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Preface by the Conference Organizers

We are excited to welcome you to *SEM 2023, the 12th Joint Conference on Lexical and Computational
Semantics! We are pleased to present this volume containing the accepted long and short papers. *SEM
2023 follows a hybrid format (remote and in-person) and will be held on July 13th-14th 2023, co-located
with ACL 2023 in Toronto, Ontario, Canada.
Since its first edition in 2012, *SEM has become a major venue to present recent advances in all areas
of lexical and computational semantics, including semantic representations, theoretical semantics, mul-
tilingual semantics, and others. *SEM is sponsored by SIGLEX, the ACL Special Interest Group on the
Lexicon.
*SEM 2023 accepted both papers submitted directly through the START system and those already re-
viewed through ARR (ACL Rolling Review). In total, we received 95 submissions in 9 areas:

• Commonsense reasoning and natural language understanding

• Discourse, dialogue, and generation

• Lexical semantics

• Multilinguality

• Psycholinguistics, cognitive linguistics, and semantic processing

• Resources and evaluation

• Semantic composition and sentence-level semantics

• Semantics in NLP applications

• Theoretical and formal semantics

We compiled an exciting and wide-ranging program, accepting a total of 45 papers – 29 long papers and
16 short papers. In addition, 8 papers accepted to ACL Findings will be presented as part of the *SEM
poster session.
The submitted papers were carefully evaluated by a program committee led by 13 area chairs, who coor-
dinated a panel of 140 reviewers. Because the number of submissions was almost double our expectation,
we recruited a number of late reviewers and emergency reviewers. The reviews were almost all of very
high quality, and for that we are extremely grateful! All but a handful of papers were reviewed by three
reviewers, who were encouraged to discuss any divergence in evaluations. Area chairs then added meta-
reviews to explain their accept/reject suggestions. The final selection was made by the program co-chairs
after a check of the reviews, meta-reviews, and discussions with the area chairs.
We are also very excited to have three excellent keynote speakers: Jessy Li (University of Texas at Au-
stin) presents recent work on how we might better model discourse in the age of large language models,
Hinrich Schütze (University of Munich) talks about massively multilingual language models and issues
related to their semantic evaluation, and finally Danushka Bollegala (Amazon and University of Liver-
pool) discusses the topic of lexical semantics over time.
We are honored to serve as the organizing committee for *SEM 2023, and we absolutely could not ha-
ve made this happen without a huge amount of help. First, tremendous thanks to all area chairs and
reviewers for their invaluable help in selecting the program, for their engagement in thoughtful discus-
sions, and for providing valuable feedback to the authors. Second, thanks to our Publicity chair Malihe
Alikhani (University of Pittsburgh) who took care of website and social media updates. Next, thanks to
our Publication chair Luis Espinosa-Anke (Cardiff University and AMPLYFI) for being the mastermind
and driving force behind compilation of the proceedings, and finally the ACL 2023 workshop organizers
for help and support with all organizational aspects of the conference. Finally, thank you to the authors
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and presenters for making *SEM 2023 such an engaging and exciting event! We hope that you, dear
audience, will find the content of these proceedings as engaging as we do, and we hope to see you at
future iterations of *SEM!
Jose Camacho-Collados and Alexis Palmer, Program co-chairs
Mohammad Taher Pilehvar, General chair
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Abstract

State-of-the-art sign language generation
frameworks lack expressivity and naturalness
which is the result of only focusing on man-
ual signs, neglecting the affective, grammatical,
and semantic functions of facial expressions.
The purpose of this work is to augment se-
mantic representation of sign language through
grounding facial expressions. We study the
effect of modeling the relationship between
text, gloss, and facial expressions on the per-
formance of the sign generation systems. In
particular, we propose a Dual Encoder Trans-
former able to generate manual signs as well as
facial expressions by capturing the similarities
and differences found in the text and sign gloss
annotation. We take into consideration the role
of facial muscle activity to express intensities
of manual signs by being the first to employ
facial action units in sign language generation.
We perform a series of experiments showing
that our proposed model improves the quality
of automatically generated sign language.

1 Introduction

Communication between the Deaf and Hard of
Hearing (DHH) people and hearing non-signing
people may be facilitated by emerging language
technologies. DHH individuals are medically un-
derserved worldwide (McKee et al., 2020; Masuku
et al., 2021) due to the lack of doctors who can
understand and use sign language. Also, educa-
tional resources that are available in sign language
are limited especially in STEM fields (Boyce et al.,
2021; Lynn et al., 2020). Although the Americans
with Disabilities Act (United States Department of
Justice, 2010) requires government services, pub-
lic accommodations, and commercial facilities to
communicate effectively with DHH individuals,
the reality is far from ideal. Sign language inter-
preters are not always available, and communicat-
ing through text is not always feasible as written

languages are completely different from signed lan-
guages.

In contrast to Sign Language Recognition (SLR)
which has been studied for several decades (Rast-
goo et al., 2021) in the computer vision commu-
nity (Yin et al., 2021), Sign Language Generation
(SLG) is a more recent and less explored research
topic (Quandt et al., 2021; Cox et al., 2002; Glauert
et al., 2006).

Missing a rich, grounded semantic representa-
tion, the existing SLG frameworks are far from gen-
erating understandable and natural sign language.
Sign languages use spatiotemporal modalities and
encode semantic information in manual signs and
facial expressions. A major focus in SLG has been
put on manual signs, neglecting the affective, gram-
matical, and semantic roles of facial expressions.
In this work, we bring insights from computational
linguistics to study the role of and include facial
expressions in automated SLG. Apart from using
facial landmarks encoding the contours of the face,
eyes, nose, and mouth, we are the first to explore
using facial Action Units (AUs) to learn semantic
spaces or representations for sign language genera-
tion.

In addition, with insights from multimodal Trans-
former architecture design, we present a novel ap-
plication of the Dual Encoder Transformer model
for SLG, which takes as input spoken text and
glosses, computes the correlation between both
inputs and generates skeleton poses with facial
landmarks and facial AUs. Previous work used
either gloss or text to generate sign language or
used text-to-gloss (T2G) prediction as an interme-
diary step (Saunders et al., 2020). Our model ar-
chitecture, on the other hand, allows us to capture
information otherwise lost when using gloss only
and captures differences between text and gloss,
which is especially useful for highlighting adjec-
tives otherwise lost in gloss annotation. We per-
form several experiments using the PHOENIX14-T
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Figure 1: Sign Language uses multiple modalities, such as hands, body, and facial expressions to convey semantic
information. Although gloss annotation is often used to transcribe sign language, the above examples show that
meaning encoded through facial expressions are not captured. In addition, the translation from text (blue) to gloss
(red) is lossy even though sign languages have the capability to express the complete meaning from text. The lower
example shows lowered brows and a wrinkled nose to add the meaning of kräftiger(heavy) (present in text) to
the RAIN sign.

weather forecast dataset and show that our model
performs better than baseline models using only
gloss or text.

In summary, our main contributions are the fol-
lowing:

• Novel Dual Encoder Transformer for SLG
captures information from text and gloss, as
well as their relationship to generate continu-
ous 3D sign pose sequences, facial landmarks,
and facial action units.

• Use of facial action units to ground semantic
representation in sign language.

2 Background and Related Work

More than 70 million Deaf and Hard of Hearing
worldwide use one of 300 existing sign languages
as their primary language (Kozik, 2020). In this
section, we explain the linguistic characteristics
of sign languages, the importance of facial expres-
sions to convey meaning, and elaborate on prior
work in SLG.

2.1 Sign Language Linguistics

Sign languages are spatiotemporal and are artic-
ulated using the hands, face, and other parts of
the body, which need to be visible. In contrast to
spoken languages, which are oral-aural, sign lan-
guages are articulated in front of the top half of the
body and around the head. No universal method,
such as the International Phonetic Alphabet (IPA),
exists to capture the complexity of signs. Gloss
annotation is often used to represent the meaning
of signs in written form. Glosses do not provide
any information about the execution of the sign,
only about its meaning. Even more, as glosses use
written language rather than sign language, they
are a mere approximation of the sign’s meaning,
representing only one possible transcription. For
that reason, glosses do not always represent the full
meaning of signs, as shown in Figure 1.

Every sign can be broken into four manual char-
acteristics: shape, location, movement, and orien-
tation. Non-manual components such as mouth
movements (mouthing), facial expressions, and
body movements are other aspects of sign lan-
guage phonology. In contrast to spoken languages,
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NOUN VERB ADV ADJ

gloss 20927 6407 17718 648

TEXT 25952 7638 24755 5628

Table 1: Occurrence of different Part-of-Speech (POS)
in the sign gloss annotation and the German transcripts
computed with Spacy (Honnibal and Montani, 2017).
Although gloss annotations show fewer samples for all
POS, the difference in the occurrence of adjectives is
statistically significant with p < 0.05.

signing occurs simultaneously, while vowels and
consonants occur sequentially. Although the vo-
cabulary size of ASL in dictionaries is around
15,000 (Spread the Sign, 2017) compared to ap-
proximately 170,000 in spoken English, the simul-
taneity of phonological components allows for a
wide range of signs to describe slight differences
of the same gloss.

While in English various words describe large-
ness (big, large, huge, humongous, etc.), in ASL,
there is one main sign for “large”: BIG. How-
ever, through modifications of facial expressions,
mouthing, and the size of the sign, different lev-
els of largeness can be expressed just as in a
spoken language (Grushkin, 2017). To commu-
nicate spoken concepts without a corresponding
fingerspelling—a manual alphabet—is sometimes
used. (Baker et al., 2016)

2.2 Grammatical Facial Expressions
Facial expressions are grammatical components
of sign languages that encode semantic represen-
tations, which, when excluded leads to loss of
meaning. Facial expressions in particular have
an important role in distinguishing different types
of sentences such as WH-questions, Yes/No ques-
tions, doubt, negations, affirmatives, conditional
clauses, focus and relative clauses (da Silva et al.,
2020). The following example shows how the same
gloss order can present a question or an affirma-
tion (Baker et al., 2016):

Example 1
Indopakistani Sign Language
a) FATHER CAR EXIST.
“(My) father has a car.”

b) FATHER CAR EXIST?
“Does (your/his) father have a car.”

In this example, what makes sentence b) a ques-

tion are raised eyebrows and a forward and/or
downward movement of the head/chin in parallel
to the manual signs.

Figure 2: Examples from different facial Action Units
(AUs) (Friesen and Ekman, 1978) from the lower face
relevant to the generation of mouthings in sign lan-
guages. AUs can occur with different intensity values
between 0 and 5. AUs have been used in psychology
and in affective computing to understand emotions ex-
pressed through facial expressions. Image from (De la
Torre and Cohn, 2011).

In addition, facial expressions can differentiate
the meaning of a sign assuming the role of a de-
terminer. Figure 1 shows different signs for the
same gloss, REGEN (rain). We can observe from
the text transcript (in blue) that the news anchor
says “rain” in the upper example but “heavy rain”
in the lower. This example shows how gloss an-
notations are not perfect transcriptions of sign lan-
guages as they only convey the meaning of manual
aspect of the signs. Information conveyed through
facial expressions to show intensities are not rep-
resented in gloss annotation. To view the loss of
information that occurs in gloss annotation we used
Spacy (Honnibal and Montani, 2017) to compute
the Part-of-Speech (POS) annotation for text and
gloss. In Table 1 the occurrence of nouns, verbs,
adverbs, and adjectives are shown for text and gloss
over the entire dataset. We can see that although
gloss annotations have lower occurrence for all
POS, the difference is statistically significant for
adjectives with p < 0.05. To calculate this signifi-
cance, we performed hypothesis testing with two
proportions by computing the Z score. We used
t-tests to determine statistical significance of our
model’s performance.

2.3 Sign Language Generation

Several advances in generating sign poses from text
have been recently achieved in SLG, however there
is limited work that considers the loss of semantic
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Figure 3: Our proposed model architecture, the Dual Encoder Transformer for Sign Language Generation. Our
architecture is characterized by using two encoders, one for text and one for gloss annotation. The use of two
encoders allows to multiply the outputs of both emphasizing the differences and similarities. In addition we to using
skeleton poses and facial landmarks, we include facial action units (Friesen and Ekman, 1978).

information when using gloss to generate poses
and aligned facial expressions. Previous work has
generated poses by translating text-to-gloss (T2G)
and then gloss-to-pose (G2S) or by using either text
or gloss as input (Stoll et al., 2020; Saunders et al.,
2020). We propose a Dual Encoder Transformer
for SLG which trains individual encoders for text
and gloss, and combines the encoder’s output to
capture similarities and differences.

In addition, the majority of previous work on
SLG has focused mainly on manual signs (Stoll
et al., 2020; Saunders et al., 2020; Zelinka and Ka-
nis, 2020; Saunders et al., 2021b). (Saunders et al.,
2021a) are the first to generate facial expressions
and mouthing together with hand poses. The repre-
sentation used for the non-manual channels is the
same as for the hand gestures, namely coordinates
of facial landmarks. In this work we explore the
use of facial Action Units (AUs) (see Figure 2)
which represent intensities of facial muscle move-
ments (Friesen and Ekman, 1978). Although AUs
have been primarily used in tasks related to emotion
recognition (Viegas et al., 2018), recent works have
shown that AUs help detect WH-questions, Y/N
questions, and other types of sentences in Brazilian
Sign Language (da Silva et al., 2020).

3 Sign Language Dataset

In this work, we use the publicly available
PHOENIX14T dataset (Camgoz et al., 2018), fre-

quently used as a benchmark dataset for SLR and
SLG tasks. The dataset comprises a collection of
weather forecast videos in German Sign Language
(DGS), segmented into sentences and accompanied
by German transcripts from the news anchor and
sign-gloss annotations. PHOENIX14T contains
videos of 9 different signers with 1066 different
sign glosses and 2887 different German words. The
video resolution is 210 by 260 pixels per frame and
30 frames per second. The dataset is partitioned
into training, validation, and test sets with respec-
tively 7,096, 519, and 642 sentences.

4 Methods: Dual Encoder Transformer
for Sign Language Generation

In this section, we present our proposed model,
the Dual Encoder Transformer for Sign Language
Generation. Given the loss of information that
occurs when translating from text-to-gloss, our
novel architecture takes into account the informa-
tion from text and gloss as well as their similari-
ties and differences to generate sign language in
the form of skeleton poses and facial landmarks
shown in Figure 3. For that purpose, we learn the
conditional probability p = (Y |X,Z) of produc-
ing a sequence of signs Y = (y1, . . . , yT ) with T
frames, given the text of a spoken language sen-
tence XT = (x1, . . . , xN ) with N words and the
corresponding glosses Z = (z1, . . . , zU ) with U
glosses.
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Our work is inspired by the Progressive Trans-
former (Saunders et al., 2020), which allows trans-
lation from a symbolic representation (words or
glosses) to a continuous domain (joint and face
landmark coordinates) by employing positional en-
coding to permit the processing of inputs with var-
ied lengths. In contrast to the Progressive Trans-
former, which uses one encoder to use either text
or glosses to generate skeleton poses, we employ
two encoders, one for text and one for glosses, to
capture information from both sources and create a
combined representation from the encoder outputs
to represent correlations between text and glosses.
In the following, we will describe the different
components of the dual-encoder transformer.

4.1 Embeddings
As our input sources are words, we must convert
them into numerical representations. Similar to
transformers used for text-to-text translations, we
use word embeddings based on the vocabulary in
the training set. As we are using two encoders to
represent similarities and differences between text
and glosses, we use one word embedding based
on the vocabulary of the text and one using the
vocabulary of the glosses. We also experiment
by using text word embedding for both encoders.
Given that our target is a sequence of skeleton joint
coordinates, facial landmark coordinates, and con-
tinuous values of facial AUs with varying lengths
we use counter encoding (Saunders et al., 2020).
The counter c varies between [0,1] with intervals
proportional to the sequence length. It allows the
generation of frames without an end token. The
target joints are then defined as:

mt = [yt, ct] with

yt = [yhands+body, yface, yfacialAUs]

The target joints mt are then passed to a contin-
uous embedding which is a linear layer.

4.2 Dual Encoders
We use two encoders, one for text and one for
gloss annotations. Both encoders have the same
architecture. They are composed of L layers, each
with one Multi-head Attention (MHA) and a feed-
forward layer. Residual connections (He et al.,
2016) around each of the two sublayers with subse-
quent layer normalization (Ba et al., 2016). MHA
uses multiple projections of scaled dot-products

which permits the model to associate each word of
the input with each other. The scaled dot-product
attention outputs a vector of values, V , which is
weighted by queries, Q, keys, K, and dimensional-
ity, dk:

Attention(Q,K, V ) = softmax(
QKT

√
dk

) (1)

Different self-attention heads are used in MHA,
allowing parallel mappings of the Q, V , and K
with different learned parameters.

The outputs of MHA are then fed into a non-
linear feed-forward projection. In our case, where
we employ two different encoders, their outputs
can be formulated as follows:

Hn = Etext(ŵn, ŵ1:N )

Hu = Egloss(ŵu, ŵ1:U )
(2)

with hn being the contextual representation of the
source sequence, N being the number of words,
and U being the number of glosses in the source
sequence.

As we want to use not only the information en-
coded in text and gloss but also their relationship,
we combine the output of both encoders with a
Hadamard multiplication. As the N ̸= U , we stack
hn vertically for U times and stack hu vertically
for N times to have two matrices with the same
dimensions. Then we multiply both matrices with
the Hadamard multiplication. Hadamard multipli-
cation is a concatenation of every element in two
matrices, where ai,j and bi,j are multiplied together
to get ai,jbi,j . This represents concatenating the
output vectors from the text encoder with the output
of the vectors from the gloss encoder.

Htext,gloss =




Hn0

Hn1
...

HnU


⊙




Hu0

Hu1
...

HuN


 (3)

4.3 Decoder
Our decoder is based on the progressive trans-
former decoder (DPT), an auto-regressive model
that produces continuous sequences of sign pose
and the previously described counter value (Saun-
ders et al., 2020). In addition to producing sign
poses and facial landmarks, our decoder also pro-
duces 17 facial AUs. The counter-concatenated
joint embeddings, which include manual and facial
features (facial landmarks and AUs), ĵu , are used
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to represent the sign pose of each frame. Firstly,
an initial MHA sub-layer is applied to the joint em-
beddings, similar to the encoder but with an extra
masking operation. The masking of future frames
is necessary to prevent the model from attending
to future time steps. A further MHA mechanism
is then used to map the symbolic representations
from the encoder to the continuous domain of the
decoder. A final feed-forward sub-layer follows,
with each sub-layer followed by a residual connec-
tion and layer normalization as in the encoder. The
output of the progressive decoder can be formu-
lated as:

[ŷu, ĉu] = D(ĵ1:u−1, h1:T ) (4)

where ŷu corresponds to the 3D joint positions,
facial landmarks, and AUs, representing the pro-
duced sign pose of frame u, and ĉu is the respective
counter value. The decoder learns to generate one
frame at a time until the predicted counter value,
ĉu, reaches 1. The model is trained using the mean
squared error (MSE) loss between the predicted
sequence, ŷ1:U , and the ground truth, y∗1:U :

LMSE =
1

U
(y∗1:U − ŷ1:U )2 (5)

5 Computational Experiments

5.1 Features

We extract three different types of features from the
PHOENIX14T dataset: skeleton joint coordinates,
facial landmark coordinates, and facial action unit
intensities. We use OpenPose (Cao et al., 2019) to
extract skeleton poses from each frame and use for
our experiments the coordinates of 50 joints which
represent the upper body, arms, and hands, which
we will start referring to as “manual features”. We
also use OpenFace (Baltrusaitis et al., 2018) to
extract 68 facial landmarks as well as 17 facial
action units (AUs) shown in Figure 2 to describe
“facial features”.

5.2 Baseline Models

We will compare the performance of our proposed
model (TG2S) with two Progressive Transform-
ers (Saunders et al., 2020), one using gloss only to
produce sign poses (G2S), and one that uses text
only (T2S). We train each model only with manual
features and also with the combination of manual
and facial features through concatenation.

5.3 Evaluation Methods
In order to automatically evaluate the performance
of our model and the baseline models, we use back
translation suggested by (Saunders et al., 2020).
For that purpose, we use the Sign Language Trans-
former (SLT) (Camgoz et al., 2020) which trans-
lates sign poses into text and computes BLEU and
ROUGE scores between the translated text and the
original text. As the original SLT was designed
to receive video frames as input, we modified the
architecture by removing the convolutional layers
that were used for image feature extraction, and
then we replaced skeletal pose and facial features
as input.

6 Results

6.1 Quantitative Results
Table 2 shows how well the SLT model performs
the translation from ground truth sign poses to text
when trained and evaluated with the PHOENIX14T
dataset. The results show the highest BLEU scores
are achieved when training the SLT model only
with skeleton joints from the hands and upper body,
presenting a BLEU-4 score of 11.32 for the test
set. When facial AUs are added to the hands, body,
and face features, the difference from using manual
data only is slightly lower, being BLEU-4 of 10.61.

In Table 3, the results of using hands and body
joint skeleton as sole input to the baseline models
and our proposed model are shown. We can see
that our proposed model TG2S shows the highest
BLEU-4 scores of 8.19 in the test set, compared to
7.84 for G2S and 7.56 for T2S.

Table 4 presents the results of including facial
landmarks as well as facial AUs with body and
hands skeleton joints as input. Also, here we can
see that our proposed model outperforms the base-
line models showing a BLEU-4 score of 5.76 in the
test set. G2S obtained a BLUE-4 score of 6.37 and
T2S 5.53.

We see in Tables 3 and 4 that G2S obtained
higher scores than T2S. Given that gloss anno-
tations fail to encode the richness of meaning in
signs, it appears the smaller vocabulary helps the
model achieve higher scores by neglecting informa-
tion otherwise described in the text. Our proposed
model is able to obtain better results than G2S by
making a compromise of using information from
gloss, text, and their similarities and differences.
We also can see in both tables that the inclusion of
facial information reduces the overall scores. We
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Components Dev Set Test Set
Bleu1 Bleu2 Bleu3 Bleu4 ROUGE Bleu1 Bleu2 Bleu3 Bleu4 ROUGE

Manual 30.15 20.58 15.41 12.22 30.41 27.76 18.86 14.11 11.32 27.44
Manual and Facial 29.46 20.30 15.31 12.10 29.25 26.75 17.88 13.29 10.61 26.54

Table 2: Translation results of the SLT model (Camgoz et al., 2020) used for backtranslation when trained and
evaluated with ground truth hand and body skeleton joints (manual) and facial landmarks and AUs (facial).

Model Dev Set Test Set
Bleu1 Bleu2 Bleu3 Bleu4 ROUGE Bleu1 Bleu2 Bleu3 Bleu4 ROUGE

G2S 24.51 15.71 11.19 8.70 24.84 23.26 14.54 10.21 7.84 22.89
T2S 22.90 14.55 10.42 8.14 23.42 22.14 13.88 9.85 7.56 22.50

TG2S (Ours) 24.60 16.20 11.68 8.97 24.82 22.97 14.71 10.59 8.19 23.45

Table 3: Back translation results obtained from the generative models when using only manual features. Our
proposed model has the highest scores in almost all metrics compared to the models using only gloss or text.

Model Dev Set Test Set
Bleu1 Bleu2 Bleu3 Bleu4 ROUGE Bleu1 Bleu2 Bleu3 Bleu4 ROUGE

G2S 16.11 8.77 5.97 4.49 16.19 16.29 9.20 6.37 4.93 16.73
T2S 15.65 8.35 5.76 4.44 15.65 14.12 7.76 5.53 4.39 14.82

TG2S 17.25 10.17 7.04 5.32 17.85 17.18 10.39 7.39 5.76 17.64

Table 4: Back translation results obtained from the generative models when using manual features and facial
landmarks and AUs. Our proposed model has the highest scores in all metrics compared to the models using only
gloss or text.

believe that this might be the case due to the diverse
range of facial expressions possible. We cannot di-
rectly compare the results of Table 3, and 4 as two
SLT models pretrained on different domains were
used to compute the BLEU scores.

6.2 Qualitative Results

Figure 4 shows the visual quality of our model’s
prediction when using manual and facial informa-
tion. Both examples show that the predictions cap-
tured the hand shape, orientation, and movement
from the ground truth. In the bottom example for
RAIN, the predictions were even able to capture the
repetitive hand movement symbolizing falling rain.
What can also be noted is that the ground truth
is not perfect. In both examples unnatural finger
and head postures can be seen. In addition, ground
truth is not displaying movements of the eyebrows
and mouth in the expected intensities.

Figure 5 shows situations in which the predic-
tions failed to represent the correct phonology of
signs. In the first example, we see that hand shape,
orientation, and position are incorrect. The predic-
tions of our models also fail to capture pointing
hand shapes as shown in example 2.

7 Discussion and Conclusion

In this work, for the first time, we attempt to aug-
ment contextual embeddings for sign language by
learning a joint meaning representation that in-
cludes fine-grained facial expressions. Our results
show that the proposed semantic representation is
richer and linguistically grounded.

Although our proposed model helped bridge the
loss of information by taking into account text,
gloss, and their similarities and differences, there
are still several challenges to be tackled by a multi-
disciplinary scientific community.

Complex hand shapes with pointing fingers are
very challenging to generate. The first step to im-
proving the generation of the fingers is in improv-
ing methods to recognize finger movements more
accurately. Similarly, we need tools that are more
robust in detecting facial expressions even in situa-
tions of occlusion. We also realize that SLG models
are overfitting specific sign languages instead of
learning generalized representations of signs.

We chose to work with a German sign language
since that is the only dataset with gloss annota-
tion that could help us study our hypotheses. The
How2Sign dataset (Duarte et al., 2021) is a feasible
dataset for ASL, but it does not allow any model

7



WOLKE
(CLOUD)

REGEN
(RAIN)

TG2S
(Ours)

TG2S
(Ours)

Ground
Truth

Ground
Truth

Figure 4: Comparison of the ground truth and the generated poses with our proposed dual encoder model for the
gloss annotations CLOUD and RAIN. The upper example shows that the predictions captured the correct hand shape,
orientation, and movement of the sign CLOUD. In the lower example, it is visible that the predictions captured the
repeating hand movement meaning RAIN. Although at first glance the hand orientation seems not correct, it is a
slight variation which still is correct.
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Figure 5: Examples in which our model failed to gener-
ate the correct phonology of signs. Example 1 depicts
inaccuracies in hand shape, orientation, and movement.
Example 2 shows the difficulty of the model to capture
pointing hand shapes.

to extract facial landmarks, facial action units, or
facial expressions from the original video frames
since the faces are blurred. In the future, we hope
to see new datasets with better and more diverse
annotations for different sign languages that would
allow the design of a natural and usable sign lan-
guage generation system.
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Abstract

Multimodal embeddings aim to enrich the se-
mantic information in neural representations of
language compared to text-only models. While
different embeddings exhibit different applica-
bility and performance on downstream tasks,
little is known about the systematic representa-
tion differences attributed to the visual modal-
ity. Our paper compares word embeddings
from three vision-and-language models (CLIP,
OpenCLIP and Multilingual CLIP, Radford
et al. 2021; Ilharco et al. 2021; Carlsson et al.
2022) and three text-only models, with static
(FastText, Bojanowski et al., 2017) as well as
contextual representations (multilingual BERT
Devlin et al. 2018; XLM-RoBERTa, Conneau
et al. 2019). This is the first large-scale study of
the effect of visual grounding on language rep-
resentations, including 46 semantic parameters.
We identify meaning properties and relations
that characterize words whose embeddings are
most affected by the inclusion of visual modal-
ity in the training data; that is, points where
visual grounding turns out most important. We
find that the effect of visual modality correlates
most with denotational semantic properties re-
lated to concreteness, but is also detected for
several specific semantic classes, as well as
for valence, a sentiment-related connotational
property of linguistic expressions.

1 Introduction

Linguistic representations developed by recent
large pre-trained language models (LMs) (Devlin
et al., 2018; Liu et al., 2019; Radford et al., 2019
a.o.) proved to be very useful across a variety of
practical applications. This success has given a
new life to the debate around extractability and
quality of semantic information in representations
trained solely on textual input. According to the

∗Equal contribution.

widely supported argument, unless the textual data
is grounded in a separate space (say, visual), the lin-
guistic representations are bound to be semantically
deficient (see Bender and Koller, 2020 a.o.).

We aim to shed new empirical light on the dis-
cussion of grounding in computational models by
comparing language-only text representations to
visually informed text representations. Recent
advances produced empirically successful large
models pre-trained on a combination of textual
and visual data (Li et al., 2019; Tan and Bansal,
2019, 2020; Radford et al., 2021). While these
multimodal systems have already given rise to a
plethora of applications for language-and-vision
(L&V) downstream tasks, there is still little work
that directly compares textual representations of
language-only models to those of multimodal ones
(however, see Davis et al., 2019; Lüddecke et al.,
2019; Pezzelle et al., 2021). In contrast to previous
related work that focuses on model evaluation with
respect to specific benchmarks, we look at the im-
pact of visual grounding from a somewhat different,
non-evaluation-based perspective. We do not aim
to measure the representation quality with respect
to some gold standard, but compare language-only
and L&V models to each other intrinsically. Our
goal is to identify the areas in which the contrasts
between the two kinds of models tend to lie, inde-
pendent of the models’ fitness for specific tasks.

To do so, we focus on a set of 13k word pairs and
compare cosine distances within these pairs in the
embedding spaces of language-only vs. L&V mod-
els. Fixing the word pairs and comparing the mod-
els allows us to measure how the change in model
modality stretches the embedding space, with the
word pairs as indirect reference points.

The pairs are characterized along 46 different
semantic parameters. This information makes it
possible to identify the meaning aspects for which
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the change in model modality matters the most.
Our contributions are:

1. a methodology for measuring the influence of
grounding on semantic representations;

2. a dataset characterizing a large number of
word pairs along various semantic parame-
ters and embedding distances in the models
that we study.

Our results are the following:

• The semantic parameter that makes the highest
contribution into explaining the impact of modal-
ity on word representation is concreteness. This
aligns with previous results that visual modality
improves representations of concrete nouns but not
abstract ones (Pezzelle et al., 2021).

• Representations of particular semantic groups of
nouns are affected the most.

• Semantic relations between nouns only have
small interaction with modality across the models
we tested, with variation from model to model.

• Connotational meanings from the VAD (valence,
arousal, dominance) repertoire (Mohammad, 2018)
– specifically, valence – play a role in representa-
tional shifts relating to modality. This is a some-
what surprising result since visual grounding is
expected to relate to the denotational aspects of rep-
resentations. This result is in line with recent dis-
cussion in semantics about the inter-relatedness of
denotational and connotational meanings (Ruyten-
beek et al., 2017; Terkourafi et al., 2020; Van Tiel
and Pankratz, 2021; Beltrama, 2021; Gotzner and
Mazzarella, 2021).

We now discuss our data, analysis and results.

2 Data1

The dataset consists of word pairs. To collect them,
we start with 1000 most frequent words in FastText
(Bojanowski et al., 2017). For each of them, we
take 100 closest words, by cosine distance over
FastText embeddings. This gives 1M pairs to work
with. We filter this list of pairs in several ways.
First, we only keep those pairs where both words
are nouns, according to both NLTK2 and SpaCy3

1Our code and data are available on GitHub: https:
//github.com/altsoph/modality_shifts

2https://github.com/nltk/nltk
3https://github.com/explosion/

spacy-models

POS labels. Second, we filter out pairs where one
of the words is a substring of the other or where
the two words have the same lemma. This helps
against some FastText artifacts.

One of the goals of our filtering strategy was
to balance representation quality of the words (the
frequency filter) and the chance for the pair to stand
in a WordNet relation (the similarity filter). This
gives us a set of pairs like the following:

⟨ page, article ⟩
⟨ people, politicians ⟩
⟨ city, hometown ⟩

Each of the resulting pairs was characterized
along a set of properties of interest, collected over
a variety of available sources of human-annotated
semantic information. The properties we look at
come in two big blocks: 1) the ones that charac-
terize individual words (assigned to each word in
the pair); 2) the ones that characterize a semantic
relation between the words in the pair.

Properties for individual words included:

• Concreteness, a continuous score on the
abstractness-concreteness scale, the Ghent con-
creteness norms (Brysbaert et al., 2014);

• 26 WordNet supersenses of nouns (ACT, AN-
IMAL, FEELING, FOOD etc.), implemented as
boolean labels (Miller, 1995);

• 3 NRC VAD continuous scores for valence,
arousal and dominance (Mohammad, 2018).

Relational semantic properties included:

• 6 WordNet semantic relations (Miller, 1995):
ANTONYMS, SYNONYMS, SAME_HYPONYMS,
SAME_HYPERNYMS, HYPONYMS, HYPERNYMS.

• 10 ConceptNet semantic relations (Speer et al.,
2017): ANTONYM, SYNONYM, ATLOCATION,
DERIVEDFROM, DISTINCTFROM, FORMOF, ISA,
PARTOF, RELATEDTO, SIMILARTO.

The relations were implemented as boolean labels.
This is the most comprehensive list of semantic

parameters for which human annotations exist on a
large scale. It covers both denotational and connota-
tional aspects of meaning of both individual words
and relation within pairs. Connotational meanings
are represented with three sentiment-related mean-
ing aspects only, as these are the only ones repre-
sented in a large human-annotated dataset (Moham-
mad, 2018).

Additionally, word count based on Wikipedia
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(accessed via Textacy) is included for each word
in all pairs as a non-semantic baseline parameter.

We leave only those word pairs for which all
the above mentioned parameters are defined. This
gives us 13k word pairs in total, each of the pairs
gets characterized along 30 individual semantic
parameters (*2, for the first and the second noun in
the pair) and 16 relational parameters; plus, word
count for each of the words in the pair.

We collect the distances between the words in
each pair for their embeddings from the models
of interest. As text-only models, we use fastText
(Bojanowski et al., 2017) and two contextualized
embedding models: multilingual BERT (mBERT,
Devlin et al., 2018) and XLM-RoBERTa (XLMR,
Conneau et al., 2019). For each contextualized
model, we extract three kinds of word type embed-
dings known to show systematic differences (Vulić
et al., 2020); average of all token embeddings, in-
cluding separator tokens, from the final encoding
layer of a word presented in isolation (iso); the av-
erage encoding over the bottom 6 layers across a
sample of 10 usage contexts (avg-bottom), amd the
average encoding from the final layer across a sam-
ple of 10 usage contexts (avg-last). As multimodal
models, we use CLIP, OpenCLIP and Multilingual
CLIP (Radford et al., 2021; Ilharco et al., 2021;
Carlsson et al., 2022). For each multimodal model,
we extract two different types of word type embed-
dings, one by encoding the word in isolation and
one by averaging over sentence embeddings of 10
usage examples.

The goal is to find a common ground of different
models depending on their modality. In this way
we hope to be able to distinguish between model-
specific idiosyncrasies and general properties of
text-based representations.

3 Analysis

We run a series of regression analyses with seman-
tic features and relations as predictors, along with
word frequency as baseline.

We analyze the shift in distances within word
pairs between two embedding models. To measure
it, we rank all word pairs in our dataset by the ratio
between the cosine distance values of the pair in
the two embedding models. Using ratios and ranks
rather than absolute differences serves as a nor-
malization strategy because the vector spaces have
significantly different structures (see Appendix A).
The resulting rank of the pair is then used as the

dependent variable in a regression analysis.
The baseline regression model includes as pre-

dictors word frequencies in the Wikipedia corpus
and concreteness scores from the Ghent concrete-
ness norms dataset (Brysbaert et al., 2014). To
estimate the contribution of different groups of se-
mantic features, we add them to the regression as
additional predictors. This is done separately for

1. taxonomic features of the two words formal-
ized as their WordNet supersenses (Miller,
1995);

2. sentiment/connotation-related features of the
two words extracted from NRC VAD (Mo-
hammad, 2018);

3. relation within the word pair according to
Princeton WordNet (Miller, 1995);

4. relation within the word pair according to Con-
ceptNet (Speer et al., 2017).

All numeric parameters (concreteness scores,
word frequencies, and VAD values) were normal-
ized by converting numeric values into ranks.

To calculate regression, we used a standard im-
plementation of ordinary least squares regression
from the statsmodels python package. We compute
adjusted R-squared values to avoid a bias from the
different numbers of parameters. Each fitted regres-
sion showed high significance (p < 0.0001).

4 Results

The results of regression analysis for several mod-
els are illustrated in Table 1. Our main observations
are:

• Baselines. Concreteness plays a major role in
explaining modality shifts, in line with results of
previous studies (Pezzelle et al., 2021).

• Combined WordNet supersenses. We find a
significant effect for many pairs of text vs. multi-
modal models, although different subsets of taxo-
nomic features prove significant in different pairs
of models.

•WordNet and ConceptNet relations tend to be
significant when aggregated, although no individ-
ual relation has a systematic effect across model
pairs.
• VAD features produce varied effects, with va-
lence showing the most consistent modality differ-
ence. VAD features explain only a small percentage
of variance in all models.
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CLIP-iso vs. XLMR-iso mBERT-iso BERT-avg-last fastText
Baselines
concreteness 9.5 11.68 2.27 8.71
frequency 5.43 7.81 1.91 0.45
concreteness+frequency 16.73 17.16 3.65 9.54
+taxonomic 21 (+4.27) 20.35 (+3.19) 5.43 (+1.78) 19.50 (+9.96)
+VAD 17.36 (+0.63) 17.49 (+0.33) 4.62 (+0.97) 10.78 (+1.24)
+WordNet relations 18.47 (+1.74) 17.36 (+0.2) 10.05 (+6.4) 10.34 (+0.8)
+ConceptNet relations 19.8 (+3.07) 17.47 (+0.31) 8.84 (+5.19) 10.26 (+0.72)

Table 1: Illustration of our method: Embedding space in CLIP-iso vs. four of the text-only models. Table reports
percentage of variance (adjusted R2) in cosine distance ratio explained by different groups of semantic factors. We
take the number in parentheses as an estimate of the effect of the factor (e.g. the effect of all taxonomic features
from WordNet combined) on the difference between two embedding spaces (e.g. fastText vs. CLIP).

Figure 1: Comparing semantic features’ contributions to contrasts between text models vs. other text models, on the
one hand, and text models vs. L&V models, on the other hand. Explanatory contributions of concreteness, VAD
valence and Wordnet supersense ‘Is Possession’ are sensitive to model modality, unlike supersense ‘Is Attribute’.
(Here and in Appendix B, whiskers in the boxplots are set to 0.5 IQR.)

Figure 1 illustrates the effect of specific features:
concreteness, valence and possession WordNet su-
persense, vs. the attribute supersense that has no
consistent effect on modality shifts. For more plots,
see Appendix B.

5 Conclusion and discussion

The goal of our paper was to investigate what se-
mantic factors contribute to the difference in rep-
resentational spaces of language-only models vs.
multimodal models.

Our regression analysis confirmed previous find-
ings that concreteness plays a major role in this
difference (Pezzelle et al., 2021). This is natural
since imageability, the measurable manifestation of
concreteness, is directly related to whether useful
information about a concept can be inferred form
visual data.

However, other factors beyond abstractness con-
tribute to the modality-based space contrasts as
well. The most important factor here is taxonom-
ical, as measured by the effect of WordNet lexi-
cographer files. Wordnet supersenses consistently
affect semantic similarities in text-only models vs.

L&V models: in particular, we found this for arti-
facts, quantities, possessions and communication
lexical classes.

Lastly, sentiment-related lexical properties, most
clearly valence, also affect the semantic similarity
in language-only vs. multimodal spaces. Recently,
several studies in semantics and pragmatics have
indicated interactions of connotational content with
denotational meanings (Ruytenbeek et al., 2017;
Terkourafi et al., 2020; Van Tiel and Pankratz, 2021;
Beltrama, 2021; Gotzner and Mazzarella, 2021).
Our results can be interpreted as pointing in that
direction too. Still, the effect of sentiment is overall
much smaller than the core denotational properties
of the words in the lexical pair, as illustrated by
the comparison of the combined VAD to combined
taxonomic features in Table 1.

We contribute to the understanding of different
embedding spaces by demonstrating systematic dif-
ferences between text-only vs. L&V models. Many
questions are however left for future research. For
example, do the distinct properties of multimodal
embeddings make them better suited for specific
tasks, as Pezzelle et al. (2021) argued for the relat-
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edness judgments of concrete nouns?
In the light of Kruszewski’s finding (Kruszewski

and Baroni, 2015) that taxonomic information inter-
acts strongly with referential compatibility between
concepts, our findings on the role of taxonomic
status on vector space structure suggests that the
choice of multimodal vs. textual representations
can be crucial for inference, especially for the diffi-
cult case of the neutral vs. contradiction distinction.

Finally, we note that the semantic factors we con-
sidered only explain a small part of the discrepancy
between textual and L&V models. The rest must
be attributed to other factors, such as random dif-
ferences in the textual data used for model training
as well as semantic phenomena outside the scope
of our study.

We hope that our study inspires further explo-
ration of systematic differences between embed-
ding models, both for visual grounding and beyond.
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Abstract

Negation scope resolution is the process of de-
tecting the negated part of a sentence. Un-
like the syntax-based approach employed in
previous researches, state-of-the-art methods
performed better without the explicit use of
syntactic structure. This work revisits the
syntax-based approach and re-evaluates the ef-
fectiveness of syntactic structure in negation
scope resolution. We replace the parser uti-
lized in the prior works with state-of-the-art
parsers and modify the syntax-based heuristic
rules. The experimental results demonstrate
that the simple modifications enhance the per-
formance of the prior syntax-based method to
the same level as state-of-the-art end-to-end
neural-based methods.

1 Introduction

Negation is a common linguistic phenomenon that
frequently appears in natural language. Conse-
quently, its detection is crucial for various NLP
applications, including sentiment analysis, relation
extraction and medical data mining. Typically, the
negation detection task is broken down into two
subtasks: (i) detecting negation cues (words, af-
fixes, or phrases that express negations) and (ii)
resolving their scopes (parts of a sentence affected
by the negation cue). In example (1) below, the
word “not” is the negation cue (marked in bold)
and word sequences “He did” and “go to school”
form the scope (underlined parts).

(1) He did not go to school and stayed home.

This work addresses the second subtask: nega-
tion scope resolution. Prior works used syntac-
tic features for resolving the scope of negations
(Read et al., 2012; Carrillo de Albornoz et al., 2012;
Abu-Jbara and Radev, 2012; White, 2012). Read
et al. (2012) tackled this issue with syntax-based
approach and obtained the best performance on
the token-level evaluation in *SEM2012 shared

task (Morante and Blanco, 2012). Recently, many
studies treat this task as a sequence labeling prob-
lem and use deep-learning techniques (Fancellu
et al., 2016; Khandelwal and Sawant, 2020; Truong
et al., 2022). Without explicitly utilizing syntactic
structure, they argued that end-to-end neural ap-
proaches can outperform earlier syntax-based ones.
However, the prior works proposed in *SEM2012
shared task used the parser of that time1. The per-
formances of parsers have considerably improved
since. The effectiveness of the syntax-based ap-
proach will increase with the usage of accurate
parsers. Furthermore, syntax-based methods have
an advantage over deep-learning techniques: high
interpretability.

Motivated by the point mentioned above, this
work revisits the syntax-based approach for nega-
tion scope resolution. We use state-of-the-art
parsers to re-evaluate the earlier syntax-based ap-
proach. We also modify the syntactic-based heuris-
tic rules used in the prior syntax-based method.
Our experimental results demonstrate that the prior
method, based on heuristics for syntax structure,
can obtain the same level of performance as state-
of-the-art methods based on end-to-end neural net-
works.

2 Related Work

This section describes the syntax-based method
proposed by Read et al. (2012), based on which we
re-evaluate the usefulness of syntax for negation
scope resolution. Their approach assumes that the
scope of negation corresponds to a constituent. As
an example, let us consider the sentence (2).

