
ference in consecutive states, and the other to rep-
resent the instruction. Then we use contrastive
learning to encourage matching between these
two sets of embeddings. Concretely, we start
from the model predicted distribution pstatei . We
map the distribution back to the embedding space
by computing estatei = Epstatei where E is the

Step i Step i+1

T5

Transformer-Style SelfAttention
Sentence-T5 

 (frozen)

...
Other embeddings

...
Other embeddings

Contrastive Loss

T5

Transformer-Style SelfAttention

Figure 1: Contrastive learning encourages matching be-
tween state differences and corresponding instructions.

input embedding matrix of the seq2seq model.
Then, we compute a vector hstatei to represent each
state by computing the transformer-style multi-
layer self-attention between the embeddings estatei

and an additional learnable vector hs. hstatei =
SelfAtt([hs, estatei ]). Now, with two state em-
beddings for two consecutive steps, we can com-
pute a difference vector that captures the differ-
ence in consecutive states following Conneau et al.
(2017): hdiffi = MLP(hstatei , hstatei+1 , |hstatei −
hstatei+1 |, hstatei ⊙ hstatei+1 ). For the instruction vec-
tor, we directly feed the latest instruction inst i+1

to an off-the-shelf sentence-T5 model (Ni et al.,
2022).5 With these two set of embeddings, we com-
pute a contrastive matching loss (Gao et al., 2021):

Lcont =
exp(sim(hdiff

i ,hinst
i+1 ))

∑
all inst in the batch

exp(sim(hdiff
i ,hinst))

, where

sim is the similarity function, and we use all the
other in-batch examples as negative examples. An
illustration of this idea is at Fig. 1. The total train-
ing loss will be the sum of both standard MLE loss
and the contrastive loss, Ltotal = LMLE + Lcont.

Results. The results for our contrastive learning
method are in the “+CL” row of Table 1. We see
opposite trends on ALCHEMY and SCENE. On
ALCHEMY, we can see a substantial increase on
accall, improving it from the extremely low ac-
curacy of 58.0% to 72.4%, which is comparable
to its accfinal, and making its behavior similar to
other tasks. We can also observe a small improve-
ment on the TANGRAMS subtask. However, such
improvement does not translate to other settings
where the accall performance is already decent and
is comparable to accfinal. For instance, on SCENE,
adding our contrastive learning method does not im-
prove either accfinal or accall, and leads to a drop on
accfinal. We also do not observe additional gain by
combining contrastive learning with the uniformly
sampled annotation described in Sec. 3. We conjec-

5Preliminarily, we tried to extract embeddings from our
model itself, but observe no substantial improvement.
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ture such mixed results may result from a lack of
more fine-grained control on hdiffi , as the current
implementation may allow hdiffi to encode irrel-
evant features from one of the consecutive steps.
This lack of more precise regularization makes it
hard to further improve strong baselines already
showing sequential understanding abilities (e.g., on
SCENE). See Appendix C for more discussions.

5 Related Works

Our work focuses on sequential instruction un-
derstanding. Many earlier works in this direc-
tion rely on a pre-defined action set or a world
simulator that facilitates the inference of the se-
mantics of each sentence (Long et al., 2016; Guu
et al., 2017; Suhr and Artzi, 2018; Muhlgay et al.,
2019). Neural models can bring additional im-
provement, especially with specifically designed
architectures (Huang et al., 2018; Yeh and Chen,
2019) or training methods (Fried et al., 2018; Shi
et al., 2022). Our work advances this direction by
examining transformer seq2seq models in limited
supervision settings, and providing solutions for un-
desirable behaviors. Many other tasks (Anderson
et al., 2018; Dalvi et al., 2018; Kiddon et al., 2015)
also require understanding the sequential relation-
ship between sentences. The contrastive learning
component can also be viewed as a way to relieve
the reward sparsity problem, similar to the effect of
forward modeling (Pathak et al., 2017). Pretrained
transformers have been applied to many different
tasks. However, it is unclear how they process se-
quences inherently. Li et al. (2021) study whether
language models implicitly build meaning repre-
sentations. Our empirical results provide evidence
of different behaviors in different datasets.