(2) I know that he is not a student.

1The syntactic information provided by the parser is an-
notated on the datasets utilized in *SEM2012 shared task.
Participants in the shared task applied this syntactic informa-
tion.
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Figure 1: Constituent parse tree of sentence (2), high-
lighting candidate scope constituents.

Figure 1 shows the constituent parse tree of the
sentence. In this sentence, the scope of the negation
cue “not” corresponds to the constituent S whose
left end is “he” and whose right end is “student”.
This method resolves the scope of the negation cue
according to the following steps:

1. Parse the sentence and select the constituents
on the path from the cue to the root as candi-
dates (The candidates are marked in bold in
Figure 1).

2. Select one constituent corresponding to the
scope using heuristics or the Support Vector
Machine classifier.

3. Adjust the scope by removing certain ele-
ments from the constituent selected in the sec-
ond step.

In the first step, the sentence is parsed and all
the constituents that dominate the negation cue are
considered as scope candidates. For example, in
sentence (2), six constituents highlighted in Fig-
ure 1 are selected as candidates. In the second
step, one constituent is selected from the candi-
dates using heuristics or a classifier. We describe
the heuristic method, which we use in this work.
This method selects one constituent from the can-
didates using scope resolution heuristics shown in
Figure 2. The 14 rules that form the heuristics are
applied in order from top to bottom; the rules are
listed in a specific-to-general order. Each rule is
represented as a path pattern and some rules have
additional constraints (if part). For example, the
fifth rule “DT//SBAR if SBAR\WHADVP” will

RB//VP/SBAR if SBAR\WH* (#)
RB//VP/S
RB//S
DT/NP if NP/PP
DT//SBAR if SBAR\WHADVP
DT//S
JJ//ADJP/VP/S if S\VP\VB* [@lemma="be"]
JJ/NP/NP if NP\PP
JJ//NP
UH
IN/PP
NN/NP//S/SBAR if SBAR\WHNP
NN/NP//S
CC/SINV

Figure 2: Scope resolution heuristics. Each row dis-
plays one rule, which is presented in the order that they
should be applied. Each rule is represented as a path
pattern. A/B denotes that B is the parent of A, A//B im-
plies B is an ancestor of A, and A\B means B is a child
of A. (#) is the rule we modify in this work.

be activated and the constituent SBAR is selected
when the negation cue is a determiner (DT), pro-
vided that it has an ancestor SBAR if the SBAR has
a child WHADVP. If no rule is activated, it uses
a default scope, which expands the scope to the
left and the right of the negation cue until either a
sentence boundary or a punctuation is found.

The alignment of the constituent and the scope
is not always straightforward. Sentence (1) is one
of such illustration. In this sentence, the scope
of the negation cue “not” does not cross the coor-
dination boundary: the coordinating conjunction
“and”, its following conjunct “stayed home” and the
punctuation “.” are not included in the scope. To
deal with such a case, Read et al. (2012) adopted
some heuristics to remove certain elements from
the constituent in the following way:

• Remove the constituent-initial and -final punc-
tuations from the scope.

• Remove certain elements at the beginning or
the end of the constituent using slackening
rules, which consist of five heuristics.

• Apply two post-processing heuristics to han-
dle discontinuous scopes:

– Remove previous conjuncts from the
scope if the cue is in a conjoined phrase.

– Remove sentential adverbs from the
scope.

For sentence (1), the scope “He did, go to school”
is correctly resolved using the series of process.
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Figure 3: Constituent parse tree of sentence (1), enclos-
ing removed parts in boxes.

The constituent S is selected as the scope of the
cue according to the first and second steps. In
the third step, the coordinating conjunction “and”,
and its conjunct “stayed home” are removed by
the first heuristic rule for discontinuous scope, and
the punctuation “.” is removed by the above first
heuristic rule (removed parts are enclosed in Figure
3).

3 Revisiting the Syntax-Based Method

In this section, we revise the method described in
the previous section to re-evaluate the syntax-based
approach in negation scope resolution. Section 3.1
describes the parsers we use in this work. Sections
3.2 and 3.3 discuss the modifications we made for
the second and the third steps of Read et al. (2012)’s
method, respectively.

3.1 Replacement of the Parser

The dataset used in *SEM2012 shared task
(Morante and Daelemans, 2012), also known as
the Conan Doyle dataset, is one of the primary
datasets used for negation scope resolution. This
dataset also contains syntactic information, which
was assigned using the reranking parser of Char-
niak and Johnson (2005). As Read et al. (2012)
mentioned, syntactic information contains parse er-
rors. They suspected that parse errors cause scope
resolution errors in their method. To mitigate this
issue, we parse the sentences in the dataset using
state-of-the-art, high-accuracy parsers. We use two
parsers: Berkeley Neural Parser (Kitaev and Klein,
2018; Kitaev et al., 2019) with BERT (Devlin et al.,
2019), and Attach Juxtapose Parser (Yang and

Parser F1 score (%)
Reranking Parser (2005) 91.02
Berkeley Neural Parser (2018) 95.77
Attach Juxtapose Parser (2020) 96.34

Table 1: Performances of the parsers in Penn Treebank
Section 23.

Deng, 2020) with XLNET (Yang et al., 2019). Ta-
ble 1 shows the performances of the parsers on
Penn Treebank (Marcus et al., 1993).

3.2 Modification of Scope Resolution
Heuristics

Read et al. (2012) used scope resolution heuristics
shown in Figure 2 to detect the constituent corre-
sponding to the scope of the negation cue. The
first rule of Read et al. (2012) (denoted with (#) in
Figure 2) is considered to extract relative clauses,
but this rule does not work properly. In relative
clauses in Penn Treebank, SBAR directly domi-
nates not VP but S (and the S has a child VP). To
accurately capture this structure, we modify the
rule as follows:

(3) RB//VP/S/SBAR if SBAR\WHNP

This modification is based on the preliminary ex-
periment conducted on the training data.

3.3 Modification of Scope Adjustment
As indicated in Section 2, Read et al. (2012)’s
method adjusts the constituent in the third step.
This work partially modifies slackening rules and
post-processing.

In the case of slackening rules, we present the
following additional rule to the original five rules:

• Remove initial PP (prepositional phrase) if
delimited by a comma.

This modification was motivated by the annotation
guideline of the Conan Doyle dataset (Morante
et al., 2011). According to this guideline, discourse
markers are excluded from the scope. Comma-
delimited prepositional phrases often function as
discourse markers, such as “In my opinion” in ex-
ample (4). In this case, we should remove them
from the scope.

(4) In my opinion, he should not go.

For the post-processing, we modify the second
processing: removing sentential adverbs from the
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Parser
Scope-level Token-level

Pre. (%) Rec. (%) F1 (%) Pre. (%) Rec. (%) F1 (%)

Reranking Parser
97.21 69.88 81.31 86.87 93.07 89.86

(97.14) (68.27) (80.19) (85.48) (93.63) (89.37)

Berkeley Neural Parser
98.91 72.69 83.80 89.78 92.96 91.34

(98.88) (70.68) (82.43) (87.88) (93.57) (90.64)

Attach Juxtapose Parser
98.94 74.70 85.13 90.62 94.68 92.61

(98.90) (72.29) (83.53) (88.70) (95.24) (91.85)

Table 2: Scope resolution performances for gold cues using the three different parsers. The upper figure in each
row demonstrates the result with modified rules discussed in Sections 3.2 and 3.3; the lower figure shows the result
without modifications. Note that in the case of the rule to remove sentential adverbs from the scope in the third step,
we were not able to reproduce the Read et al. (2012)’s method because the sentential adverb list is not publicly
available. Thus, both the upper and the lower figures describe the results of our modified rule.

scope. Read et al. (2012) compiled a list of senten-
tial adverbs from the training data and used it for
this processing. Instead, in this work, we simply re-
move “comma-delimited ADVP (adverbial phrase)
or INTJ (interjection)” from the scope along with
the commas. This is a generalization of Read et al.
(2012)’s processing. As an example of a comma-
delimited ADVP that functions as a discourse-level
adverbial and should be excluded from the scope,
see sentence (5) below.

(5) There was no trace, however, of anything.

Again, this modification of scope adjustment rules
is based on the training data.

4 Experiment

To re-evaluate the syntax-based approach to nega-
tion scope resolution, we conducted an experi-
ment2. This section describes the detail of the
experiment. We explain the dataset, settings and
results in Sections 4.1, 4.2 and 4.3, respectively.

4.1 Dataset

To evaluate the performance of our work, we used
the Conan Doyle dataset, which was employed in
*SEM2012 shared task. The dataset is divided into
training data, development data and evaluation data.
The training data contains 848 sentences including
negation, the development data 144 and the evalu-
ation data 235. Note that there can be more than
one negation cue in a sentence. Each data contains
984, 173 and 264 negation cues, respectively.

2The code is available at https://github.com/
asahi-y/revisiting-nsr.

4.2 Experimental Settings
We conducted an experiment using the evaluation
data of Conan Doyle dataset. We created new con-
stituent parse trees for the sentences in the dataset
using Berkeley Neural Parser and Attach Juxta-
pose Parser. We did not perform cue detection,
that is, we report performance using gold cues.
Other experimental setups are similar to those of
*SEM2012 shared task, with the scope-level F1

score and the token-level F1 score as the evalua-
tion metrics. Among the evaluation metrics, the
following points should be noted:

• Punctuation tokens are excluded from the eval-
uation.

• If a sentence contains two or more negation
cues, scope predictions for each negation cue
are evaluated separately.

• For the scope-level evaluation, a predicted
scope is counted as TP if all tokens cor-
responding to the scope of a negation cue
are predicted correctly. Partial matches are
counted as FN.

We used the official script distributed in the shared
task3 for evaluation.

4.3 Experimental Results
Table 2 shows the experimental results with three
different parsers to provide the constituent parse
trees. The results demonstrate that the use of accu-
rate parsers leads to an increase in performance in
negation scope resolution for both scope-level and

3https://www.clips.ua.ac.be/
sem2012-st-neg/data.html
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Method
Token-level F1 (%)

Including punctuations Excluding punctuations

This work 91.74 92.61
Fancellu et al. (2016) 88.72 -
Li and Lu (2018) - 89.4
Khandelwal and Sawant (2020) 92.36 -
Truong et al. (2022) 91.24 -

Table 3: Comparison to previous methods. The results of this work are the ones obtained by using syntactic
information generated by Attach Juxtapose Parser, and by applying modified rules. Note that the results are for
negation scope resolution using gold cues.

token-level metrics. We also verified that the rule
modifications introduced in this work contributed
to the performance improvement.

Several previous works, including state-of-the-
art methods, incorporate punctuation tokens for
evaluation, which were omitted in *SEM2012
shared task. To compare our results with these
methods, we also assessed F1 score including punc-
tuation tokens. Table 3 shows the results. The
performance of the syntax-based method tested in
this work obtained 91.74% in F1 score including
punctuations, which is only 0.62% behind values
reported by the state-of-the-art method (92.36%),
obtained by Khandelwal and Sawant (2020). This
result shows that the prior method based on heuris-
tics for syntax, with the use of a high-performance
parser, can obtain performance close to the re-
sults obtained by the best-performing deep learning
methods.

5 Conclusion

This work re-evaluated the syntax-based approach
in negation scope resolution. We replaced the
parser used in the prior works with the state-of-
the-art parsers. We also slightly modified the
syntax-based heuristic rules designed in the prior
work. The experimental results demonstrate that
the prior syntax-based approach can obtain high
performance comparable to those of state-of-the-
art methods. This work gives a strong baseline for
the negation scope resolution task and opens up the
possibility of accurate and interpretable negation
scope resolution.

In future work, we will introduce a tree-based
neural model into the constituent selection process
to enhance the performance of the scope prediction.
It would also be interesting to apply the syntax-
based approach to the scope resolution of other

linguistic phenomena, for example, speculation or
quantifier.
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Abstract

In this paper, we focus on the ability of large
language models (LLMs) to accommodate dif-
ferent pragmatic sentence types, such as ques-
tions, commands, as well as sentence fragments
for natural language inference (NLI). On the
commonly used notion of logical inference,
nothing can be inferred from a question, a com-
mand, or an incomprehensible sentence frag-
ment. We find MNLI, arguably the most impor-
tant NLI dataset, and hence models fine-tuned
on this dataset, insensitive to this fact. Using
a symbolic semantic parser, we develop and
make publicly available, fine-tuning datasets
designed specifically to address this issue, with
promising results. We also make a first explo-
ration of ChatGPT’s concept of entailment.

1 Introduction: “I didn’t say that!’

Committing oneself to the truth of a certain claim
always implies or suggests one’s commitment to
the truth of a number of other claims, and it pre-
cludes one’s commitment to the truth of a second
set of claims. This is the essence of the logical no-
tion of entailment (here used synonymously with
inference) and contradiction. For instance, some-
body who claims “Loral did harm national security”
is also committed to the less specific claim “Some-
thing or somebody did harm national security”.

The concept of inference is itself quite complex.
As Gubelmann et al. (2022) detail, valid inferences
can be divided into deductively valid inferences,
where it is not logically (see Plantinga 1974) possi-
ble that the premise is true while the conclusion is
false, and inductively valid inferences (also called
abductions), where it is possible that the premise
is true while the conclusion is false, but where the
truth of the premise is in general a good reason for
the truth of the conclusion.

For two utterances to be able to (deductively or
inductively) entail or contradict each other, they
have to be of the correct pragmatic category. While

assertions or claims are able to stand in these logi-
cal relationships, the same does not hold for other
pragmatic kinds of utterances, such as questions
or commands, as they do not involve making a
claim that could be true or false and hence commit
their author to the truth of certain claims that could
then entail or contradict other claims. For instance,
uttering (P) in example (1) does not commit the
speaker to Loral’s harming of national security –
she’s simply asking a question, not making a claim.
Hence if, after uttering (P) from (1), somebody
replies with “So you claim that somebody did harm
national security”, the appropriate response would
be “I didn’t say that!”.

Neither does she commit herself to everybody’s,
as a matter of fact, having a happy Hanukkah when
uttering (P) in (2), that is, wishing everyone a happy
Hanukkah: Rather, she is expressing the wish that
everyone is going to have a happy Hanukka. Com-
mitting oneself to some state of affairs, i.e., to ex-
press a claim that can be true or false, is not the
kind of thing one does when uttering a question or
a command (which is not to dispute that questions
and commands come with specific presuppositions,
including factual presuppositions, that need to be
fulfilled for the speech act in question to succeed).

(1) (P) Did Loral harm national security? (H)
National security was not in danger. (con-
tradiction)

(2) (P) Happy Hanukkah, everybody! (H) Ev-
eryone, have a happy Hanukkah! (entail-
ment)

Properly distinguishing between pragmatic kinds
of utterances that can and cannot stand in logical re-
lations is important in several areas of application.
First, we can consider the legal context, where fact
and claim verification is of critical importance. In
the setting of the automatic extraction of claims
from testimonies, a system should be able to dis-
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tinguish between claims and statements with other
pragmatic functions such as questions, which do
not commit their speakers to the truth of any claims
(see, e.g., the overview in Ashley (2018)). Addi-
tionally, an essential application area is education:
Using large language models (LLMs) to give forma-
tive feedback on students’ arguments requires that
the LLMs be able to distinguish between claims
made in the text, which can be used to infer other
claims, and questions and commands, which cannot
(see Rapanta et al. (2013) for an illustration of the
importance for this logical concept of entailment
in education science).

Most recently, the introduction of general-
domain, openly-available conversational systems
such as ChatGPT (OpenAI) shows the need for
such a distinction even more clearly: a chatbot,
which collects its information from web resources
but does not perform any reasoning steps itself,
can falsely spread non-claims as claims if it cannot
differentiate between the two.

Current NLP research conceives natural lan-
guage inference (NLI) as a three-way classifi-
cation task between two sentences (or sentence-
fragments), called premise (P) and hypothesis (H).
LLMs are trained to predict contradiction (P and
H cannot both be correct), entailment (If P is cor-
rect, then H must be correct as well), or neutral
(neither of the two). While much of the very early
research focused on deductively valid inferences,
more recent research has also taken into account
inductive inference, which are called applied entail-
ments (Dagan et al., 2005) or informal reasoning
(MacCartney, 2009).

The Multi-Genre Natural Language Inference
Dataset (MNLI) Williams et al. (2018) has ar-
guably become the most widely used dataset for
fine-tuning LLMs for NLI. This means that many
(perhaps the majority of) LLMs that are fine-tuned
for the task of NLI are fine-tuned using MNLI
and thereby pick up MNLI’s concept of inference.
The instructions given to the crowdworkers who
worked to create the dataset as well as explicit com-
ments by the authors support the conclusion that
MNLI’s target notion of entailment dovetails with
the one detailed here, applicable to claims but not
to questions and commands.

However, MNLI contains prompts that are ques-
tions, such as in (1), or commands, such as in (2),
as well as fragments such as (3), which are en-
tirely incomprehensible if they are presented, as in

MNLI, without any context. In fact, all examples
are from MNLI’s training split with their respective
gold-labels in brackets. Hence, there seems to be
a conceptual gap between the notion of entailment
as explicitly embraced by the authors of MNLI and
the pragmatic kinds of some of the prompts used
to create the dataset.

(3) (P) The kids. (H) The adults. (contradic-
tion)

In this paper, we study the extent of the phe-
nomenon, the consequences that this set-up of
MNLI has for LLMs that are fine-tuned on MNLI,
and we explore ways to acquaint the LLMs with
these core pragmatic categories. Our paper makes
three contributions. First, after detailing the notion
of inference as well as the conceptual gap in MNLI
on a theoretical level (section 3), we empirically as-
sess the extent of the phenomenon of non-assertive
premises in MNLI (section 4). Second, relying
on the existing semantic parser GKR, we show a
promising path towards acquainting LLMs with
these pragmatic categories (section 5). Third, we
publish both an expert-curated gold-standard eval-
uation dataset as well as 7 different fine-tuning
datasets to further research in this field.1 Addi-
tionally, we also take the very first steps toward
exploring ChatGPT’s concept of entailment.

2 Related Research

2.1 Inference in Logic and Semantics
Both deductive and inductive inferences require
claims with determinate truth-values for their func-
tioning. This means that it is necessary for any
relationship of inference to be possible that both
relata are constituted by a claim with determinate
truth conditions: it needs to be clear in which situa-
tions premise and hypothesis are true. Otherwise, it
would be impossible to assess whether the truth of
the premise guarantees/makes reasonable the truth
of the hypothesis, which is the essence of both de-
ductive and inductive inferences. We propose that
only sentences fulfilling the following conditions
C1 and C2 can express such determinate claims.

C1 Only sentences whose pragmatic force is as-
sertive can express determinate claims.

C2 Only assertions which are sensible (that is,
where it is clear what has to be the case for

1To access the datasets, please consult: https://github.
com/retoj/whentruthmatters.
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the claim to be true) can express determinate
claims.

C1 is violated by questions and commands, such
as the premises in examples (1) and (2). The ques-
tion “Did Loral harm national security?” lacks
determinate truth conditions because questions can-
not be true or false, but rather sensible or nonsen-
sical. Similarly, uttering a command like “Happy
Hanukkah!” does not aim to make a determinate
claim about the state of affairs but rather aims to
bring about a certain state of affairs.

We owe the insight that one can do different
things with different types of sentences (the theory
of so-called “speech acts") to Austin (1962, 1975)
and Searle (1969, 1985), continuing a basically
Wittgensteinian outlook Wittgenstein (2006/1953,
§43).2 For a more recent survey of this approach,
see Levinson (2017). Speech acts, like any actions,
can succeed or fail to reach the goal that the agent
intends with it. If some presuppositions for an act
are not met, then it cannot possibly succeed.

With regard to fulfilling C2, the bare minimum
needed for a sentence to express a claim with deter-
minate truth conditions is some entity that is iden-
tified with sufficient precision (call it “subject”)
as well as something, again sufficiently precise,
that is predicated of that entity (call it “predicate”).
This conception of a minimal claim as consisting of
some specific entity of which something is said is
a standard in logical textbooks, see, e.g., Smullyan
(1968, 43) or Garson (2006, 29), but also in every-
day human communications. For an overview, see
Shapiro and Kouri Kissel (2021, sec. 2.2). For an
influential contemporary statement of this minimal
notion of a determinate claim, see Burge (2010,
537-547). For example, C2 is clearly violated by
the premise of (3). Without any further context,
and MNLI does not provide any such context, it
is not clear whether the fragment “the kids” is in-
tended as subject or predicate, but it is clear that
one of the two is missing.

To see that nothing can be inferred from any-
thing that violates C1 and C2, it is crucial to be
aware of the distinction between inference and pre-
supposition. For instance, one might be tempted
to say that from the question (1), it can be inferred
that Loral potentially endangers national security,
which would contradict the hypothesis of this exam-

2Mastery of this multitude of language games in a flexible
and adaptive manner is a key challenge for AI systems to come
to really understand language, see Gubelmann (2023).

ple. This, however, would be to confuse inference
with presupposition (the subtleties of the notion of
presupposition, going back to Russell 1905 are still
lively discussed in linguistics, see Dryer 1996 for a
more recent influential contribution).

To claim that national security was never in dan-
ger would not, as the gold label for example (1)
suggests, contradict the question: questions can
be answered, rejected, ridiculed, etc., but not con-
tradicted in the relevant logical sense. Rather, the
claim would (at least on some readings of the ques-
tion) show that the question fails to make proper
sense, as one of its presuppositions, that national
security was ever endangered, is not met.

A phenomenon similar to presuppositions has
been described by Grice (1975) as conventional
implicature.3 Roughly, conventional implicatures,
unlike presuppositions, do not affect the sensibility
of the utterance in question (this follows (Potts,
2015, 31), who argues that an implicature, unlike
a presupposition, is independent from the primary
content of the utterance.4 Consider example (4).

(4) (a) Bern, the capital of Switzerland, is the
largest city of the country. (b) This is not
true.

On a first level, the claim expressed by sentence
(a) in example (4) is simply wrong: Zurich, not
Bern, is the largest city of Switzerland. On the
second level, however, it is also not the case that
Bern is the capital of Switzerland: The founders
of Switzerland deliberately avoided designating an
official capital city due to existing rivalries between
the candidates for such a role. This second level
is beyond the reach of the challenge (b), it only
reaches the actual claim being made about the rela-
tive population of Bern.

In fact, this availability for direct challenge
is what helps to clearly identify the determinate,
claimed content in an utterance – and it also helps
to establish whether there is any such claimed con-
tent in the first place. With commands such as the
one in example (2), you cannot respond with “This
is not true”, nor can you do so in response to a
question such as in (1), or in response to an incom-
prehensible fragment such as in (3). In contrast, to

3See Davis (2019) for an overview. For more recent dis-
cussions of the concept, see Potts (2004); Lepore and Stone
(2010). For an original perspective on the concept from formal
semantics, see Peters (1979).

4Karttunen and Peters 1979, in contrast, use the two con-
cepts almost equivalently.
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access and reject the presuppositions behind some
of these utterances, one has to do more linguistic
work. For instance, you could reject a possible
presupposition of the question in example (1) with:
“Your question is beside the point because Loral
has newer produced anything else than toilet pa-
per; therefore, the very idea that it could have been
even a potential danger for national security is mis-
guided.”

The second important distinction that we want
to point out is that between inference and meaning-
preserving paraphrase. The two relationships are
orthogonal: If one claim with determinate truth-
conditions is the meaning-preserving paraphrase
of another such claim, than they can be mutually
inferred from each other. If, in contrast, what is
being paraphrased is a question, a command, or an
incomprehensible fragment, then no relationship
of inference exists between the original and the
paraphrase – regardless of how synonymous they
are.

We would, finally, like to note that we rec-
ognize the usefulness of a broader, non-truth-
functional notion of entailment for uses beyond
NLI. For instance, Groenendijk and Stokhof (1984,
p.47f.,p481f.) define entailment between questions
by resorting to a very general, non-truth-functional
notion of entailment as a kind of semantic inclusion.
Such a notion is very useful for question-answering
or information retrieval tasks, but it is not how the
NLI task was originally defined Dagan et al. (2005);
MacCartney (2009), nor what the MNLI instruc-
tions to the crowdworkers specify, as we shall see.

2.2 Inference in NLP

LLMs based on the transformer architecture
(Vaswani et al., 2017) have become the de facto
standard in a variety of NLP tasks, including
NLI. Highly successful architectures, starting with
BERT (Devlin et al., 2019) and followed by oth-
ers such as RoBERTa (Liu et al., 2019), XLNet
(Yang et al., 2019), DeBERTa (He et al., 2020) as
well as smaller versions such as DistilBERT (Sanh
et al., 2019) and Albert (Lan et al., 2019), but also
sequence-to-sequence architectures, e.g., T5 (Raf-
fel et al., 2019) and BART (Lewis et al., 2020),
have shown state-of-the-art performance on NLI.

Thanks to their sheer size, SNLI (Bowman et al.,
2015), 570k premise-hypothesis pairs from image
captions, and MNLI (Williams et al., 2018), 433k
premise-hypothesis-pairs from 10 genres, written

and spoken, dominate the field, as their size is
suitable for fine-tuning large LLMs. There is a
number of studies that critically assess SNLI and
MNLI for their bias. Williams et al. (2018) them-
selves note that their dataset contains a negation
bias: if the hypothesis contains a negation, then
it is more likely to be part of a contradiction pair
(this bias is most likely due to the fact that sim-
ply negating the premise provides an efficient way
for crowdworkers to create contradiction pairs).
Poliak et al. (2018) systematically investigate the
prospects of hypothesis-only approaches (methods
that only consider the hypothesis for predicting the
label) to NLI in different datasets, finding better-
than-random performance at most of them, which
suggests the broad presence of statistical irregu-
larities. Gururangan et al. (2018) show that SNLI
and, to a lesser extent, MNLI, contain clues that
make hypothesis-only approaches quite successful.
Chien and Kalita (2020) focus on syntactic bias for
LLMs fine-tuned on SNLI and MNLI, also finding
that these bias are strong. Bernardy and Chatzikyri-
akidis (2019) argue that both SNLI and MNLI only
cover a part of the entire range of human reasoning.
In particular, they suggest that they do not cover
quantifiers, nor strict logical inference. Further-
more, Pavlick and Kwiatkowski (2019), Zhang and
de Marneffe (2021), and Jiang and de Marneffe
(2022) all address the topic of disagreement among
annotators. Jiang and de Marneffe (2022) focus on
MNLI and suggest using a fourth category, namely
“complicated”, along with the known ones of entail-
ment, contradiction, and neutral. Similarly, Kalouli
et al. (2019, 2023) discuss the annotation artifacts
and quality of such datasets, especially concerning
the distinction between neutral and contradiction
pairs, and propose a refinement of the task.

We contribute to this ongoing research by focus-
ing on the pragmatic categories of sentences (ques-
tions, commands, claims) which determine whether
they can stand in the logical relationships intro-
duced above (section 2.1). We use GKR (Kalouli
and Crouch, 2018; Kalouli, 2021) to automatically
categorize premises from MNLI that violate C1
or C2. GKR (Graphical Knowledge Representa-
tion) is the semantic representation generated by
the corresponding parser. In GKR the sentence in-
formation is split into six subgraphs: a) the depen-
dency graph holding the syntactic dependencies, b)
the lexical graph holding lexical information such
as synonyms and antonyms of the words of the
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sentence, c) the properties graph holding morpho-
syntactic information such as the numerus of nouns
and quantifiers, d) the concept graph holding the
basic predicate-argument-structure of the sentence,
the “who-is-doing-what-to-whom" information, e)
the context graph making existential commitments
over the concepts of the concept graph, e.g., for
the sentence “the dog is not eating the bone" it
says not only that there is the concept of eating
involved in the sentence, but it also commits to
its non-existence, its non-instantiation (due to the
negation) and f) the coreference graphs capturing
coreference links between entities.

In addition to its performance, what makes this
parser particularly suitable for our goal is that it
also identifies the type of sentence that is being
parsed (assertion, question, or command). By de-
fault, the parser also categorizes subject-less sen-
tences as imperatives (which helps to identify in-
comprehensible sentence fragments).

3 Analyzing MNLI’s Concept of Inference

After describing how current research in linguis-
tics and logic conceives inference and separates it
from presupposition, implicature, and paraphrase,
and after situating MNLI in the current way how
NLP approaches the task of NLI, we now detail the
tension that we see in MNLI’s concept of inference.

Given how Williams et al. (2018, 1114) specify
the tasks for the crowdworkers creating MNLI, the
goal seems to be premise-hypothesis pairs that are
deductively valid. We give the part of the instruc-
tion that is relevant for entailment in bold (for the
full instructions, see the Appendix, section A):

[...] The line will describe a situation or
event. Using only this description and
what you know about the world: Write
one sentence that is definitely correct
about the situation or event in the line.

According to this passage, the hypothesis to be
written should be such that it is definitively cor-
rect about the situation or event described in the
premise. World knowledge is allowed to be used,
presumably to make room for implicit but uncontro-
versial premises. From a logical point of view, this
means that whenever the state of affairs described
in the premise obtains, the one described in the hy-
pothesis must obtain as well. Hence, MNLI seems
indeed to follow earlier NLI research and aim at in-
ference in the deductive or inductive sense detailed

above (sections 1 and 2.1). This also agrees with
the stated goal of Williams et al. (2018), according
to which they are aiming at pairs where the hypoth-
esis is “necessarily true or appropriate whenever
the premise is true”.

However, a manual inspection of the collected
examples shows a different picture: the dataset
contains entailment and contradiction pairs with
premises that are non-assertive because they ex-
press commands or questions, or because they are
fragmentary beyond comprehension (see examples
above (1), (2), and (3)). Note that these examples
are not resulting from cherry-picking: The creators
of MNLI deliberately selected bits of text at ran-
dom from 10 different genres, emphasizing that
they only applied minimal pre-processing (e.g., re-
moving sentences with less than eight characters,
mathematical formulae, bibliographical references,
see (Williams et al., 2018, 114f.)). No grammati-
cality checks or parsing of sentence types are done.
Hence, including incomprehensible fragments as
well as questions and commands results from an
explicit design decision by the authors.

Unfortunately, this design decision seems to
be in tension with the instructions to the crowd-
workers as well as with the stated goal to find
premises that are true or appropriate whenever the
premise is true. The examples (1), (2), and (3) do
not contain premises that can be true or false, mak-
ing it exceedingly difficult for the crowdworkers
to follow the instructions and write a sentence that
is definitively correct about the situation or event
in the line: Commands and Questions do not aim
to describe situations, incomprehensible fragments
cannot describe such situations.

The crowdworkers did their best. Sometimes, as
in (1), they developed a hypothesis that contradicts
one of the presuppositions of a question (see, for
example, (1)), developed a largely synonymous
command for a premise containing a command
(see example (2)), or just wrote down a concept
that differs from the concept in the premise (see
(3)). None of this, of course, amounts to developing
entailment or contradiction pairs.

In our pre-study, we try to quantitatively assess
the extent of this problem and develop a solution
for it.
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4 Pre-Study: Non-Assertive Premises in
MNLI

With this pre-study, we pursue two goals. First,
we would like to obtain a more reliable estimate
for the amount of non-assertive premises (that is,
premises that do not express a determinate claim be-
cause they violate C1 or C2 from section 2.1 above)
in MNLI. Second, our main experiment relies on
GKR correctly categorizing premises from MNLI
that violate C1 or C2 (for details, see section 2.1) or
that don’t violate them and thus represent assertive
sentences. Thus, before starting with the main ex-
periment, we conduct a pre-study to evaluate our
choice of using GKR.

We randomly select 1000 premise-hypothesis-
pairs from MNLI and submit the premises of each
of the samples to the parser. The output of GKR
(more specifically its context graph, where the type
of sentence is specified) is then compared to our
gold-standard annotations. The precision (P) and
recall (R) results of this pre-study are shown in
Table 1. The table also compares the results to a
simplistic baseline approach, where we only count
as non-assertive all premises that end with a ques-
tion mark (?) or an exclamation mark (!).

Assertive Non-Assertive Total
P R P R P R

GKR 93.6 97.7 83.6 63.3 88.6 80.5
?, ! 88.4 96.5 54.6 22.8 71.5 59,6

Table 1: The P(precision) and R(recall) results from the
evaluation of 1000 MNLI premises.

Table 1 shows that GKR’s precision is at 83.6%
and its recall at 63.3%, when it comes to identify-
ing non-assertive premises that cannot stand in a
logical relationship. Identifying assertive premises
is achieved with an even higher precision and re-
call (93.6% and 97.7%, respectively). These re-
sults heavily outperform the simplistic baseline ap-
proach, in which both the precision and the recall
for non-assertive premises do not overcome chance.
This is not surprising though. First, in MNLI, ques-
tions and commands are not always marked with
question and exclamation marks, respectively, so
this is no reliable method. Second, many questions
do have a question mark, but are direct speech em-
bedded in indirect speech, e.g., How much? asked
the northerner. In these cases, the premises are
indeed assertions (with an embedded non-assertive
content). Third, there are premises with exclama-
tion marks, which are no commands, e.g., You were

just wonderful!. Finally, this simplistic approach
cannot capture any cases of fragmentary premises.
These results confirm the quality of the GKR parser
and the need for such a tool.

With our pre-study we find that 153 of the 1000
samples are non-assertive (based on their gold la-
bel). This suggests that approximately 15% of all
pairs in MNLI are indeed not assertions, meaning
that they cannot entail or contradict any other as-
sertions5. This however also means that any of
these pairs having an entailment or a contradic-
tion label (assuming a balanced dataset, this would
mean around 10%) is indeed mislabeled as there
can only be the neutral relation for non-assertions.
Note that even if we do not consider the gold labels
but only the true positives of GKR (since GKR’s
output is what will be considered in the main exper-
iment), the percentage of non-assertions in MNLI
only drops to 10% (97 out of 1000 samples are
true positives). This would again mean that around
2/3 of these 10%, that is, some 6.6%, of MNLI is
incorrectly annotated.

5 Main Experiment: Probing LLMs for
Pragmatic Understanding

For our main experiment, based on the tension
found in MNLI’s concept of inference (see above,
section 3), we hypothesize that models fine-tuned
on MNLI lack any sensitivity to the fact that non-
assertive premises cannot entail or be contradicted
by other premises (research hypothesis 1), and
that this deficit can be amended using properly
composed fine-tuning datasets (research hypoth-
esis 2). Finally, we hypothesize that this does
not significantly harm performance on the orig-
inal MNLI evaluation dataset (research hypothe-
sis 3). To empirically test these hypotheses, we
compile a number of fine-tuning datasets and eval-
uate LLMs fine-tuned on them both on a specific,
hand-corrected dataset that only contains neutral
premises as well as on the original MNLI-matched
evaluation dataset.

5.1 Models

We use three transformer-based models that are al-
ready fine-tuned on MNLI, delivering very good
performance on this dataset, and that differ substan-
tially in their architecture. We deliberately choose

5Since this was tested on a random sample, we can ex-
pect that this percentage will be similar for any other random
sample.

29



models based on different architectures, sizes and
fine-tuning methods.

The reason why we fine-tune models that are
already fine-tuned on MNLI is that we assume that
our non-assertive dataset is not large enough on its
own for learning inference. Thus, we use models
that are first fine-tuned on the large MNLI dataset
and have thereby acquired a basic understanding
of the task. Then, we fine-tune them further on
the smaller non-assertive dataset to sharpen their
conceptions of entailment and contradiction so that
they do not predict entailment or contradiction, but
rather neutral, when the premise is non-assertive.
To test our assumption, we also include a version
of RoBERTa-large that is not already fine-tuned
to MNLI in our fine-tuning experiments. If it per-
forms better than the others who are already fine-
tuned to MNLI, our assumption is falsified, other-
wise, it is verified.

The models are DeBERTa-base (He et al., 2020),
XLNET-base (Yang et al., 2019), both 110M param-
eters, and RoBERTa-large (Liu et al., 2019), 355M
parameters. Our DeBERTa-model is fine-tuned to
MNLI using the method proposed by Reimers and
Gurevych (2019), the XLNET-model by the ad-
versarial method proposed in Morris et al. (2020),
and for RoBERTa, we use the original fine-tuned
version by Liu et al. (2019). We obtain all of our
models from Huggingface (Wolf et al., 2019).

5.2 Datasets

We run GKR over randomly chosen premises of the
train split of MNLI. As compute time per sample
is rather high (about 30 sec per sample in our set-
ting), we stopped the process after receiving 1875
premises that GKR classified as either interrogative
or imperative (a label also given to sentence frag-
ments lacking a subject), and hence non-assertive.
The same run also yielded 8546 premises that GKR
classified as assertions. Based on this, we develop
a manually corrected evaluation dataset as well
as a number of systematically varied fine-tuning
datasets.

Evaluation-Datasets We use a subpart of the
1875 non-assertive premises, namely 636 premises,
to compile an evaluation dataset: We manually
verify that these premises are indeed not express-
ing a determinate claim (either because they are
questions, commands, or incomplete beyond under-
standing), resulting in 406 premises. We then se-
lect the three premise-hypothesis-pairs correspond-

ing to each premise in the MNLI dataset (for each
premise there was an entailment, a contradiction
and a neutral pair created). This results in 1218
pairs whose correct relationship should be neutral
due to their premise, but which were written up
by crowdworkers to be evenly split among the la-
bels of entailment, contradiction, and neutral.6 We
call this evaluation dataset “GKR-n” for “GKR-
neutral”. The second dataset that we use to evaluate
our fine-tuned models is MNLI-Matched (“MNLI-
M”), the matched evaluation dataset provided by
Williams et al. (2018).

Fine-Tuning-Datasets We compile 8 different
fine-tuning datasets, each consisting of a train split
containing 6000 samples and a validation split con-
taining 600 samples, evenly distributed across the
three labels. In addition to a dataset that solely con-
sists of unfiltered MNLI-train samples (mnli_u) as
well as a dataset consisting solely of samples whose
premises GKR classified as assertive (GKR_a), we
compile six datasets combining these two sources
(see Table 2). These six datasets are combinations
from two different datasets for entailment and con-
tradiction labels (entailment-contradiction 1 & 2,
in short, ec1 & ec2) with three different datasets
for neutral labels (neutral 1,2, 3: n1,n2,n3).

Name Ent. & Contr. Neutral
mnli_u (no filtering) (no filtering)
ec1_n1 1/3 GKR-ass. 1/3 GKR non-ass.
ec1_n2 1/3 GKR-ass. 2/3 GKR non-ass.
ec1_n3 1/3 GKR-ass. 3/3 GKR non-ass.
ec2_n1 2/3 GKR-ass. 1/3 GKR non-ass.
ec2_n2 2/3 GKR-ass. 2/3 GKR non-ass.
ec2_n3 2/3 GKR-ass. 3/3 GKR non-ass.
GKR_a 3/3 GKR-ass. 3/3 GKR-ass.

Table 2: Fine-tuning datasets used in the main exper-
iment. They result from combining unfiltered MNLI
samples with samples filtered by GKR; if nothing is
specified, the quantity in question is provided by unfil-
tered pairs from the MNLI training split. All datasets
contain 2.2k samples originally labeled entailment, 2.2k
contradiction, and 2.2k neutral. For example, in ec1_n1,
1/3 of its 4.4k entailment and contradiction samples
have been filtered by GKR to make sure their premises
are assertive (“1/3 GKR-ass.”), and 1/3 of its 2.2k neu-
tral samples have been filtered by GKR to have non-
assertive premises (“1/3 GKR non-ass”).

For example, the dataset ec2_n2 in Table 2 is
composed of 6600 samples in total, of which 2200
are entailment, 2200 contradiction, and 2200 neu-

6Note that some premises in MNLI are used in more than
three pairs, leading to minimal distortions in the scaling up.
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tral. Of the entailment and contradiction samples,
making up 4400 samples, 2/3 are such that GKR
has identified their premises as assertions (2nd col-
umn in T 2). Furthermore, 2/3 of the neutral sam-
ples are such that GKR has identified their premise
as non-assertive (3rd column in Table 2).

The basic idea behind fine-tuning on these 8
different datasets is to see what factors influence
performance on the evaluation dataset: ec1 differs
from ec2 in containing only 1/3 as opposed to 2/3
of pairs whose premises have been confirmed by
GKR to be assertive. From n1 over n2 to n3, the
portion of neutral pairs with non-assertive premises
increases from 1/3 over 2/3 to 3/3. Testing all
combinations of these datasets allows us to deter-
mine whether assertive premises in entailment and
contradictions samples are more important than
non-assertive premises in neutral samples when it
comes to performance on the evaluation dataset,
where all of the labels should be neutral due to the
non-assertive premises of all the samples used there.
Including the mnli_u dataset as fine-tuning dataset
allows us to test whether our fine-tuning method
leads to any distortions: unless our fine-tuning
method is flawed, models fine-tuned on mnli_u
should perform on MNLI-M approximately as they
did before fine-tuning. After all, here we just per-
form further fine-tuning with the same data that has
been used for the original fine-tuning run.7

5.3 Fine-Tuning Experiment

We fine-tune the four different transformer-based
LLMs on a single GPU of a DGX-2 cluster. We
fine-tune each model on each dataset for two
epochs, using the trainer API provided by Hug-
gingface. The results shown are the average over
three fine-tuning runs per model and dataset. We
use a batch size of 8 throughout, and we begin with
an initial learning rate of 2e-5.

5.4 Results & Discussion

The results of our experiment are shown in Figure
1. We give the individual models’ results on the
two evaluation datasets sorted by the fine-tuning
dataset that was used.

With regard to our decision to use models pre-
viously fine-tuned to MNLI (see above, 4.1), the

7Note that it would not be useful for our purposes to con-
vert non-assertive premises to assertions. We need to have
them marked as neutrals/non-assertive as systems need to be
able to differentiate between these pragmatic functions (see
discussion in section 1).

results confirm our assumptions: roberta-large per-
forms overall 28% worse than the version of the
model that was previously fine-tuned to MNLI (ab-
breviated by roberta-lmnli in figure 1). As a conse-
quence, we do not consider it in our presentation
and discussion of results anymore.

Figure 1 shows that the most important factor for
performance on the GKR-n evaluation dataset is the
portion of neutral samples that are neutral because
their premise is non-assertive. The accuracy of all
models is 32% on average, and hence almost ex-
actly random, if no such samples have been specifi-
cally selected and added to the fine-tuning dataset
(as is the case in mnli_u as well as GKR_a, see
the first and the penultimate columns, respectively).
This accuracy increases steadily if the portion of
neutral samples of said kind is increased from n1,
n2, to n3, where it reaches 89% for roberta-large-
mnli. Performance on MNLI-matched decreases
from n1 to n2 and n3, but in much smaller steps:
from 86% to 82% to 77%.

These results allow for three main insights. First,
without fine-tuning on our datasets, the LLMs do
indeed fail to show any sensitivity for the fact that
questions, orders, or incomprehensible fragments
cannot entail or contradict anything. This follows
from the random accuracy that the models reach af-
ter being fine-tuned on mnli_u, it confirms our first
hypothesis, and it lends further support to the ten-
sion found in MNLI’s concept of inference. Con-
sidering the fact that MNLI is the de facto standard
fine-tuning dataset, this means that the standard
method used currently to fine-tune LLMs to NLI
tasks very likely results in models that falsely clas-
sify pairs such as (1), (2), or (3) as contradicting or
entailing each other.

The second insight, confirming our second hy-
pothesis, is that our fine-tuning approach shows
much promise in getting the models to understand
that nothing follows logically from non-assertive
premises. In particular, this applies to the models
fine-tuned to ec1_n3, i.e., to a dataset that contains
1/3 of pairs with a premise that is assertive accord-
ing to GKR in entailment and contradiction and 3/3
of pairs with non-assertive premises in neutral.

The third insight is that acquiring this sensitiv-
ity does not take a heavy toll on the accuracy of
MNLI-matched, with an effective accuracy differ-
ence of 3.3%. While the performance difference
seems greater at first sight (10% from 87% to 77%),
it must be noted that 10% of the MNLI-premises
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Figure 1: Accuracy by model and fine-tuning dataset (each fine-tuning was run three times and the average of the
three runs is reported). For instance, the column on the very left gives the accuracies on our GKR-n evaluation
dataset after fine-tuning on mnli_u for each of the three models. Performance of roberta-large, which was not
already fine-tuned on MNLI, is on average 28% lower than roberta-large-mnli.

are anyway non-assertive (see Section 4) and thus
those of them (approximately 2/3, 6.6%) that are
labeled as entailments or contradictions are misla-
beled, yielding an actual loss in accuracy of 3.3%.
We emphasize that performing well at GKR-n re-
quires that the LLMs predict neutral for any of the
pairs in that dataset (because their premises are all
non-assertive), while performing well at MNLI-M
of course requires to predict all of the three labels
with equal frequency. It is reassuring that the same
LLMs manage to perform well at both evaluation
datasets, confirming our research hypothesis 3.

6 Outlook: Exploration of ChatGPT

Following recent advances in the area we are cu-
rious to see whether ChatGPT, a general-purpose
chatbot trained by OpenAI8 a) has a better notion
of entailment than other LLMs, and b) can cor-
rectly identify non-assertive statements and treat
them accordingly. To address these questions, we
manually explore ChatGPT: We manually prompt
the Chatbot with 96 premise-hypothesis-pairs with
non-assertive premises according to GKR that were
originally intended as entailment pairs by the cre-
ators of MNLI. We join premise and hypothesis to
obtain a question (see also Appendix C).

We find that, although ChatGPT gets the general
definition of logical entailment perfectly right (“en-
tailment is a relationship between two propositions,
in which the truth of the premise guarantees the
truth of the conclusion", something that it tends to

8See this blogpost, last consulted on December 14, 2023.
All interaction occurred on December 14, 2022, via OpenAI’s
research interface: https://chat.openai.com/chat.

assert quite often, see the Appendix, section B), it
often fails to apply it to the given examples: it states
that the hypothesis is logically implied (entailed)
by the non-assertive premise in 54% of the cases.
Interestingly, from the remaining 46% of the cases,
where ChatGPT indeed answers negatively, i.e.,
that there is no entailment, we observe that in 27%
of the samples the non-assertiveness of the premise
stems from its being too fragmentary to express a
specific proposition. This indicates that ChatGPT
is indeed able to tell when a premise is too incom-
plete to express a determinate claim. Hence, this
very small sample might suggest that ChatGPT has
a more accurate notion of entailment than the best
models tested in the main experiment, but this does
not fundamentally alter the scene: ChatGPT can
perform better with incomplete sentences, realizing
that nothing can be logically inferred from them,
but relatively poorly with questions or commands.

7 Conclusion

In sum, we take the results of our experiments to be
very encouraging. While LLMs that have been fine-
tuned only on MNLI show no sensibility for the fact
that nothing follows logically from questions, com-
mands, or incomprehensible fragments, fine-tuning
on our datasets can address this potentially con-
sequential shortcoming without losing too much
accuracy on MNLI-matched. In the future, we plan
to experiment with more sophisticated fine-tuning
methods and datasets to maximize performance on
non-assertive prompts. Furthermore, we hope to
probe ChatGPT using larger datasets, as the prelim-
inary results obtained here are very interesting.
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Limitations

We see two main limitations of this work. First, it
is clear that the quality of the proposed fine-tuning
method (with the non-assertive datasets) heavily
depends on the quality of the GKR parser, used for
the detection of non-assertive statements. Since the
parser has an F-score of 84.3%, as evaluated within
this work, it is to be expected that some of the exam-
ples used for fine-tuning will be faulty (mistakenly
classified as non-assertive and thus mistakenly clas-
sified as neutrals). This means that the models are
not given entirely clean input to learn from and
thus, their performance could further improve if
the quality of the GKR parser (or another similar
parser) could improve. Note however that this only
concerns the fine-tuning datasets and not the eval-
uation dataset, as this was manually checked for
correctness (and thus, there is no impact on the
results we report). The second limitation concerns
our experimentation with ChatGPT: we were only
able to experiment with a small amount of sam-
ples (due to the extremely expensive manual effort
required) and thus, our findings will need to be
reproduced through a larger-scale study. However,
our findings agree with Bang et al. (2023), who
find that ChatGPT performs reasonably well on
deductive and abductive inference tasks.

Ethics Statement

For fine-tuning our models, we have used parts
of the existing MNLI dataset. Thus, we see no
additional risk of adding personally protected in-
formation, offensive material, or biases that could
discriminate against marginalized groups.
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A Full Instructions Given to
Crowdworkers

Williams et al. (2018, 1114) specify the following
tasks for the crowdworkers:

“This task will involve reading a line from a
non-fiction article and writing three sentences that
relate to it. The line will describe a situation or
event. Using only this description and what you
know about the world:

• Write one sentence that is definitely correct
about the situation or event in the line.

• Write one sentence that might be correct about
the situation or event in the line.

• Write one sentence that is definitely incorrect
about the situation or event in the line. "

B ChatGPT on logical relationships
involving commands and hopelessly
incomplete premises

All interaction occurred on December 14, 2022,
via OpenAI’s research interface: https://chat.
openai.com/chat.

Human: Is there a relation of logical entailment
between "What is the capital of france?" and
"Paris"?

ChatGPT: Yes, there is a relation of logical en-
tailment between the question "what is the
capital of France?" and the answer "Paris".
In logic, entailment is a relationship between
two propositions (statements or sentences)
in which the truth of one proposition (the
premise) guarantees the truth of the other
proposition (the conclusion). In other words,
if the premise is true, then the conclusion must
also be true.

In the case of the question "what is the cap-
ital of France?" and the answer "Paris", the
premise is the information about the country
of France, and the conclusion is the name of
its capital city. Since we know that Paris is
the capital of France, the truth of the premise
(the information about France) logically en-
tails the truth of the conclusion (the name of
its capital city). In other words, if the premise
is true (i.e. if we are asking about the capital
of France), then the conclusion must also be
true (i.e. the answer is "Paris").
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Human: Is there a relation of logical entailment
between "the kids" and "the adults"?

ChatGPT: No, there is no relation of logical en-
tailment between the phrases "the kids" and
"the adults". In logic, entailment is a relation-
ship between two propositions (statements or
sentences) in which the truth of one proposi-
tion (the premise) guarantees the truth of the
other proposition (the conclusion). In other
words, if the premise is true, then the con-
clusion must also be true. In the case of the
phrases "the kids" and "the adults", there is no
logical connection or relationship between the
two. The phrases refer to two different groups
of people, and there is no inherent logic that
would guarantee that one group must be true
if the other is true. For example, if we know
that "the kids" are present, it does not neces-
sarily follow that "the adults" are also present.
Therefore, there is no relation of logical en-
tailment between these two phrases.

Human: Is there a relation of logical entailment
between "Close the door now!" and any other
sentence?

ChatGPT: Yes, there is a potential relation of log-
ical entailment between the order "Close the
door now!" and any other sentence that pro-
vides information about the intended action or
outcome of the order. In logic, entailment is a
relationship between two propositions (state-
ments or sentences) in which the truth of one
proposition (the premise) guarantees the truth
of the other proposition (the conclusion). In
other words, if the premise is true, then the
conclusion must also be true. In the case of the
order "Close the door now!", the premise is
the command to close the door, and the conclu-
sion is the intended action or outcome. There-
fore, any sentence that provides information
about the intended action or outcome of the
order can be considered the conclusion of the
entailment relationship. For example, if the
order "Close the door now!" is followed by the
sentence "The door is now closed", this sen-
tence can be considered the conclusion of the
entailment relationship, because the truth of
the premise (the command to close the door)
logically entails the truth of the conclusion
(the door is now closed).

In general, the relation of logical entailment
between "Close the door now!" and any other
sentence will depend on the specific informa-
tion provided by the other sentence. If the
sentence provides information that is logically
entailed by the premise of [here the response
from ChatGPT ended rather abruptly].

C Full Output from ChatGPT Prompting
with non-assertive premises

In tables 3, 4, and 5, we can see the predictions
of ChatGPT for a selection of 96 pairs with non-
assertive premises from the validation split of our
dataset. For each of the pairs, we prompted Chat-
GPT with the following template:

(5) Does "PREMISE" entail "HYPOTHESIS"?

ChatGPT always responded with a clear, albeit
sometimes somewhat verbose, yes (represented
with “1” in the tables) or no (represented with “0”
in the tables). The tables show that ChatGPT cor-
rectly predicts neutral (“0”) in 44 of 96 prompts.

For example, here is the full turn with ChatGPT’s
explanation of its response for one sample with an
incomplete sentence as premise.

(6) (P) : Heaven’s Highway (H) Paradise’s
Road.

Human: Does “: Heavaen’s Highway” entail
“Paradise’s Road?”

ChatGPT It is not clear whether the phrase ":
Heaven’s Highway" entails that "Paradise’s Road".
The phrase ": Heaven’s Highway" is not a complete
sentence and is difficult to interpret or understand.
It appears to describe a specific location or path
(Heaven’s Highway), but it is not clear what this
location or path entails or whether it relates to the
second phrase ("Paradise’s Road"). In order to de-
termine whether the first phrase entails the second
phrase, you would need to provide more informa-
tion about the context in which the phrase is used
and the intended meaning of the speaker.
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ID Premise Hypothesis True Pred.

11906e Would it not be a terrible shock to her? Would it shock her? 0 0
145506e Why did our emperor get up so early,and

why is he sitting enthroned at the city’s main
gate,in state, wearing the crown?

The emperor has a crown on his head. 0 0

8021e Inside both maps of the connections in the al-
leged right-wing conspiracy against Clinton,
profiles of Al Gore (steely-eyed in this time
of crisis), and still more pop-psychologizing
about Clinton’s personality.

The evaluations of Al Gore are part of the
psychological profiling of Clinton

0 0

116777e dirt and noise mud and sounds 0 0
113150e From the Place des Abbesses, take Rue Rav-

ignan to 13 Place Emile-Goudeau.
To get to 13 Place Emile-Goudeau from the
Place des Abbesses, take Rue Ravignan.

0 1

124577e Says who?’ Who said that? 0 0
95036e that be all right between them and Would they both be ok with it? 0 0
144940e Get out and explore the streets, the open

markets, the cafe.
Go and see the streets, open markets, and
cafe.

0 1

61713e Come on, Jeffrey. Jeffery should hurry up. 0 0
20169e Are they using financial statements? Are financial statements being used? 0 1
86509e You have raced him, senor ?"he asked Drew

with formal courtesy.
Have you raced him, sir? he asked Drew. 0 0

57980e Closed Sabbath. It’s closed on the Sabbath. 0 1
21565e What day was it when you searched the pris-

oner’s room?
You searched the prisoner’s room, right? On
what day?

0 0

17577e Prepared for Office of Air Quality Planning
and Standards, US Environmental Protection
Agency, Research Triangle Park, NC and
Air Quality Management Division, National
Park Service, Denver, CO.

The National Park Service is based in Den-
ver Colorado.

0 0

90510e Then head back to Alicante, just 28 km (17
miles) away.

Go back to Alicante, which is only 28km
away.

0 1

108189e Can’t keep even with ’em. Can’t stay even. 0 0
79930e What was happening to her? What happened to her? 0 0
37447e um something with the defense uh It’s related to protection 0 0
110960e (Thank you.) Thanks was given. 0 0
52731e Old values versus new, old virtues and new

injustices.
It was the old vs the new. 0 0

145261e Fuck the gravy To hell with the gravy. 0 0
27635e Use of Program Oversight Overseeing the program. 0 1
144659e a professional mother a person A professional mother and a person. 0 0
38885e back grind tape on and off the wafers Take the tape on and off the wafers. 0 0
91077e Randy’s Self-Reference Wrap-Up Randy’s Wrap-Up of Himself. 0 1
60546e in cold frames or whatever the in cold frames. 0 0
16026e But how come Kitchell could hide out in

Apache country?
How was it the Kitchell was able to stay
undetected in Apache lands?

0 0

86644e sought and respected by the organizations’
business managers.

sought and respected by the organizations’
business managers.

0 1

797e Contact the Hong Kong Yacht Club at Tel.
2832 2817 for information.

the contact number for the Hong Kong Yacht
Club is 2832 2817

0 1

45789e And the second point? I asked. What is the second point? 0 0
65272e well really just commune with nature We commune with nature. 0 0
109942e But does that mean that we face a repeat of

the dark years of soup kitchens and brown-
shirts leading up to world war?

Does that mean we’re going to see some-
thing similar to the bad times before the
world war?

0 0

123225e Summary of Major Sections Summary of important sections 0 1

Table 3: Full output from ChatGPT-Prompting 1/3.
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ID Premise Hypothesis True Pred.

31686e Interest (unless classified elsewhere), divi-
dends, and rents (except for mineral rights)
on Government property.

Mineral rights are excluded from rents on
government property.

0 1

88124e ’Yes sir, Mr. Franklin?’ Can I help you Mr. Franklin? 0 0
19958e Are they often used, may I ask?" Are the things utilized frequently? 0 0
137712e Personal Communication with J. Urbas, Re-

liant Energy, August 13, 2001.
Direct communication with J. Urbas. 0 1

34689e A sign of failure, of a feeble economy, per-
haps?

Is that a sign of a bad economy? 0 0

126927e Department of Labor, Division of Foreign
Labor Certifications, Revised June 1999
[hereinafter FY 1998 H-2A Report].

Department of Labor includes the Division
ofForeign Labor Certifications.

0 1

145094e National Saving and Investment? Saving and Investment across the country. 0 0
110340e A Nation of Spendthrifts? It is a nation of spendthrifts. 0 0
48026e Then climb (even higher! ) Then climb higher than you are. 0 0
106750e You think he’d get after her? The person being spoke to think he’d go after

her.
0 0

134219e U.S. airports sufficient toprotect the safety
of passengers and equipment?

Is protecting passengers a task that US air-
ports aren’t capable of handling?

0 0

96401e The verdict? The decision? 0 1
2818e What was it? Do you know what it was? 0 0
56782e How did we lose our rich tradition of porcine

references?
There are fewer pig references than there
were in the past.

0 0

104984e What money? What money do you mean? 0 0
595e Does Hillary Clinton believe her husband’s

denials?
It’s not sure whether Clinton believes her
husband or not.

0 0

123277e For example, in lieu of hiring a large number
of seasonal

Instead of hiring a lot of seasonal 0 1

141791e So why Clinton’s aggressive defense of
Helms-Burton?

Why is Clinton so defensive of helms Burton 0 0

125428e um-hum treatment before for dismissal type
thing

Treatment before dismissal thing. 0 0

71972e Kaaterskill Falls ,by Allegra Goodman (Dial
Press).

Goodman wrote a book called Kaaterskill
Falls.

0 1

29030 That’s th way you think it’s gonna be,
Croaker?

Is that the way you think it will be, Croaker? 0 1

71243e Which tradition does John belong to? John belongs to which institution? 0 0
40851e Take the m??tro to Rambuteau and start at

the corner of the Rue des Archives and Rue
des Francs-Bourgeois, named after the poor
people who were al?lowed to live here tax-
free during the 14th century.

Take the metro to Rambuteau and start at the
corner of the Rue des Archives.

0 1

85667e : Heaven’s Highway Paradise’s Road. 0 0
110009e things that uh get you on the edge of your

seat a little too much for her
She doesn’t like things that get you on the
edge of your seat.

0 0

40765e Many thanks to readers Bill Moran, Darren
Thorneycroft, and Nicholas Lemann* (au-
thor of The Big Test ) for flagging this one.

There was reason to flag this. 0 1

34376e Understand what? Understand what? 0 1
133820e Could they take the place of one of the 56

channels of movies?
Could they replace one of the 56 movie chan-
nels?

0 1

102665e Jingoistic Java Juggernaut The Java Juggernaut is Jingoistic 0 1
75235e So who does? Well, who is doing it? 0 1
93725e , annual mean PM concentration) as inputs

to the health and welfare C-R functions of
the benefits analysis.

PM concentration is an input to the C-R func-
tions.

0 1

124139e (The difference between the rates divided by
the number of grams in the weight interval).

The rates are divided by the number of
grams.

0 1

82736e 10 See the appendix for a further explana-
tion about electronic signatures and GAO’s
review of such applications.

If you want a further explanation about GAO
see the appendix.

0 0

4522e Rival explanations explanations that disagree. 0 1
38499e The Blue Room , by David Hare (Cort The-

atre, New York City).
The Blue Room was written by David Hare. 0 1

Table 4: Full output from ChatGPT-Prompting 2/3.
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73920e (1) How long are seasonal agricultural work-
ers typically in the United States?

Do seasonal agricultural workers stay in the
US for a while?

0 1

64748e If I don’t, how should I handle it, given that
we’ll see each other around?

We will end up seeing each other around. 0 1

33128e Kinda free with a gun, leastwise at showin’
it.

They are showing that they are free with a
gun.

0 1

118355e Click on the British flag for an English ver-
sion of the site.

There is an English version of the website. 0 1

105826e just to see the show just to see the show right Only to watch the show, correct? 0 1
58056e Participate in the graceful tea ceremony or

watch the dazzling display of skill in kendo
(stick fighting), with its impressively fierce
battle cries.

Join in the ceremony of tea or view the
kendo performance.

0 1

48341e Disk compression and networking into Win-
dows.

Disk compression and networking is possi-
ble in Windows.

0 1

36136e Can you describe him at all?" Can you provide his characteristics? 0 1
50508e How could productivity indexes–which ba-

sically measure the ability of workers to
produce a given set of goods–properly take
account of such revolutionary innovations
as automobiles, antibiotics, air conditioning,
and long-playing records?

Productivity indexes measure the ability of
workers to make goods.

0 1

39272e Our A Low-Wage Workforce Without the
Brown People.

Brown people make up the low-wage work-
force.

0 0

52111e Acute inflammation and respiratory cell
damage

Respiratory cells can be damaged. 0 1

116968e for each household in the sample. Individual households are sampled. 0 1
122452e Evaluation Synthesis. Synthesis of the evaluation. 0 1
117542e What would you really choose as a profes-

sion, if you could just consult your inclina-
tion?

What do you want to do for a living? 0 1

83373e from front-line employees and managers,
and a variety of implementation issues, such
as workload demands.

One of the implementation hurdles that will
be faced is workload demand.

0 1

109228e Continue along this road to reach the pretty
coastal town of Molyvos (also known by its
ancient name, Mithymna), a popular spot for
tourists.

Molyvos is a coastal town and a hot spot for
tourism.

0 1

46914e Section 610(e) of the Hearing Aid Compati-
bility Act of 1988, 47 U.S.C.

The Hearing Aid Compatibility Act was
passed in the late 1980’s.

0 1

69496e Why are you coming at me with that pillow? Why are you tossing the pillow at me? 0 0
115705e um oh i never heard of that I have never heard of that. 0 1
25776e Who was this man who held in his finger

these curiously variegated links of an un-
known chain?

Who was this man who held these links of
chain?

0 1

98779e Au revoir, my clever and charming young
lady. Tuppence sped lightly down the stairs.

Tuppence swiftly left as the watcher whis-
pered goodbye.

0 0

109425e Best Practices of Leading Commercial Com-
panies

The most dominant commercial companies’
best practices

0 1

86775e Am I an idiot? Am I an idiot? 0 1
5396e Greetings, Dave Hanson. I greet you Dave Hanson. 0 1
105613e Buchanan or Bush vs. the congressional

Republicans.
There are Republicans in Congress. 0 1

132469e Far from perfect. It is not perfect. 0 1
112205e Look out for Robert le Lorrain’s fine

sculpted horses of Apollo over the old sta-
bles in the second courtyard.

Sculptures of horses can be seen in the sec-
ond courtyard.

0 1

93047e Who knows? Who knows? 0 1

Table 5: Full output from ChatGPT-Prompting 3/3.
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Abstract

Using Japanese honorifics is challenging be-
cause it requires not only knowledge of the
grammatical rules but also contextual informa-
tion, such as social relationships. It remains un-
clear whether pre-trained large language mod-
els (LLMs) can flexibly handle Japanese hon-
orifics like humans. To analyze this, we intro-
duce an honorific conversion task that considers
social relationships among people mentioned
in a conversation. We construct a Japanese
honorifics dataset from problem templates of
various sentence structures to investigate the
syntactic generalization capacity of GPT-3, one
of the leading LLMs, on this task under two
settings: fine-tuning and prompt learning. Our
results showed that the fine-tuned GPT-3 per-
formed better in a context-aware honorific con-
version task than the prompt-based one. The
fine-tuned model demonstrated overall syn-
tactic generalizability towards compound hon-
orific sentences, except when tested with the
data involving direct speech.

1 Introduction

The correct use of Japanese honorifics is difficult
because it requires both the knowledge of gram-
matical rules (i.e., verb conjugation) and contex-
tual information (i.e., social relationships among
the speaker, the hearer, and the people mentioned
in a conversation) (Harada, 1976). We expect
this syntactic and pragmatic ability for pre-trained
large language models (LLMs), as they have shown
high performance on natural language tasks (Brown
et al., 2020, Ouyang et al., 2022, inter alia). How-
ever, it remains unclear whether LLMs can handle
Japanese honorifics in a similar manner to humans,
based on sentence structures and social context.

Several studies proposed datasets of Japanese
honorifics for classification (Liu and Kobayashi,
2022; Someya and Oseki, 2022) and genera-
tion (Matsumoto et al., 2022). Liu and Kobayashi

(2022) introduced a task in which a model takes an
honorific sentence as input and classifies its hon-
orific level or the types of honorifics used in the
sentence. Someya and Oseki (2022) provided a
Japanese acceptability classification dataset called
JCoLA. In JCoLA, subject honorifics are catego-
rized as sub-categories of subject-verb agreement
tasks. However, these datasets aim to evaluate the
syntactic performance of language models, and
they do not analyze their pragmatic ability to under-
stand honorifics by considering social relationships
behind sentences. Matsumoto et al. (2022) intro-
duced an evaluation dataset for an honorific con-
version task in which the input was a non-honorific
sentence, and the output was an honorific sentence.
Matsumoto et al. (2022) mentioned the necessity of
considering the information on social relationships
among people in honorific conversion but did not
clarify how such information should be processed
in the task. In summary, the existing benchmark
datasets of Japanese honorifics focus on either syn-
tactic or pragmatic knowledge required for hon-
orific understanding, not both (Appendix A). Ad-
ditionally, none of these existing studies discusses
the generalization capacity toward various syntac-
tic structures of honorific sentences.

In this research, we introduce a new honorific
conversion task that uses information on person’s
social relationships as additional input. In Mat-
sumoto et al. (2022)’s proposed honorific conver-
sion, the input was only a non-honorific sentence.
In our task, social relationships are expressed as a
sentence and concatenated into an input sentence
(Section 2). This enables us to analyze whether
LLMs could consider information on social rela-
tionships when executing honorific conversion. We
also construct a dataset to investigate the syntactic
generalizability of LLMs for this honorific task. We
create hand-crafted templates and generate prob-
lems for the task by filling in the placeholders (Sec-
tion 3). By focusing on the syntactic generalization
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Type Target of respect and deference Example

Subject honorifics (SH) Agent Sensei-ga Hanako-o homete-irasshatta.
Teacher-NOM Hanako-ACC praised-SH

Object honorifics (OH) Patient (Watashi-ga) sensei-no-tokoro-ni ukagau.
(I-NOM) teacher-POSS-place-LOC visit-OH

Table 1: Types of Japanese honorifics with conjugation rules. The underlined part is a person to whom the speaker
should show respect or deference. The bolded parts are conjugated verbs. A verb hometa (praised) conjugates to its
subject honorific form homete-irasshatta by attaching a suffix irasshatta and tazuneru (visit) conjugates to its object
honorific form ukagau.

Figure 1: Examples of an honorific conversion task that considers contextual information. The bolded verbs
conjugate to their honorific form if needed, considering the context.

� �
Context: The speaker uses honorifics for Tanaka.
Tanaka-san-ga itta. → Tanaka-san-ga osshatta.� �

↓ generalize� �
Context: The speaker uses honorifics for Tanaka. The
speaker and Tanaka uses honorifics for Itoh.
Tanaka-san-ga [okyakusama-ga kita] to Itoh-san-ni
houkokushita. → ???� �

Figure 2: An example of the syntactic generalization of
honorifics. The lower problem is made of a more com-
plex sentence structure (center embedding and indirect
speech) than the upper problem.

capacity, we analyze how flexibly LLMs can ap-
ply the grammatical rules of honorifics. Using our
dataset, we then fine-tune and evaluate the perfor-
mance of GPT-3 on the task (Section 4). Addition-
ally, we evaluate the models using zero-shot learn-
ing to determine how well these models perform
for honorific conversion using the prompt-based
method. Our experiments indicate that the fine-
tuned GPT-3 successfully generalizes to sentences
with more complex structures, such as scrambling,
but not to those involving direct speech. We also

show that the model with prompt learning demon-
strates much lower performance than that with fine-
tuning.

Our dataset will be publicly available at https:
//github.com/ynklab/japanese_honorifics.

2 Task Overview

Japanese Honorifics Japanese honorifics are
based on various linguistic phenomena (Council for
Cultural Affairs, 2007; Nihongo Kijutsu-bunpou
Kenkūkai, 2009); some have grammatical rules of
conjugation. We target Subject Honorifics (SH)
and Object Honorifics (OH). As shown in Table 1,
these honorifics are applied depending on the gram-
matical position of sensei (a teacher) so that the
speaker can express respect or deference towards
the teacher. SH is applied to the predicate when
agent has a higher social status than the speaker,
and OH is applied when the patient has a higher
social status than the speaker.

Honorific Conversion The existing research pro-
posed honorific conversion (Matsumoto et al.,
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Figure 3: Overview of the process of dataset construction. The bolded sentences are used in the task. The verb met
has to conjugate to its subject honorific form met-SH (o-ai-ni-natta) since the speaker is supposed to use honorifics
for Tanaka-san.

2022). We extend this task to include sentences ex-
plaining social relationships as input. In the upper
example of Figure 1, the speaker is talking about
supervisor Yamada’s actions, so the verb uketoru
(receive) should be converted into the subject hon-
orific form. In the lower example, the speaker and
Yamada are in a casual relationship because they
are colleagues; therefore, the model should output
the same sentence as the input without honorific
conjugation.

Syntactic Generalization We focus on the mod-
els’ syntactic generalization ability to capture
whether models can flexibly use honorific rules.
In this paper, syntactic generalization refers to a
model’s ability to use honorific rules for not only
simple syntactic structures but also complex syn-
tactic structures (see Figure 2).

3 Dataset Construction

We construct a Japanese honorific dataset by man-
ually creating problem templates and filling their
placeholders with vocabulary using dictionaries
to evaluate LLMs’ performance on the honorific
task. Our dataset construction method is shown in
Figure 3. We take this approach instead of automat-
ically collecting data from corpora for two reasons.
First, it is difficult to create sentence data with com-
plex structures, such as scrambling, from corpora in
a controlled manner. This possibly makes it easier
for a model to do honorific conversion than when
the information is implicit. Second, we need to
prepare controlled settings for social relationship
information to evaluate whether LLMs utilize it in
honorific conversion; however, such information
does not appear explicitly in the corpora.

The second problem is related to the fact that
words in argument positions are often dropped in
Japanese, especially in dialogue sentences. (1) and

(2) display a conversation between a junior worker
and their boss.

(1) A boss asks a question to a junior
Okashi-tte
snack-TOP,

mada
still

nokotteru
remain

?
?

‘Are there any snacks left?’

(2) The junior answers
ϕi
ϕ

nokori
remained

wa
TOP

itadakimashitai
had-OH

‘I/We had them all.’

In this conversation, two ambiguous points must
be clarified to determine the honorific relationship
behind the conversation. The first point is that
the junior answers with object honorifics to show
deference in (2), but the target of deference is am-
biguous without additional context. If snacks are
something the boss originally brought to their of-
fice, the boss is the target of the junior’s deference.
However, if the snacks are prepared by some third
person with a higher rank of job position than the
junior, the deference must be towards them instead
of the boss. The second point is that the subject
is dropped in (2) (pro-drop), but we cannot deter-
mine whether ϕ refers to the junior or to a group
of workers containing the junior. Considering such
language-specific phenomena, we take a template-
based approach instead of a corpus-based approach
for dataset construction.

3.1 Templates
We create 39 problem templates based on the liter-
ature on Japanese linguistics (Council for Cultural
Affairs, 2007; Nihongo Kijutsu-bunpou Kenkūkai,
2009). A graduate student with a linguistic back-
ground created the templates by consulting a lin-
guistics researcher. Each problem template has
three elements for generating input and output data
for honorific conversion: the relationship template,
sentence template, and honorific type.
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Relationship Templates Relationship templates
represent social relationships among a speaker, a
person who makes an action (agent), and one who
is the target of the action (patient) in an equation-
like format. For example, speaker=actor<target
means that the speaker and actor do not use hon-
orifics for each other and should use honorifics for
the target.

Sentence Templates Sentence templates have
placeholders for person’s names and verbs. Based
on their structural complexities, we prepare two
types of sentence templates: SIMPLE and COM-
PLEX. SIMPLE is a template that has one clause
and S(O)V structure, and COMPLEX is a template
that has more complex syntactic structures: scram-
bling (SC), center embedding (CE), direct speech
(DS), and indirect speech (IS). The first two struc-
tures change the argument positions within a sen-
tence, potentially posing challenges for the model
in capturing subject-verb agreement. The last two
are related to honorific application, depending on
whether the sentence has quotation marks (brack-
ets) or not (see Appendix B). A COMPLEX template
may contain multiple structures (e.g., IS & CE).
See Appendix B for further details.

3.2 Problem Generation

We create problem data for training and evaluating
models by filling in placeholders of the templates
for verbs and person’s names. From the relation-
ship template, context sentences are generated that
explain the social relationships between the speaker
and the people mentioned in the input sentence. In
addition, from the sentence template, we create an
incorrect or non-honorific sentence and a correct
honorific sentence. The verb conjugates according
to the honorific type given when its placeholder is
being filled. We used 23 verbs and 19 names in this
experiment. We chose the verbs which are com-
monly used in daily conversation. We also avoid
verbs such as nusumu(steal) because honorifics can-
not usually be applied to disrespectful actions. Re-
garding the names of people, we used the 19 most
common family names in Japan in 20221. Finally,
a set of the following data is generated from each
problem template: context sentences, an incorrect
or non-honorific sentence, and a correct sentence.

1https://myoji-yurai.net/prefectureRanking.
htm

4 Experiments

4.1 Experimental Setup
We evaluate GPT-3 models on the proposed hon-
orific conversion task under two different exper-
imental settings: fine-tuning and prompt learn-
ing. Despite the general expectation of the su-
perior performance of fine-tuning compared to
zero-shot prompt learning, no prior research has
aimed to evaluate the performance of LLM on
honorific conversion in a prompt-based method.
Thus, we compare the scores of these two meth-
ods to validate whether the same goes true for
honorific conversion. For the two settings accord-
ingly, we use davinci (Brown et al., 2020) and
text-davinci-003 (Ouyang et al., 2022), which
are available in the OpenAI API (see Appendix C
for details including hyperparameter settings).

Fine-tuning We fine-tune two models that differ
in the training dataset’s size to measure how much
data are needed to generalize the problems. SIM-
PLE_TRAIN is used for training and SIMPLE_TEST

and COMPLEX_TEST for evaluation. 3_times is a
model trained with 117 problems we prepare by
generating three data from each problem template,
and in the same way, 7_times is trained with 273
problems. Although our dataset has relatively little
data, we consider it enough for the experiments
because the minimum dataset size for fine-tuning
GPT-3 is “a few hundred.”2 As shown in Figure 1,
the input is a concatenation of condition sentences
and an incorrect sentence, and the output is a proper
honorific sentence.

Prompt Learning GPT-3 is known for zero-shot
learning, solving some tasks given only a natural
language description as a prompt. In addition to the
input text used for fine-tuning, we include a task
description in the input prompt (see Appendix E).

Evaluation We manually calculate the percent-
age of correct sentences generated by a model. In
this experiment, we regard the output as correct
if the verb conjugates to one of the possible hon-
orific forms. We also ignore mistakes unrelated to
verb conjugation (e.g., adding a comma in a natural
position). We create test datasets using the same
problem templates and vocabulary as the training
datasets. SIMPLE_TEST contains 108 examples,
and COMPLEX_TEST has 408 examples (see Ap-
pendix D).

2https://platform.openai.com/docs/guides/
fine-tuning/preparing-your-dataset
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Context: The speaker uses honorifics for Kimura. The speaker and Kimura use honorifics for Takahashi-san.
→Speaker<Kimura<Takahashi

Translation Takahashi says “Kimura is going home.”
Source Takahashi-san ga “Kimura ga okaerininaru (=go-home-SH)” to ossharu.
Target Takahashi-san ga “Kimura ga kaeru (=go-home)” to ossharu.
Model’s Prediction Takahashi-san ga “Kimura ga okaerininaru (=go-home-SH)” to ossharu. (Not converted)

Table 2: An example of the errors regarding direct speech. The speech within brackets is made by Takahashi. The
verb kaeru should not be in a subject honorific form okaerininaru because Takahashi does not use honorifics for
Kimura, given their relationships.

Setting Simple Complex

CE SC IS DS

FT 3_times .889 .230 .297 .081 .368
7_times .990 .326 .452 .231 .293

PL zero-shot .212 .115 .174 .168 .100

Table 3: Evaluation results of the models on our test
dataset through honorific conversion. FT refers to fine-
tuning, and PL to prompt learning.

4.2 Results

Table 3 shows the scores under all settings of our ex-
periments on the honorific conversion task. Overall,
the fine-tuning scores surpass those of the prompt-
based method.

4.2.1 Fine-tuning
The scores plummeted when the models were
tested with COMPLEX_TEST compared to SIM-
PLE_TEST. When we increased the data size, the
scores increased in most cases, except when tested
for problems with direct speech sentences. In Ta-
ble 2, the model failed to convert a direct speech
sentence (Takahashi-san ga “Kimura ga okaerin-
inaru” to ossharu). The verb kaeru should not
be in a subject honorific form (okaerininaru) be-
cause Takahashi does not use honorifics for Kimura,
given their relationships. However, if the brackets
(quotation marks in Japanese, see Appendix B) are
removed, the sentence (Takahashi-san ga Kimura
ga okaerininaru to ossharu) becomes an indirect
speech sentence and thus becomes proper hon-
orifics. Based on this characteristic, we suppose
that the model applied the same honorific knowl-
edge as indirect speech to direct speech, ignoring
the role of brackets.

4.2.2 Prompt Learning
The scores were relatively higher when tested with
SIMPLE_TEST than with COMPLEX_TEST, but the
scores under all of our settings were lower than
25%. We found that the models transferred non-

honorific sentences to polite forms in almost all
cases by simply changing the last letters of the
verbs that end -suru into -shimasu instead of apply-
ing SH or OH. This conversion is possibly caused
by our prompt instructing the models to “convert to
the proper honorific sentence,” which may include
polite forms too. To validate whether the models
use contextual information, we need to construct a
prompt that can differentiate SH and OH from po-
lite speech because polite forms are less restricted
to social relationships.

5 Conclusions and Future Work

In this paper, we introduced an honorific conversion
task that requires not only syntactic knowledge but
also pragmatic knowledge, such as social relation-
ships among people. We constructed a Japanese
honorific dataset using problem templates created
manually and evaluated the syntactic generaliza-
tion capacity of GPT-3 models on the task using
our dataset. The experiments showed that the fine-
tuned models could solve problems with simple
structures but failed to generalize to problems with
more complex structures, particularly with direct
speech. Regardless of the sentence structure, the
prompt-based models did not successfully solve
the problems with our current prompt setting.

In future work, we plan to expand our dataset
to include more diverse Japanese honorific expres-
sions, such as predicates other than verbs or hon-
orific prefixes attached to nouns. For the prompt-
based experiments, we evaluated the models using
zero-shot learning. It would be valuable to test
them using few-shot learning by including simple
examples in the prompts.

We conducted experiments by explicitly provid-
ing information about social relationships. We will
also continue to seek data construction methods to
extract such information from the corpora, although
we did not apply these corpora-based methods in
this paper.
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Limitations

We discuss two limitations of this research in this
section. First, this research focuses on Japanese
honorifics with grammatical rules of verb conju-
gation, which we can judge whether the honorific
conversion is correct based on social relationships
and sentence structures created in a controlled man-
ner. Japanese honorifics have more expressions
based on linguistic phenomena that we did not in-
clude in our templates, such as noun honorifics
(e.g., ofutagata, a polite and formal way of say-
ing “the two people”). Creating templates for noun
honorifics requires more detailed settings because
they are based on information on context other than
social relationships. Second, GPT-3 is the only lan-
guage model evaluated on our honorific conversion
task. This research aims to analyze how capable
the well-known, high-performing GPT-3 is of gen-
eralizing Japanese honorific sentences and not to
explore which existing LLM can achieve the best
performance in honorific conversion.
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Table 4 shows examples of existing Japanese hon-
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B Templates

Table 5 shows examples of templates we created.
Table 6 shows examples of indirect and direct
speech in Japanese.

C Model Details

davinci is the largest model among the ones pro-
vided for fine-tuning, and text-davinci-003 is
trained by reinforcement learning on human feed-
back and aimed at being used with prompt learning.

Hyperparameters For fine-tuning GPT-3,
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Table 4: Examples from the existing honorific datasets.

Original Converted Label

朝ごはんはトーストにバターとべジ 朝ごはんはトーストにバターとべジ 変換:謙譲語
マイトを薄くぬって食べました。 マイトを薄くぬっていただきました。
(I had toast for breakfast with a (I had_OH toast for breakfast with a (Converted: OH)
thin layer of butter and Vegemite.) thin layer of butter and Vegemite.)

そして10時くらいに、喫茶店でレー そして10時くらいに、喫茶店でレー 無変換

シャルとジョノサンとベルに会いました。 シャルとジョノサンとベルに会いました。
(Then, at around 10:00, I met Rachel, (Then, at around 10:00, I met Rachel, (Not converted)
Jonathan, and Belle at a coffee shop.) Jonathan, and Belle at a coffee shop.)

(Matsumoto et al., 2022)

(Liu and Kobayashi, 2022)

Pre-training Data of GPT-3 GPT-3 can input
and output Japanese texts because some of its
pre-training datasets (Common Crawl, WebText)
contain Japanese texts, although the proportion of
Japanese texts is not clarified.

D Test Dataset

Within the COMPLEX_TEST dataset, 156 data have
center embedding, 252 for scrambling, 160 for indi-
rect speech, and 160 for direct speech. Scrambling
and center embedding can not appear in one prob-
lem data; the same goes for indirect and direct
speech.

E Prompt Example

Figure 4 shows an example of our prompt used for
prompt learning.

� �
以下の文はあなたの発言です。人物間の敬語の
条件を踏まえて、敬語が不十分かそれらを誤って
使っている場合は正しい敬語に変換してくださ
い。 (The following sentence is your speech. Given
the condition of usage of honorifics between people,
convert the sentence to the proper honorific one if it
contains wrong or insufficient honorifics.)
===
敬語の条件:あなたは田中に敬語を使います。
(Condition: You use honorifics for Tanaka.)
田中が受け取る (Tanaka receives) ->� �

Correct output: 田中がお受け取りになる (Tanaka
receives-SH)

Figure 4: An example of the prompt used for zero-shot
learning. The bold text is a task description.
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Relationship template Honorific type Sentence template
and an example of created correct sentence Structure type

speaker=actor_1=target_1 v_ni_1→ NA

actor_1 ga target_1 ni v_ni_1。
actor_1 NOM target_1 DAT v_ni_1。
Sasaki ga Saito ni au。
(Sasaki meets Saito.)

SIMPLE

speaker=target_1<actor_1 v_ni_1→ SH

actor_1 ga target_1 ni v_ni_1。
actor_1 NOM target_1 DAT v_ni_1。
Takahashi-kyoju ga Kimura ni o-ai-ninaru。
(Prof. Takahashi meets Kimura.)

SIMPLE

speaker=target_1<actor_1 v_o_1→ SH

actor_1 ga target_1 o v_o_1。
actor_1 NOM target_1 ACC v_o_1。
Kimura-hakase ga Yamada o shokai-nasaru。
(Dr. Kimura introduces Yamada.)

SIMPLE

speaker=actor_1=target_1 v_ni_1→ NA

target_1 ni actor_1 ga v_ni_1。
target_1 DAT actor_1 NOM v_ni_1。
Kimura ni Yamamoto ga kanshasuru。
(Yamamoto thanks Kimura.)

COMPLEX (SC)

speaker=actor_1=actor_2 v_to_1→ NA
v_single_2→ NA

actor_1 ga “actor_2 ga v_single_2”
to v_to_1。

actor_1 NOM “actor_2 NOM v_single_2”
CITE v_to_1。

Itoh ga “Matsumoto ga iku” to iu。
(Itoh says “Matsumoto goes.” )

COMPLEX (DS, CE)

speaker<actor_2<actor_1 v_to_1→ SH
v_single_2→ NA

“actor_2 ga v_single_2” to
actor_1 ga v_to_1。

“actor_2 NOM v_single_2” CITE

actor_1 NOM v_to_1。
“Kimura-sensei ga uketoru” to

Kato-hakase ga o-kangae-ninaru。
(Dr. Kato considers,

“Kimura-sensei will receive it.” )

COMPLEX (DS, SC)

speaker<actor_2<actor_1 v_to_1→ SH
v_single_2→ SH

actor_2 ga v_single_2 to
actor_1 ga v_to_1。

actor_2 NOM v_single_2 CITE

actor_1 NOM v_to_1。
Kimura-sensei ga o-uketori-ninaru to

Kato-hakase ga o-kangae-ninaru。
(Dr. Kato considers that

Kimura-sensei will receive it.)

COMPLEX (IS, SC)

Table 5: Examples of problem templates. NA in the honorific type section means no honorific needs to be applied to
a verb. SC=scrambling, CE=center embedding, DS=direct speech, IS=indirect speech

Social relationships: Speaker<Taro=Hanako

Indirect speech
Taro-san-ga irasshatta to Hanako-san-ga itta.
Taro-HON-NOM came-SH CITE Hanako-HON-NOM said.

Direct speech
「Taro-ga kita」 to Hanako-san-ga itta.
Taro-NOM came CITE Hanako-HON-NOM said.

Table 6: Examples of indirect speech and direct speech in Japanese. Indirect speech is the citation of someone’s
speech without quotation marks (brackets), and direct speech is the one with them. In the example of indirect speech,
subject honorifics are applied to Taro’s name (-san) and his action (irasshatta) to express the speaker’s respect for
him. In contrast, the sentence within brackets is written without any honorifics in direct speech. Hanako does not
use honorifics for Taro’s actions according to their social relationships, so the quoted sentence is what Hanako said,
and no honorifics from the speaker’s view of the entire sentence are reflected.
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Abstract

Geocoding is the task of converting location
mentions in text into structured data that en-
codes the geospatial semantics. We propose
a new architecture for geocoding, GeoNorm.
GeoNorm first uses information retrieval tech-
niques to generate a list of candidate entries
from the geospatial ontology. Then it reranks
the candidate entries using a transformer-based
neural network that incorporates information
from the ontology such as the entry’s popula-
tion. This generate-and-rerank process is ap-
plied twice: first to resolve the less ambigu-
ous countries, states, and counties, and sec-
ond to resolve the remaining location men-
tions, using the identified countries, states, and
counties as context. Our proposed toponym
resolution framework achieves state-of-the-art
performance on multiple datasets. Code and
models are available at https://github.
com/clulab/geonorm.