6 Conclusion

We study seq2seq transformers for sequential in-
struction following. Depending on data properties,
if only final-supervision is given, transformers may
naturally perform well on intermediate steps, but
can also fail miserably. We explore two potential
remedies, one with uniformly sampled supervision,
and the other with contrastive learning.
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A Dataset

In this section, we provide a detailed descrip-
tion of the dataset we use in our experiments
and the preprocessing steps. The experiment in
this paper focuses on the SCONE (Long et al.,
2016) dataset. The SCONE dataset contains three
subtasks: ALCHEMY, SCENE, and TANGRAMS.
Each subtask focuses on a different domain and
highlights different linguistic properties. The
ALCHEMY task includes instructions about mixing
colored chemicals in 7 beakers, and focuses on the
ellipsis phenomenon. The SCENE task includes de-
scriptions about people’s movement in a scene, and
focuses on object coreference. The TANGRAMS

task includes instructions to manipulate tangram
pieces, and focuses on action coreference. Table 3
shows the dataset statistics of all three datasets.
The only data filtering we used in this work is that
we removed a few examples from the TANGRAMS

Task Train Dev Test

ALCHEMY 3567 245 899
SCENE 3352 198 1035
TANGRAMS 4159 198 990

Table 3: Dataset statistics for the SCONE (Long et al.,
2016) dataset. The numbers in this Table are the number
of examples. Each example will contain 5 steps.

task where it does not contain 5 complete instruc-
tions. Other than that, we use all the examples in
the original dataset.

State Representation Linearization Pretrained
Transformers, including T5s used in this paper,
are shown to be sensitive to the output format.
Therefore, we convert the original output format in
SCONE into a more readable text description. An
example for each subtask can be seen in Table 4.

B Implementation Details

All the models used in this work are imple-
mented using JAX (Bradbury et al., 2018) and the
T5x (Roberts et al., 2022) framework. For all the
experiments, we finetune the T5-v1.1-base model.
We use a batch size of 128, a constant learning
rate of 0.0001, and a dropout rate of 0.1. For the
ALCHEMY task, we finetune for 100k steps. For the
SCENE and TANGRAMS tasks, we notice the model
converges faster, so we finetune for 50k steps. For
the contrastive learning experiments, the instruc-
tion embeddings are extracted using sentence-T5-
base (Ni et al., 2022) models. We use cosine sim-
ilarity as the similarity function in the contrastive
loss. All our experiments are conducted on Google
v3 TPUs.

C More Discussions about Contrastive
Learning Results

In Sec. 4, we notice that while our contrastive
learning approach can improve the low accall on
ALCHEMY, it fails to consistently improve in other
settings, especially when the baseline performance
is already decent on the SCENE subtask. One of
our observations that may prevent contrastive learn-
ing from further improvement is the tendency for
the contrastive loss to overfit during the training.
In our experiments, we often observe a significant
gap between the contrastive matching accuracy on
the training set and on the development set. This
problem is very likely to be caused by the lack of
regularization in the current implementation of the
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Task Example state Example instructions

ALCHEMY 1: empty empty empty empty, 2: empty empty
empty empty, 3: empty empty empty empty, 4:
empty empty empty empty, 5: orange empty empty
empty, 6: orange orange orange empty, 7: green
green green green

Instruction 1: pour the last orange beaker into
beaker two
Instruction 2: then into the first
...

SCENE 1: red empty, 2: empty empty, 3: empty empty, 4:
empty empty, 5: green empty, 6: green orange, 7:
yellow orange, 8: empty empty, 9: yellow empty,
10: empty empty

Instruction 1: the man in the red hat takes a step to
the right
Instruction 2: he’s joined on his left by a person
wearing a blue shirt
...

TANGRAMS 1: two, 2: one, 3: four, 4: zero, 5: three Instruction 1: delete the second object from the left
Instruction 2: undo that
...

Table 4: Example linearized states and instructions used in this work for three subtasks of SCONE. For graphic
demonstrations of these states and instructions, please visit https://nlp.stanford.edu/projects/
scone/

difference vector. In our current implementation,
the only constraint the difference vector have is that
it needs to be a function of consecutive states, i.e.
hdiffi = f(hstatei , hstatei+1 ). While this implementa-
tion can capture the difference between the states,
and can help when the model’s performance is bad
(as empirically verified on ALCHEMY), it can also
capture many irrelevant features, which helps re-
duce the contrastive matching loss, but does not
help the model to correct its prediction on interme-
diate steps. In our experiments, we have also tried
several approaches to resolve this problem, includ-
ing having hard negatives in contrastive learning,
having an auto-encoder style reconstruction loss,
etc. But none of these methods solves this prob-
lem effectively. Hence, we leave a more in-depth
exploration of this direction for future work.
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