1 Introduction

Geospatial information extraction is a type of se-
mantic extraction that plays a critical role in tasks
such as geographical document classification and
retrieval (Bhargava et al., 2017), historical event
analysis based on location data (Tateosian et al.,
2017), tracking the evolution and emergence of
infectious diseases (Hay et al., 2013), and disas-
ter response mechanisms (Ashktorab et al., 2014;
de Bruijn et al., 2018). Such information extraction
can be challenging because different geographical
locations can be referred to by the same place name
(e.g., San Jose in Costa Rica vs. San Jose in Cali-
fornia, USA), and different place names can refer
to the same geographical location (e.g., Leeuwar-
den and Ljouwert are two names for the same city
in the Netherlands). It is thus critical to resolve
these place names by linking them with their cor-
responding coordinates from a geospatial ontology
or knowledge base.

Geocoding, also called toponym resolution or
toponym disambiguation, is the subtask of geop-
arsing that disambiguates place names (known as
toponyms) in text. Given a textual mention of a
location, a geocoder chooses the corresponding
geospatial coordinates, geospatial polygon, or en-
try in a geospatial database. Approaches to geocod-
ing include generate-and-rank systems that first
use information retrieval systems to generate can-
didate entries and then rerank them with hand-
engineered heuristics and/or supervised classifiers
(e.g., Grover et al., 2010; Speriosu and Baldridge,
2013; Wang et al., 2019), vector-space systems that
use deep neural networks to encode place names
and database entries as vectors and measure their
similarity (e.g., Hosseini et al., 2020; Ardanuy
et al., 2020), and tile-classification systems that use
deep neural networks to directly predict small tiles
of the map rather than ontology entries (e.g., Gritta
et al., 2018a; Cardoso et al., 2019; Kulkarni et al.,
2021). The deep neural network tile-classification
approaches have been the most successful, but they
do not naturally produce an ontology entry, which
contains semantic metadata needed by users.

We propose a new architecture, GeoNorm,
shown in Figure 1, which builds on all of these
lines of research: it uses pre-trained deep neural
networks for the improved robustness in matching
place names, while leveraging a generate-then-rank
architecture to produce ontology entries as output.
It couples this generate-and-rank process with a
two-stage approach that first resolves the less am-
biguous countries, states, and counties, and then
resolves the remaining location mentions, using the
identified countries, states, and counties as context.

Our work makes the following contributions:

• Our proposed architecture for geocoding
achieves new state-of-the-art performance,
outperforming prior work by large margins on
toponym resolution corpora: 19.6% improve-
ment on Local Global Lexicon (LGL), 9.0%
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Alberta’s capital city sits in eighth place out of 10 Canadian cities for its socio-economic and physical health . . . for whatever reason, is quite high in Ed-
monton compared to other cities . . . The Conference Board of Canada cautioned that benchmarking is not an end onto itself. . .
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Figure 1: The architecture of our model, GeoNorm, applied to a sample text. The location mentions to be resolved
are in bold.

on GeoWebNews, and 16.8% on TR-News.
• Our candidate generator alone, based on sim-

ple information retrieval techniques, outper-
forms more complex neural models, demon-
strating the importance of establishing strong
baselines for evaluation.

• Our reranker is the first application of pre-
trained transformers for encoding location
mentions and context for toponym resolution.

• Our two-stage resolution provides a simple
and effective new approach to incorporating
document-level context for geocoding.

2 Related Work

The current work focuses on mention-level geocod-
ing. Related tasks include document-level geocod-
ing and geotagging. Document-level geocoding
takes as input an entire text and produces as output
a location from a geospatial ontology, as in ge-
olocating Twitter users or microblog posts (Roller

et al., 2012; Rahimi et al., 2015; Lee et al., 2015;
Rahimi et al., 2017; Hoang and Mothe, 2018; Ku-
mar and Singh, 2019; Luo et al., 2020) and geo-
graphic document retrieval and classification (Gey
et al., 2005; Adams and McKenzie, 2018). Geo-
tagging takes as input an entire text and produces
as output a list of location phrases (Gritta et al.,
2018b). Mention-level geocoding, the focus of the
current article, takes as input location phrases from
a text and produces as output their corresponding
locations in a geospatial ontology. This is related
to the task of linking phrases to Wikipedia, though
geospatial ontologies do not have full text articles
for each of their concepts, which are required for
training many recent Wikipedia linking approaches
(e.g., Yamada et al., 2022; Ayoola et al., 2022b).

Early systems for mention-level geocoding used
hand-crafted rules and heuristics to predict geospa-
tial labels for place names: Edinburgh geoparser
(Grover et al., 2010), Tobin et al. (2010), Lieber-

49



man et al. (2010), Lieberman and Samet (2011),
CLAVIN (Berico Technologies, 2012), GeoTxt
(Karimzadeh et al., 2013), and Laparra and Bethard
(2020). The most common features and heuristics
were based on string matching, population count,
and type of place (city, country, etc.).

Later geocoding systems used heuristics of
rule-based systems as features in supervised ma-
chine learning models, including logistic regression
(WISTR, Speriosu and Baldridge, 2013), support
vector machines (Martins et al., 2010; Zhang and
Gelernter, 2014), random forests (MG, Freire et al.,
2011; Lieberman and Samet, 2012), stacked Light-
GBMs (DM_NLP, Wang et al., 2019) and other
statistical learning methods (Topocluster, DeLozier
et al., 2015; CBH, SHS, Kamalloo and Rafiei,
2018). These systems typically applied a generate-
then-rerank framework: the mention text is used to
query an information retrieval index of the geospa-
tial ontology and produce candidate ontology en-
tries, then a supervised machine-learning model
reranks the candidates using additional features.

Some deep learning models approach geocoding
as a vector-space problem. Both the mention text
and ontology entries are converted into vectors, and
vector similarity is used to select the most appro-
priate ontology entry for each mention (Hosseini
et al., 2020; Ardanuy et al., 2020). Such approaches
should allow more flexible matching of mentions
to concepts, but we find that simple information
retrieval techniques outperform these models.

Other deep learning models approach geocoding
as a classification problem by dividing the Earth’s
surface into anN×N grid of tiles. Place names and
their features are mapped to one of these tiles us-
ing convolutional (CamCoder, Gritta et al., 2018a;
MLG, Kulkarni et al., 2021) or recurrent neural net-
works (Cardoso et al., 2019). Such approaches can
flexibly match mentions to concepts and can also
incorporate textual context, but do not naturally
produce ontology entries, which contain semantic
metadata needed by users.

Our proposed approach combines the tight ontol-
ogy integration of the generate-and-rerank systems
with the robust text and context encoding of the
deep neural network classifiers.

3 Proposed Methods

We define the task of toponym resolution as fol-
lows. We are given an ontology or knowledge
base with a set of entries E = {e1, e2, ..., e|E|}.

Each input is a text made up of sentences T =
{t1, t2, . . . , t|T |} and a list of location mentions
M = {m1,m2, ...,m|M |} in the text. The goal is
to find a mapping function f(mi) = ej that maps
each location mention in the text to its correspond-
ing entry in the ontology.

We approach toponym resolution using a can-
didate generator followed by a candidate reranker.
The candidate generator, G(m,E) → Em, takes
a mention m and ontology E as input, and gener-
ates a list of candidate entries Em, where Em ⊆ E
and |Em| ≪ |E|. As the candidate generator must
search a large ontology and produce only a short
list of candidates, the goal for G will be high re-
call and high runtime efficiency. The candidate
reranker, R(m,Em) → Êm, takes a mention m
and the list of candidate ontology entries Em, and
sorts them by their relevance or importance to pro-
duce a new list, Êm. As the candidate ranker needs
to work only with a short list of candidates, the
goal for R will be high precision, especially at rank
1, with less of a focus on runtime efficiency.

3.1 Candidate Generator
Our candidate generator is inspired by prior work
on geocoding in using information retrieval tech-
niques to search for candidates in the ontology
(Grover et al., 2010; Berico Technologies, 2012).
Accurate candidate generation is essential, since
the generator’s recall is the ceiling performance
for the reranker. As we will see in section 5, our
proposed candidate generator alone is competitive
with complex end-to-end systems from prior work.

Our sieve-based approach, detailed in alg. 1,
tries searches ordered from least precise to most
precise until we find ontology entries that match
the location mention. Intuitively, our goal is for
mentions like Austria to match the entry AUSTRIA

[2782113] in GeoNames before it matches AUS-
TRALIA [2077456], but still allow a typo like Aus-
trala to match AUSTRALIA [2077456].

We create one document in the index for each
name ne of an entry e in the GeoNames ontology.
A location mention m is matched to a name ne
by attempting a search with each of the following
matching strategies, in order:

EXACT m exactly matches (ignoring whitespace)
the string ne

FUZZY m is within a 2 character Levenshtein edit
distance (ignoring whitespace) of ne
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Algorithm 1: Candidate generator.
Input: a location mention, m

a maximum number of candidates, k
the GeoNames ontology, E

Output: a list of candidate entries Em

// Index ontology
1 I ← ∅
2 for e ∈ E do
3 name← CANONICALNAME(E, e)
4 synonyms← SYNONYMS(E, e)
5 for n ∈ {name} ∪ synonyms do
6 I ← I ∪ {CREATEDOCUMENT(n, e)}
// Search for candidates

7 Em ← ∅
8 for t ∈ { EXACT, FUZZY, CHARACTERNGRAM,

TOKEN, ABBREVIATION, COUNTRYCODE } do
9 Em ← SEARCH(I,m, t)

10 if Em ̸= ∅ then
11 break
// Select top entries by population

12 Em ← SORT(Em, KEY=e→ POPULATION(E, e))
13 return top k elements of Em

CHARACTERNGRAM m has at least one charac-
ter 3-gram overlap with ne

TOKEN m has at least one token (according to the
Lucene StandardAnalyzer) overlap with ne

ABBREVIATION m exactly matches the capital
letters of ne

COUNTRYCODE e is a country and m exactly
matches a e’s country code

Once one of the searches has retrieved a list of
matching names, we recover the ontology entry
for each name, sort those ontology entries by their
population in the GeoNames ontology, and return
the k most populous ontology entries. This list,
Em is then the input to the candidate reranker.

3.2 Candidate Reranker
Our candidate reranker is inspired by work on med-
ical concept normalization (Xu et al., 2020; Ji et al.,
2020). The reranker takes a mention, m, and the
list of candidate entities from the candidate gen-
erator, Em, encodes them with a transformer net-
work, and uses these encoded representations to
perform classification over the list to select the
most probable entry. Formally, the model predic-
tion, GEONORM(m,Em) = ê, is calculated as:

si = TOINPUT(m,Ei
m)

Ai = TRANSFORMER(si)

bi = Ai
0 ⊕ log(POP(E,Ei

m))⊕ TYPE(E,Ei
m)

ci = (biWT
1 )W

T
2

ŷ = softmax(c0 ⊕ . . .⊕ ck)

where:

• Ei
m is the ith candidate entry for mention m

• TOINPUT(m, e) produces a string of the form
[CLS] m [SEP] C(E, e) [SEP] S(E, e)1
[SEP] . . . [SEP] S(E, e)|S(E,e)| [SEP],
where C(E, e) is the canonical name of e in
the ontology, and S(E, e) is the list of alter-
nate names of e in the ontology.

• TRANSFORMER(s) tokenizes the string s into
word-pieces and produces contextualized em-
beddings for each of the word-pieces.

• Ai
0 is the contexualized representation for the

[CLS] token of candidate entry i’s input string
• POP(E, e) is the population of concept e in

the ontology E
• TYPE(E, e) is a one-hot vector identifying

which of the T types in the ontology E the
concept represents1

• ⊕ denotes vector concatenation
• W1 ∈ R150×(H+1+T ) and W2 ∈ R1×150 are

learned weight matrices, where H is the trans-
former’s hidden dimension

• ŷ is a probability distribution over the k en-
tries proposed by the candidate generator

We represent the mention text + candidate entity
synonyms with the contextualized representation
of the [CLS] token, similar to applications of trans-
formers to text classification. We include the pop-
ulation feature to allow the model to learn that
locations in text are more likely to refer to high
population than low population places (e.g., Paris,
France vs. Paris, Texas, USA), and we take the log-
arithm of the population under the assumption that
it is more important to capture the order of magni-
tude (e.g., thousands vs. millions) than the exact
number. We include the type feature to allow the
model to learn that locations in text are more likely
to refer to some types of geographical features than
others (e.g., San José, the capital of Costa Rica, vs.
San José, the province).

The candidate reranker is trained with a standard
classification loss:

LR = y · log(ŷ)

where y ∈ R|Em| is a one-hot vector representing
the correct candidate entry.

1GeoNames has T = 681 types. For example, PPLC
means capital of a political entity. Definitions for all types
(“feature codes”) are at http://download.geonames.
org/export/dump/featureCodes_en.txt
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3.3 Context Incorporation
The text around a mention may provide clues (e.g.,
the context Minnesota State Patrol urges motorists
to drive with caution. . . in Becker, Clay, and Dou-
glas suggests that Clay refers to Clay County, Min-
nesota, even though Clay County, Missouri is more
populous). Thus, we consider two approaches to
incorporating context.

context=csent A simple approach is to take the
c-sentence window surrounding the mentionm and
encode it with the the same transformer as was used
to encode m + e. The contextualized representa-
tion of the c-sentence window’s [CLS] token can
then be concatenated into b alongside the other fea-
tures. The 512 word-piece limit on the size of the
transformer input means that this approach cannot
incorporate the entire document.

context=2stage To include the full document
context, we take advantage of the fact (demon-
strated in appendix A.1) that toponyms at the top
of the hierarchy, like countries and states, can often
be resolved precisely without context as they are
less ambiguous. We thus propose Algorithm 2, a
two-stage approach to geocoding. Lines 3-7 are the
context-free stage, where GeoNorm is first applied
to all location mentions. If the feature type of a
predicted entry, TYPE(e), is an administrative dis-
trict 1-3 (i.e., the top of the geographic hierarchy:
countries, states, or counties), then the prediction
is accepted. Such predictions are converted to their
administrative codes (e.g., United States → US)
and added to the context. Lines 8-11 are the second
stage, where the geocoding system is applied to all
remaining location mentions but this time incorpo-
rating the collected context. The context is formed
by concatenating together the collected toponym
codes, where for example, if Canada (CA) and Al-
berta (01) were found in the document as in fig. 1,
the context string would look like “CA || 01”.

4 Experiments

4.1 Datasets
We conduct experiments on three toponym resolu-
tion datasets. Local Global Lexicon (LGL; Lieber-
man et al., 2010) was constructed from 588 news
articles from local and small U.S. news sources.
GeoWebNews (Gritta et al., 2019) was constructed
from 200 articles from 200 globally distributed
news sites. TR-News (Kamalloo and Rafiei, 2018)
was constructed from 118 articles from various

Algorithm 2: Two-stage toponym resolu-
tion using document-level context.

Input: location mentions, M
GeoNames ontology, E

1 R̂← {}
2 C ← ∅
// Resolve toponyms without context

3 for m ∈M do
4 ê← GEONORM(m,E)
5 if TYPE(ê) ∈ {adm1,adm2,adm3} then
6 R̂[m]← ê
7 C ← C ∪ {CODE(ê)}
// Resolve toponyms with context

8 c← "||".join(C)
9 for m ∈M do

10 if m ̸∈ R̂ then
11 R̂[m]← GEONORM(m+ c, E)

12 return R̂

Dataset Train Dev. Test

Topo. Art. Topo. Art. Topo. Art.

LGL 3112 411 419 58 931 119
GeoWebNews 1641 140 281 20 477 40
TR-News 925 82 68 11 282 25

Table 1: Numbers of articles (Art.) and manually anno-
tated toponyms (Topo.) in the train, development, and
test splits of the toponym resolution corpora.

global and local news sources. As there are no
standard publicly available splits for these datasets,
we split each dataset into a train, development, and
test set according to a 70%, 10% , and 20% ratio.
To enable replicability, we will release these splits
upon publication. The statistics of all datasets are
shown in table 1.

4.2 Database
Our datasets use GeoNames2, a crowdsourced
database of geospatial locations, with almost 7 mil-
lion entries and a variety of information such as
geographic coordinates (latitude and longitude), al-
ternative names, feature type (country, city, river,
mountain, etc.), population, elevation, and posi-
tions within a political geographic hierarchy. An
example entry from GeoNames is shown in fig. 2.

4.3 Evaluation Metrics
There is not yet agreement in the field of toponym
resolution on a single evaluation metric. Therefore,
we gather metrics from prior work and use all of
them for evaluation.

2https://www.geonames.org/
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Figure 2: An entry for Tucson in GeoNames

Accuracy is the number of location mentions
where the system predicted the correct database en-
try ID, divided by the number of location mentions.
Higher is better, and a perfect model would have
accuracy of 1.0.

Accuracy@161km measures the fraction of
system-predicted (latitude, longitude) points that
were less than 161 km (100 miles) away from
the human-annotated (latitude, longitude) points.
Higher is better, and a perfect model would have
Accuracy@161km of 1.0.

Mean error distance calculates the mean over
all predictions of the distance between each system-
predicted and human-annotated (latitude, longi-
tude) point. Lower is better, and a perfect model
would have a mean error distance of 0.0.

Area Under the Curve calculates the area under
the curve of the distribution of geocoding error
distances. Lower is better, and a perfect model
would have an area under the curve of 0.0.

4.4 Implementation details
We implement the candidate reranker with Lucene3

v8.4.1 under Java 1.8. When indexing Geo-
Names, we also index countries under their ad-
jectival forms in Wikipedia4. We implement
the candidate reranker with the PyTorch5 v1.7.0
APIs in Huggingface Transformers v2.11.0 (Wolf
et al., 2020), using either bert-base-uncased or
bert-multilingual-uncased. We train with the
Adam optimizer, a learning rate of 1e-5, a maxi-
mum sequence length of 128 tokens, and a num-
ber of epochs of 30. We explored a small num-
ber of learning rates (1e-5, 1e-6, 5e-6) and epoch

3https://lucene.apache.org/
4https://en.wikipedia.org/wiki/List_

of_adjectival_and_demonymic_forms_for_
countries_and_nations

5https://pytorch.org/

numbers (10, 20, 30, 40) on the development data.
When training without context, we use one Tesla
V100 GPU with 32GB memory and a batch size of
8. When training with context, we use four Tesla
V100 GPU with 32GB memory and a batch size of
32. The total number of parameters in our model is
168M and the training time is about 3 hours.

4.5 Systems
We compare to a variety of geocoding systems:

Edinburgh Grover et al. (2010) introduced a
rule-based extraction and disambiguation system
that uses heuristics such as population count, spa-
tial minimization, type, country, and some contex-
tual information (containment, proximity, locality,
clustering) to score, rank, and choose a candidate.

Mordecai Halterman (2017) introduced a
generate-and-rank approach that uses Elasticsearch
to generate candidates and neural networks based
on word2vec (Mikolov et al., 2013) to rerank them.
Its models are trained on proprietary data.

CamCoder Gritta et al. (2018a) introduced a tile-
classification approach that combines a convolu-
tional network over the target mention and 400
tokens of context with a population vector derived
from location mentions in the context and popula-
tions from GeoNames. CamCoder predicts one of
7823 tiles of the earth’s surface. See appendix A.2
for further CamCoder details.

DeezyMatch Hosseini et al. (2020) introduced
a vector-space approach that first pre-trains an
LSTM-based classifier on GeoNames taking string
pairs as input, and then fine-tunes the pair classi-
fier on the target dataset. The trained DeezyMatch
model compares mentions to database entries by
generating vector representations for both and mea-
suring their L2-norm distance or cosine similarity.

SAPBERT Liu et al. (2021) introduced a vector-
space approach that pretrains a transformer network
on the database using a self-alignment metric learn-
ing objective and online hard pairs mining to cluster
synonyms of the same concept together and move
different concepts further away. The pre-trained
SAPBERT is then fine-tuned on the target dataset.
SAPBERT was trained for the biomedical domain,
but is easily retrained for other domains. We pre-
train SAPBERT on GeoNames and finetune it on
the toponym resolution datasets.
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Model LGL (test) GeoWebNews (test) TR-News (test)

R@1 R@20 R@1 R@20 R@1 R@20

DeezyMatch (Hosseini et al., 2020) .172 .538 .262 .671 .206 .702
SAPBERT (Liu et al., 2021) .245 .742 .428 .746 .355 .780
GeoNorm (+gen, -rank) .606 .962 .694 .866 .716 .965

Table 2: Performance of candidate generators on the test sets. R@1 is useful for measuring the accuracy of the
candidate generator when used directly as a geocoder. R@20 is useful for estimating the ceiling performance of a
top-20 reranker based on that candidate generator.

LGL (test) GeoWebNews (test) TR-News (test)

Model Acc A161 Err AUC Acc A161 Err AUC Acc A161 Err AUC

Edinburgh (Grover et al., 2010) .611 - - - .738 - - - .750 - - -
CamCoder (Gritta et al., 2018a) .580 .651 82 .288 .572 .665 155 .290 .660 .778 89 .196
Mordecai (Halterman, 2017) .322 .375 926 .594 .291 .333 1072 .633 .472 .553 6558 .427
DeezyMatch (Hosseini et al., 2020) .172 .182 654 .704 .262 .323 537 .601 .206 .220 741 .705
SAPBERT (Liu et al., 2021) .245 .260 566 .630 .428 .499 357 .446 .355 .362 595 .568
ReFinED (Ayoola et al., 2022a) .576 - - - .658 - - - .720 - - -
ReFinED (fine-tuned) .786 - - - .782 - - - .858 - - -

GeoNorm (+gen -rank) .606 .685 119 .263 .694 .774 92 .194 .716 .812 95 .169
GeoNorm (+gen +rank, -context) .761 .785 59 .167 .788 .834 61 .131 .798 .816 89 .154
GeoNorm (+gen +rank, +context=2stage) .807 .824 46 .135 .828 .862 55 .114 .918 .933 34 .057

GeoNorm (+gen +rank, +context=2stage, +alldata) .799 .828 52 .136 .832 .876 54 .104 .897 .911 36 .073

Table 3: Performance on the test sets. Higher is better for accuracy (Acc) and accuracy@161km (A161). Lower is
better for mean error (Err) and area under the error distances curve (AUC). We do not report distance-based metrics
for Edinburgh or ReFinED as these extraction+disambiguation systems do not make predictions for all mentions.
The best performance on each dataset+metric is in bold (excluding the final model that was trained on more data).

ReFinED Ayoola et al. (2022a) introduced a
vector-space approach for joint extraction and dis-
ambiguation of Wikipedia entities. One trans-
former network generates contextualized embed-
dings for tokens in the text, another generates em-
beddings for entries in the ontology, and tokens are
matched to entries by comparing dot products over
embeddings. ReFinED was trained on Wikipedia,
and Wikipedia entries for place names have Geo-
Names IDs, so ReFinED can be used as a geocoder.

ReFinED (fine-tuned) ReFinED can also be fine-
tuned, so we take the released version of ReFinED
and fine-tune it for geocoding on each of the to-
ponym datasets.

5 Results

We first evaluate our context-free candidate genera-
tor, comparing it to recent context-free candidate
generators. Table 2 shows that our approach out-
performs approaches from prior work by large mar-
gins, both in accuracy of the top entry (R@1) and
whether the correct entry is in the top 20 (R@20).

We next evaluate our complete generate-and-
rank system against other geocoders. We first per-

form model selection on the development set as
described in appendix A.3 to select four models to
run on the test set: the candidate generator alone,
the best generate-and-rank system with no context,
and the best generate-and-rank system with con-
text. Table 3 shows that our proposed GeoNorm
model outperforms all prior work across all to-
ponym resolution test sets on all metrics. Even
without incorporating context, our generate-and-
rank framework meets or exceeds the performance
of almost all models from prior work. The excep-
tion is ReFinED, where our context-free model
outperforms ReFinED out-of-the-box, but slightly
underperforms our finetuned version of ReFinED.
However, adding the novel two-stage document-
level context yields large gains over the context
free version of our model, and outperforms even
the finetuned ReFinED. The final row the table
shows the peformance of a model trained on the
combined training data from all datasets, which we
release for English geocoding under the Apache
License v2.0, for off-the-shelf use at https://
github.com/clulab/geonorm.

54

https://github.com/clulab/geonorm
https://github.com/clulab/geonorm


Example Candidate Rank

Name Pop. Type State RF G GR GRC3 GRCD

1 The educational philosophy at the Washing-
ton Latin School in Alexandria is somewhat
similar to Ahlstrom’s previous endeavors.

Alexandria 159467 PPLA2 1
City of Alexandria 139966 ADM2 1

2
It was Los Angeles police officers she at-
tempted to blow up.

Los Angeles County 9818605 ADM2 1 2
Los Angeles 3971883 PPLA2 2 1
Los Angeles 125430 PPLA2 3 3
Los Angeles 4217 PPL 4 4

3 the Minnesota State Patrol urges motorists to
drive with caution as flooding continues to
affect area highways. Water over the road-
way is currently affecting the following areas
in Becker, Clay, and Douglas

Clay County 221939 Missouri 1 4
Clay County 190865 Florida 2 3
Clay County 58999 Minnesota 3 1
Clay County 26890 Indiana 4 2

4
he writes, as do my efforts to insure
New London is a safe community.

New London County 274055 ADM2 1 3 4
New London 27179 PPL 2 1 1
New London 7172 PPL 3 2 3
New London 1882 PPL 4 4 2

Table 4: Examples of predictions from ReFinED (RF), our candidate generator alone (G), our generate-and-rerank
system without context (GR), our system with sentence context (GRC3), and our system with 2-stage document
context (GRCD). Target location mentions are underlined. Human annotated ontology entries are in bold.

6 Qualitative Analysis

Table 4 shows some qualitative analysis of errors
that ReFinED and different variants of GeoNorm
made. Row 1 shows an example where ReFinED
fails but GeoNorm succeeds, by more effectively
using geospatial metadata such as population and
feature type. Row 2 shows an example where
GeoNorm fails with a candidate generator alone
but succeeds with a context-free reranker, by not
relying on population alone and instead jointly con-
sidering the name, population, and feature type
information (ADM2 represents a county, PPLA2
represents a city). Row 3 shows an example where
GeoNorm fails without context but succeeds with
context, by taking advantage of the Minnesota in
the context to select the Clay County that would
otherwise seem implausible due to its lower pop-
ulation. Finally, row 4 shows an example where
our best GeoNorm model still fails. The candidate
generator includes the correct ontology entry in its
top-k list, but neither the name, population, fea-
ture code, nor nearby context suggest the correct
candidate. The global context includes toponyms
from the same state, allowing the model with docu-
ment context to move the correct answer up from
rank 4 to rank 2. But fully addressing this issue
would likely require predicting countries and states
of toponyms in the text before resolving them.

7 Limitations

GeoNorm’s candidate generator is based on infor-
mation retrieval. This is efficient but not very flexi-
ble in string matching, and when the candidate gen-
erator fails to produce the correct candidate entry,
the candidate reranker also necessarily fails. For
example, as table 2 shows, GeoNorm’s reranker
achieves only .866 recall@20 on the GeoWebNews
dataset, meaning that 13.4% of the time, the correct
candidate is not in the top 20 results returned by
the candidate generator. One solution might be to
replace the information retrieval based candidate
generator with a neural network to provide more
robust string matching, though the neural network
candidate generators from prior work in table 2
actually perform worse than GeoNorm’s candidate
generator. Another solution may be to find smarter
ways to filter the generated candidates, perhaps by
building on the two-stage resolution approach to
use document-level context to filter the candidates
to those in appropriate countries and states.

GeoNorm is also limited by its training and eval-
uation data, which covers only thousands of En-
glish toponyms from news articles, while there are
many millions of toponyms in many different lan-
guages across the world. It is likely that there are
regional differences in GeoNorm’s accuracy that
will need to be addressed by future research.
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8 Conclusion

We propose a new toponym resolution architecture,
GeoNorm, that combines the tight ontology integra-
tion of generate-and-rerank systems with the robust
text encoding of deep neural networks. GeoNorm
consists of an information retrieval-based candi-
date generator, a BERT-based reranker that incor-
porates features important to toponym resolution
such as population and type of location, and a
novel two-stage resolution strategy that incorpo-
rates document-level context. We evaluate our
proposed architecture against prior state-of-the-
art, using multiple evaluation metrics and multiple
datasets. GeoNorm achieves new state-of-the-art
performance on all datasets.
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A Appendix

A.1 Performance by toponym type
Table A1 shows that without context, GeoNorm is
most precise at resolving toponyms at the top of
the hierarchy, like countries and states.

A.2 CamCoder details
The original CamCoder code, when querying Geo-
Names to construct its input population vector from
location mentions in the context, assumes it has
been given canonical names for those locations.
Since canonical names are not known before loca-
tions have been resolved to entries in the ontology,
we have CamCoder use mention strings instead of
canonical names for querying GeoNames.

A.3 Model selection
We performed model selection on the development
sets as shown in table A2. All GeoNorm mod-
els that included a reranker (R) outperformed the
candidate generator (G) alone. We explored the
population (P) and type (T) features in models with-
out context, and found that they helped slightly on
LGL and GeoWebNews but hurt slightly on TR-
News. For models with context, rerankers fine-
tuned from bert-multilingual-uncased (M)
slightly outperformed models fined-tuned from
bert-base-uncased. Adding sentence level con-
text (C1/C3/C5) to the rerankers helped on TR-
News, but did not help on LGL or GeoWebNews.
Applying the two-stage algorithm for document-
level context led to large gains on LGL and TR-
News, but did not help on GeoWebNews.

We thus selected the following models for
evaluation: GeoNorm G, GeoNorm GRPT, and
GeoNorm GRPTMCD.

A.4 Artifact intended use and coverage
The intended use of bert-base-uncased and
bert-multilingual-uncased is to be “fine-tuned
on tasks that use the whole sentence”6. We have
used them for that purpose when encoding the con-
text, but also for the related task of encoding place
names, which are usually short phrases. These ar-
tifacts are trained on English books and English
Wikipedia and released under an Apache 2.0 li-
cense which is compatible with our use.

The intended use of our geocoding model is
matching English place names in text to the Geo-

6https://huggingface.co/
bert-base-uncased

Names ontology. Though GeoNames covers mil-
lions of place names, our evaluation corpora cover
only English news articles, and thus the perfor-
mance we report is only predictive of performance
in that domain.
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Dataset Precision Recall

Country State County Other Country State County Other

LGL 0.968 0.806 0.829 0.745 0.893 0.915 0.739 0.763
GWN 1.000 0.765 0.778 0.752 0.966 0.591 1.000 0.810
TR-News 1.000 1.000 0.000 0.830 1.000 1.000 0.000 0.830

Table A1: Precision and recall of GeoNorm (without context) on three geocoding development sets.

LGL (dev) GeoWebNews (dev) TR-News (dev)

Model Acc A161 Err AUC Acc A161 Err AUC Acc A161 Err AUC

GeoNorm G .594 .671 201 .289 .644 .858 73 .165 .677 .735 187 .242

GeoNorm GR .802 .819 64 .141 .865 .925 39.5 .072 .897 .912 64.0 .081
GeoNorm GRP .792 .819 68 .141 .861 .918 34.7 .072 .868 .882 65.7 .100
GeoNorm GRT .807 .828 61 .134 .865 .915 31.9 .073 .897 .912 42.7 .074
GeoNorm GRPT .797 .821 57 .140 .886 .940 29.8 .060 .882 .897 63.5 .090
GeoNorm GRPTM .814 .828 60 .132 .879 .922 43.2 .072 .882 .897 65.0 .092

GeoNorm GRPTC1 .807 .823 55 .132 .865 .915 39.3 .075 .882 .882 110 .109
GeoNorm GRPTC3 .807 .816 65 .142 .868 .918 40.3 .073 .882 .897 64.9 .092
GeoNorm GRPTC5 .802 .814 68 .145 .865 .911 42.8 .078 .897 .912 64.0 .081
GeoNorm GRPTMC1 .816 .831 62 .133 .872 .940 23.5 .057 .882 .897 64.6 .090
GeoNorm GRPTMC3 .809 .833 59 .129 .875 .922 35.4 .073 .912 .927 40.6 .063
GeoNorm GRPTMC5 .807 .823 61 .137 .872 .940 29.4 .060 .868 .882 72.6 .103
GeoNorm GRPTMCD .885 .897 29 .079 .879 .925 31.0 .065 .971 .985 6.8 .010

Table A2: Performance on the development sets. Higher is better for accuracy (Acc) and accuracy@161km
(A161). Lower is better for mean error (Err) and area under the error distances curve (AUC). The top score in each
group is in bold, the second best score is underlined. Model features are indicated by the string of characters: G
means the candidate generator was applied, R means a reranker was applied, P means the reranker included the
population feature, T means the reranker included the type feature, M means the reranker was fine-tuned from
bert-multilingual-uncased instead of bert-base-uncased, C1/C3/C5 means the reranker included 1/3/5
sentences of context, and CD means the reranker included the two-stage document-level context algorithm.
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Abstract

Automatic image comprehension is an impor-
tant yet challenging task that includes identi-
fying actions in an image and corresponding
action participants. Most current approaches
to this task, now termed Grounded Situation
Recognition (GSR), start by predicting a verb
that describes the action and then predict the
nouns that can participate in the action as argu-
ments to the verb. This problem formulation
limits each image to a single action even though
several actions could be depicted. In contrast,
text-based Semantic Role Labeling (SRL) aims
to label all actions in a sentence, typically re-
sulting in at least two or three predicate argu-
ment structures per sentence. We hypothesize
that expanding GSR to follow the more liberal
SRL text-based approach to action and partici-
pant identification could improve image com-
prehension results. To test this hypothesis and
to preserve generalization capabilities, we use
general-purpose vision and language compo-
nents as a front-end. This paper presents our
results, a substantial 28.6 point jump in per-
formance on the SWiG dataset, which confirm
our hypothesis. We also discuss the benefits of
loosely coupled broad-coverage off-the-shelf
components which generalized well to out of
domain images, and can decrease the need for
manual image semantic role annotation.

1 Introduction

Automatic image comprehension can positively
contribute to many modern applications, such as
description generation, cross-modal retrieval, and
human-robot interaction. To comprehend an image
it is important to identify the action(s) and partic-
ipants in the action such asan agent (who is per-
forming the action), a patient (who is being affected
by the action), and an instrument. To address this
problem (Yatskar et al., 2016b; Pratt et al., 2020)
proposed the task of grounded situation recognition
(GSR). Many approaches (Pratt et al., 2020; Cooray
et al., 2020; Cho et al., 2021) have been proposed

a. drinking

c. drinking d. wearing

b. manipulation (holding)

agent

clothing

agent

item
container

agent
item

container

wearer

Figure 1: a. depicts a GT example from SWiG where
the man is the agent of drinking. b., c., and d. show
frames extracted by our method. Bounding boxes depict
grounding and role annotation for each frame.

to perform the task of GSR. Most of these frame-
works have two steps: in the first step verbs are
predicted, and in the second step nouns and roles
are predicted in an auto-regressive manner. Some
other methods deployed include another layer to
refine the quality of detection (Cho et al., 2021;
Wei et al., 2021; Cheng et al., 2022).

One fundamental limitation of these models de-
rives from the problem formulation. In the cur-
rent formulation, verb frames would compete for
an image, limiting the expressiveness of the im-
age’s semantic representation. In reality, various
actions can co-exist in an image, even sharing par-
ticipants. This limitation of one frame per image
is imposed by the predominant dataset of GSR: the
SWiG dataset (Pratt et al., 2020). For example, Fig-
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ure 1a depicts a ground-truth (GT) annotation of
an image from SWiG and has a GT annotation only
with respect to a drinking frame. In fact, there are
other frames, such as holding, wearing.

Semantic role labeling (SRL) of natural text, on
the other hand, is a well researched problem in
the domain of computational linguistics. Semantic
role annotation, based on paradigms such as Prop-
Bank or Framenet (Palmer et al., 2005; Fillmore
et al., 2003), is used to train semantic parsers that
then convey knowledge about who is doing what to
whom, when as predicate-argument structure label-
ing. In other words, given an action in a sentence, it
identifies who is performing the action (the agent),
who is affected by the action (the patient), what
instrument is being used, etc. to comprehend the
meaning of the sentence. Semantic roles of a sen-
tence have the capability representing more than
one predicate-argument structure for that sentence.
Current text-based SRL systems have gained re-
markable accuracy. However, SRL of images has
yet to enjoy similar success.

We hypothesize that expanding GSR to follow
the more liberal text-based SRL approach to action,
participant identification could improve image com-
prehension results. Here, we propose a framework
(CRAPES) with cross-modal annotation projec-
tion (AP) for visual semantic role labeling. AP is
a well-known paradigm in text-based cross-lingual
semantic role labeling (Kozhevnikov and Titov,
2013; Padó and Lapata, 2009; Akbik et al., 2015;
Jindal et al., 2022) that has not been previously
extended to cross-modal applications. Moreover,
to preserve generalization capabilities, we focus on
reusing general-purpose vision and language (V+L)
components and text-based SRL components. This
framework offers the following advantages over
traditional GSR approaches:

• With our updated formulation of GSR, this
framework can be trained to accommodate co-
existing verb frames in an image. It can also be
specialised to one verb frame per image.

• Additionally, image representations can be
learned separately from the SRL task; in do-
ing so, CRAPES can leverage advantages of
large-scale multi-modal image representations.

• Success of text-based SRL systems trained on
large, broad-coverage corpora of frames and
roles, is helpful in widening its ability for de-
tecting out-of-domain frames.

• Moreover the two modules can be trained sepa-

rately, thereby decreasing the need for manual
image semantic role annotation.

• As image representation and SRL are not tightly
coupled, CRAPES can be extended to alterna-
tive semantic role labeling paradigms, such as
FrameNet or PropBank.

2 Related Work

(Yatskar et al., 2016b) proposed the task of situa-
tion recognition (SR) together with an image situa-
tion recognition dataset (imSitu). Based on the ar-
chitecture, methods for SR can be stratified into the
following categories: 1) Conditional random field
(CRF) (Yatskar et al., 2016b), 2) CRF-based model
with data augmentation (CRF+dataAug) (Yatskar
et al., 2016a), 3) RNN model with a VGG back-
bone for vision features (VGG+RNN) (Mallya and
Lazebnik, 2017), 4) graph based models (Li et al.,
2017; Suhail and Sigal, 2019), and 5) query based
models such as CAQ (Cooray et al., 2020).

The idea of grounding nouns in the image was
coined by (Pratt et al., 2020), thereby proposing
the task of GSR and the SWiG dataset. A recurrent
framework with ResNet-50 embedding was used to
detect the verb and then the noun for each role. A
RetinaNet backbone was used for object grounding.
(Cooray et al., 2020; Cho et al., 2021) model visual
SRL as query based vision reasoning. (Cooray
et al., 2020) adopt a top-down attention model (An-
derson et al., 2018) and deploy inter-dependent
queries to model relations among semantic roles.
(Cho et al., 2021) use a transformer encoder to
classify verbs and to create image representations.
Then the image representation was queried with the
concatenation of roles and verbs. However, most
of these aforementioned approaches use two-stage
frameworks where in the first step the verb is pre-
dicted independently and then nouns and roles are
predicted in an autoregressive manner depending
on the verb. However, subsequent work (Cho et al.,
2022; Wei et al., 2021) identified that this emphasis
on the detection of the verb may confuse the pre-
diction. Furthermore, verb miss-classification may
result in miss-recognition of semantic roles.

Therefore, they adopted a three-stage framework.
In the first two stages candidate verbs and nouns
were detected. The third stage mostly refined the
prediction. During the detection of the candidate,
information flows either from verb to noun (Wei
et al., 2021) or from noun to verb (Cho et al., 2022).
This ignores the semantic dependency in the other
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agent: man
recipient: people
item: rice

verb: givingagent

item
recipient

Figure 2: An example of GSR from the SWiG dataset.

direction. Moreover, this refinement can be done in
only one iteration. (Cheng et al., 2022) solved these
issues by designing an iterative method through
message passing between verb and noun prediction
modules. Recently, (Li et al., 2022) addressed the
task of GSR, even though their main goal was to
propose a pre-training schema using event based
cross-modal alignment. All of these methods are
limited to predicting one verb per image. None of
these models acknowledge the existence of multi-
ple actions and therefore multiple verb frames.

3 Approach

To detect semantic roles in images we adopted the
idea of AP, as discussed above, from cross-lingual
semantic role labeling in the text domain. In AP,
auto-predicted semantic roles from source language
is transferred to a target language using soft word
alignments. Alignment is learned using large-scale
parallel corpus. In the case of GSR we consider the
image as our target domain.

3.1 Problem Formulation

Given an image I the task of GSR is to detect
structured verb frame(s) G = {v,Rv} where
v ∈ V is the action (verb) in the image. Rv =
{(rv, nr, brv)|rv ∈ Rv, n

r ∈ N , brv ∈ R4} where
Rv = {r1v , .., rmv } set of semantic role types as-
sociated with the verb v. Therefore, each role is
a triplet of a role type rv, a noun label nr and a
bounding box (bbox), brv that is grounded with re-
spect to the v and the role of the noun nr . For
example in Figure 2 the given image is annotated
with the verb “giving”. The verb has role types
agent, recipient and item. The nouns for these roles
are man, people and rice, respectively.

Issues with current approaches. As discussed
above in section 2, current methods (Pratt et al.,
2020; Cho et al., 2021; Li et al., 2017) modeled

this problem as:

P(G|I) = P(v|I)P(Rv|v, I). (1)

There are two complications with this kind of for-
mulation: first, action prediction without knowl-
edge of participants results in inaccurate verb pre-
diction. Second, errors in verb prediction can ad-
versely affect accuracy of noun and role prediction.
To address this issue, recent methods (Wei et al.,
2021; Cho et al., 2021) adopt a three stage frame-
work. (Wei et al., 2021) formulated the problem
as given in Equation 2:

P(G|I) = P(Vc|I)P(RV c|VC , I)
P(v,Rv|VC ,RV cI).

(2)

In this formulation candidate verbs are detected
first, then candidate nouns. In the final stage these
candidates are used to refine the final result. (Cho
et al., 2021) on the other hand, used candidate
nouns to detect the verb and ultimately refined the
frame predictions (Equation 3):

P(G|I) =
P(NV c|I)P(v|NV c, I)P(v,Rv|NV c, I).

(3)

Both the approaches used nouns to determine the
verb at some point, ignoring the restrictions applied
in the other direction. Moreover, even with these re-
vised formulations, verbs compete with each other
for a given image. On contrast, in a scene image
more than one verb can coexist.

3.2 Methodology
To overcome the limitation imposed by the tradi-
tional formulation, we propose an alternative for-
mulation given as:

P(G|I) =
∑

i

P(Gi|I)

= P(T |I)︸ ︷︷ ︸
V+L

∑

i

P(Gi|T , I)
︸ ︷︷ ︸

SRL

To capture the complete essence of the intertwined
relations of a verb and its roles, we use a V+L
model which creates a text-based holistic represen-
tation T using self-attention. Text-based SRL then
extracts all possible predicate-argument structures.
The soft alignments from the V+L model is used to
project the SRL back to the image (Figure 3). To
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V+L
model

SRL
model

attention
weights

drinking

wearing

Figure 3: Our overall framework. 1. The V+L model
projects the image into the text domain. The SRL anno-
tator detects the semantic roles and the action. Attention
from the V+L model is used to align semantic roles

preserve generalization capabilities, we used off-
the-shelf general-purpose V+L components and a
text based SRL system. Being trained on data out-
side the SWiG dataset, this framework has more
potential to detect out-of-domain frames.

3.3 Pipeline
Our framework has two modules: 1) V+L model,
and 2) text-based SRL system. (refer to Figure 3)

V+L. We chose Oscar (Li et al., 2020; Zhang
et al., 2021) to this end. Oscar is a transformer
based architecture that learns generic image-text
representations for V+L understanding and genera-
tion tasks. Typically Oscar model would take three
inputs- word tokens, object labels and object fea-
tures. One of the novelties of Oscar lies in the no-
tion of the ‘view’ of the data during pre-training. In
a dictionary view elements from similar semantic
spaces are considered together (words and object
labels). On the other hand, in the modality view
elements from the same modality are considered
together. We trained Oscar with image region fea-
tures I = {(ςi, li)|ςi ∈ Rd li ∈ Σ d = 2056}.
We used (Zhang et al., 2021) to extract 2048 di-
mensional image region features and then con-
catenated with 6 positional features for the region
(normalised coordinates of bounding boxes, height,
width). Σ denotes the vocabulary for the language
model. For the purpose of CRAPES, two separate
models of Oscar are trained on the Flickr30k and
the SWiG datasets, see Table 1. During inference
the captions generated by Oscar are passed to the
SRL module.

SRL. We experimented with two text based
FrameNet SRL systems. For a given sentence T
consisting of tokens < t1, t2, .., tk > a typical SRL
system produces collections of verbs and their roles.
Briefly Tsrl = {(v,RT

v )} where RT
v is set of se-

mantic roles given the verb v. It is a collection of

tuples of the form {(riv, (siv, eiv))} where riv ∈ Rv

is the semantic role and (siv, e
i
v) marks the start and

end indices of the phrase spanned by the role. For
our experimentation we used an off the shelf anno-
tator span-finder (Xia et al., 2021) for FrameNet
annotation. We trained a second SRL consisting
of BERT-base model with CRF at the top layer, on
SWiG frames (see Table 1).

Cross-modal Annotation Projection. Our SRL
system detects the semantic roles and the nouns
from the text given by the V+L model. For ground-
ing the roles to image bboxes we used attention
weights from the V+L model. For each role span,
corresponding cross-modal attention is retrieved
from the V+L model. Attention is aggregated over
all the tokens in the span:

role(bboxj) = rtv, where

j = argmax(αi) and αi =
∑

l,h

αl,h(i, s
t
v, e

t
v),

where l and h are spans over number of attention
layers and head accordingly.

4 Experiments

4.1 Experimental Set up
Data Preparation. We experimented with
SWiG (Pratt et al., 2020). SwiG provides
FrameNet semantic role labeling of images. The
SwiG dataset provides grounding for all visible
semantic roles in terms of image bboxes. SWiG
contains 126102 images with 504 verbs and 190
semantic role types, and each verb is accompanied
by 1 to 6 semantic roles. The official splits are
75K/25K/25K images for training, dev, and test
set, respectively. Unlike Flickr30k, this dataset
does not have any textual image descriptions.

Data augmentation. Figure 4 presents an
overview of data flow during training. To train
CRAPES with SWiG, we created templates for
each verb frame using roles. For each image,
the corresponding verb frame and template are re-
trieved. Roles in the template were replaced with
the corresponding noun values from the annotation
of the image to generate the sentence. This sen-
tence along with the image is used to train the V+L
model, and the sentence with the roles is used to
train the BERT+CRF SRL model.

Evaluation Metric. We used the following met-
ric (Pratt et al., 2020) to report our results. 1)

64



agent: man
Place: skii-slope

"verb": skiing

 "template": "[agent] is skiing [at place]"

[man]_agent is skiing at [skii-
slope]_place

sentence

SRL-tag

V+L training

BERT+CRF based
SRL training

man is skiing at skii-slope

Figure 4: Training pipeline of CRAPES for the SWiG dataset. SWiG images are not accompanied by sentences.
Using the ground truth (GT) frames, template sentences are created. The image and sentence pair is used to train the
V+L model. Sentence and frames are used to train the BERT+CRF srl model

Model Description Annotation

CRAPES1 Oscar with flickr, LOME
framenet

FN

CRAPES2 Oscar with SWiG, BERT+CRF
on SWiG

FN

Table 1: Different versions of CRAPES based on train-
ing data of V+L and different SRL models. In last
column FN stands for Framenet.

verb: the accuracy of verb prediction; 2) value:
accuracy of noun prediction for individual roles; 3)
value-all: accuracy of the prediction of nouns for
the whole role set; 4) grounded-value (grnd):
accuracy of noun prediction with correct ground-
ing (bboxes) for individual semantic roles; 5)
grounded-value-all (grnd-all): accuracy of
noun prediction with correct grounding (bboxes)
for the whole role set.

Implementation Details. We used the pre-
trained Oscar base model (H = 768) fine-tuned
for caption generation. This model was trained on
the MSCOCO dataset (Lin et al., 2014). We trained
two separate versions of Oscar with the Flickr30k
train (Young et al., 2014) and SWiG dev datasets
with an AdamW Optimizer (Loshchilov and Hutter,
2019) for 20 epochs with learning rate 3 × 10−5.
We trained the text-based BERT+CRF SRL system
on the template generated sentences of the train
split of the SWiG dataset.

4.2 Quantitative Results

A quantitative comparison with recent approaches
on the SWiG benchmark based on both SR and
GSR is presented in Table 2, using the catego-
rization from section 2. We report our results on
SWiG with the top-1 set up. CRAPES leads in
the value, value-all, and grnd metrics.

CRAPES has a dramatic absolute gain of 28.6
points and relative gain of 76% in value with re-
spect to GSRFormer, the previous SOTA. Simi-
larly, in val-all and grnd it has a relative gain
of 31% and 15% accordingly. Oscar pretraining
tasks (Li et al., 2020) have a major role in these im-
provements. As discussed in subsection 3.3 Oscar
pretraining tasks were designed around two major
views on how to use object labels. The first view
considered object labels as members of text modal-
ity where as the second one considered them as
part of the image modality. This form of training
enables OSCAR to include object labels in the gen-
erated description. These object-labels contribute
toward the noun prediction task in GSR. Moreover,
OSCAR fine-tuned with template generated sen-
tences is able to replicate similar structures during
inference. Similarly, our BERT+CRF based SRL
parser, trained on a similar domain of sentences, is
able to annotate them with semantic roles. So Ta-
ble 2 firmly supports our hypotheses about the ben-
efits of reusing general-purpose V+L components.
However, there are still certain image-verb frame
combinations that confuse our system. We discuss
this in our qualitative analysis.

4.3 Discussion

Table 1 lists different versions of CRAPES. Table 3
presents performance of CRAPES on FrameNet
annotation. From Table 3 apparently the perfor-
mance of CRAPES1 is poor. However, this ver-
sion of CRAPES actually gave atomic frames and
parallel frames for a given image. Because of Os-
car being trained on human generated sentences
and the LOME parser being trained on text cor-
pora for FrameNet, CRAPES1 is able to predict
out-of-domain verbs and frames. The current met-
rics can not reflect this capability adequately. Fig-
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container

item

agent agent

container

place

whisking 
agent: boy           item: egg 
container: bowl    place: home 

whisking 
agent: boy           item: batter 
container: bowl    place: kitchen 

wearing 
wearer: boy           clothing: green shirt 

wearer

clothing

agent

cause_to_amalgamate (mixing) 
agent: boy           place: bowl 

place

agent

hiking 
agent: woman     place: mountain 

hiking 
agent: woman     place: mountain 

agent

place

standing 
agent: woman     place: mountain 

agent

place

wearing 
wearer: woman    clothing: blue jacket 

wearer
clothing

Ground Truth CRAPES2 CRAPES1

Figure 5: Examples of predictions made by CRAPES. The first column lists the GT image and frame from the
SWiG test set. The second column lists the prediction from CRAPES2 (V+L and SRL parser trained on SWiG).
Last two columns depicts parallel frames detected by CRAPES1 (V+L trained on Flickr30k and LOME parser)

Model value val-all verb grnd grnd-all

situation recognition

CRF (Yatskar et al., 2016b) 24.6 14.2 32.3 − −
CRF+dataAug (Yatskar et al., 2016a) 26.45 15.51 34.12 − −
VGG+RNN (Mallya and Lazebnik, 2017) 27.45 16.36 35.90 − −
FC-Graph (Li et al., 2017) 27.52 19.25 36.72 − −
CAQ (Cooray et al., 2020) 30.23 18.47 38.19 − −
Kernel-Graph (Suhail and Sigal, 2019) 35.41 19.38 43.27 − −

grounded situation recognition

ISL (Pratt et al., 2020) 30.09 18.62 39.36 22.73 7.72
JSL (Pratt et al., 2020) 31.44 18.87 39.94 24.86 9.66
GSRTR (Cho et al., 2021) 32.52 19.63 41.06 26.04 10.44
SituFormer (Wei et al., 2021) 35.24 21.86 44.20 29.22 13.41
CoFormer (Cho et al., 2022) 35.98 22.22 44.66 29.05 12.21
CLIP Event (Li et al., 2022) 33.1 20.1 45.6 26.1 10.6
GSRFormer (Cheng et al., 2022) 37.48 23.32 46.53 31.53 14.23

CRAPES2 66.08 30.64 41.86 36.73 6.47

Table 2: Performance (%) of state-of-the-art GSR methods on the SWiG dataset test set based on top-1 verb.

Model value val-all verb grnd grnd-all

CRAPES1 18.12 0.357 5.72 14.33 0.63
CRAPES2 65.98 30.53 41.86 35.13 5.78
+union of BBoxes 65.98 30.53 41.86 35.13 6.1
attention from lower4 layer 66.08 30.64 41.86 36.31 6.47

Table 3: Performance (%) of SWiG test set with different combinations of V+L and Framenet parsers

Model grnd grnd-all

attention from top 3 layer 35.13 5.78
+ include union of boxes 35.87 6.10
attention from 5− 8 layer 36.31 6.26
attention from all layer 36.35 6.31
attention from layer 1− 4 36.73 6.47

Table 4: Affect of attention layers on bbox grounding
reported on SWiG test set

ure 5 demonstrates examples of the frames pre-
dicted by CRAPES. Frames like wearing and
cause-to-amalgamate (first row of Figure 5), will
be considered as misclassifications by the current
metrics with respect to GT.

However, CRAPES lags in terms of grounded-
value-all. Note that this metric required that all
bboxes be annotated correctly with nouns from
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GT
verb

Competing verbs in CRAPES2

retraining arresting, detaining, subduing, handcuffing
hunting pouncing, shooting, chasing, attacking
teaching lecturing, educating, helping, preaching
cooking frying, baking, chopping, stirring, scooping
filming videotaping, photographing, recording, car-

rying
raking hoeing, shoveling, clearing, sweeping
tying lacing, stitching, adjusting, stapling
watering sprinkling, moistening, gardening, spray-

ing, wetting

(a) Examples of verb confusions by CRAPES2

GT
verb

Co-existing verbs in CRAPES1

cooking wearing, cause-to-amalgamate, cutting,
standing

baking wearing, cause-to-amalgamate, cutting,
measure_volume

teaching wearing, standing, sitting, reading, writing,
speaking

lecturing wearing, standing, sitting, reading, talking
arresting walking, arresting, striking,

law_enforcement_agency, hos-
tile_encounter

detaining walking, arresting, striking,
law_enforcement_agency, attacking

(b) Examples of verb co-existence detection by CRAPES1

Table 5: Comparison between frame competitions and frame co-existance

the GT annotation. Therefore missing one bbox
annotation can affect the metric for an image sig-
nificantly. One possible reason for the poor perfor-
mance could be the distribution shift between the
V + L model and the SRL model. Another source
of error is a limitation of the interpretability of the
attention weights. To align bounding boxes with
SRL we used attention between bboxes and words
from Oscar attention layers. In our experiment we
noticed that the 5th head from layers 5 and 6 mostly
attended to bboxes. However, to our surprise, it did
not provide much improvement. Attention from
the lower 4 layers gave us the best result, meriting
further investigation. Table 4 shows experimental
results of using alignment from different attention
layers.

4.4 Qualitative Results

One of the main advantages of CRAPES is that
it can predict out-of-domain frames that are oth-
erwise not present in the SWiG dataset. Figure 1
depicts one such example from SWiG where the GT
annotation contains only the frame for ‘drinking’.
CRAPES1 detects the action ‘drinking’ along
with two other frames ‘holding’ and ‘wearing’.
These frames are not only missing in the GT image,
they were not listed in the vocabulary of the SWiG
dataset. The LOME FrameNet parser, trained on
the FrameNet v1.7 corpus, a huge text base corpus
for SRL, enables CRAPES1 to detect those frames.
Moreover, CRAPES can accommodate coexisting
verb frames. This is because Oscar, being trained
on Flickr30k sentences, learned to create holistic
representations of the image. Similar examples can
be found in the last two columns of Figure 5 where
CRAPES1 provides parallel frames, not present

in the GT annotation. This shows the efficacy of
our reformulation of the GSR and the advantage of
reusing general-purpose SRL systems.

For the sake of bench-marking we trained
CRAPES2 with template generated sentences from
the SWiG dataset. Predictions made by CRAPES2

contained one frame per image as desired by the
SWiG dataset. This demonstrates the flexibility
of the overall framework. The second column
of Figure 5 depicts some example predictions by
CRAPES2.

CRAPES does commit mistakes which can be
categorized mainly into three types: 1) the pre-
dicted verb is different than GT. Figures6a,b de-
pict two examples from the SWiG dataset where
CRAPES detected a different frame. These are
indeed very plausible mistakes. Table 5a shows
examples of some GT verbs along with a list
of verbs that CRAPES2 confused with the GT
verb. This fact is supported by CRAPES1 as
well. Table 5b lists examples of parallel verb
frames detected by CRAPES1 for GT images
with a given verb. For example cooking is of-
ten confused with baking(Table 5a). From Ta-
ble 5b it can be observed that both of these
verbs have similar co-existing frames like cutting,
cause-to-amalgamate. Similar phenomena can
be noticed for arresting and detaining; 2) predicted
noun for a role is different than GT. In the first im-
age of column CRAPES2 from Figure 5,the noun
for role item is predicted as batter. 3) grounded
bbox for a noun is different than GT. In Figure 6c
the action jogging is attributed to a different bbox
in the image. Mistakes made by CRAPES are
reasonable, relevant and plausible. For these exam-
ples, predictions are different than the GT but still
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agent

focus

working
agent: man  focus: sculpture 
place: workshop      

agent

chiseling 
agent: man  item: wood 
place: workshop      

agent
recipient

watering 
agent: sprinkler   recipient: grass 
place: yard   tool:  deflector 

moistening
agent: sprinkler  item: grass 
place: yard   liquid:  water  

item

ground truth CRAPES

agent

jogging 
agent: man  place: sidewalk   
  

agent

place

jogging 
agent: man  place: sidewalk   
  

agent
restrained

restraining 
agent: policeman 
restrained:man  place: outdoors   
  

handcuffing 
agent: policeman 
victim:man  place: outdoors      

victim

ground truth CRAPES

a b

c d

liquid

Figure 6: Reasonable mistakes made by CRAPES. For each image left column shows GT annotations and right
column depicts mistakes made by CRAPES2. For a,b,c prediction of CRAPES2 can not be classified as wrong.
For d CRAPES2 struggled to detect correct bbox.

Arg1

Arg1

Arg0 Arg0

wearing 
Arg0: man  Arg1: white helmet 
   

riding 
Arg0: man  Arg1: bike ArgM-DIR:
down a rocky path     

Figure 7: Parallel frames detected by CRAPES in
Flickr30k images using PropBank style role labeling.

relevant to the given image. However, sometimes
CRAPES struggles to ground the roles (Figure 6d).

5 Future work

Current GSR models cannot go beyond the SWiG
dataset. Moreover predicted semantic roles are re-
stricted to follow a particular paradigm of SRL.
On the contrary, having independent V+L enables
CRAPES to work on other image datasets. In addi-
tion, having a separate SRL module enables exten-
sion to other SRL paradigms. We performed pre-
liminary experiments on the Flickr30k dataset with
PropBank (Palmer et al., 2005) annotation. Fig-
ure 7 depicts one such example. We would like to
extend our experiments to the version of Flickr30k
used in (Bhattacharyya et al., 2022). However, our
preliminary experiments suggest that experiments
with Flickr30k are more challenging for several
reasons.

• Flickr30k does not provide semantic roles for
images. Therefore, we need to follow a simi-
lar approach to (Bhattacharyya et al., 2022) in
creating silver standard data.

• The silver standard data will have multiple
frames for an image. Current metrics of GSR
presuppose one GT frame per image.

• Flickr30k images are general scene images with
many agents,objects and actions, whereas im-
ages in SWiG focus mostly on one salient action
and a small number of participants.

• As pointed out by (Bhattacharyya et al., 2022),
PropBank annotation of Flickr30k has abstract
conceptual roles such as temporal, direction,
manner, purpose, etc. denoted with ArgM-. It is
hard to learn concrete representations for these
roles, let alone ground them in an image.

Our formulation of CRAPES can accommodate
PropBank SRL experiments on Flickr30k. How-
ever, a more rigorous study with human evaluation
is required to correctly measure the potential of
CRAPES. Therefore, this a critical future direction
for us. It requires a new dataset with images an-
notated with more than one frame. One choice is
to extend the SWiG dataset to accommodate more
than one frame per image. Another choice is to
enhance the current Flickr30k annotation. Ideally
we would do both. However, the current proposed
evaluation metrics for GSR are incompatible wih a
multi-frame scenario. More robust and appropriate
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evaluation metrics also need to be developed.

6 Conclusion

In this paper we identified a fundamental issue in
the problem formulation of the GSR task. The cur-
rent formulation limits an image to a single verb
frame. We propose an alternate formulation allow-
ing for multiple actions as implemented in Cross-
modal Annotation Projection for Visual Semantic
Role Labeling (CRAPES). A V+L model trained
on image-text parallel corpora and an SRL mod-
ule trained independently on text corpora allow
the model to integrate domain-specific knowledge
with out-of-domain knowledge, which dramatically
improves over the SOTA by 28.6 points. In addi-
tion, CRAPES can accommodate co-existing verb
frames for an image (CRAPES1) yet can also be
trained to select only one verb frame for a given
image (CRAPES2). Moreover, inter module inde-
pendence allows CRAPES to extend its labeling to
alternative paradigms of SRL (such as FrameNet
or PropBank). However one major area for im-
provement is grnd-all, that requires better se-
mantic comprehension and guidance of attention
weights produced by the V+L module. Therefore,
improving on grnd-all along with Flickr30k and
PropBank will be our next endeavour. We will
also explore extending datasets to have multiple
ground truth frames per image and more appropri-
ate evaluation metrics for reporting results on those
datasets.
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Abstract

Counterhate arguments can effectively fight
and limit the spread of hate speech. However,
they can also exacerbate the hate, as some peo-
ple may respond with aggression if they feel
threatened or targeted by the counterhate. In
this paper, we investigate replies to counterhate
arguments beyond whether the reply agrees or
disagrees with the counterhate argument. We
present a corpus with 2,621 replies to counter-
hate arguments countering hateful tweets, and
annotate them with fine-grained characteristics.
We show that (a) half of the replies (51%) to the
counterhate arguments disagree with the argu-
ment, and (b) this kind of reply often supports
the hateful tweet (40%). We also analyze the
language of counterhate arguments that elicit
certain types of replies. Experimental results
show that it is feasible to anticipate the kind of
replies a counterhate argument will elicit.

1 Introduction

Hate messages and offensive language are com-
monplace in social media platforms. Twitter re-
ported that more than 1.1 million accounts spread
hateful content in the second half of 2020, a 77%
increase with respect to the first half of the same
year.1 In a recent survey of 10,093 adults in the
U.S., 41% of participants reported online harass-
ment on a personal level, and almost two-thirds of
adults under the age of 30 reported experiencing
internet harassment (Vogels, 2021). These figures,
alongside other surveys,2,3 demonstrate the preva-
lence of hate speech on the internet. To address
this problem, the European Commission partnered
with popular social media platforms to announce a
"Code of conduct on countering illegal hate speech
online" (European Commission, 2019), which con-
tains several commitments to prevent the spread of
online hate speech across Europe.

1https://time.com/6080324/twitter-hate-speech-penalties/
2https://legalresearch.elsa.org/library/ohs/
3https://rm.coe.int/1680700016

The enormous amount of daily data makes these
platforms rely on users who manually flag hate-
ful content (Crawford and Gillespie, 2016). This
approach requires spending millions of dollars
yearly on manual hate speech verification and mod-
eration (Seetharaman, 2018). An alternative is
to automatically fight hate speech by using hate
speech classifiers (Section 2). However, removing
users’ content—as effective as it may be—restricts
free speech. According to the Pew Research Cen-
ter (Duggan, 2017), “Despite this broad concern
over online harassment, 45% of Americans say it
is more important to let people speak their minds
freely online, and 53% feel that it is more important
for people to feel welcome and safe online.”

A complementary strategy to address hateful
content that does not interfere with free speech is
to counter the hate with counterhate arguments in
order to divert the discourse away from hate. Coun-
terhate arguments can effectively fight and limit the
spread of hate speech without removing or block-
ing any content (Gagliardone et al., 2015; Schieb
and Preuss, 2016). Counterhate arguments usu-
ally are positive arguments that oppose hate speech
with logic and facts. However well-intentioned,
counterhate arguments may worsen the situation,
as some people may respond with aggression if
they feel threatened or targeted by the argument
(Rains, 2013; Clayton et al., 2019).

Upon these motivations, we study the kind of
replies counterhate arguments elicit. Specifically,
we investigate replies to counterhate arguments be-
yond whether the reply agrees or disagrees with
the counterhate argument. We consider Twitter
threads consisting of (a) a hateful tweet, (b) a coun-
terhate tweet countering (a), and (c) all replies to
the counterhate tweet. We define a hateful tweet as
any tweet that contains abusive language directed
to individuals or groups of people. On the other
hand, a counterhate tweet is a response tweet that
explicitly or implicitly disagrees with the hateful
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Figure 1: Twitter thread originating with a hateful tweet.
This paper investigates the replies to counterhate tweets.
In the first example, the reply not only agrees with the
counterhate tweet, but also adds additional counterhate.
On the other hand, the second reply not only disagrees
with the counterhate tweet, but also shows support for
the hateful tweet.

tweet. A reply is any response to the counterhate
tweet. Consider the example in Figure 1. The hate-
ful tweet contains hateful content towards a man
(shown in a picture in the original tweet). The reply
to the first counterhate tweet not only agrees with
the counterhate tweet, but also includes additional
counterhate arguments (e.g., he’s done a great job).
Conversely, the reply to the second counterhate
tweet not only disagrees with the counterhate tweet,
but also includes an opinion supporting the hateful
tweet (i.e., And you agree with letting convicted
criminals run free). While the author of the sec-
ond counterhate tweet may have had good inten-
tions, the tweet elicited more hate and made the
discourse undesirable. This paper presents a fine-
grained characterization of replies to counterhate
tweets and opens the door to forecasting which
counterhate tweets may elicit more hate instead of
alleviating the spread of hate.

In summary, the main contributions of this paper
are:4 (a) a corpus with 2,621 (hateful tweet, coun-

4https://github.com/albanyan/counterhate_reply

terhate tweet, reply) triples annotated with fine-
grained characteristics (whether the reply agrees
with the counterhate tweet, supports the hateful
tweet, attacks the author of the counterhate tweet,
or adds additional counterhate); (b) linguistic analy-
sis of the counterhate tweets depending on our fine-
grained characterization of the replies they elicit;
(c) experimental results showing it is feasible to
anticipate the kind of replies a counterhate tweet
will elicit, and modest improvements using data
augmentation and blending related datasets; and
(d) qualitative analysis revealing when it is harder
to perform any of the four classification tasks.

2 Previous Work

Recently, considerable literature has grown around
identifying hateful content in user-generated con-
tent (Fortuna and Nunes, 2018). Existing re-
search has created a variety of datasets to detect
hate speech from several sources, including Twit-
ter (Waseem and Hovy, 2016; Davidson et al.,
2017), Reddit (Qian et al., 2019), Fox News (Gao
and Huang, 2017), Yahoo! (Nobata et al., 2016;
Djuric et al., 2015), and Gab (Mathew et al., 2021).
Other studies have worked on identifying the tar-
get of hate, including whether the hateful content
was directed toward a group, a person, or an ob-
ject (Basile et al., 2019; Zampieri et al., 2019a;
Ousidhoum et al., 2019). Another area of research
aims to explore the role of context in hate and coun-
terhate speech detection (Yu et al., 2022).

Previous efforts also detect and generate coun-
terhate content. For counterhate detection, Gar-
land et al. (2020) work with hateful and counter-
hate German tweets from two well-known groups.
Mathew et al. (2020) collect and analyze pairs of
hateful tweets and replies using the hate speech
template I hate <group>, and detect whether a re-
ply to a hateful tweet is a counterhate reply or not.
In addition to analyzing or detecting counterhate
replies, Albanyan and Blanco (2022) identify four
fine-grained aspects of the relationship between a
hateful tweet and a reply (e.g., whether the reply
counters the hateful tweet with a justification). For
counterhate generation, some studies have worked
on collecting datasets with the help of crowd work-
ers (Qian et al., 2019) or trained operators (Fanton
et al., 2021; Chung et al., 2019).

There are several attempts to predict whether
content will lead to additional hateful content.
Zhang et al. (2018) identify whether a reply will
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result in a personal attack. Liu et al. (2018) pre-
dict the number of hateful comments that an in-
stgram post would receive. On the other hand,
there are few efforts on investigating the impact
of counterhate content, as stated in a recent survey
by Alsagheer et al. (2022). Mathew et al. (2019)
analyze YouTube comments and found that coun-
terhate comments received more likes and inter-
actions than non-counterhate comments. Other
studies found that there is a positive association be-
tween counterhate efficiency and both its author’s
ethnicity (Munger, 2017) and how immediate the
response to the hateful content is posted (Schieb
and Preuss, 2018). Finally, Garland et al. (2022)
analyze hateful and counterhate German tweets and
find that organized counterhate tweets elicit more
counterhate replies and decrease the severity of the
hate speech. Unlike these previous studies, we con-
sider Twitter threads consisting of hateful tweets, a
counterhate argument, and all replies to the coun-
terhate argument. To our knowledge, we are the
first to analyze the replies with fine-grained charac-
teristics and tackle the problem of forecasting what
kind of replies a counterhate arguments will elicit.

3 Dataset Collection and Annotation

We start our study by collecting triples consisting
of hateful tweets, counterhate tweets, and replies to
counterhate tweets. Then, we annotate the triples
with our fine-grained characterization of the replies
to the counterhate tweets. Unlike previous works
(Section 2), our corpus enables us to (a) investi-
gate whether counterhate tweets are successful at
stopping the hate (Section 4), (b) analyze the lan-
guage people use in counterhate tweets depending
on the replies they elicit (Section 4), and (c) predict
the kind of replies a counterhate tweet will elicit
(Section 5).

Collecting Hateful Tweets, Counterhate Tweets,
and Replies We use three strategies to collect
a sufficient number of hateful tweets, counterhate
tweets, and replies. The first strategy is to start
with corpora consisting of (hateful tweet, coun-
terhate tweet) pairs that include the tweet identi-
fiers (Mathew et al., 2020; Albanyan and Blanco,
2022). Then, we use the Twitter API to collect all
replies to the counterhate tweets. This strategy re-
sulted in only 260 triples because some tweets are
no longer available and not all counterhate tweets
have replies. Note that other corpora not including
identifiers cannot be used.

In the second strategy, we start collecting hate-
ful tweets from corpora that only provide hateful
tweets (Mathew et al., 2021; Chandra et al., 2021;
He et al., 2021; Vidgen et al., 2020) including tweet
identifiers. Then, we follow these steps:

1. Collect the replies to the hateful tweets. Let us
consider them candidate counterhate tweets.

2. Select actual counterhate tweets from the can-
didates using an existing counterhate classi-
fier (Albanyan and Blanco, 2022).

3. Collect the replies to the counterhate tweets to
construct (hateful tweets, counterhate tweet,
reply) triples.

This strategy resulted in 230 triples. Since the total
number of triples is relatively low (490 triples), we
designed a third strategy.

The third strategy is the same than the second
but with an alternative approach to collect the hate-
ful tweets. Instead of using existing corpora, we
use (a) the hate pattern I <hateful_verb> <tar-
get_group> defined by Silva et al. (2021) to select
candidate hate tweets and (b) HateXPlain (Mathew
et al., 2021) to select actual hate tweets. These
strategy resulted in 3,820 triples.

The total number of triples after combining the
three strategies is 4,310. We finalized the col-
lection process by validating the triples. The fi-
nal size of our corpus after the validation pro-
cess is 2,621 (hateful tweet, counterhate tweet, re-
ply) triples. The total number of hateful tweets
is 1,147, while the number of counterhate tweets
is 1,685. The number of counterhate tweets per
hateful tweet ranges between 1 and 20, while the
number of replies per counterhate tweet ranges be-
tween 1 and 88.

Annotation Guidelines Along with determin-
ing whether a reply agrees with the counterhate
tweet, we identify finer-grained characteristics of
the replies. Accordingly, we define three steps to
answer four questions in the annotation process.

The first step is determining whether the reply
agrees with the counterhate tweet. We consider
that a reply agrees if it does not oppose the coun-
terhate tweet either explicitly or implicitly. On
the other hand, we consider that a reply disagrees
if it opposes the counterhate tweet, including sar-
casm (e.g., you are missing something!) or casting
doubt (e.g., are you kidding?).

The second step provides fine-grained character-
istics when the reply disagrees with the counterhate
tweet. First, we ask whether the reply supports
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Hateful Tweet 1: I f**king hate <ethnicity>
people. [...] I hope you all f**king die.

Counterhate Tweet: not all <ethnicity> part
take in this. cant discriminate a whole race bc
some f**k up; do sick things. White’s abuse
animals too

Reply: but down in <country> they are horri-
ble f**king people

Agree? No Support? Yes
Attacks Author? No Addtl. Counterhate? n/a

Hateful Tweet 2: I admit it, I don’t like white
people

Counterhate Tweet: Appreciate the honesty.
You do realize that makes you racist, right?

Reply: thats not wt racism means. f**k off w
that bullshit.

Agree? No Support? No
Attacks Author? Yes Addtl. Counterhate? n/a

Hateful Tweet 3: If <country> had only shown
the true numbers and severity of this virus
then maybe some countries would have taken
it more seriously much earlier.

Counterhate Tweet: <country> has shown you
that 10 of 1000s people infected for about two
months. Few of countries take serious action.

Reply: <country> is doing a good job[...] truth-
ful Govt. that cares about citizens. A shining
beacon on a hill for the world to emulate.

Agree? Yes Support? n/a
Attacks Author? n/a Addtl. Counterhate? Yes

Table 1: Three annotation examples of hateful tweets,
counterhate tweets, and replies from our corpus. An-
notations include four binary questions: whether the
reply (a) Agrees with the counterhate tweet, (b) Sup-
ports the hate when it disagrees with the counterhate
tweet, (c) Attacks the Author of the counterhate tweet
when it disagrees with the counterhate tweet, and (d)
adds Additional Counterhate when it agrees with the
counterhate tweet.

the hateful tweet. We consider the reply to support
the hateful tweet if it includes a justification for the
hateful content (e.g., the news says the opposite!)
or introduces additional hateful content (e.g., first
example in Table 1). Second, we identify whether
the reply attacks the author of the counterhate
tweet. We include in the definition of attack any
mockery or insults towards the author of the coun-
terhate tweet (e.g., stupid never understand!).

Observed (%) Cohen’s κ

Agree? 91.1 0.82
Support? 89.1 0.77
Attacks Author? 92.3 0.79
Addtl. Counterhate? 91.7 0.81

Table 2: Inter-annotator agreements in our corpus. We
provide the observed agreements (percentage of times
annotators agreed) and Cohen’s κ. κ coefficients be-
tween 0.6 and 0.8 are considered substantial agreement,
and above 0.8 (nearly) perfect (Artstein and Poesio,
2008).

The third step provides fine-grained characteris-
tics when the reply agrees with the counterhate
tweet. Finally, when the reply agrees with the
counterhate tweet, we distinguish whether the re-
ply includes additional counterhate. Namely, we
identify whether the reply contains additional coun-
terhate by providing a new opinion or factual argu-
ment to support the counterhate tweet (e.g., he is
also known for his charitable work and donations).
Only agreeing with the counterhate tweet (e.g., you
are correct!) does not contain additional arguments.

Examples Table 1 shows examples from our cor-
pus. In the first example, the reply not only dis-
agrees with the counterhate tweet but also supports
the hateful tweet with new hate content against the
mentioned people. Note that replies can also show
disagreement without including any support for the
hateful tweet (e.g., do you have any evidence?!!).

In the second example, the reply attacks the au-
thor of the counterhate tweet without including
any justification or support for the hateful tweet.
This also indicates that the reply disagrees with the
counterhate tweet. Note that replies can disagree
with the counterhate tweet without attacking the
author (e.g., don’t be their lawyer).

Finally, the reply in the third example not only
agrees with the counterhate tweet, but also includes
additional counterhate (honest vs. successful gov-
ernment). Note that replies can agree with the coun-
terhate tweet without adding additional counterhate
(e.g., convincing response!).

Annotation Process and Inter-Annotator Agree-
ments We used the Label Studio annotation tool.5

The tool showed the hateful tweet, counterhate
tweet, and reply. It displayed the screenshots of the
tweets taken from the Twitter website to prevent

5https://github.com/heartexlabs/label-studio
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%Yes %No

Agree? 49 51
Support? 40 60
Attacks Author? 24 76
Addtl. Counterhate? 35 65

Table 3: Percentages for Yes and No labels per question.

readability issues when displaying the tweets (e.g.,
special characters). Additionally, annotators are
provided with instructions for each question (i.e.,
definitions and examples).

The 2,621 (hateful tweet, counterhate tweet, re-
ply) triples were independently annotated by two
graduate students active on social media platforms.
We are interested in how regular social media users
interpret hateful tweets, counterhate tweets, and
replies. Table 2 presents the inter-annotator agree-
ments. For all questions, the observed agreements
are almost 90%. Cohen’s k coefficients indicate
(a) substantial agreement in two questions: whether
the reply supports the hateful tweet and attacks the
author of the counterhate tweets, and (b) nearly per-
fect agreements in two questions: whether the reply
agrees with the counterhate tweet and includes ad-
ditional counterhate. k coefficients between 0.60
and 0.80 are considered substantial agreement, and
above 0.80 are considered nearly perfect (Artstein
and Poesio, 2008). We note that it is easier to deter-
mine whether a reply agrees and adds additional
counterhate tasks than supports and attacks the au-
thor tasks. This is due to the use of sarcasm and
nuanced language when the reply supports the hate-
ful tweet or attacks the author of the counterhate
tweet. After the two annotators finished all the an-
notations independently, they debated the points of
disagreement and decided on the final label.

4 Corpus Analysis

Label Distribution Table 3 presents the percent-
ages of yes and no labels per question. Around half
of the replies to the counterhate tweets do not agree
with the counterhate tweet (51%), and it is common
for them to support the hateful tweet when they do
not agree (40%). In addition, it is somewhat rare
for these replies to attack the author of the coun-
terhate tweet when they disagree (24%). On the
other hand, it is less likely for the replies to include
additional counterhate arguments when they agree
(35%). This shows that most replies that agree with
the counterhate tweet do not include any additional

arguments to support the counterhate tweet (e.g.,
you are correct).

Linguistic Insights We analyze the language
people use in the counterhate tweets that lead
to certain types of replies. We count the num-
ber of tokens, pronouns, and proper nouns using
spaCy (Neumann et al., 2019). We use the lexi-
cons of offensive words6 and lexicons by Moham-
mad and Turney (2013) to count offensive, posi-
tive, negative, and sadness words. Finally, we use
Profanity-check7 to calculate the profanity score
and TextBlob8 to calculate the subjectivity score.
All correlations between linguistic features are be-
low 0.30, except for a few that involve the number
of tokens (Appendix A, Figures 2–5). We check
the predictive power of the selected features using
t-test. We also report if a test passes the Bonferroni
correction (Table 4). The p-values reveal several
interesting insights:

• Counterhate tweets with more tokens or pro-
nouns elicit replies that do not attack the au-
thor of the counterhate tweet or include addi-
tional counterhate if they agree.

• Counterhate tweets with more question marks
lead to replies that (a) agree with the counter-
hate tweets and do not add additional counter-
hate, or (b) support the hateful tweet and do
not attack the author.

• We find that (a) positive words elicit replies
that do not attack the author or add additional
counterhate, (b) negative words elicit replies
that do not add additional counterhate, and (c)
offensive words elicit replies that agree with
the counterhate, or attack the author.

• Profanity in counterhate tweets elicits replies
that agree with the counterhate tweet or do
not support the hateful tweet.

• Comparing hateful tweets and counterhate
tweets reveals that counterhate tweets with
(a) less offensive content lead to replies that
agree with the counterhate tweet or do not sup-
port the hateful tweet, (b) less sadness words
elicit replies that agree with the counterhate
or do not attack the author of the counterhate
tweet, and (c) less subjectivity lead to replies
that attack the author of the counterhate or do
not add additional counterhate.

6https://github.com/zacanger/profane-words
7https://github.com/vzhou842/profanity-check
8https://github.com/sloria/TextBlob
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Agree? Support? Attacks Author? Addtl. Counterhate?

p-value Bonf. p-value Bonf. p-value Bonf. p-value Bonf.

Number of . . .
tokens ↓↓↓ 3 ↑↑↑ 3
pronouns ↓↓↓ 3 ↑↑↑ 3
proper nouns ↑ 7 ↓ 7
question marks ↑ 7 ↑↑↑ 3 ↓↓↓ 3 ↑ 7
positive words ↓↓↓ 3 ↑↑↑ 3
negative words ↓ 7 ↓↓ 3
offensive words ↑ 7 ↑ 7

Profanity score ↑ 7 ↓ 7

With respect to the hateful tweet
offensive words ↑↑ 3 ↓↓ 7
sadness words ↑↑ 7 ↓↓ 7
subjectivity ↑↑ 7 ↓ 7

Table 4: Linguistic analysis of the counterhate tweets depending on our fine-grained characterization of the replies
they elicit. Number of arrows indicate the p-value (t-test; one: p < 0.05, two: p < 0.01, and three: p < 0.001). Arrow
direction indicates whether higher values correlate with yes (up) or no (down). We use a check mark to indicate
tests that pass the Bonferroni correction. Counterhate tweets without offensive words tend to elicit replies that agree
with the counterhate tweet and do not support the hate when they disagree.

5 Experiments and Results

We create a binary classifier for each task, namely,
whether the reply: (a) agrees with the counterhate
tweet, (b) supports the hateful tweet, (c) attacks
the author of the counterhate tweet, or (d) includes
additional counterhate arguments. We split the
dataset into 70:10:20 ratios for training, validation,
and testing. Each instance consists of a hateful
tweet, a counterhate tweet, and a reply.

Baselines The baseline models we use in our ex-
periments are the majority and random models. In
the majority model, the majority label is predicted
(no label for all tasks, Table 3). In the random
model, a random label of no or yes is predicted.

Neural Network Architecture and Training In
all experiments, we used the transformer-based
BERTweet model (Nguyen et al., 2020). BERTweet
is a BERT-based (Devlin et al., 2019) model but
was pre-trained using the RoBERTa training strat-
egy (Liu et al., 2019) on 850M English tweets. The
neural architecture consists of the base architecture
of BERTweet followed by a linear layer with 128
neurons and ReLU activation. Then, we added a
final linear layer with 2 neurons and a Softmax
activation to do the binary classification between
labels yes and no. We perform the experiments
using different textual inputs:

1. the hateful tweet alone,

2. the counterhate tweet alone,
3. the reply alone, and
4. combinations of (1–3) above.

We use the ’</s>’ special token to concatenate the
inputs. Then, we apply three strategies to enhance
the performance of neural models:

Data Augmentation We adapt Easy Data Augmen-
tation Marivate and Sefara (2020) called. Specif-
ically, we use Synonym Replacement (randomly
replacing a word), Random Insertion (inserting a
synonym of a random word), and Random Swap
(randomly swapping the positions of two words).

Concatenating Language Features Language fea-
tures have been shown to improve pre-trained mod-
els’ performance in text classification tasks (Lim
and Tayyar Madabushi, 2020). To this end, we
experiment with complementing embeddings with
manually defined language features. Inspired by
the analyses in Section 4, we calculate count-based
language features for the replies, such as the num-
ber of tokens, pronouns, nouns, verbs, negative and
positive words (using the lexicons by Mohammad
and Turney (2013)), question marks, proper nouns,
and first-person pronouns. Examples are shown in
Appendix C (Table 7). We then use the significance
test (t-test) to keep the significant features (p< 0.05).
The common significant features between the tasks
are the number of tokens, bad words, nouns and
verbs, and positive words. We concatenate these
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Agree? Support? Attacks Author? Addtl.
Counterhate?

No Yes Avg. No Yes Avg. No Yes Avg. No Yes Avg.

Baselines
Majority 0.67 0.00 0.34 0.75 0.00 0.45 0.87 0.00 0.66 0.79 0.00 0.51
Random 0.52 0.48 0.50 0.51 0.44 0.48 0.58 0.30 0.51 0.54 0.39 0.49

BERTweet trained with . . .
reply 0.71 0.70 0.70 0.82 0.64 0.75 0.89 0.62 0.83 0.89 0.78 0.85
counterhate tweet 0.64 0.60 0.62 0.70 0.38 0.57 0.86 0.13 0.69 0.73 0.51 0.66
hateful tweet 0.61 0.59 0.60 0.72 0.30 0.55 0.86 0.00 0.66 0.76 0.42 0.64

reply + counterhate tweet 0.72 0.75 0.73 0.80 0.69 0.76 0.89 0.64 0.83 0.89 0.79 0.85
reply + hateful tweet 0.67 0.75 0.71 0.82 0.73 0.78 0.88 0.59 0.81 0.87 0.76 0.83

best pair + the other tweet 0.74 0.71 0.73 0.80 0.68 0.75 0.88 0.56 0.81 0.88 0.76 0.83

best input + EDA 0.75 0.74 0.75 0.84 0.74 0.80 0.89 0.64 0.83 0.89 0.77 0.85
best input + LF 0.74 0.74 0.74 0.84 0.67 0.78 0.90 0.64 0.84 0.88 0.77 0.84
best input + Blending 0.76 0.74 0.75 0.84 0.79 0.82 0.90 0.66 0.84 0.88 0.80 0.85

Table 5: Results obtained with several systems (F1-scores; Avg. refers to the weighted average). Best pair: the
pair input that leads to the best pair result (reply+counterhate tweet or reply+hateful tweet). The other tweet:
either the counterhate tweet or hateful tweet. Best input: the textual input or combinations of inputs of (reply,
counterhate tweet, and hateful tweet) that leads to the best performance (underlined). EDA: easy data augmentation.
LF: language features. Tables 8–11 in Appendix D provide detailed results per label and subtask.

features with each other and with the input embed-
dings using the ’</s>’ special token.
Blending Complementary Corpora We finally
investigate pretraining with complementary tasks.
We adopt the method by Shnarch et al. (2018),
which integrates labeled data from related tasks
with various ratios in each training epoch. This is
done by blending the related task instances with our
dataset for training, and decrease the ratio in each
epoch to reach zero in the last one. The corpora
we blend with are: (a) a stance dataset (Moham-
mad et al., 2016) consisting of 4,163 tweets about
abortion, atheism, climate change, feminism, and
Hillary Clinton annotated with in favor, against,
or none; (b) an offensive dataset (Zampieri et al.,
2019b) containing over 14K tweets annotated with
offensive or not offensive, and (c) a hateful tweet-
reply dataset (Albanyan and Blanco, 2022), anno-
tated with whether the reply counters the hateful
tweet (5,652 pairs), counters the hate with justifica-
tion (1,145), attacks the author of the hateful tweet
(1,145), and includes additional hate (4,507).

5.1 Quantitative Results

Table 5 shows the results using the F1-score for
no and yes labels, and the weighted average. Ap-
pendix D (Tables 8–11) contains detailed results
showing the precision, recall, and F1-score. The

F1-scores for the majority baseline are 0.34, 0.45,
0.66, and 0.51.

The results using the neural models with differ-
ent inputs (the hateful tweet, the counterhate tweet,
the reply, or a combination of different tweets) re-
veal several insights:

• Using only the hateful tweet or counterhate
tweet as an input outperforms the baselines,
showing that certain hateful tweets or counter-
hate tweets elicit particular kinds of replies.

• Feeding to the network only the reply yields
the best results out of all single-tweet inputs.

• Combining the reply with the hateful tweet
outperforms the models in support the hateful
tweet task since, in this task, the reply is re-
lated to the hateful tweet. On the other hand,
including the counterhate tweets improves the
results in the other three tasks. We note that it
barely affects the attacks the author task. We
hypothesize this is because the attack can be
detected from the reply alone.

• Including a third input (either the counterhate
tweet or hateful tweet) to the best pairs (re-
ply+counterhate tweet or reply+hateful tweet)
worsens the results (0.73, 0.78, 0.83, and 0.85
vs. 0.73, 0.75, 0.81, and 0.83).

Additionally, the results show modest improve-
ments when applying the three strategies we work
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Agree? Support? Attacks Author? Additl. Counterhate?

Intricate text
Sarcasm and implicit meaning 18 20 15 18
Mentions many named entities 6 5 7 6
All 24 25 22 24

General knowledge 16 19 17 12
Short text, less than 5 tokens 20 12 21 14
Misspellings and abbreviations 11 9 11 12
Rhetorical question 8 14 9 9

Table 6: Error types made by the best performing model in each task (best input + blending, as shown in Table 5).
All the numbers are percentages.

with (Data Augmentation, Language Features, and
Blending Complementary Corpora). We find that:

• Data augmentation benefits the neural network
trained with the best input combination in two
tasks: agree with the counterhate tweet and
support the hateful tweet.

• Language features are barely beneficial.
• Blending complementary corpora always

yields higher results. More details about the
related datasets that lead to the best results in
all tasks can be found in Appendix D.

We also tried combining the strategies and found
out that doing so does not improve results.

When do the best models make errors? While
our best models in each task produce strong results
(best input + blending, Table 5), we manually ana-
lyzed the wrong predictions made by each model.
Table 6 shows the error types we found. We started
the analysis by randomly selecting 100 samples
from the model produced in the agree task. We
considered all the wrong predictions for the other
three tasks since they were less than 100 samples.
They were 59 samples in the support task, 46 in the
attacks the author task, and 43 in the additional
counterhate task. The error types are:

• Intricate text (24%, 25%, 22%, and 24%),
which involves using sarcasm and implicit
meaning, or mentioning many individuals or
entities (e.g., Reply: don’t block me I need
you so bad. Agree? Gold: No, Predicted: Yes).

• General knowledge (16%, 19%, 17%, and
12%), which requires world knowledge and
commonsense to understand the meaning of
the tweet (e.g., Reply: it’s on sky news mate!.
Supports? Gold: Yes, Predicted: No).

• Short text (20%, 12%, 21%, and 14%), tweets
with less than 5 tokens (e.g., Reply: chill out.
Attack the Author? Gold: No, Predicted: Yes).

• Misspellings and abbreviations (11%, 9%,
11%, and 12%), (e.g., Reply: @auscoups Why
r they trending these things. Addit. counter-
hate? Gold: Yes, Predicted: No).

• Rhetorical question (8%, 14%, 9%, and 9%),
where a question in a tweet is asked to deliver
a point (e.g., Reply: you think this is funny?.
Agree? Gold: Yes, Predicted: No).

6 Conclusions

Countering hateful content is an effective way to
fight hate speech (Gagliardone et al., 2015). Addi-
tionally, countering hate speech—unlike blocking—
does not interfere with free speech. However well-
intentioned, however, counterhate arguments may
worsen the situation by eliciting additional hate.

In this work, we analyze the discourse follow-
ing a counterhate tweet. Specifically, we analyze
all replies to counterhate tweets and reveal fine-
grained characteristics beyond whether the reply
agrees with the counterhate argument. Namely, we
determine whether the reply (a) not only disagrees
with the counterhate tweet but also supports the
hateful tweet or attacks the author of the counter-
hate arguments, or (b) not only agrees with the
counterhate tweet but also adds additional counter-
hate arguments. To our knowledge, this work is the
first to analyze the language of counterhate tweets
based on the replies they elicit.

The work presented here is empirical and ex-
plores genuine counterhate arguments and the
replies they elicit. We believe that it is critical
to analyze genuine social media discourse and how
hate spreads (and does not spread). We avoid mak-
ing any causal claims; instead, we draw insights
from genuine social media discourse around hate-
ful content. Our future work includes generating
counterhate arguments (a) customized to specific
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hateful content and (b) following the characteristics
we found to be more effective at stopping hatred.
We hypothesize that doing so will be more effective
than generic or even expert-driven counterhate.

Limitations

In the data collection process (Section 3), we col-
lect (hateful tweet, counterhate tweet, and reply)
triples from existing hateful tweet-reply and hate-
ful tweet corpora (the first and second strategies).
However, this ends with fewer triples since some
tweets are no longer available and not all coun-
terhate tweets have replies. In addition, we use
hate speech and counterhate classifiers to discard
non-hateful and non-counterhate tweets. This step
might (a) discard actual hateful or counterhate
tweets that are detected wrongly and (b) keep hate-
ful or counterhate tweets that should be discarded.
Another limitation is that we only consider the
tweet text. However, some tweets contain text ac-
companied by images or sometimes images only.
Including the tweets’ images in the analysis may
add more insights.
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A Inter-Feature Correlations

Figures 2–5 show the inter-feature correlations for
the the linguistic features used in the linguistic anal-
ysis (Section 4, Table 4). Most correlation coeffi-
cients are less than 0.30 in all four tasks (whether
the reply agrees with the counterhate tweet, sup-
ports the hateful tweet, attacks the author of the
counterhate tweet, or includes additional counter-
hate). This shows that our analysis captures various
kinds of counterhate tweets.

B Implementation Details

We used the transformer-based BERTweet model.
The neural architecture consists of the base archi-
tecture of BERTweet followed by a linear layer
with 128 neurons and a ReLU activation. Then,
we added a final linear layer with 2 neurons and
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Figure 2: Correlation coefficients between features used in the linguistic analysis. The left and right heatmaps
show the correlations with counterhate tweet for the replies that agree and do not agree with the counterhate tweet
respectively.

Figure 3: Correlation coefficients between features used in the linguistic analysis. The left and right heatmaps show
the correlations with counterhate tweet for the replies that support and do not support the hateful tweet respectively.

82



Figure 4: Correlation coefficients between features used in the linguistic analysis. The left and right heatmaps show
the correlations with counterhate tweet for the replies that attack and do not attack the author of the counterhate
tweet respectively.

Figure 5: Correlation coefficients between features used in the linguistic analysis. The left and right heatmaps
show the correlations with counterhate tweet for the replies that include and do not include additional counterhate
respectively.
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a Softmax activation. We prepared the dataset by
removing URLs, symbols, additional spaces and
then, normalized all text to lowercase. We used the
pre-processed data as input to the BERTweet model
architecture provided by HuggingFace (Wolf et al.,
2020) with its own tokenizer. We used the AdamW
optimizer (Loshchilov and Hutter, 2017) with a
learning rate of 1e-5, a batch size of 16, and a
sparse categorical cross-entropy loss function. The
number of tokens per input was 128 with automatic
padding enabled for shorter inputs using the <pad>
token. Models were fine-tuned for 6 epochs and
the final fine-tuned model is loaded after the epoch
in which it achieved the lowest validation loss.

C Language Features

Table 7 presents examples of applying the language
feature strategy on the replies (Section 5). We
experiment with concatenating language features
presented in the table with input embeddings. The
selected language features are number of tokens,
pronouns, nouns and verbs, negative and positive
words, question marks, proper nouns, and first-
person pronouns.

D Detailed Results

Tables 8–11 show the detailed results presented in
Table 5. We provide Precision, Recall and F1-score
(a) using different tweet combinations and (b) ap-
plying the three strategies to enhance the results.
In addition, we show the results of each related
dataset used in the Blending with Complementary
Tasks strategy. The related datasets that lead to
the best results in each task are:

• stance dataset to determine whether the reply
agrees with counterhate tweet;

• hateful tweet-reply pair dataset regarding if
a reply includes additional hate, to determine
whether the reply supports the hateful tweet
task;

• hateful tweet-reply pair dataset regarding if
a reply attacks the author of the hateful tweet,
to determine whether the reply attacks the
author of the counterhate tweet; and

• hateful tweet-reply pair dataset regarding if
a reply counters the hate with justification, to
determine whether the reply adds additional
counterhate.
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Language Features

tokens pron. N-and-V pos. neg. QM PR FP-pron.

the least you can do is watch what u say, but ur too
ignorant.

14 3 4 0 1 0 0 0

Also why poor Becky? She’s with a great leading
man. I get hating Franco but why the RoHo hate?

19 2 5 0 2 2 3 1

b**ch you lame as f**k hope you got that sh*t if
you love gays

14 3 9 2 2 0 1 0

Right??? Like this dude is insane 6 0 1 0 1 3 0 0

Also, I never had the thought to bully someone
because I found them weird, that’s so toxic wth???

18 5 6 1 3 3 0 2

Who is this one? Are you dumb? 7 2 0 0 1 2 0 0

If there overprotective dosent mean they hate u you
know??

10 3 5 0 1 2 0 0

Oh so we are doing that huh , Well Imo killing irl
people is cool sounds dumb doesn’t it ?

20 3 4 1 2 1 1 1

Table 7: Examples of the calculated language features for the replies. We explore pretraining with the language
features as shown in Table 5. pron.: Pronouns. N-and-V: Nouns and Verbs. pos.: Positive words. neg.: Negative
words. QM: Question Marks. PR: Proper Nouns. FP-pron.: First Person Pronouns.

No Yes Weighted Avg.

P R F1 P R F1 P R F1

Baselines
Majority 0.50 1.00 0.67 0.00 0.00 0.00 0.25 0.50 0.34
Random 0.51 0.54 0.52 0.50 0.47 0.48 0.50 0.50 0.50

BERTweet trained with . . .
reply 0.70 0.72 0.71 0.72 0.69 0.70 0.70 0.70 0.70
counterhate tweet 0.61 0.67 0.64 0.63 0.57 0.60 0.62 0.62 0.62
hateful tweet 0.60 0.62 0.61 0.58 0.59 0.59 0.60 0.60 0.60

reply + counterhate tweet 0.77 0.68 0.72 0.71 0.79 0.75 0.74 0.73 0.73
reply + hateful tweet 0.81 0.57 0.67 0.66 0.86 0.75 0.73 0.71 0.71

best pair + the other tweet 0.71 0.78 0.74 0.75 0.68 0.71 0.73 0.73 0.73

best input + EDA 0.75 0.74 0.75 0.74 0.75 0.74 0.74 0.74 0.74
best input + LF 0.75 0.73 0.74 0.73 0.75 0.74 0.74 0.74 0.74
best input + Blending with . . .
stance 0.73 0.78 0.76 0.77 0.71 0.74 0.74 0.75 0.75
offensive 0.65 0.83 0.76 0.87 0.49 0.62 0.76 0.71 0.69
counterhate 0.72 0.70 0.71 0.70 0.72 0.71 0.71 0.71 0.71
justification 0.71 0.78 0.74 0.75 0.68 0.71 0.73 0.73 0.73
attack 0.73 0.81 0.76 0.78 0.69 0.73 0.75 0.75 0.75
additional hate 0.69 0.71 0.70 0.70 0.68 0.69 0.70 0.70 0.70

Table 8: Detailed results (P, R, and F) predicting whether the reply agrees with the counterhate tweet. Best pair: the
pair input that leads to the best pair result (reply+counterhate tweet or reply+hateful tweet). The other tweet: either
counterhate tweet or hateful tweet. Best input: a textual input or a combination of (reply, counterhate tweet, and
hateful tweet) that leads to the best performance (underline). EDA: easy data augmentation. LF: language features.
This table complements Table 5.
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No Yes Weighted Avg.

P R F1 P R F1 P R F1

Baselines
Majority 0.60 1.00 0.75 0.00 0.00 0.00 0.36 0.60 0.45
Random 0.58 0.45 0.51 0.39 0.51 0.44 0.50 0.48 0.48

BERTweet trained with . . .
reply 0.74 0.91 0.82 0.79 0.53 0.64 0.76 0.65 0.74
counterhate tweet 0.63 0.80 0.70 0.51 0.30 0.38 0.58 0.60 0.57
hateful tweet 0.62 0.86 0.72 0.51 0.21 0.30 0.57 0.60 0.55

reply + counterhate tweet 0.78 0.83 0.80 0.72 0.66 0.69 0.76 0.76 0.76
reply + hateful tweet 0.81 0.83 0.82 0.74 0.72 0.73 0.78 0.78 0.78

best pair + the other tweet 0.77 0.83 0.80 0.71 0.64 0.68 0.75 0.75 0.75

best input + EDA 0.82 0.86 0.84 0.77 0.72 0.74 0.80 0.80 0.80
best input + LF 0.75 0.96 0.84 0.89 0.54 0.67 0.81 0.79 0.78
best input + Blending with . . .
stance 0.84 0.73 0.78 0.66 0.80 0.72 0.77 0.76 0.77
offensive 0.78 0.72 0.75 0.63 0.70 0.66 0.72 0.71 0.71
counterhate 0.82 0.80 0.81 0.71 0.73 0.72 0.77 0.77 0.77
justification 0.83 0.83 0.83 0.75 0.75 0.75 0.80 0.80 0.80
attack 0.86 0.78 0.82 0.72 0.81 0.76 0.80 0.79 0.79
additional hate 0.89 0.79 0.84 0.73 0.86 0.79 0.83 0.82 0.82

Table 9: Detailed results (P, R, and F) predicting whether the reply contains support to the hateful tweet. Best pair:
the pair input that leads to the best pair result (reply+counterhate tweet or reply+hateful tweet). The other tweet:
either counterhate tweet or hateful tweet. Best input: a textual input or a combination of (reply, counterhate tweet,
and hateful tweet) that leads to the best performance (underline). EDA: easy data augmentation. LF: language
features. This table complements Table 5.
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No Yes Weighted Avg.

P R F1 P R F1 P R F1

Baselines
Majority 0.76 1.00 0.87 0.00 0.00 0.00 0.58 0.76 0.66
Random 0.74 0.47 0.58 0.22 0.47 0.30 0.62 0.47 0.51

BERTweet trained with . . .
reply 0.88 0.90 0.89 0.66 0.59 0.62 0.82 0.83 0.83
counterhate tweet 0.77 0.97 0.86 0.45 0.08 0.13 0.70 0.76 0.69
hateful tweet 0.76 1.00 0.86 0.00 0.00 0.00 0.58 0.76 0.66

reply + counterhate tweet 0.88 0.91 0.89 0.67 0.61 0.64 0.83 0.84 0.83
reply + hateful tweet 0.87 0.90 0.88 0.64 0.55 0.59 0.81 0.82 0.81

best pair + the other tweet 0.85 0.91 0.88 0.64 0.50 0.56 0.80 0.81 0.81

best input + EDA 0.89 0.89 0.89 0.64 0.64 0.64 0.83 0.83 0.83
best input + LF 0.88 0.92 0.90 0.69 0.59 0.64 0.83 0.84 0.84
best input + Blending with . . .
stance 0.85 0.97 0.91 0.81 0.47 0.59 0.84 0.85 0.83
offensive 0.87 0.86 0.87 0.57 0.59 0.58 0.80 0.80 0.80
counterhate 0.91 0.85 0.88 0.61 0.73 0.67 0.84 0.83 0.83
justification 0.88 0.92 0.90 0.70 0.61 0.65 0.84 0.84 0.84
attack 0.89 0.92 0.90 0.71 0.62 0.67 0.85 0.85 0.85
additional hate 0.87 0.93 0.90 0.70 0.55 0.61 0.83 0.84 0.83

Table 10: Detailed results (P, R, and F) predicting whether the reply attacks the author of the counterhate tweet.
Best pair: the pair input that leads to the best pair result (reply+counterhate tweet or reply+hateful tweet). The other
tweet: either counterhate tweet or hateful tweet. Best input: a textual input or a combination of (reply, counterhate
tweet, and hateful tweet) that leads to the best performance (underline). EDA: easy data augmentation. LF: language
features. This table complements Table 5.
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No Yes Weighted Avg.

P R F1 P R F1 P R F1

Baselines
Majority 0.65 1.00 0.79 0.00 0.00 0.00 0.42 0.65 0.51
Random 0.63 0.47 0.54 0.33 0.48 0.39 0.52 0.47 0.49

BERTweet trained with . . .
reply 0.88 0.90 0.89 0.80 0.76 0.78 0.85 0.85 0.85
counterhate tweet 0.74 0.73 0.73 0.51 0.51 0.51 0.66 0.66 0.66
hateful tweet 0.70 0.82 0.76 0.52 0.36 0.42 0.64 0.66 0.64

reply + counterhate tweet 0.88 0.90 0.89 0.81 0.77 0.79 0.85 0.86 0.85
reply + hateful tweet 0.88 0.86 0.87 0.75 0.77 0.76 0.83 0.83 0.83

best pair + the other tweet 0.86 0.90 0.88 0.80 0.73 0.76 0.84 0.84 0.84

best input + EDA 0.85 0.94 0.89 0.85 0.70 0.77 0.85 0.85 0.85
best input + LF 0.87 0.89 0.88 0.78 0.75 0.77 0.84 0.84 0.84
best input + Blending with . . .
stance 0.91 0.85 0.88 0.75 0.84 0.79 0.85 0.85 0.85
offensive 0.89 0.83 0.86 0.71 0.82 0.76 0.83 0.82 0.82
counterhate 0.90 0.83 0.86 0.72 0.84 0.77 0.84 0.83 0.83
justification 0.91 0.85 0.88 0.76 0.85 0.80 0.86 0.85 0.85
attack 0.88 0.84 0.86 0.72 0.78 0.75 0.82 0.82 0.82
additional hate 0.89 0.81 0.84 0.69 0.80 0.74 0.82 0.81 0.81

Table 11: Detailed results (P, R, and F) predicting whether the reply contains additional counterhate. Best pair: the
pair input that leads to the best pair result (reply+counterhate tweet or reply+hateful tweet). The other tweet: either
counterhate tweet or hateful tweet. Best input: a textual input or a combination of (reply, counterhate tweet, and
hateful tweet) that leads to the best performance (underline). EDA: easy data augmentation. LF: language features.
This table complements Table 5 .
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Abstract

Automated evaluation of text generation sys-
tems has recently seen increasing attention,
particularly checking whether generated text
stays truthful to input sources. Existing meth-
ods frequently rely on an evaluation using task-
specific language models, which in turn allows
for little interpretability of generated scores.
We introduce SRLScore, a reference-free eval-
uation metric designed with text summariza-
tion in mind. Our approach generates fact tu-
ples constructed from Semantic Role Labels,
applied to both input and summary texts. A
final factuality score is computed by an ad-
justable scoring mechanism, which allows for
easy adaption of the method across domains.
Correlation with human judgments on English
summarization datasets shows that SRLScore
is competitive with state-of-the-art meth-
ods and exhibits stable generalization across
datasets without requiring further training or
hyperparameter tuning. We experiment with
an optional co-reference resolution step, but
find that the performance boost is mostly out-
weighed by the additional compute required.
Our metric is available online at: https://
github.com/heyjing/SRLScore

1 Introduction

One of the remaining issues that prevents produc-
tive deployments of neural text summarization sys-
tems is the low correlation of system outputs with
human preferences. Among those, factuality, i.e.,
the agreement of facts in the generated summaries
with those present in the input text, is not part of
the general training objectives of models, which
frequently leads to hallucinated facts that are detri-
mental to perceived system performance (ter Hoeve
et al., 2020; Fabbri et al., 2021). Prior work has
therefore introduced metrics for automated test-
ing of factuality in generated text (Goodrich et al.,
2019; Kryscinski et al., 2020; Yuan et al., 2021),

∗Both authors contributed equally to this work.

which allows for a more nuanced verification of
model capabilities. In particular, one of the first rel-
evant works by Goodrich et al. (2019) introduces
the idea of representing text as a series of "fact
tuples", in their case as (subject, predicate,
object) triplets. Their method exhibits some as-
sumptions about the underlying data, which ham-
pers correlation with human ratings. For example,
subject or object may vary for the same sentence
meaning expressed using different syntactic struc-
tures, e.g., active and passive forms. Semantic
Role Labeling (SRL), however, allows for a syntac-
tically independent meaning representation. Our
metric, SRLScore, improves factuality evaluation,
building on fact tuples similar to Goodrich et al. It
distinguishes itself in several ways from existing
approaches, though:

1. To account for a more nuanced fact represen-
tation, we employ SRL to produce abstract
representations of sentences that are indepen-
dent of their syntactic formulations.

2. Fact tuples in SRLScore are generated on the
input text instead of gold summaries; as a con-
sequence, our method is reference-free, and
may be applied for evaluation irrespective of
the availability of labeled datasets.

3. We introduce a novel weighting scheme
for fact tuple comparison, where adjustable
weights allow for user optimization.

4. Finally, we experiment with extensions along
different parts of the pipeline, including an
optional co-reference resolution step and al-
ternative similarity scoring functions.

Notably, SRLScore entirely relies on publicly
available software components and may be used
without any further domain adaption required.
While our experiments are performed on English,
we argue that the transfer of our approach to other
languages is possible given only the existence of a
language-specific tokenizer and a sufficiently good
SRL tagger. Furthermore, SRLScore offers the
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Figure 1: Visual explanation of SRLScore. An input text and its associated summary are transformed into a series
of fact tuples (SR Tuple) through extraction from SRL (and optional co-reference) annotations. The final factuality
score is computed based on the similarity of the summary facts with fact tuples generated from the input text.

additional benefit of being an interpretable metric,
due to its composition on top of fact tuples. In com-
parison, metrics used for factuality evaluation that
are based on the intermediate presentations of lan-
guage models, e.g., generation perplexity (Zhang
et al., 2020; Thompson and Post, 2020; Yuan et al.,
2021), cannot present insightful reasons why a
particular score was achieved. Furthermore, it
has been empirically demonstrated that generation-
based evaluators exhibit a self-preference of out-
puts generated by models similar to the factuality
evaluator (Fabbri et al., 2021; Liu et al., 2023).
This makes them a questionable choice over in-
terpretable metrics. We empirically show that the
correlation of SRLScore with human ratings is on
par with existing methods, and perform several ab-
lations to study the impact of algorithmic choices
within our pipeline.

2 Related Work

Automated analysis of (abstractive) summaries be-
came more relevant in recent years, with the in-
flux of generic summarization systems becoming
available (Nallapati et al., 2016; See et al., 2017;
Lewis et al., 2020). In particular, Goodrich et al.
(2019) were the first to propose a reference-based
estimator for factuality of generated summaries.
As mentioned, their approach is based on a tuple
representation of "facts" in the generated and gold
summary. Fact tuples are extracted based on a
weakly supervised end-to-end tagger and subse-
quently compared on the basis of matching argu-
ments. Notably, no readily available implementa-
tion of their method currently exists.
Later work has proposed alternative metrics based
on textual entailment (Falke et al., 2019; Mishra

et al., 2021) and Question Answering (QA) (Wang
et al., 2020; Durmus et al., 2020), where agreement
of answers to questions on the reference and sum-
mary are used for estimating factuality. However,
QA-based metrics require additional task-specific
fine-tuning on generic datasets, which makes the
adoption to new domains fairly expensive.
The only other work that to our knowledge utilizes
some form of SRL-based factuality estimation is
presented by Fischer et al. (2022). In compari-
son to SRLScore, their method aggregates "role
buckets" at the document level, instead of creat-
ing sentence-specific fact tuples. Empirically, their
implementation has lower correlation with human
ratings than compared approaches, which is con-
trary to our own findings.
Li et al. (2022) frame factuality estimation as an
in-filling task, where fact statements are withheld
as masked tokens in a generated summary, and a
separate model is trained to predict missing facts.
Notably, this relies on the assumption that the ma-
jority of factual mistakes stems from noun phrases
and entity mentions (Pagnoni et al., 2021).
An alternative body of literature has explored the
possibility to exploit Language Models (LMs) di-
rectly for estimating factual consistency: Some
works, such as BertScore (Zhang et al., 2020), use
LM-generated representations to generate align-
ments for scoring. In comparison, PRISM (Thomp-
son and Post, 2020) or BARTScore (Yuan et al.,
2021) directly use model perplexity as a factual-
ity estimate. Xie et al. (2021) explore masking
approaches, which fall somewhere between the
works of Li et al. (2022) and BARTScore; their
framing of counterfactual estimation still relies on
model-based likelihood scores for computation.
The majority of prior work expresses metric perfor-
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Figure 2: Examples of semantic role label annotations.
Labels may remain consistent across different syntactic
forms (Sentence 1 & 2). A single sentence can also
include several relations at the same time (Sentence 3).

mance in terms of correlation with human factual-
ity ratings. Notably, annotations exist for subsets
of the popular CNN/DailyMail (Hermann et al.,
2015; Nallapati et al., 2017) and XSUM summa-
rization corpora (Narayan et al., 2018). Where
Wang et al. (2020) collect user annotations from
crowd workers, Fabbri et al. (2021) additionally
sample expert judgments, and find that expert rat-
ings tend to be more representative. Maynez et al.
(2020) study several aspects of summarization eval-
uation beyond just factuality, but do not disclose
the background of annotators for evaluation.

Generally, reliably evaluating correlation of sum-
marization metrics with human preferences is no
easy task, either: Deutsch et al. (2022) show that
system-level evaluation metrics for text summa-
rization rarely outperform simplistic metrics, such
as ROUGE (Lin, 2004), to a statistically signifi-
cant degree. Partially, this can be attributed to the
small number of human-annotated samples avail-
able, generally less than 1000 different instances.

3 SRLScore

Our factual consistency metric, called SRLScore,
is implemented as a two-stage process: first, ex-
tracting fact tuples using Semantic Role Labeling
(SRL) on both the source texts and the summary
texts, and then determining a factuality score based
on tuple comparison. The measure outputs human-
interpretable scores between 0 and 1, where a
higher score indicates greater factual consistency of
a summary text. In this section, we detail the algo-
rithmic choices and present an adaptive weighting
scheme for computing the final factuality scores.

3.1 Generating Fact Tuples with Semantic
Role Labeling

As Figure 1 shows, we operate on the sentence
level, primarily because existing SRL tools work
well on this level of granularity (Shi and Lin, 2019;
Xu et al., 2021). The goal of our fact extractor is
to produce a fact database comprised of semantic
role tuples for each input text.
The primary task of SRL is to find all role-bearing
constituents in a sentence and label them with their
respective roles (Màrquez et al., 2008). Typical
semantic roles include agent, patient/theme, recipi-
ent, goal, instrument, manner, time, location and
so on. From the many semantic labels available, we
include seven roles based on availability in tagging
schemes to construct a fact tuple: agent, negation,
relation, patient, recipient, time, and location. We
further note that not every sentence needs to con-
tain all of these roles; absent labels are represented
by None in this work. Importantly, roles reveal the
semantic relations between a predicate (verb) and
its arguments, which implies that one can generate
several fact tuples from a single sentence, depend-
ing on the number of verbs in it. To illustrate an
exemplary fact tuple, the extracted semantic tuple
from sentence 1 in Figure 2 is (Mueller, None,
gave, a book, Mary, yesterday, in Berlin).

3.2 Scoring Texts by Comparing Fact Tuples
Once fact tuples for both the input and summary
texts are generated, the second step in our pipeline
is to compute a factual accuracy score. We imple-
ment a dynamic weighting system, which crucially
improves over a naive comparison, as we empir-
ically show in Section 4.6. Furthermore, we de-
scribe the drop-in replacements for exact matching
during similarity computation.

Scoring Algorithm. Given an input text R and
summary text S, let FR and FS be fact databases,
representing the semantic information contained in
R and S, respectively. Individual fact tuples are
represented as an ordered list of fact arguments,
e.g., f = (agent, negation, relation, patient,
recipient, time, location) ∈ F . Particular argu-
ments in a fact tuple are referred to by their index
position, meaning agent = f0, negation = f1, and
so on. We further assume that there exists a scoring
function that expresses the factual support of sum-
mary tuple fs, given an input tuple fr, denoted as
S(fs|fr). To obtain a factuality score, we attempt
to extract the best match f̂r ∈ FR for each sum-
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mary fact fs ∈ Fs where f̂r maximizes the support
score S(fs|f̂r). Importantly, we differ from, e.g.,
Goodrich et al. (2019), by considering the entirety
of FR, instead of subsets that match both the agent
and relation of the fact tuple. The factual accu-
racy is then the average across all maximized tuple
scores in FS . With that, SRLScore is defined as:

SRLScore(R,S) :=
1

|FS |
∑

fs∈Fs

max
fr∈FR

S(fs|fr)

(1)
The final part of this scoring system is the computa-
tion of factual support S(fs|fr). Tuples are scored
by comparing the corresponding attributes of each
tuple, formally:

S(fs|fr) :=
∑

i

1f i
s 6=None · sim(f is, f

i
r) ·wi, (2)

where the summation over i addresses all attributes
of the fact tuples, 1f i

s 6=None represents an indicator
function considering only non-empty arguments
f is (zero otherwise), and wi assigns static weights
to arguments in position i. Generally, it should
be assumed that the weights allow for a maximum
factuality score of 1, i.e.,

∑
iwi = 1. Finally,

sim(f is, f
i
r) is the pairwise argument similarity of

f is and f ir. We consider different similarity metrics,
as described in the following paragraphs.

Dynamic Weighting System. The generic
weighting in Equation (2) does not necessarily
apply to the particular case of evaluating factual
consistency in summarization, since a summary
is still factually correct even if it leaves out
particular aspects (e.g., dropping the date of an
event), which were present in the input text. With
static weights, however, absent arguments are
still contributing to the scoring of the tuple fs,
which means that leaving arguments out might
potentially be considered as a penalization of
factuality. To address this issue, we introduce
a weight re-normalization factor, Wnorm, that
distributes the static weights wi across only those
attributes that are present in the current summary
fact. In particular, this also increases penalties for
actual mistakes over simple fact omission. The
weight normalization is defined as follows:

Wnorm :=
1∑

i
1f i

s 6=None · wi
(3)

With re-normalization enabled, we replace the
existing computation of S(fs|fr) by the product
Wnorm · S(fs|fr).

String Similarity Methods. We experiment
with different methods to calculate the pairwise
similarity sim(f is, f

i
r): exact matching (in line with

prior work), but also approximate matching func-
tions, such as word vector similarity1 and ROUGE-
1 precision (Lin, 2004). Computation of similarity
with vectors and ROUGE each have their own re-
spective strengths. Word vectors offer the highest
flexibility in terms of recognizing argument sim-
ilarity, enabling semantic comparison instead of
purely syntactic equivalence. ROUGE-1 similar-
ity does not offer the same level of flexibility in
terms of matching, but shines with its compara-
tively faster computation, while still recognizing
partial matches.

3.3 Improved Surface Form Invariance with
Co-reference Resolution

In light of the fact that sentence-level SRL extrac-
tion misses co-references of the same entity across
the texts, we integrate an optional component that
takes co-reference resolution into account during
the tuple generation. Concretely, we employ an off-
the-shelf co-reference resolution tool (Lee et al.,
2017) to identify and store all reference clusters
in an external entity dictionary. There, all linguis-
tic expressions that refer to the same entity will
be grouped together, which allows for later disam-
biguation. As shown in Figure 3, if an extracted
semantic role tuple contains co-references, a single
fact tuple will be expanded into multiple tuples,
representing the Cartesian product over all synony-
mous entity surface forms.
The key idea here is to enable a better matching
of potential facts across input texts and summaries,
effectively increasing the recall of matches. The
disadvantage is that this directly affects the run-
time of our method by a strong factor, since the
additional tuples in FS and FR will undoubtedly
increase the number of comparisons.

4 Experiments

We empirically demonstrate the performance of our
method through a number of experiments on two
popular datasets for factual consistency evaluation,
which are covered in this section. We further share
implementation details and the choices for extract-
ing SRL tuples and extracting co-reference clusters.

1We use spaCy’s vector similarity, see https://SpaCy.
io/usage/linguistic-features#vectors-similarity,
last accessed: 2023-03-06.
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Figure 3: Example of the tuple expansion step through co-reference resolution. In addition to the original SR tuple,
we add tuples with all possible permutations of the surface forms of mentioned entities.

In addition to the experimental analysis, we also
study the behavior of SRLScore through a number
of ablation experiments and a brief error analysis.

4.1 Evaluation Datasets

QAGS (Wang et al., 2020). The dataset com-
prises of two separate splits: the first contains
235 instances collected from the test split of CN-
N/DailyMail (Nallapati et al., 2016), where each
instance contains a source article and a model-
generated summary using the bottom-up approach
by Gehrmann et al. (2018). A secondary set con-
tains 239 further instances from the test split of
XSUM (Narayan et al., 2018), with generated sum-
maries sampled from BART (Lewis et al., 2020).

SummEval (Fabbri et al., 2021). It includes
synthetic summaries from 16 different abstractive
and extractive models of 100 randomly selected ar-
ticles from the test split of CNN/DailyMail. Unlike
QAGS, which collected annotations from MTurk2,
each SummEval sample was evaluated by five
crowd-sourced annotators and three experts. For
each summary, judges were asked to evaluate the
coherence, consistency, fluency and relevance. For
our evaluation, we use the expert ratings with re-
gard to factual consistency as the gold score, based
on the recommendation by Fabbri et al. (2021).

4.2 Evaluation Metrics and Significance

In line with prior work, we evaluate metrics
by computing Pearson correlation (denoted as ρ)
and Spearman correlation (denoted as s) between
model predictions and human reference ratings.
Given the limited size of all considered evaluation
datasets, we further test results for significance us-
ing permutation tests (Riezler and Maxwell, 2005;
Deutsch et al., 2021), following the recommenda-
tion of Dror et al. (2018). In all tables, † denotes

2https://www.mturk.com/, last accessed: 2023-03-06.

a significance level of 0.05 (p < 0.05) and ‡ a
level of 0.01 (p < 0.01). When testing significance
against several systems, we further apply Bonfer-
roni correction of significance levels (Dunn, 1961).

4.3 Implementation

We use AllenNLP (Gardner et al., 2018), specifi-
cally version 2.1.0, to extract semantic role labels.
AllenNLP implements a BERT-based SRL tagger
(Shi and Lin, 2019), with some modifications. The
output of AllenNLP uses PropBank convention
(Palmer et al., 2005; Bonial et al., 2012; Pradhan
et al., 2022), which lists for each verb its permit-
ted role labels using numbered arguments (ARG0,
ARG1, ...) instead of names, due to the difficulty of
providing a small, predefined list of semantic roles
that is sufficient for all verbs. Since numbered ar-
guments are meant to have a verb-specific meaning
(Yi et al., 2007), this implies that our mapping be-
tween numbered arguments and semantic roles may
not always be consistent. The exact mapping used
in our experiments is detailed in Appendix A. For
co-reference, we similarly use the model provided
by AllenNLP (Lee et al., 2017), which matches the
output format of the SRL tagger.
All experiments were carried out on a system with
an Intel Xeon Silver 4210 CPU, two TITAN RTX
GPUs (24 GB GPU VRAM each) and 64 GB of
main memory. We run inference for the SRL model
and co-reference component on separate GPUs.
We report scores of all system and baseline vari-
ants across a single random seed only. Since we
are comparing provided "plug-and-play" metrics, it
is reasonable to assume that these are the primary
choice for others evaluating their own datasets. Par-
ticularly for SRLScore, we further note that due
to the system design, no fine-tuning or training is
necessary. The only parameters varied during the
experiments are thus the argument weights, which
we describe in the following section.
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Metrics QAGS-CNN/DM QAGS-XSUM SummEval Avg.
ρ s ρ s ρ s ρ

ROUGE-1 (F1) 0.34 0.32 −0.01 −0.05 0.13 0.14 0.15
BLEU 0.13 0.33 0.08 0.03 0.09 0.14 0.10
METEOR 0.33 0.36 0.06 0.01 0.12 0.14 0.17
BARTScore 0.65 0.57 0.00 0.02 0.27 0.26 0.31
BARTScorecnn 0.73 0.68 0.19 0.18 0.35 0.32 0.42
BARTScorecnn+para 0.69 0.62 0.07 0.07 0.42 0.37 0.39
CoCospan 0.64 0.55 0.22 0.20 0.40 0.35 0.42
CoCosent 0.68 0.59 0.16 0.14 0.39 0.35 0.41
ClozE-Ren_core_web_trf

∗ 0.66 - - 0.32 - - 0.47 - - 0.48
ClozE-Rconfidence

∗ 0.65 - - 0.29 - - 0.48 - - 0.47
SRLScorebase 0.67 0.59 0.20 0.18 0.43 0.33 0.43
SRLScorecoref 0.65 0.58 0.27 0.26 0.43 0.32 0.45
SRLScorecoref-optimized - - - - 0.33 0.33 - - - - - -

Table 1: Pearson (ρ) and Spearman (s) correlation of metrics with human ratings on the evaluated datasets. Bold
scores indicate highest absolute values. For SRLScore variants, we report highest scores across all similarity
functions. No significant differences were found between the correlation scores of factuality-specific metrics.
∗: results were taken from the respective paper, as there is no existing code to reproduce their results as of now.

4.4 System Variants

We compare with a number of generic auto-
matic evaluation metrics, including BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005). Besides, we
also consider several metrics specifically developed
for factuality estimation, which have reported prior
state-of-the-art correlation. Wherever possible, we
reproduce scores with the official scripts provided
by authors. Comparison is done with three variants
of BARTScore (Yuan et al., 2021), two variants
of CoCo (Xie et al., 2021), and two variants of
ClozE (Li et al., 2022). For more details on repro-
ducibility, see Appendix B. We chose each variant
such that the highest self-reported scores of each
paper on all evaluated datasets are considered.

For our own method, SRLScorebase represents a
default setting, assigning equal weights wi = 1

7
to all attributes (agent, negation, relation, patient,
recipient, time, location); the respective similarity
function (exact match, spaCy vector, or ROUGE
similarity) is chosen to maximize dataset-specific
performance (see results of Table 2). SRLScorecoref
uses the same weights, with co-reference enabled.
We further provide model ablations to test various
specifications of our models. As we could not find
a implementation based on the original tuple ex-
traction approach by Goodrich et al. (2019), we in-
troduce SRLScoreopenie and SRLScoregoodrich as ap-
proximations of their method. Here, fact tuples are
reduced to (agent, relation, patient) triplets

(with equal weights wi =
1
3 ). We note that this is

not a true equivalence to the original method, al-
though "[i]n most English sentences the subject is
the agent" (Bates and Macwhinney, 1982); in real-
ity, a broader variety of roles in the subject position
may be encountered. The same applies for our map-
ping between object and the patient role. However,
by using the same upstream labeling tool (i.e., the
SRL model provided by AllenAI), we may more
accurately compare the algorithmic scoring meth-
ods, independent of the annotation accuracy. We
argue that our SRL-based modeling of relationship
triplets allows for a better generalization beyond
Wikipedia, which Goodrich et al. were using in
their own experiments.
The difference of SRLScoreopenie and
SRLScoregoodrich lies in the implemented scoring
function, where the OpenIE variant employs our
own scoring algorithm, SRLScoregoodrich uses the
preliminary filtering step defined in Goodrich et al.
(2019). We do not apply a co-reference system
in either one of the two ablation settings. Finally,
SRLScorecoref-optimized illustrates the possibility of
adapting our method to a particular dataset. For
this variant, we optimize available hyperparameters
(weights, scoring function, co-reference) in order
to obtain the highest possible scores.

4.5 Main Results

The central evaluation results with recommended
default settings are shown in Table 1. In almost all
cases, specialized factuality metrics show higher
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correlation than generic summarization evaluation
metrics (ROUGE-1, BLEU and METEOR). No-
tably, despite the high increase in absolute scores,
we do not always detect a significant level of im-
provement between factuality-specific metrics and
generic metrics, particularly on QAGS-XSUM;
we will discuss further implications of this in
more detail later. When testing our own method,
SRLScorebase, against generic metrics, we find
strongly significant improvements only for Pearson
correlation of QAGS-CNN/DM and SummEval,
as well as Spearman correlation on SummEval
(p < 0.01, with Bonferroni correction).
It should be further noted that BARTScorecnn and
CoCo results use BART models (Lewis et al., 2020)
that were fine-tuned on the CNN/DailyMail corpus
(respectively a variant fine-tuned on XSUM for
CoCo on QAGS-XSUM); this may shift the re-
sults in favor of these methods for the particular
dataset. In comparison, SRLScore does not make
such assumptions, which may indicate a potentially
stronger generalization to unseen datasets.
The results in Table 1 also show that there
are no significant differences between any
of the factuality-specific metrics (SRLScore,
BARTScore, and CoCo), particularly after applying
Bonferroni correction for the comparison against
several methods. These insights open up discus-
sions about the current claims of "state-of-the-
art" performance, which may not be easily distin-
guished on the current evaluation datasets. We
admit that there is likely no trivial solution to this
(besides further annotations), as the main problem
seems to stem from the high variance on small
sample sizes.

4.6 Ablation Study

Given the limited expressiveness of the generic
result evaluation, we perform a series of ablation
studies on SRLScore, to support the individual
algorithmic choices made in our method.

Extending Tuple Attributes. We investigate the
assumption that semantic representations of sen-
tences are usually far more complicated than the
simplistic view of (agent, relation, patient) triplets,
and the fact that errors may involve further roles.
To this end, we compared SRLScoreopenie, using
a triplet representation, against SRLScorebase with
seven roles. The results in Table 2 confirm that
extending tuples to cover more semantic roles is
effective across datasets and metrics; SRLScorebase

Metrics
QCNNDM QXSUM SummE

ρ s ρ s ρ s

SRLScore
openie

Exact 0.59 0.51 0.09 0.09 0.34 0.28
ROUGE 0.62 0.56 0.07 0.07 0.41 0.32
SpaCy 0.59 0.53 0.13 0.10 0.37 0.32

SRLScore
base

Exact 0.61 0.54 0.14 0.15 0.37† 0.31‡

ROUGE 0.67 0.59 0.15† 0.13 0.43† 0.33
SpaCy 0.63 0.55 0.20 0.18 0.40† 0.34†

Table 2: Comparison of SRLScore with a simplified
triplet representation (SRLScoreopenie). Extending the
fact tuples strictly improves correlation with human
ratings across all similarity functions. Significance
markers indicate improvements over the same similar-
ity function of the openie variant.

Weight Setting
QCNNDM QXSUM SummE

ρ s ρ s ρ s

Static weights 0.59 0.49 0.09 0.09 0.38 0.28

Dynamic weights 0.67 0.59 0.20 0.18 0.43 0.33

Table 3: Correlation scores of SRLScorebase with and
without weight re-normalization enabled.

scores consistently better than SRLScoreopenie,
with significant improvements primarily on Sum-
mEval (the largest considered dataset).

Performance of Similarity Functions. Also
seen in Table 2 is the difference in scores across
various similarity functions. SRLScore achieves
generally higher correlation when using vector
(spaCy) or ROUGE similarity over exact match-
ing, although not to a significant degree. These ob-
servations can be attributed to the hypothesis that
abstractive entity references will not be detected by
exact matching. Also note that results on QAGS-
XSUM are particularly affected by this, which
shows higher levels of abstraction than CNN/DM-
derived resources (Wang et al., 2020; Pagnoni et al.,
2021). This is also visible for the SRLScorecoref
variant, as seen in Table 1, which can further im-
prove the matching of re-formulations.

Dynamic Weight Re-Normalization. We next
analyze the contribution of our dynamic weight-
ing scheme through removing the weight re-
normalization Wnorm and instead defaulting to a
static weighting on SRLScorebase. Results in Ta-
ble 3 demonstrate that re-distributing static weights
dynamically to present roles is very effective, how-
ever, results show no statistical significance.
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Scoring Method
QCNNDM QXSUM SummE

ρ s ρ s ρ s

SRLScoregoodrich 0.45 0.38 0.05 0.07 0.29 0.24

SRLScoreopenie 0.62† 0.56† 0.13 0.10 0.41‡ 0.32†

Table 4: Results of the ablation experiment comparing
the scoring method by Goodrich et al. (2019) with our
proposed scheme, based on triplet representations.

SRLScore BARTScore

base coref base cnn cnn+para

2.35 19.32 0.22 0.23 0.23

Table 5: Average processing time (in seconds) per in-
stance in QAGS-CNN/DM. SRLScore uses ROUGE
similarity. BARTScore is run with a batch size of 4.

Ablation of Goodrich Scoring Method. We fi-
nally examine the performance of our scoring
system against the partial matching approach of
Goodrich et al. For fairness, we compare results
on the reduced triplet sets. SRLScoreopenie uses
the presented weighting function, SRLScoregoodrich
implements an equivalent scoring to Goodrich et
al. Results in Table 4 show that the presented
scoring algorithm performs better than the scores
determined by Goodrich’s approach on different
datasets, in most instances to a significant degree.

Performance of Co-reference Resolution Sys-
tem. Results in Table 1 reveal that the co-
reference system is not always improving
scores, particularly on the CNN/DailyMail-derived
datasets. However, the use of co-reference res-
olution will significantly increase the processing
time, as shown in Table 5. This is expected, given
that there are now more fact tuples due to the tu-
ple expansion; since the presented scoring method
requires the comparison of each fact tuple in the
summary against all input text tuples. We further
compare the runtime against BARTScore, which
only requires a single forward-pass through a neu-
ral net and can be batched easily, resulting in a
10x speed-up. In contrast, SRLScore requires con-
struction and comparison the fact tuples, which are
the main contributors for slower inference times.

4.7 Error Analysis

To better understand the limitations of our pre-
sented methods, we examine a number of instances
manually, particularly those where there are large

differences between model-generated scores and
human annotations on QAGS-XSUM. Table 6
shows two instances, where SRLScore respec-
tively predicts a much higher and lower factual-
ity score than human annotators. Notably, human
raters tend to drastically reduce factuality scores
in the presence of even a single mistake (what
we refer to as "strike-out scoring"). In compari-
son, SRLScore and other factuality metrics tend
to be more heavily influenced by the correctness
of the majority of attributes, which can be seen as
a "bottom-up scoring" (scores are built up from a
initial factuality of zero instead of deducing from
an initial score of one). On the other hand, highly
abstractive samples, which retain factuality accord-
ing to human raters, may pose a challenge for
tuple-based SRLScore. In the second example of
Table 6, synonymous expressions like step down
instead of resign cause low predicted similarity;
potential solutions could be found in verb sense
disambiguation (Brown et al., 2011, 2022).

5 Conclusion and Future Directions

In this work, we presented a semantically consis-
tent metric for estimating the factual truthfulness
of two pieces of text: we applied our presented
metric to the problem of text summarization
evaluation, and demonstrated that it performs on
par with existing approaches. In fact, we find
that due to the small sample sizes of evaluation
datasets, there are no significant differences
between any of the considered state-of-the-art
factuality estimation metrics. Our approach strikes
with its relative simplicity and interpretability due
to the intermediate representation of "fact tuples",
which makes it possible for human annotators to
review how or why system decisions were made.
Furthermore, we have demonstrated the suitability
of our approach over more naive tuple-based
scoring methods through a series of ablation
experiments, which also show the adaptability of
our method to particular unseen settings by simply
adjusting a series of parameters.

In our opinion, there are two key challenges con-
cerning the effective deployment of SRLScore.
The current implementation still suffers from im-
practically long runtimes for longer input texts.
Notably, however, both the tuple generation and
comparison stages can be parallelized and we are
currently working on improving the compute effi-
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Sample Text Extracted Fact Tuples Human SRLScore
Input Former England fast bowler Chris Trem-

lett has announced his retirement ...
(Former England fast bowler chris tremlett,
announce, his retirement, ...) 0 0.87

Summary Former England seamer James Tremlett
has announced his retirement ...

(Former England seamer james tremlett,
announce, his retirement, ...)

Input The head of Japanese advertising group
Dentsu is to step down following the
suicide of an employee ...

(The head of japanese advertising group
dentsu, step, ..., following the suicide of an
employee, ...)

1 0.10

Summary The chief executive of Japanese adver-
tising firm Dentsu will resign after a
worker killed herself ...

(The chief executive of japanese advertising
firm dentsu, resign, ..., after a worker killed
herself, ...), (a worker, killed, herself, ...)

Table 6: Examples from the QAGS-XSUM dataset where the majority vote of human ratings differs strongly from
SRLScore’s predicted factuality. Colored text segments highlight the position of relevant facts, where red text
indicates a factual discrepancy between input and summary segments.

ciency of our method. Secondly, we have seen a
general trend that factuality estimation metrics are
scoring differently from human annotators, who
are putting heavy emphasis on a completely fac-
tual summary instead. We suspect that adopting a
similar strike-out scoring for estimation may better
correlate with human ratings, although it will re-
quire sufficiently accurate taggers to ensure correct
recognition of all entities.

Limitations

While the presented method exhibits stable correla-
tion with human judgments on some of the evalu-
ated datasets, it still exhibits instances under which
it will predict opposing factuality scores. It should
therefore be considered an addition to human eval-
uation, but at this point not fully replace it.
We also want to point out that the underlying sum-
marization datasets that were used to compare hu-
man ratings on are known for their own set of limi-
tations, particularly being fairly extractive in nature.
This plays well with SRLScore’s estimation of
matching between individual tuples extracted from
single sentences; on the other hand, if summary
texts contain facts derived from multiple source
sentences (or undergo otherwise complex struc-
tural changes), fact tuples may be insufficient in
their current form.
Another limitation is the expressiveness of results
on the fairly small human-annotated datasets. Here,
statistically significant differences can rarely be ob-
tained. However, we are to our knowledge the first
to demonstrate this insight about (significant) dif-
ferences between existing methods, which we con-
sider a particularly useful insight for future work.
We further want to point out that our method was
only evaluated on English datasets; we argue that it

can be applied to other languages, given a similarly
performing SRL labeling model. In practice, how-
ever, the existence of available models is currently
limited for non-English languages.

Ethics Statement

The paper considers the automated analysis of fac-
tuality in generated text. While we see no imminent
risk in the development of our presented method,
we want to point to the explicitly spelled out limi-
tations of the current method (see the previous sec-
tion). The blind application of factuality metrics
could be considered harmful in instances where the
predicted scores are differing strongly from human
ratings. We therefore recommend that factuality
metrics should be employed purely as a complemen-
tary evaluation, and never directly replace analysis
with humans in the loop.
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A Mapping of PropBank Arguments to
Semantic Role Tuple Attributes

In our implementation, we extract sentence spans
with label ARG0 as agent and spans with label
ARG1 as patient. The extraction of time and lo-
cation also does not pose any difficulties, because
ARGM-TMP and ARGM-LOC are both given as
modifiers that remain relatively stable across pred-
icates (Jurafsky and Martin, 2009). However, as
shown in Table 7, there is no one-to-one relation-
ship between numbered arguments and the recip-
ient role. For the sake of simplicity, we extracted
elements with label ARG2 as recipient, because
the probability that ARG2 correlates to recipient is
the highest among all other possible roles (Yi et al.,
2007).

ARG0 agent ARG1 patient

ARG2 instrument, recip-
ient, attribute

ARG3 starting point, recipi-
ent, attribute

ARG4 ending point ARGMmodifier

Table 7: Mapping between numbered arguments in
PropBank and semantic roles (Bonial et al., 2012). Par-
ticularly the mapping of argument 2 makes simplifying
assumptions about different verb forms.

B Reproducing Scores of Related Work

We use the official scripts provided by the authors
of BARTScore3 and CoCo4. Unfortunately, no pub-
lic implementation exists at the time of writing for
the work of Li et al. (2022), which prevents signifi-
cance testing against ClozE models. For the work
by (Goodrich et al., 2019), we similarly found no
publicly available implementation; however, we
note their wikipedia-based training data for gener-
ating fact extractors is available online5.
When attempting to reproduce the scores of Xie
et al. (2021), based on their own implementation,
we encountered wildly differing scores compared
to the values reported by the authors. Some re-
sults show drastic improvements from a reported
Pearson correlation 0.58 to a reproduced score of
0.68, while other values dropped (e.g., on QAGS-
XSUM, we see a reduction of scores from 0.24
to 0.16 in terms of Pearson correlation). For the
sake of reproducibility, we have included the exact
commands that were used to run the CoCo models
in our repository.
On the other hand, all of our reproduced scores for
BARTScore (Yuan et al., 2021) match the available
self-reported results by the authors.
For significance testing, we use our own imple-
mentation of a permutation-based significance test,
again included in the code repository. We fix the
initial NumPy random seed to 256, and compute
results over 10,000 iterations for each test.

3https://github.com/neulab/BARTScore, last ac-
cessed: 2023-02-01.

4https://github.com/xieyxclack/factual_coco,
last accessed: 2023-03-16.

5https://github.com/google-research-datasets/
wikifact, last accessed: 2023-05-17
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Abstract
Negation has been shown to be a major bot-
tleneck for masked language models, such as
BERT. However, whether this finding still holds
for larger-sized auto-regressive language mod-
els (“LLMs”) has not been studied compre-
hensively. With the ever-increasing volume
of research and applications of LLMs, we take
a step back to evaluate the ability of current-
generation LLMs to handle negation, a funda-
mental linguistic phenomenon that is central
to language understanding. We evaluate differ-
ent LLMs — including the open-source GPT-
neo, GPT-3, and InstructGPT — against a wide
range of negation benchmarks. Through sys-
tematic experimentation with varying model
sizes and prompts, we show that LLMs have
several limitations including insensitivity to the
presence of negation, an inability to capture the
lexical semantics of negation, and a failure to
reason under negation.

1 Introduction

Despite being a core linguistic phenomenon, nega-
tion remains a major stumbling block for modern
NLP architectures (Kassner and Schütze, 2020;
Hossain et al., 2022). A reason for this could be
that texts containing negation are underrepresented
in training data of language models, as humans tend
to express themselves using affirmative rather than
negative expressions (Ettinger, 2020). Regardless,
negation has been shown to be challenging even for
humans to correctly interpret due to the diversity of
forms across domains (Truong et al., 2022a). For
instance, in clinical documents, many acronyms
are used to denote negation such as NAD (no ab-
normality detected), and implicit negation abounds,
such as normal chest x-ray scan, which implies the
absence of an abnormality. Even more complex is
the use of negation in combination with other lin-
guistic phenomena such as quantifiers, gradable ad-
jectives (not unattractive does not imply attractive)

∗Now at Google DeepMind.

(Truong et al., 2022b); licensing context (negative
polarity items, e.g. any, either, yet, normally appear
in certain negative grammatical contexts Warstadt
et al. (2019)); downward entailment (A man owns a
dog entails A man owns an animal but A man does
not own a dog does not entail A man does not own
an animal) (Geiger et al., 2020).

Traditionally, negation has been treated as a stan-
dalone problem, e.g. as negation detection (Chap-
man et al., 2001). The investigation of the im-
pact of negation in various downstream tasks (Hos-
sain et al., 2022; Hossain and Blanco, 2022a), or
through probing (Ettinger, 2020) has revealed sev-
eral limitations of modern large language models
(“LLMs”) in handling negation. Given that LLMs
are being adopted in an ever-growing range of tasks
and have been shown to display emergent abilities
for high-level tasks that require complex reasoning
(Wei et al., 2022a), we are interested in exploring
how the handling of negation has progressed.

In this work, we investigate the performance
of auto-regressive language models on different
negation-focused benchmarks. Instead of just look-
ing at samples containing negation in common
NLP datasets, we consider datasets in which nega-
tion plays an important role in making the correct
judgement. In particular, we classify the bench-
marks into three categories corresponding to the
requisite negation reasoning abilities: (1) sensitiv-
ity to negation through cloze completion (fill-in-
the-blank) queries of factual statements; (2) lexi-
cal semantics of negation through classification of
antonym/synonym relationships; and (3) ability to
reason with negation through language inference
tasks.

We conduct extensive experiments using prompt-
based learning to facilitate zero- and few-shot eval-
uation of LLMs, and find the following:

• larger LMs are more insensitive to negation
compared to smaller ones (Section 3);
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Benchmark Task # Samples Example

MKR-NQ Completion 3360 Query: Iburofen isn’t a kind of [MASK]. Wrong completions:
NSAID, painkiller, drug, medicine.

MWR Completion 27546 Query: Demand is an antonym of [MASK]. Wrong completions:
necessitate, demands, request, requirement, imposition, need,
demand.

SAR NLI 2000 Word 1: Superiority / Word 2: Inferiority / Label: Antonym

NegNLI NLI 4500 P: They watched me constantly for weeks. / H: They did not leave
me on my own for weeks. / Label: Entailment

NaN-NLI NLI 258 P: Not all people have had the opportunities you have had. /
H: Some people have not had the opportunities you have had. /
Label: Entailment

MoNLI NLI 200 P: The man does not own a dog. / H: The man does not own a
mammal. / Label: Not Entailment

Table 1: Summary of the negation-related benchmark datasets used in this paper.

• LLMs lack lexical semantic knowledge about
negation, yielding almost random perfor-
mance for synonym/antonym classification
(Section 3);

• LLMs have limited ability to reason un-
der negation, performing worse than random
across most NLI datasets (Section 3). Only
with the latest instruction fine-tuned model
(Ouyang et al., 2022; Chung et al., 2022) do
we observe above-chance performance (Sec-
tion 3);

• For each dataset, we also experiment with
prompt variations and find that in most cases,
providing more information (context, instruc-
tion, simple wording) leads to a degradation
in performance.

2 Experimental settings

In this section, we outline the settings that ,
including benchmark datasets, models to eval-
uate, and the prompts that were used. Our
code is available at https://github.com/
joey234/llm-neg-bench.

2.1 Benchmarks
We use a range of benchmark datasets that exhibit
the effects of negation across a wide range of tasks,
in the form of either cloze completion or classifica-
tion tasks. An overview of the datasets is presented
in Table 1, categorized according to purpose and
the type of negation they contain. Specifically, we
focus on: (1) investigating whether LLMs are sen-
sitive to the presence of negation in factual state-
ments; (2) testing whether LLMs capture negation

in lexical semantics relations (synonym/antonym
relations); and (3) investigating whether LLMs are
able to reason under negation through multiple nat-
ural language inference benchmarks. We discuss
the datasets in greater detail in Section 3.

2.2 Models

For the LLMs, we primarily focus on open-source
auto-regressive LLMs with up to 6.7B parame-
ters, including GPT-Neo (Black et al., 2021), and
OPT (Zhang et al., 2022), which are claimed to
be comparable in performance to similar-sized
GPT-3 class models. Architecture-wise, they are
both decoder-only PLMs pre-trained with a causal
LM objective, with the main difference being in
their pre-training corpora: GPT-neo was trained
solely on the Pile dataset (Gao et al., 2020) consist-
ing of 22 sub-datasets spanning different sources,
whereas OPT was trained on the combination of
datasets used in RoBERTa (Liu et al., 2019), Pile,
and PushShift Reddit (Baumgartner et al., 2020).
We use the official model checkpoints from Hug-
gingFace hub,1 as detailed in Appendix A. We ex-
periment with smaller-sized variants of these two
classes of models to observe the effect of scaling
on their performance over different benchmarks.

We also consider base GPT-3 (175B) (Brown
et al., 2020), and its instruction fine-tuned variant
InstructGPT (Ouyang et al., 2022), as well as a
strong open-source instruction-tuned model FLAN-
T5-XXL (11B) (Chung et al., 2022), to examine
how recent commercial LLMs perform on nega-
tion.

1https://huggingface.co/models
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Task Prompt
name

Example

MKR-
NQ

Default An expectorant isn’t a type of

Contrasting An expectorant is a type of medicine. An expectorant isn’t a type of

Discourse An expectorant is a type of medicine. Therefore, an expectorant isn’t a type of

Mask An [MASK] is a type of medicine. An [MASK] isn’t a type of

MWR Default Greed is an antonym of

Quote The word “greed” is an antonym of the word “

SAR Default Choose the correct answer: bad and good are antonyms or synonyms? Answer:

Simple Choose the correct answer: bad and good are opposite or similar? Answer:

Negation Antonyms are words with opposite meaning. Synonyms are words with similar
meaning. Choose the correct answer: bad and good are antonyms or synonyms?
Answer:

NLI Default Not all people have had the opportunities you have had.
Question: Some people have not had the opportunities you have had. True, False, or
Neither?
Answer:

Negation The question requires reasoning about negation.
Not all people have had the opportunities you have had.
Question: Some people have not had the opportunities you have had. True, False, or
Neither?
Answer:

Table 2: Prompts used for each task

2.3 Prompts

We adopt prompt-based learning to enable zero-
and few-shot evaluation of LLMs (Radford et al.,
2019). Given that LLMs have been found to be
sensitive to prompt variation (Wei et al., 2021), and
that more natural-sounding prompts correlate with
model performance (Gonen et al., 2022), we also
experiment with different types of prompts (see
Table 2).

We use GPT-3 style prompts (Brown et al., 2020)
as the Default setting. As handling negation plays
an important role in all tasks, we also design
prompts to prime the LLMs to focus more on the
negation context, by introducing modifications spe-
cific to each task. In detail, for the cloze com-
pletion task MKR-NQ, we investigate whether a
given model can detect the difference between two
contrasting sentences (with/without negation). To
achieve this, we prepend the prompt with the corre-
sponding sentence without negation (Contrasting
prompt). In addition, we also evaluate alternative
prompts where we connect the two sentences with
a discourse marker (Discourse prompt), or mask
the main subject to encourage the model to attend
more to negation cues (Mask prompt).

For antonym/synonym-related tasks (MWR,

SAR), we also experiment with simplifying the
prompt and use descriptive terms rather than the
formal names of the relations (e.g. antonyms, syn-
onyms→ opposite of, similar to), based on the in-
tuition that these terms will appear more frequently
in the pre-training data.

Finally, for classification tasks, we propose
negation-aware prompting (Negation prompt) by
modifying the prompts to explicitly state that the
task involves reasoning about negation. Note that
we explicitly include class options in the prompts
to help reduce the effect of the surface form compe-
tition causing LLMs to assign lower probabilities
to the correct answers (Holtzman et al., 2021).

For datasets with an accompanying training set
(SAR, MoNLI), we also experiment with few-shot
evaluation formulated as in-context learning by
prepending the input prompts with 10 random sam-
ples from the training set.

2.4 Metrics

To evaluate cloze completion tasks, we employ
Weighted Hit Rate (WHR) (Jang et al., 2022b),
which measures the number of matches between
the top-k predicted words and a given set of target
wrong predictions, taking into account the predic-
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tion probabilities:

WHRk(x,W ) =

∑k
i=1 ci × 1(wi ∈Wx)∑k

i=1 ci
(1)

where Wx is the wrong prediction set of the input
query x, and wi is the top i-th prediction with con-
fidence score ci, obtained by taking the softmax of
log probabilities p(wi|x) from the LM. Note that
the model performance is better if there are fewer
matches between models’ predictions and wrong
completions, WHR is an error metric (lower is bet-
ter). One problem with the WHR metric is that
we can only evaluate using a fixed set of wrong
predictions. Regardless, we believe the relative
performance numbers are indicative of model per-
formance.

For classification tasks, we evaluate using Ac-
curacy, noting that all datasets are reasonably bal-
anced.

3 Main findings

We summarize the main findings in this section.
In general, the performance of GPT-neo and OPT
follows a similar trend across all benchmarks (we
present GPT-neo results; results of OPT models are
in Appendix B).

Finding 1: Larger LMs are more insensitive to
negation

MKR-NQ (Jang et al., 2022b) Masked Knowl-
edge Retrieval – Negated Query (MKR-NQ) is a
negated version of the LAMA dataset (Petroni et al.,
2019), which contains lexicalized statements of
triples in ConceptNet (Speer et al., 2017). This
dataset contains factual statements with verbal
negations (i.e. negators not, don’t are associated
with the main verb of the sentence), e.g. Iburofen
is a type of medicine. → Iburofen isn’t a type of
medicine.

Each sample contains the query along with a set
of wrong word completions, supporting the eval-
uation of the sensitivity of the model to negation
by measuring how likely a model will generate
incorrect completions. Note that MKR-NQ only
considers sample sentences that contain a single
verb, making it trivial to negate the original sen-
tences.

Findings From Figure 1, which is based on
LLMs with a negated factual statement (Default
prompt), we observe relatively low hit rates (<

0.15) across all model sizes, and a clear inverse
scaling trend between model sizes and their perfor-
mance. The smallest variant (GPT-neo-125M)
has the best performance, which is comparable
to that of masked language model of a similar
size (BERT-base, 110M parameters) (Jang et al.,
2022b). This phenomenon reflects the finding that
larger models tend to memorize the training data
more (McKenzie et al., 2022; Jang et al., 2022a).
Moreover, higher hit rates for top-1 predictions
suggest that models predict wrongly with high con-
fidence.

For Contrasting prompts, in which we prepend
the negated statement with its non-negated ver-
sion, we notice a drastic increase in WHR, show-
ing that models are prone to repeating what is pre-
sented in the prior context, confirming the finding
of Kassner and Schütze (2020). When a discourse
term is added to connect the two sentences (Dis-
course prompt), we do not observe any improve-
ment, and the performance of the largest model
is even worse. To investigate whether this phe-
nomenon is attributable to models not being able to
detect the presence/absence of negation, we experi-
ment with masking out the main noun/verb of the
queries (Mask prompt). We observed even higher
WHR, especially for the top-1 prediction in this set-
ting. The results suggest that repetitions are caused
more by LLMs being easily primed by repeating
what is present in the previous context, than by gen-
erating words that are closely associated with the
main subject of interest. This again shows that the
models cannot differentiate between identical con-
texts, differing only on whether negation is present
or absent (i.e., outputs tend to be similar with or
without negation).

To further analyze the outputs, we calculate the
perplexity (PPL) of the generated predictions to
determine their plausibility (Wilcox et al., 2020).
Here, we choose the model with the best WHR5

score on the MKR-NQ benchmark, and calcu-
late the mean perplexity over all queries for each
prompt type (5 completions for each query). PPL
is calculated as the exponentiated average nega-
tive log-likelihood of a sequence, with exponent
base e. As a point of reference, we calculated the
average perplexity of the provided completion of
the original non-negated dataset (denoted Corpus).
From the reported perplexities (Table 3), we can
see that Default output are the most plausible (with
PPL markedly lower than Corpus), while Contrast-
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Figure 1: Zero-shot performance of GPT-neo on MKR-NQ using different prompts under the Weighted Hit Rate
(WHR) metrics (lower scores are better). Note the different scale for the left-most plot.

Setting Example Mean
PPL↓

Corpus [Baseball is a type of sport.] 434.42

Default [Baseball isn’t a type of sport.] 288.94
Contrasting Baseball is a type of sport.

[Baseball isn’t a type of sport.]
533.56

Discourse Baseball is a type of sport.
Therefore, [baseball isn’t a type
of sport.]

477.44

Mask MASK is a type of sport.
[MASK isn’t a type of sport.]

448.23

Table 3: Mean perplexity (PPL) calculated using the
GPT-J-6B model. Only the strings enclosed in square
brackets are considered during calculation in order to
provide a fair comparison with similar token length.
For Corpus, PPL is calculated using the provided gold
completion.

ing is the least natural. The remaining prompts
types (Discourse, Mask) are comparable to Corpus.
These results show that LLMs can indeed generate
plausible and human-like output for this task.

Finding 2: LMs fail to capture
synonym/antonym lexical relations

MWR (Jang et al., 2022b) To test the ability
of LMs to capture negative lexical semantics, we
use MWR dataset, where models are asked to pre-
dict the antonym/synonym of a target word. The
dataset was constructed by using the most frequent
nouns, adjectives, and adverbs that appear in SNLI
(Bowman et al., 2015), then choosing their corre-
sponding synonyms and antonyms from Concept-
Net (Speer et al., 2017). The dataset also con-
tains different wordings for antonym-asking and
synonym-asking queries (e.g. is the opposite of, is
different from and is similar to, is a rephrasing of )
to test model sensitivity to prompt variations.

Findings From Figure 2, we can observe the
same inverse scaling trend as for MKR-NQ using

Figure 2: Zero-shot performance of GPT-neo on MWR
using different prompts (WHR metrics; lower is better)

Query Wrong comple-
tions

Top-5 predic-
tions

Greed is an
antonym of

greed, avarice,
desire, greeds,
gluttony

altruism,
self-sacrifice,
self-denial,
self-abnegation,
gods

Finale is an
antonym of

conclusion, fin-
ish, finales, fi-
nale

last, epiphany,
finality, anti-
climax, anti-
climactic

Table 4: Example output of GPT-J-6B on MWR.
bolded words are related to target words, but are nei-
ther synonyms nor antonyms. underlined are wrong
antonyms but are not in the given set of wrong comple-
tions.

the Default prompt, where the hit rate of the small-
est model is around 0.02, better than previously-
reported SOTA results (Jang et al., 2022b). With a
more natural query with more focus on the target
words via quotation marks (Quote prompt), sur-
prisingly, we noticed a drastic jump in hit rates.
However, MWR may not be a good indicator of
model performance due to how the task is framed.
One problem is that models can generate words
that are not in the given wrong prediction set, but
are also irrelevant, and are also neither antonyms
nor synonyms of the given target words, as demon-
strated in Table 4.
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Figure 3: Zero-shot performance of GPT-neo on SAR
dataset using different prompts (accuracy metric; higher
is better)

SAR (Jang et al., 2022b) To further investigate
the ability of LLMs to capture negative lexical se-
mantics, we consider the antonym/synonym rela-
tion classification task (SAR). Different from the
MWR cloze-style synonym/antonym prediction
task, this benchmark is framed as a binary clas-
sification task of predicting the correct antonym
or synonym relationship between two given words.
Data is once again taken from ConceptNet, where
triplets with synonym and antonym relations are
extracted in equal numbers (1000 samples for each
relation).

Findings In contrast to the high results for MWR,
we find that for this task, model performance is
equivalent to random, with accuracy fluctuating
around 0.5 (Figure 3). For prompt variants, we do
not observe any meaningful improvement, in that
Simple follows a similar trend to Default and Nega-
tion performs better for larger models (2.7B and
6B). This is a huge degradation from previous fully
fine-tuned results over encoder models. For in-
stance, Jang et al. (2022b) reported that BERTlarge
achieves 92.5% accuracy on SAR. We argue that
this is a specific task that is not captured in the next
token prediction training objective of LLMs and
thus, requires explicit supervision.

Finding 3: LLMs are unable to reason under
negation

NegNLI (Hossain et al., 2020) NegNLI con-
tains 4500 premise–hypothesis pairs with impor-
tant negation, where negation is essential in making
the correct judgement about the relationship be-
tween the premise–hypothesis pairs. Samples are
extracted from the commonly-used NLI datasets

(RTE Dagan et al. (2005), SNLI Bowman et al.
(2015), MNLI Williams et al. (2018)), then the
negator not is added to the main verb either in the
premise, hypothesis, or both. Here, we consider
each subset separately, as the number of classes are
not the same, and denote them SNLI-neg, MNLI-
neg, RTE-neg.

MoNLI (Geiger et al., 2020) MoNLI is an NLI
dataset focused on lexical entailment and negation.
Specifically, the dataset investigates the downward
monotonicity property where negation reverses en-
tailment relations (e.g. dance entails move, but not
move entails not dance). MoNLI was created by
extending samples from SNLI by substituting the
nouns by their hypernyms/hyponyms from Word-
Net (Miller, 1998).

NaN-NLI (Truong et al., 2022b) NaN-NLI is a
test suite which focuses on sub-clausal negation,
in which only part of the sentence’s meaning is
negated, thus making it harder to correctly deter-
mine the correct negation scope (e.g. in Not the first
time that they pulled that off the negation scope is
only Not the first time and the main clause of the
sentence they pulled that off is not negated). Each
premise–hypothesis pair is constructed so that the
corresponding hypotheses are constructed to reflect
different interpretations that the negated instance
in the premise are likely to be misunderstood for.

Findings Similar to the antonym/synonym clas-
sification task, the performance for most negation-
focused NLI benchmarks is low. In particular,
for all NLI datasets, the performance is gener-
ally lower than baseline. As shown in Figure 4,
scaling up model size has almost no effect, and
the largest model performs worse in many cases,
even when the prompt explicitly states that the
task requires reasoning about negation (Negation
prompt). For datasets which include a training set
(SAR, MoNLI), we also experimented with few-
shot learning but did not observe any noticable
improvement (Figure 5). One exception is that the
2.7B model seems to pick up some signal from the
provided MoNLI training samples, but falls back
again when we increase the model size to 6B.

Even with general NLI datasets, zero-shot ap-
plications of LLMs were previously shown to be
roughly equivalent to a random baseline (Wei et al.,
2021). When negation is involved, the task be-
comes even more complex. As pointed out in
Brown et al. (2020), one possible reason that LLMs
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Figure 4: Zero-shot performance of GPT-neo on NLI datsets using different prompts (higher is better). The dashed
line denotes a random baseline. Note that RTE-neg and MoNLI are 2-way classification tasks while the rest are
3-way.

Benchmark GPT-J-6B GPT-3 InstructGPT InstructGPT w/
Neg. prompt

FLAN-T5-XXL
w/ Neg. prompt

MKR-NQ

W
H

R
5

↓ 0.083 0.172 0.195 NA NA
MWR 0.125 0.488 0.504 NA NA

SAR

A
cc

ur
ac

y

↑

0.490 0.501 0.687 0.780 0.507
SNLI-neg 0.316 0.267 0.640 0.673 0.477
MNLI-neg 0.275 0.359 0.548 0.625 0.354
RTE-neg 0.211 0.525 0.767 0.807 0.770
NaN-NLI 0.298 0.469 0.647 0.682 0.376
MoNLI 0.500 0.540 0.470 0.400 0.500

Table 5: Zero-shot results on the different benchmarks. “NA” denotes that Negation prompts are not applicable to
MKR-NQ and MWR. The best results are bolded for each task (row).

Figure 5: 10-shot performance of GPT-neo on SAR and
MoNLI using Default prompt (higher is better)

struggle with NLI is that the samples consist of two
disjoint sentences, which are unlikely to appear
naturally in standard training corpora. We hypothe-
sise that NLI is a generally hard task that requires
substantially more supervision in order for models
to detect meaningful patterns.

Finding 4: Instruction fine-tuning improves
reasoning under negation

We further evaluate with GPT-3 class models
of significantly larger scale (175B), which have
been shown to achieve strong results in zero- and
few-shot settings across a wide range of tasks
(Brown et al., 2020). In detail, we benchmark
the largest GPT-3 model (text-davinci-001:
Brown et al. (2020)) and its variant InstructGPT,
which is trained to follow human instructions using
reinforcement learning (text-davinci-003:
Ouyang et al. (2022)). The results can be found in
Table 5.

For the base GPT-3 model, the results over
most benchmarks are no better than much smaller
language models (GPT-neo-125M). For cloze-
completion tasks, consistent with the earlier-
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Figure 6: A ChatGPT-generated output of a failed neg-
ative monotonicity reasoning sample. The output was
generated using ChatGPT Feb 13 Version

observed trend of larger models performing worse,
we observe higher (worse) WHR scores compared
to that of smaller language models, confirming our
finding that larger models are more insensitive to
the presence of negation. Results get even worse
with using the instruction fine-tuned model.

On the other hand, for most classification tasks,
InstructGPT achieves better zero-shot results than
other models. In addition, using this model in com-
bination with explicit instruction about negation
(Negation prompt) further improves performance,
which we did not observe for other LLMs. It is,
however, unclear what data the instruction-tuning
process was performed on. Thus, the huge gain in
performance could be attributed to the existence
of similar patterns in the training set (i.e. explicit
supervision over similar tasks). Interestingly, In-
structGPT performance on MoNLI did not increase
(it underperfomed other models). We hypothesize
that this is due to an inductive bias from model’s
ability to reason with hypernymy. For instance,
the model can understand that “dog is an animal”
(and therefore own an animal entails own a dog),
but incorrectly generalizes this logic to a similar
sample containing negation (not own a dog entails
not own an animal). This is indeed true when we
look at the explanation generated by ChatGPT, the
subsequent model to InstructGPT (Figure 6).

We also experiment with the instruction-tuned
FLAN-T5-XXL model (Chung et al., 2022) and
find that the results are better than GPT-3 for most
NLI tasks, despite being ∼16x smaller. These re-
sults suggest that instruction fine-tuning has much
greater impact than model scaling in terms of mod-
els developing the ability to perform reasoning
tasks under negation.

4 Related work

Our work builds upon previous research on nega-
tion. In particular, we were inspired by the pio-
neering works of Kassner and Schütze (2020) and
Ettinger (2020), which reveal that pre-trained lan-
guage models have a major issue in being insensi-
tive to the presence of negation, based on evalua-
tion over a set of cloze-style queries. Following this
line of research, Jang et al. (2022b) also explored
negation in a cloze completion context by negating
factual statements extracted from ConceptNet and
come to a similar finding.

In a broader context, Hossain et al. (2020, 2022)
investigated the performance of BERT-based meth-
ods on samples containing negation in the GLUE
(Wang et al., 2018) and SuperGLUE (Wang et al.,
2019) datasets. Their main finding is that the re-
sults for the subsets containing only negation are
lower than those without, as well as the whole
test set, showing that models struggle with nega-
tion, even when fine-tuned on relevant training data.
Ravichander et al. (2022) proposed the challeng-
ing CONDAQA dataset to test the ability of mod-
els to reason about the implications of negation.
The authors conducted comprehensive analysis of
different types of LLMs under different settings,
and found that the best-performing models were
still well below human performance. Negation has
also been investigated as part of psycholinguistic
probing datasets (Lialin et al., 2022; Jumelet et al.,
2021; Staliūnaitė and Iacobacci, 2020). Contrast-
ing previous finding, Gubelmann and Handschuh
(2022) found that the ability to understand nega-
tion of LMs is underestimated in previous studied.
Through designing a controlled dataset with min-
imal pairs varying in syntactic structure, gender,
profession, and first name, they concluded that the
models are indeed sensitive to negation and thus,
their struggle comes more from the contextualiza-
tion of the tasks.

As part of the analysis on emergent abilities of
LMs, negation has been shown to be one of the
tasks that displays a flat scaling curve (Wei et al.,
2022a) or even inverse-scaling (McKenzie et al.,
2022). This behaviour was later shown to be allevi-
ated by instruction fine-tuning (Wei et al., 2022b).
The effectiveness of instruction fine-tuning is fur-
ther supported in Jang and Lukasiewicz (2023).
The authors investigated the logical consistency
of ChatGPT and found that ChatGPT understands
negation and antonyms much better than previous
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models.
Beside probing and evaluation, there have also

been works on making language models more ro-
bust to negation, including unlikelihood training
(Hosseini et al., 2021), adaptive pre-training on
relevant data (Truong et al., 2022a), leveraging af-
firmative interpretations from negation (Hossain
and Blanco, 2022b), and learning better representa-
tion of negation through contrastive learning (Jiang
et al., 2022; Wang et al., 2022).

5 Conclusion

We have shown that LLMs still struggle with dif-
ferent negation benchmarks through zero- and few-
shot evaluations, implying that negation is not prop-
erly captured through the current pre-training objec-
tives. With the promising results from instruction-
tuning, we can see that rather than just scaling up
model size, new training paradigms are essential
to achieve better linguistic competency. Through
this investigation, we also encourage the research
community to focus more on investigating other
fundamental language phenomena, such as quan-
tification, hedging, lexical relations, and downward
entailment.

6 Limitations

First, regarding the experimental settings, the WHR
metrics used to evaluate cloze completion tasks are
imperfect, as we discussed. Framing cloze com-
pletion tasks in the style of multiple-choice ques-
tion answering to limit the options that models are
evaluated on would be a good direction to follow
(Robinson et al., 2022). In addition, the prompt en-
gineering in this work is in no way exhaustive, and
could be extended using different prompt engineer-
ing strategies such as soft prompt tuning (Lester
et al., 2021), or mining- and paraphrasing-based
methods to generate high quality prompts (Jiang
et al., 2020).

Second, due to computational constraints, we
could not perform an extensive set of experiments
for larger models like PaLM (with up to 540B pa-
rameters) (Chowdhery et al., 2022). Recent work
by Wei et al. (2022b) has shown that the inverse
scaling trend on several benchmarks can be alle-
viated using the large instruction fine-tuned mod-
els such as FLAN-PaLM-540B, which is largely
in line with our findings regarding InstructGPT
and FLAN-T5. With a small-scale experiment, we
found that ChatGPT displayed strong performance

on challenging samples in the investigated bench-
mark, so the main findings of the paper may not
hold true for newer LLMs.

Finally, this work only considers negation in the
English language. There is every reason to believe
that negation is an equally challenging problem in
other languages. As this is a linguistically-intensive
task, and requires native speakers to conduct thor-
ough analysis of the results, we leave this for future
work.
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A Model checkpoints

For open-sourced LMs, we consider the official
released checkpoints on the HuggingFace hub at:

• https://huggingface.co/EleutherAI/x

• https://huggingface.co/facebook/y

where x in {gpt-neo-125M,gpt-neo-1.3B,gpt-neo-
2.7B,gpt-j-6B}, and y in {opt-125m,opt-350m,opt-
1.3b,opt-2.7b,opt-6.7b}.

Figure 7: Zero-shot performance of OPT on MWR
using different prompts

Figure 8: Zero-shot performance of OPT on SAR using
different prompts

For GPT-3 models, we access them through the
official API at https://openai.com/api/,
using the Text completion endpoint. The considered
model identifiers along with their sizes are:

• text-ada-001: 350M

• text-babbage-001: 1.3B

• text-curie-001: 6.7B

• text-davinci-001: 175B

• text-davinci-003: 175B

B OPT results

For MWR, although we observe improvements
with increasing model sizes, the WHR scores are
much higher than those of GPT-neo, showing that
OPT is worse at predicting antonyms and syn-
onyms of words. The gap in performance may
lie in differences in training data between the two
types of models.

C Model outputs
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Figure 9: Zero-shot performance of OPT on MKR using different prompts

Figure 10: Zero-shot performance of OPT on NLI tasks using different prompts
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Prompt Model Output

Paracetamol isn’t a kind of GPT-neo-125M muscle
GPT-J-6B painkiller

OPT-125M pain
OPT-6.7B medicine

GPT-3 medication
InstructGPT NSAID

Entrance is an antonym of GPT-neo-125M interest
GPT-J-6B entrance

OPT-125M entrance
OPT-6.7B exit

GPT-3 departure
InstructGPT entrance

Choose the correct answer: flimsy and sturdy are synonyms or
antonyms?

GPT-neo-125M Synonyms
GPT-J-6B Synonyms

OPT-125M Antonyms
OPT-6.7B Synonyms

GPT-3 Antonyms
InstructGPT Antonyms

I can not think of a few reasons for the allergy to substance. Question:
There are not reasons why there’s an allergy. True, False, or Neither?
Answer:

GPT-neo-125M True
GPT-J-6B True

OPT-125M True
OPT-6.7B Neither

GPT-3 False
InstructGPT Neither

The man does not own a dog. Question: the man does not own a
mammal. True or Not true? Answer:

GPT-neo-125M True
GPT-J-6B True

OPT-125M True
OPT-6.7B True

GPT-3 True
InstructGPT Not True

Table 6: Example outputs of models. Wrong answers are highlighted
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Abstract

We propose a graph-based event extraction
framework JSEEGraph that approaches the task
of event extraction as general graph parsing in
the tradition of Meaning Representation Pars-
ing. It explicitly encodes entities and events
in a single semantic graph, and further has the
flexibility to encode a wider range of additional
IE relations and jointly infer individual tasks.
JSEEGraph performs in an end-to-end manner
via general graph parsing: (1) instead of flat
sequence labelling, nested structures between
entities/triggers are efficiently encoded as sepa-
rate nodes in the graph, allowing for nested and
overlapping entities and triggers; (2) both enti-
ties, relations, and events can be encoded in the
same graph, where entities and event triggers
are represented as nodes and entity relations
and event arguments are constructed via edges;
(3) joint inference avoids error propagation and
enhances the interpolation of different IE tasks.
We experiment on two benchmark datasets of
varying structural complexities; ACE05 and
Rich ERE, covering three languages: English,
Chinese, and Spanish. Experimental results
show that JSEEGraph can handle nested event
structures, that it is beneficial to solve differ-
ent IE tasks jointly, and that event argument
extraction in particular benefits from entity ex-
traction. Our code and models are released as
open-source1.

1 Introduction

Event extraction (EE) deals with the extraction of
complex, structured representations of events from
text, including overlapping and nested structures
(Sheng et al., 2021; Cao et al., 2022). While there
are existing datasets annotated with such rich repre-
sentations (Doddington et al., 2004; Song et al.,
2015), a majority of current approaches model
this task using simplified versions of these datasets
or sequence-labeling-based encodings which are

1https://github.com/huiling-y/
JSEEGraph
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Figure 1: Example of nested and overlapping events in the
sentence “I, purposely buy things made in Canada or USA.”,
taken from Rich ERE (Song et al., 2015).

not capable of capturing the full complexity of
the events. Figure 1 shows an example from the
Rich ERE dataset (Song et al., 2015) of a sentence
containing both nested and overlapping events:

“buy” serves as trigger for two overlapping events,
transfermoney and transferownership
with their respective argument roles, and similarly

“made” for two artifact events triggered by the
coordination of two GPE entities Canada and USA;
at the same time, the event trigger “made” is nested
inside the entity span “things made in Canada or
USA”. For this example, models based on token tag-
ging (such as the commonly used BIO-encoding)
would fail completely when a token contributes to
multiple information extraction elements. In this
case, the version of the ACE05 dataset widely em-
ployed for EE would not fully capture the double-
tagged event triggers, by simply disregarding one
of the two events, and the nested entity “things
made in Canada or USA” would be “things”.

Event extraction is a subtask of a wider set of
Information Extraction (IE) tasks, jointly dealing
with extracting various types of structured infor-
mation from unstructured texts, from named enti-
ties, relations, to events. There have been contin-
ued efforts in creating benchmark datasets that can
be used for evaluating a wide range of IE tasks.
Both ACE05 (Doddington et al., 2004)2 and Rich

2https://catalog.ldc.upenn.edu/
LDC2006T06
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Figure 2: Example of graph representation for entities, rela-
tions, and events from the sentence “School district officials
have estimated the cost of rebuilding an intermediate school
at $40 million.”, from Rich ERE (Song et al., 2015).

ERE (Song et al., 2015)3 provide consistent an-
notations of entities, relations, and events. While
there are clear inter-relations between these differ-
ent elements, and despite the availability of rich
annotations, existing works often deal with individ-
ual tasks, such as named entity recognition (NER)
(Chiu and Nichols, 2016; Bekoulis et al., 2018) or
event extraction (EE) (Yang and Mitchell, 2016; Du
and Cardie, 2020; Li et al., 2020). Recently there
have been some efforts in jointly modelling multi-
ple IE tasks (Wadden et al., 2019; Lin et al., 2020;
Nguyen et al., 2022), but these methods explicitly
avoid nested instances.

We here propose to represent events, along with
entities and relations, as general graphs and ap-
proach the task of event extraction as Meaning
Representation Parsing (Oepen et al., 2020; Samuel
and Straka, 2020). As shown in Figure 2, in such
an information graph, event triggers and entities
are represented as nodes; event types, argument
roles, and relations are constrained edges; and nest-
ed/overlapped structures are straightforwardly rep-
resented, since a surface string can be abstracted
into an unlimited number of nodes, as illustrated
by the two separate nodes for the event triggers for

“cost”. Our approach does not rely on ontology- or
language-specific features or any external syntac-
tic/semantic parsers, but directly parses raw text
into an information graph. We experiment on the
benchmark datasets ACE05 (Doddington et al.,
2004) and Rich ERE (Song et al., 2015), zooming
in on nested structures. Our results show JSEE-
Graph to be versatile in solving entity, relation, and
event extraction jointly, even for heavily nested in-
stances and across three different languages. Abla-

3https://catalog.ldc.upenn.edu/
LDC2020T18

tion studies consistently show that event extraction
especially benefits from entity extraction.

The paper is structured as follows: section 2 pro-
vides the relevant background for our work, and
section 3 further describes the tasks addressed and
the datasets we employ, focusing in particular on
their complexity, as measured by level of nesting.
Section 4 presents the JSEE graph parsing frame-
work and section 5 the experimental setup for eval-
uating the JSEE parser. Section 6 presents the
results of our evaluations and provides a study of
the performance for nested structures, as well as
an ablation study assessing the effect of joint IE
modeling and an error analysis. Finally we provide
conclusions (Section 7) and discuss limitations of
our work.

2 Related work

Event extraction is commonly approached as super-
vised classification, even though other approaches
relying e.g. on generation (Paolini et al., 2021;
Lu et al., 2021; Li et al., 2021; Hsu et al., 2022)
or prompt tuning inspired by natural language un-
derstanding tasks (Shin et al., 2020; Gao et al.,
2021; Li and Liang, 2021; Liu et al., 2022) also
are gaining ground. Classification-based methods
break event extraction into several subtasks (trig-
ger detection/classification, argument detection/-
classification), and either solve them separately in
a pipeline-based manner (Ji and Grishman, 2008;
Li et al., 2013; Liu et al., 2020; Du and Cardie,
2020; Li et al., 2020) or jointly infer them as mul-
tiple subtasks (Yang and Mitchell, 2016; Nguyen
et al., 2016; Liu et al., 2018; Wadden et al., 2019;
Lin et al., 2020). Classification-based joint meth-
ods typically apply sequence-labeling-based encod-
ing and extract all event components in one pass,
whereas pipeline methods break the problem into
separate stages which are performed sequentially.
Whereas sequence-labeling approaches cannot dis-
tinguish overlapping events/arguments by the na-
ture of the BIO-encoding, pipeline methods may in
principle detect these. However, they typically suf-
fer from error propagation and are not equipped to
model the interactions between the different event
elements (triggers, arguments).

Nested events Some previous work addresses the
problem of overlapping or nested arguments in EE.
Xu et al. (2020) address overlapping arguments in
the Chinese part of the ACE05 dataset and jointly
perform predictions for event triggers and argu-
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ments based on common feature representations
derived from a pre-trained language model. Sheng
et al. (2021) propose a joint framework with cas-
caded decoding to tackle overlapping events, and
sequentially perform type detection, event and argu-
ment extraction in a Chinese financial event dataset.
They deal with cases of both “overlapping events”
and “overlapping arguments”, however, their ap-
proach may suffer from error propagation due to the
cascading approach. Cao et al. (2022) distinguish
between overlapped and nested events and propose
the OneEE tagging scheme which formulates EE
as a word-to-word relation recognition, distinguish-
ing separate span and role relations. OneEE is
evaluated on the FewFC Chinese financial event
dataset and the biomedical event datasets Genia11
and Genia13. While specifically focusing on nested
events, these previous works are limited by focus-
ing only on one language or on specialized (finan-
cial/biomedical) domains. In this work we aim to
provide a more comprehensive evaluation over two
datasets in several versions with increasing levels
of structural complexity (see below) and across
three different languages.

Joint IE approaches Wadden et al. (2019) pro-
pose the DyGIE++ model which approaches joint
modeling of IE entities and relations via span-based
prediction of entities and event triggers, and sub-
sequent dynamic graph propagation based on rela-
tions. They evaluate on ACE05 and Genia datasets
and limit their experiments to English only. Their
approach is restricted to a certain span width, lim-
iting the length of possible entities. OneIE (Lin
et al., 2020) is a joint system for IE using global
features to model cross-subtask or cross-instance
interactions between the subtasks and predict an
information graph. They propose the E+ extension
of ACE05 which includes multi-token events (E+)
as we do. As in our work, they also present re-
sults on Spanish and Chinese as well and develop
a multilingual model, but their experiments avoid
nested structures, by using only the head of entity
mentions and specifically removing overlapped en-
tities. Nguyen et al. (2022) model joint IE in a
two-stage procedure which first identifies entities
and event triggers and subsequently classify rela-
tions between these starting from a fully connected
dependency graph; a GCN is employed to encode
the resulting dependency graphs for computation of
the joint distribution. While the approach is shown
to be effective, it is still a pipeline approach which

can suffer from error propagation. Since it relies
on sequence labeling for entity/event detection, it
cannot identify overlapping entities/event triggers.
Furthermore, the approach relies on syntactic in-
formation from an external parser and focuses only
on English and Spanish in the Light ERE dataset
(Song et al., 2015).

Meaning Representation Parsing Meaning
Representation Parsing (MRP) (Oepen et al., 2014,
2015, 2020) is a framework covering several types
of dependency-based semantic graph frameworks.
Unlike syntactic dependency representations, these
semantic representations are not trees, but rather
general graphs, characterised by potentially hav-
ing multiple top nodes (roots) and not necessarily
being connected, since not every token is necessar-
ily a node in the graph. The semantic frameworks
include representations with varying levels of “an-
choring” to the input string (Oepen et al., 2020),
ranging from the so-called “bi-lexical” representa-
tions where every node in the graph corresponds
to a token in the input string to a framework like
AMR (Banarescu et al., 2013) which constitutes
the most abstract and unanchored type of frame-
work, such that the correspondence between the
nodes in a graph and tokens in the string is com-
pletely flexible. This allows for straightforward rep-
resentation of nesting and overlapping structures,
where multiple nodes may be anchored to overlap-
ping sub-strings. There have been considerable
progress in developing variants of both transition-
based and graph-based dependency parsers capable
of producing such semantic graphs (Hershcovich
et al., 2017; Dozat and Manning, 2018; Samuel
and Straka, 2020). Previous research has further
made use of AMR-based input representations to
constrain the tasks of event extraction (Huang et al.,
2018) and more recently joint information extrac-
tion (Zhang and Ji, 2021), where an off-the-shelf
AMR parser is used to derive candidate enitity and
event trigger nodes before classifying pairwise re-
lations guided by the AMR hierarchical structure.
While there are clear parallels between the MRP
semantic frameworks and the tasks proposed in IE,
little work has focused on the direct application
of MRP parsing techniques to these tasks. You
et al. (2022) is a notable exception in this respect,
who presents an adaptation of the PERIN seman-
tic parser (Samuel and Straka, 2020) to the event
extraction task. While their work is promising it is
limited to only one dataset (ACE05), which does
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Lang Split #Sents #Events #Roles #Entities #Relations

Dataset: ACE05

en
Train 19 371 4 419 6 609 47 546 7 172
Dev 896 468 759 3 421 729
Test 777 461 735 3 828 822

zh
Train 6 706 2 928 5 576 29 674 8 003
Dev 511 217 406 2 246 601
Test 521 190 336 2 389 686

Dataset: Rich ERE

en
Train 12 421 8 368 15 197 34 611 7 498
Dev 692 459 797 1 998 366
Test 745 566 1 195 2 286 544

zh
Train 9 253 5 325 9 066 26 128 6 044
Dev 541 366 522 1 609 379
Test 483 439 776 2 022 502

es
Train 8 292 5 013 8 575 20 347 4 140
Dev 383 254 447 1 068 199
Test 598 334 609 1 438 287

Table 1: Statistics of the preprocessed datasets.

not contain a lot of nested structures and is fur-
ther limited to English event extraction only. In
this work we extend their approach to the task of
joint information extraction, covering both enti-
ties, events and relations taken from two different
datasets in several versions and for three languages,
and further demonstrates the effectiveness of ap-
proaching general information extraction from text
via graph-parsing and the interpolation of different
IE tasks.

3 Task and Data

While the main focus of this work is on event ex-
traction, we hypothesize that our graph-based ap-
proach lends itself to dealing with two challenging
aspects of current research on this task: the pro-
cessing of nested and overlapping event structures,
and the joint modeling of inter-related IE structures.
In the following we quantify the level of nesting in
two widely used datasets which contain rich anno-
tations for both entities, events, and relations. We
further propose two versions of each dataset with
varying potential for nesting, which allows us to
focus on this aspect during evaluation.

Event Extraction is the task of extracting events
into structured forms, namely event triggers and
their arguments. An event trigger is the word(s)
that most clearly describes an event, such as “buy”,
which evokes a transferownership and an
transfermoney event in Figure 1. Event argu-
ments are the participants and attributes of an event,
and can be tagged as entities at the same time, as
demonstrated in Figure 2.

We use the benchmark datasets ACE05 (Dod-
dington et al., 2004) and Rich ERE (Song et al.,

Dataset #Event-types #Argument-roles #Entity types #Relation type

ACE05 33 22 7 6
Rich ERE 38 20 15 6

Table 2: Inventory of event types, argument roles, entity types
and relation types in ACE05 and Rich ERE.

2015), both containing consistent annotations for
entities, relations, and events, for joint evaluation
of multiple IE tasks and in multiple languages
(ACE05 in English and Chinese, and ERE in En-
glish, Chinese, and Spanish). Table 1 summarizes
the relevant statistics of the datasets. The inventory
of event types, argument roles, entity types and re-
lation types are listed in Table 2. Despite targeting
the same IE tasks, from ACE05 to Rich ERE, the
annotation guidelines have shifted towards more so-
phisticated representations, resulting in more com-
plex structures in Rich ERE (Song et al., 2015).
Prominent differences between ACE05 and Rich
ERE are:

• Entities, and hence event arguments, are more
fine-grained in Rich ERE, with 15 entity types,
as compared to 7 types in ACE05. In terms
of entity spans, ACE05 explicitly marks the
head of the entity versus the entire mention,
providing the possibility of solving a simpler
task for entity extraction and recognizing only
the head token as opposed to the full span of
the entity in question. This is commonly done
for this task in previous work of EE. However,
in Rich ERE, the entire string of text is anno-
tated for entity mentions, and heads are only
marked explicitly for nominal mentions that
are not named entities or pronominal entities.

• Event triggers can be double-tagged in Rich
ERE, namely one trigger can serve multiple
event mentions, giving rise to overlapping
events, as shown in Figure 1, while in ACE05,
an event trigger only evokes one event. This
means that Rich ERE presents a more com-
plex task of event extraction.

We measure the nested instances in ACE05 and
Rich ERE as a way to showcase different levels
of complexity for extracting entities, relations, and
events. More specifically, we quantify nested in-
stances in two versions of each dataset, one using
only the head of an entity mention (when it is an-
notated), and the other with the entire mention text.
Following Lin et al. (2020) we dub the version
which only marks the head of entities ACE-E+ and
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Dataset Lang Nesting #Sents
Trg-Trg Ent-Ent Trg-Ent Nested All

ACE05-E+ en 0 0 4 4 21044
zh 0 4 9 12 7738

ACE05-E++ en 0 13387 716 5315 21044
zh 0 10797 252 3748 7738

Rich ERE-E+
en 1066 1329 244 1529 13858
zh 301 1383 284 1266 10277
es 485 523 97 712 9273

Rich ERE-E++
en 1063 9453 1517 4277 13858
zh 301 7303 622 2993 10277
es 485 5526 854 2614 9273

Table 3: Nesting instances in ACE05 and Rich ERE. Nesting
between a pair of event triggers is referred to as Trg-Trg;
between a pair of entity mentions as Ent-Ent, and between
an event trigger and an entity as Trg-Ent. For both datasets,
in the E+ version, entity mentions include only heads, while
in the E++ version, entity mentions include the full text spans.

Rich ERE-E+, and introduce two additional ver-
sions of the datasets, dubbed, ACE-E++ and Rich
ERE-E++ which retain the full annotated mention
text span. Nesting is measured between any pair
of triggers and entities. Note that our notion of
nesting subsumes both overlapping and nested tar-
get/entities (Cao et al., 2022), i.e. both full and
partial overlap of text spans. As shown in Table
3, Rich ERE features many cases of nested trig-
gers, while these are not found in ACE05, due to
the aforementioned double-tagging in Rich ERE
(see Figure 1); when only considering the head of
an entity, ACE05 exhibits very little nesting, but
Rich ERE exhibits a considerable amount of nest-
ing within entities, as well as between entity-trigger.
The reason for this is that in Rich ERE, only certain
nominal mentions are marked with explicit heads;
when the full entity mentions are considered, both
datasets are heavily nested.

As mentioned above, this work deals with three
IE tasks, as exemplified by Figure 2: entities, re-
lations, and events. Given a sentence, our JSEE-
Graph framework extracts its entity mentions, re-
lations, and event mentions. In addition to event
extraction, we thus target two additional IE tasks
in our graph-based model:

Entity Extraction is to identify entity mentions
from text and classify them into types according to
a pre-defined ontology. For example, in Figure 2,

“district” is an organization (ORG) entity.

Relation Extraction aims to assign a relation
type to an ordered pair of entity mentions, based
on a pre-defined relation ontology. For example, in
Figure 2, the relation between PER “officials” and
ORG “district” is orgaffiliation.

4 Graph parsing framework

Our JSEEGraph framework is a text-to-graph
parser tailored for EE tasks, additionally with dif-
ferent IE components explicitly encoded in a single
graph, as shown in Figure 2. Our framework builds
on Samuel and Straka (2020) who developed the
PERIN parser in the context of Meaning Repre-
sentation Parsing (Oepen et al., 2020), as well as
(You et al., 2022) who applied PERIN to the task
of event extraction. We here extend this parser to
the IE graphs shown in Figure 2 in a multilingual
setting.

Given a sentence, as the example shown in
Figure 3, JSEEGraph encodes the input tokens
with the pre-trained language model XLM-R (Con-
neau et al., 2020) to obtain the contextualized em-
beddings and further maps the embeddings onto
queries; nodes (triggers and entities) are predicted
by classifying the queries and anchored to surface
tokens via a deep biaffine classifier (Dozat and
Manning, 2017); edges are constructed between
nodes with two biaffine classifiers, assigning argu-
ments to predicted events and relations to entity
pairs. We describe each module in detail in what
follows.

4.1 Sentence encoding

We use XLM-R (Conneau et al., 2020) to obtain
the contextualized embeddings of the input se-
quence. To be specific, a trainable weight wl is
used to get a weighted sum of representations of
different layers, so the final contextual embedding
e =

∑L
l=1 softmax(wl)el with el as the interme-

diate output from the lth layer. If an input token
consists of multiple subwords, the final contextual
embedding will be the weighted sum over all sub-
word embeddings with a learned subword attention.

Each contextual embedding is mapped into q
= {q1, · · · ,qn} queries via a linear layer, and
further transformed into hidden features h =
{h1, · · · ,hn} with a stack of transformer encoder
layers, which models inter-query dependency with
multi-head self-attention.

4.2 Node prediction

The node prediction module consists of a node label
classifier and an anchor biaffine attention classifier.

The node label classifier is a linear classifier
classifying each query into a node in the graph,
and the node label is predicted by a single-layer
feedforward network (FNN). If a query is classified
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Figure 3: An illustration of our JSEEGraph parsing the sentence “Crowds march in Egypt to protest Morsi detention.”, example
from Rich ERE.

into “null”, no node is created from this query.
Node anchoring, as shown in Equation (1), is

performed by biaffine attention (Dozat and Man-
ning, 2018) between the contextual embeddings e
and hidden feature of queries h, to map each query
(a candidate node) to surface tokens, as shown in
Equation (3). For each query, every input token is
binary classified into anchor or non-anchor.

Bilinear(X1,X2) = XT
1 UX2 (1)

Biaffine(X1,X2) = XT
1 UX2 +W(X1 ⊕X2) + b (2)

node(anchor) = Biaffine(anchor)(h, e) (3)

Node prediction is complete with queries that are
classified into nodes and anchored to corresponding
surface tokens. Predicted nodes are either event
triggers or entities, labeled as “trigger” or entity
type. A dummy node is randomly generated to
add to predicted nodes to play the role of <root>
node, and always holds the first position.

4.3 Edge prediction

Edge prediction between nodes is performed with
two deep biaffine classifiers, as in Equation (6),
one to predict edge presence between a pair of
nodes and the other to predict the corresponding
edge label. To construct edges between nodes, only
queries from which nodes have been constructed
will be used, and the new hidden features is h′,
which are further split into two parts with a single-
layer FNN, as show in Equation (4) and (5).

h′(edge)
1 = FNN

(edge)
1 (h′) (4)

h′(edge)
2 = FNN

(edge)
2 (h′) (5)

edge = Biaffine(edge)(h′(edge)
1 , h′(edge)

2 ) (6)

The edge presence biaffine classifier performs
binary classification, deciding whether or not an
edge should be constructed between a pair of nodes.
The edge label biaffine classifier performs multi-
class classification, and the edge label set is the
union of argument roles and relation types.

4.4 Constrained decoding

During inference, we apply a set of constraints
specifically developed for the correct treatment of
event arguments and entity relations based on the
graph encoding we define for the information graph
(Figure 2): 1) directed edges from the <root>
node can only connect to a trigger node, and the
corresponding edge label is an event type; 2) di-
rected edges from a trigger node to an entity indi-
cates an event argument, with the argument role
placed as edge label; 3) directed edges between a
pair of entities indicate an entity relation, and the
corresponding relation type is assigned to the edge
label.
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5 Experimental setup

5.1 Data
As mentioned above, we evaluate our system on
the benchmark datasets ACE054 (LDC2006T06)
and Rich ERE5 (LDC2020T18). As mentioned
above, Table 1 summarizes the statistics of the pre-
processed datasets.

Following Lin et al. (2020), we keep 33 event
types, 22 argument roles, 7 entity types, and 6 rela-
tion types for both the English and Chinese parts of
ACE05. We follow You et al. (2022) in employing
the ACE-E++ version of this data, which uses the
full text span of entity mentions instead of only the
head, as described in section 3 above.

For Rich ERE, we keep 18 out of 38 event types
defined in the Rich ERE event ontology 6, 18 out of
21 argument roles 7, 15 entity types, and 6 relation
types for English, Chinese, and Spanish. Given no
existing data splits, we randomly sample similar
proportions of documents for train, development,
and testing as the split proportions in ACE05.

5.2 Evaluation metrics
Following previous work (Lin et al., 2020; Nguyen
et al., 2021), precision (P), recall (R), F1 scores are
reported for the following information elements.

• Entity An entity mention is correctly ex-
tracted if its offsets and entity type match a
reference entity.

• Relation A relation is correctly extracted if
its relation type, and offsets of both entity
mentions match those of reference entities.

• Event trigger An event trigger is correctly
identified (Trg-I) if its offsets match a refer-
ence trigger, and correctly classified (Trg-C) if
its event type also matches a reference trigger.

• Event argument The evaluation of an argu-
ment is conditioned on correct event type pre-
diction; if a predicted argument plays a role
in an event that does not match any reference
event types, the argument is automatically con-
sidered a wrong prediction. An argument is

4https://catalog.ldc.upenn.edu/
LDC2006T06

5https://catalog.ldc.upenn.edu/
LDC2020T18

6The Rich ERE event ontology defines 38 event types,
but for Chinese and Spanish data, only 18 event types are
annotated. For consistency, we also use the same 18 event
types for the English part.

73 argument roles for the reduced event types are thus
excluded.

correctly identified (Arg-I) if its offsets match
a reference argument, and correctly classified
(Arg-C) if its argument role also matches the
reference argument.

5.3 Implementation detail

We adopt multi-lingual training for each dataset
for the reported results. Results of monolingual
models are listed in Appendix B. Detailed hyper-
parameter settings and runtimes are included in
Appendix A.

5.4 System comparison

We compare our JSEEGraph to the following sys-
tems: 1) ONEIE (Lin et al., 2020); 2) GraphIE
(Nguyen et al., 2022); 3) FourIE (Nguyen et al.,
2021); 4) JMCEE (Xu et al., 2020); 5) EventGraph
(You et al., 2022) on the ACE05 dataset. For Rich
ERE there is little previous work to compare to; the
only previously reported results (Li et al., 2022) for
EE only solve the task of argument extraction, us-
ing gold entity and trigger information, hence their
work is not included in our system comparison.

6 Results and discussion

We here present the results for our JSEEGraph
model for the EE task, as well as its performance
for the additional IE components: entities and re-
lations, evaluated as described above. We further
zoom in on the nested structures identified in Sec-
tion 3 and assess the performance of our system on
these rich structures which have largely been over-
looked in previous work on event extraction. We go
on to assess the influence of inter-related IE com-
ponents in an ablation study. Finally we provide an
error analysis of our model’s predictions.

6.1 Overall performance

As shown in Table 4, on ACE-E+, our overall re-
sults align with other systems. Our JSEEGraph
results are especially strong for event argument
extraction, with an improvement of around 10 per-
centage points from the best results of the previous
best performing systems in our comparison.

On the newly introduced ACE-E++, despite hav-
ing more complex structures, with a higher degree
of nested structures, the results of JSEEGraph on
trigger extraction remain stable. We further note
that our results on argument, entity, and relation
extraction suffers some loss from highly nested
entities, which is not surprising.
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Model Trg-I Trg-C Arg-I Arg-C Entity Relation
Dataset: ACE05-E+ English

EventGraph 70.0 65.4
GraphIE 74.8 59.9 91.0 65.4
ONEIE 75.6 72.8 57.3 54.8 89.6 58.6
FourIE 76.7 73.3 59.5 57.5 91.1 63.6
JSEEGraph 74.2 71.3 70.7 68.4 90.7 62.6
JSEEGraph w/o ent&rel 74.8 71.7 67.5 64.6

Dataset: ACE05-E+ Chinese

JMCEE 82.3 74.0 53.7 50
ONEIE 67.7 53.2 89.9 62.9
FourIE 70.3 56.1 89.1 65.9
JSEEGraph 71.9 69.6 74.3 70.1 87.4 63.3
JSEEGraph w/o ent&rel 70.5 67.8 69.2 65.5

Dataset: ACE05-E++ English

EventGraph 74.0 58.6
JSEEGraph 73.5 70.0 62.3 59.6 85.6 56.6
JSEEGraph w/o ent&rel 75.0 71.3 60.3 57.7

Dataset: ACE05-E++ Chinese

JSEEGraph 69.9 67.8 71.1 66.9 85.2 58.4
JSEEGraph w/o ent&rel 69.5 67.4 66.5 63.3

Table 4: Experimental results on ACE05 (F1-score, %). We
bold the highest score of each sub-task.

Model Lang Trg-I Trg-C Arg-I Arg-C Entity Relation

Dataset: Rich ERE-E+

JSEEGraph
en 68.6 62.3 59.6 56.2 80.3 53.7
zh 62.7 59.0 53.1 50.1 78.1 53.2
es 59.1 51.9 59.9 54.0 74.1 51.8

JSEEGraph w/o ent&rel
en 67.7 62.9 57.9 54.7
zh 63.7 60.0 50.7 48.2
es 62.3 54.3 57.3 52.5

Dataset: Rich ERE-E++

JSEEGraph
en 67.3 62.7 55.6 52.8 77.9 46.1
zh 65.2 61.7 51.0 48.7 77.5 54.3
es 59.7 54.1 59.1 55.4 70.2 49.4

JSEEGraph w/o ent&rel
en 66.4 61.9 52.9 50.7
zh 63.2 58.7 49.2 47.2
es 57.2 48.9 50.8 46.4

Table 5: Experimental results on Rich ERE (F1-score).

From Table 5, we find that the scores on Rich
ERE are consistently lower compared to those of
ACE05. The double-tagging of event triggers de-
scribed in Section 3 clearly pose a certain level of
difficulty for the model to disambiguate events with
a shared trigger. Argument and entity extraction
also suffers from more fined-grained entity types.

6.2 Nesting

In order to directly evaluate our model’s perfor-
mance on nested instances, we split each test set
into nested and non-nested parts and report the cor-
responding scores, as shown in Table 68.

We observe that JSEEGraph is quite robust in
tackling nested instances across different IE tasks
and languages. On ACE05-E++, more than half
of the test data are nested for both English and
Chinese, and the results on the nested parts are
lower, however consistently comparable with the
non-nested parts of the datasets. On Rich ERE-
E+, nested instances make up only a small part of

8ACE05-E+ is not included as it lacks sufficient nested
instances.

Lang Nested #sents Trg-I Trg-C Arg-I Arg-C Entity Relation

Dataset: ACE05-E++

en ✓ 418 72.1 68.5 59.2 57.0 85.1 57.0
✗ 359 77.0 74.0 73.2 69.0 87.4 47.5

zh ✓ 277 72.2 69.7 68.9 65.5 85.4 60.8
✗ 244 57.6 57.6 87.9 77.3 84.5 33.6

Dataset: Rich ERE-E+

en ✓ 93 81.3 71.6 54.8 51.4 81.3 49.8
✗ 652 61.4 56.9 64.0 60.5 79.8 56.3

zh ✓ 101 72.0 66.6 47.5 45.1 79.7 56.0
✗ 382 54.2 52.2 59.5 55.9 77.1 49.9

es ✓ 51 78.1 64.7 55.5 52.3 78.4 51.8
✗ 547 49.9 45.5 63.8 55.6 73.1 51.8

Dataset: Rich ERE-E++

en ✓ 251 75.4 69.2 53.0 50.5 81.0 45.7
✗ 494 46.0 45.3 75.0 70.6 71.0 49.4

zh ✓ 197 70.4 67.0 49.0 46.8 80.4 57.2
✗ 286 45.9 41.8 63.9 61.1 69.7 23.3

es ✓ 163 66.0 59.3 57.2 53.7 75.2 53.5
✗ 435 47.0 43.0 65.3 61.7 61.4 30.0

Table 6: Experimental results on test data with nesting as
compared to without nesting (F1-score, %).

the test data, but the results are still comparable
to the non-nested part. On Rich ERE-E++, about
one third of the test data are nested, results of the
nested parts are in fact consistently better for trig-
ger, entity, and relation extraction, but inferior for
argument extraction.

To conclude, JSEEGraph does not suffer con-
siderable performance loss from nesting among
different IE elements, and in many cases actually
gains in performance from more complex struc-
tures, notably for trigger, entity, and relation ex-
traction. It is clear that the system can make use
of inter-relations between the different IE elements
of the information graph in order to resolve these
structures.

6.3 Ablation study

In order to gauge the effect of the joint modeling
of entities, events, and relations, we perform an
ablation study where we remove the entity and
relation information from our information graph,
hence only performing the task of event extrac-
tion directly from text. In the reduced information
graph, node labels for entity types are removed, and
relation edges between entities are also removed.
We find that event extraction clearly benefits from
entity and relation extraction, especially for event
argument extraction. As shown in Table 4 and
Table 5, when we train our model only for event
extraction, the performance on argument extraction
drops consistently across different datasets and lan-
guages, but the performance on trigger extraction
remains quite stable.
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6.4 Error analysis

The experimental results show that JSEEGraph has
an advantage when it comes to the task of argument
extraction. In a manual error analysis we therefore
focus on the errors of event trigger extraction. After
a manual inspection of our model’s predictions on
the test data, we find that the errors fall into the
following main categories.

Over-predict non-event sentences. Our system
tends to be more greedy in extracting event men-
tions, and wrongly classifies some tokens as event
triggers even though the sentence does not con-
tain event annotation. For instance, the sentence

“Anne-Marie will get the couple’s 19-room home
in New York state” (from ACE05) does not have
annotated events, but our system extracts “get”
as trigger for a Transfer-Ownership event;
in this case, however, one could argue that the
Transfer-Ownership should be annotated.

Under-predict multi-event sentences When a
sentence contains multiple event mentions, JSEE-
Graph sometimes fails to extract all of the event
triggers. For example, this sentence “Kelly , the
US assistant secretary for East Asia and Pacific
Affairs , arrived in Seoul from Beijing Friday to
brief Yoon, the foreign minister” from ACE05 con-
tains a Transport event triggered by “arrived”
and a Meet event triggered by “brief”, but our
system fails to extract the trigger for the Meet
event; in this example, it requires a certain level
of knowledge to be able to identify “brief” as an
event trigger, which is beyond the capacity of our
model.

Wrong event types In some cases, even though
our model successfully identifies an event trigger,
it assigns a wrong event type. Some event types
can easily be confused with each other. In this sen-
tence from Rich ERE, “The University of Arkansas
campus was buzzing Friday after a student hurt
himself when a gun went off in his backpack in
the KUAF building”, an Injure event is evoked
by “hurt”, but our model assigns an event type of
Attack. Clearly, Injure and Attack events
are one typical case of event types that can be easily
confused.

Context beyond sentence This error applies
specifically to Rich ERE: even though the anno-
tation of events is on a sentence level, annotators
were instructed to take into account the context of

the whole article. Our model fails completely when
a trigger requires context beyond the sentence. For
instance, this sentence “If Mickey can do it , so
can we!” is taken from an article describing an
on-going demonstration in Disney Land, and “it”
is the trigger for a demonstrate event; without
the context, our model fails to identify the trigger.
These are cases which would require information
about event coreference.

7 Conclusion

In this paper, we have proposed JSEEG, a graph-
based approach for joint structured event extrac-
tion, alongside entity, and relation extraction. We
experiment on two benchmark datasets ACE05 and
Rich ERE, covering the three languages English,
Chinese, and Spanish. We find that our proposed
JSEEGraph is robust in solving nested event struc-
tures, and is especially strong in event argument
extraction. We further demonstrate that it is benefi-
cial to jointly perform EE with other IE tasks, and
event argument extraction especially gains from
entity extraction.

Limitations

Our work has two main limitations. Firstly, we
do not compare our system to previous works on
the Rich ERE dataset. This is mainly due to the
fact that most work use the light ERE (Song et al.,
2015) dataset. We were unfortunately not able to
got access to this version of the data9, which is why
no experiments were carried out on it.

Secondly, we only experiment with one language
model, the multilingual model XLM-R. As our
model is language agnostic, and we aimed to test
its performance on datasets in different languages,
the choice of a multilingual model was obvious.
XLM-R has been chosen based on its good perfor-
mance in other tasks, and to make our work compa-
rable to previous work (You et al., 2022). However,
another approach would be to test our model with
a selection of language-specific language models.
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A Training detail

We use the large version of XLM-R available
on HuggingFace transformers10 for obtaining
contextual embeddings of the input sequence. We
use the same hyperparameter configuration for all
our models, as shown in Table 7, and weights are
optimized with AdamW (Loshchilov and Hutter,
2019) following a warmed-up cosine learning rate
schedule.

Hyperparameter JSEEGraph

batch_size 16
beta_2 0.98
decoder_learning_rate 1.0e-4
decoder_weight_decay 1.2e-6
dropout_transformer 0.25
dropout_transformer_attention 0.1
encoder "xlm-roberta-large"
encoder_learning_rate 4.0e-6
encoder_weight_decay 0.1
epochs 110
hidden_size_anchor 256
hidden_size_edge_label 256
hidden_size_edge_presence 256
n_transformer_layers 3
query_length 2
warmup_steps 1 000

Table 7: Hyperparameter setting for our system, and we
use the same configuration for all models.

The training was done on a single node of Nvidia
RTX3090 GPU. The runtimes and sizes (including
the pretrained XLM-R) of the multilingual models
for each dataset are listed in Table 8,

Dataset Runtime Model size

ACE05-E+ 27:52 h 343.8 M
ACE05-E++ 27:25 h 343.8 M
Rich ERE-E+ 33:13 h 344.6 M
Rich ERE-E++ 32:16 h 344.6 M

Table 8: The training times and model sizes (number of
trainable weights) of all our experiments.

10https://huggingface.co/docs/
transformers/index

Lang Trg-I Trg-C Arg-I Arg-C Entity Relation
Dataset: ACE05-E+

en 73.1 70.0 68.5 65.4 90.4 61.4
73.2 69.8 66.7 64.2

zh 69.2 67.0 71.4 67.8 85.6 60.2
64.8 62.6 62.5 59.3

Dataset: ACE05-E++

en 73.8 70.3 63.7 60.6 85.3 55.4
72.7 69.9 58.9 56.3

zh 66.7 64.5 66.0 63.1 82.1 53.7
66.0 64.3 62.2 58.4

Dataset: Rich ERE-E+

en 65.3 60.5 59.8 56.1 80.6 53.6
68.7 62.4 56.0 52.8

zh 62.3 57.7 53.9 50.2 78.3 54.5
62.4 59.0 48.2 46.3

es 54.2 47.9 52.5 46.7 72.9 44.7
56.7 49.7 51.3 47.3

Dataset: Rich ERE-E++

en 66.9 60.4 54.6 52.1 76.3 42.1
66.2 59.2 49.5 46.8

zh 63.6 60.2 47.1 44.8 76.2 51.5
60.5 57.2 41.5 38.8

es 54.4 48.9 47.2 43.2 68.2 43.0
54.5 48.4 35.7 32.1

Table 9: Experimental results of monolingual models
(F1-score, %)

B Monolingual training results

Apart from multilingual training, we also train two
monolingual models for each language, one for
joint event extraction with entity and relation and
the for event extraction only. Results of monolin-
gual models are summerized in Table 9.
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Abstract

Aspect sentiment quad prediction (ASQP) an-
alyzes the aspect terms, opinion terms, senti-
ment polarity, and aspect categories in a text.
One challenge in this task is the scarcity of
data owing to the high annotation cost. Data
augmentation techniques are commonly used
to address this issue. However, existing ap-
proaches simply rewrite texts in the training
data, restricting the semantic diversity of the
generated data and impairing the quality due to
the inconsistency between text and quads. To
address these limitations, we augment quads
and train a quads-to-text model to generate cor-
responding texts. Furthermore, we designed
novel strategies to filter out low-quality data
and balance the sample difficulty distribution
of the augmented dataset. Empirical studies
on two ASQP datasets demonstrate that our
method outperforms other data augmentation
methods and achieves state-of-the-art perfor-
mance on the benchmarks.1

1 Introduction

Aspect-based sentiment analysis (ABSA) aims to
mine opinions expressed regarding specific aspects
of a given text. Recently, Zhang et al. (2021a) pro-
posed a challenging compound subtask of ABSA
called aspect sentiment quad prediction (ASQP),
which predicts four kinds of elements (aspect cate-
gory, aspect term, opinion term, sentiment polarity)
as quadruplets (quads). A single text may contain
multiple quads. For example, the text “The pizza
is delicious but expensive.” mentions one aspect
term (pizza) and two opinion terms (delicious and
expensive). Because these two opinions are related
to the same aspect, the text includes two quads:
(taste, pizza, delicious, positive) and (price, pizza,
expensive, negative).

Traditional methods (Cai et al., 2020; Wan et al.,
2020; Cai et al., 2021) address such compound sub-

1The source code is available at https://github.
com/AnWang-AI/AugABSA

It is one the nicest outdoor restaurants I have ever seen in NY.

It is one of the most beautiful outdoor restaurants I have ever
seen in NY.

It is one the nicest restaurants I have ever seen in NY.
Random Deletion:

Back Translation:

It is one the best outdoor restaurants I have ever seen in NY.
Synonym Replacement:

[ambience general, outdoor restaurants, nicest, positive]

Source Text:

Label:
Augmented Text (Previous Methods):

Great space for meetings, but the outdoor restaurants is nothing
special. 

Our Method:
Augmented Label: 
[ambience general, space, Great, positive],
[ambience general, outdoor restaurants, nothing special, positive] 

Augmented Text: 

Figure 1: Examples of text data augmentation meth-
ods. We observe that the augmented texts from previous
methods fail to include all spans in the label and the
augmented texts are semantically very similar to the
source text. Our method addresses these problems by
generating texts from augmented labels.

tasks of ABSA in a discriminative manner. Recent
studies (Zhang et al., 2021b; Hu et al., 2022) have
primarily concentrated on sequence-to-sequence
frameworks for ASQP because of their superior
performance. Specifically, These frameworks trans-
form the input text into a sequence of linearized
quads.

Despite the success of the field of ASQP, the
scarcity of annotated data is still a remaining chal-
lenge. For instance, Rest15 and Rest16 ASQP
datasets only consist of 834 and 1,264 training sam-
ples respectively. However, manual annotation is
costly and time consuming. One solution for ex-
panding the number of training samples is data
augmentation. EDA (Wei and Zou, 2019) adopted
some typical data augmentation techniques such as
random swapping, inserting, deleting words, and
synonym replacement to improve text classifica-
tion. Back-translation (Yu et al., 2018) obtained
augmented data by translating the original text in
English into another language and then translating
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it back into English. However, applying these op-
erations to ASQP datasets usually disrupts crucial
spans, such as aspect or opinion terms, resulting
in label mismatches with the original input text.
Additionally, traditional data augmentation meth-
ods only focus on augmenting texts that preserve
semantic information similar to the original text in
the training dataset. Therefore, the ability of these
methods to help models generalize to unseen data
is limited.

In this study, we propose a novel Generative
Data Augmentation method (GenDA) by propos-
ing a quads-to-text (Q2T) generation task—the re-
verse task of ASQP, which aims to generate a text
based on the input quads. We synthesize a large
number of quads by mixing the labels from the
ASQP training dataset. Then, we feed these labels
to the trained Q2T model which uses a sequence-
to-sequence model to generate new parallel data
with high diversity. Figure 1 shows some exam-
ples of the traditional text augmentation methods
and our method. In addition, we propose a data
filtering strategy concerning the unalignment of the
aspect and opinion terms between text and quads
to remove low-quality augmented data. Further-
more, we propose a new measurement, Average
Context Inverse Document Frequency (AC-IDF),
to evaluate the difficulty of augmented samples and
a strategy to balance the difficulty distribution. Fi-
nally, we can augment sufficient training data with
good diversity and high quality.

To evaluate our method, we conducted empiri-
cal studies using two ASQP datasets. We applied
the proposed data augmentation with the previous
ASQP model. These studies demonstrate that our
method outperforms other data augmentation meth-
ods and achieves state-of-the-art performance on
the benchmark. In addition, the experimental anal-
ysis also verifies that our method successfully gen-
erates data with stronger diversity. Additionally,
we conducted a detailed ablation study to confirm
the effectiveness of each component of our method
and provide insights into how they contribute to the
performance of our method.

The contributions of this study are summarized
as follows: (1) We propose the synthesis of diverse
parallel data using a Q2T model for ASQP. To the
best of our knowledge, this is the first study to
achieve data augmentation by text generation for
ABSA. (2) We propose a data filtering strategy to
remove low-quality augmented data and a measure-

ment to evaluate the difficulty of the augmented
samples, which is used to balance the augmented
dataset. (3) Our experiments demonstrate that the
proposed method achieves state-of-the-art perfor-
mance on the two ASQP datasets.

2 Preliminaries

2.1 Task Definition of ASQP
Aspect sentiment quad prediction aims to predict
all sentiment-related quadruplets (ac, at, ot, sp)
from a given text x. The elements of each quadru-
plet are aspect category (ac), aspect term (at), opin-
ion term (ot), and sentiment polarity (sp). In par-
ticular, the aspect category belongs to a specific
category set AC and the sentiment polarity falls
into sentiment classes {POS, NEU, NEG} denoting
positive, neutral, and negative sentiments toward
the aspect. Note that if the aspect and opinion terms
are not explicitly mentioned in the given text, they
are set as NULL.

2.2 Generative ASQP Methods
Although early work handled ABSA in a dis-
criminative manner, recent studies (Zhang et al.,
2021a,b; Hu et al., 2022) have mainly focused on
generative ASQP methods because of their better
performances.

PARAPHRASE (Zhang et al., 2021a) formu-
lated ASQP into a paraphrasing problem. They
transformed sentiment-related quadruplets into
a natural language. Specifically, given a quad
(ac, at, ot, sp), they designed the following tem-
plate: “ac is sp because at is ot.”, where ac and
sp are projected onto the natural language format.
When the input text contains multiple quads, the
quads are transformed into different templated sen-
tences separately and then concatenated with a spe-
cial marker [SSEP]. Hu et al. (2022) explored the
effect of the order of each quad element in the tem-
plate. In addition, they proposed a more effective
target template: “[AT] at [OT] ot [AC] ac [SP]
sp”, where [AT], [OT], [AC], and [SP] are special
tokens.

Inspired by previous generative ASQP methods,
we consider the reverse process of text-to-quads
and further propose a generative data augmentation
method based on it.

3 Methodology

To alleviate the problem of annotated data scarcity
and to generate augmented data with strong diver-
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I am [OT] happy [1,2 /OT] with the [AT] food [1 /AT] in this [AT] dinner [2 /AT].

[1] [AT] food [OT] happy [AC] food quality [SP] good [1] [SSEP] [2]
[AT] dinner [OT] happy [AC] food quality [SP] good [2] 

① (food quality, dinner, great quality, POS),
② (food quality, food, happy, POS),
③ (service general, staff, nice, POS),
④ (service general, service, great, POS),
⑤ (food quality, lobster knuckles, tasteless, NEG),

Quad Collection

① (food quality, dinner, happy, POS),
② (service general, staff, great, NEG),

Augmented Quad Collection

(food quality, food, happy, POS), (food quality, dinner, happy, POS)

Q2T model

Random
Selection

I am happy with the food in this dinner.

Augmented Label:

Augmented Text:

Augmented Quad
Collection

Augmented Text

Augmented Label

Sampling

Q2T
Model Augmented

Parallel Data
Filtering

ASQP
Model

Balancing

ASQP
Training Data

Q2T
Training Data

Step 1：
 Training Q2T model

Step 2：
 Data Augmentation

Step 3：
Filtering and Balancing

Quad Collection

CW Set

OW Set

AW SetQuad
Augmention

Training

Recombine elements

Reverse
Data

(a) Pipeline of our method. (b) Example of generating augmented text.

...

...

Figure 2: Overview of our proposed method. In Step 3 of Figure (a), AW Set, OW Set, and CW Set represent aspect
word set, opinion word set, and context word set, respectively. They are utilized to aid the filtering process. Figure
(b) shows an example of synthesizing augmented parallel data consisting of a text, “I am happy with the food in this
dinner,” and an associated label, “(food quality, food, happy, POS), (food quality, dinner, happy, POS)”. The dotted
line indicates the source of the quad or label.

sity and high quality for the ASQP task, we propose
a novel generative data augmentation method. Fig-
ure 2 presents an overview of the proposed method.
The proposed method consists of three main steps.
(1) We reverse the data in the ASQP dataset to
create a new training set, which we then use to
train a quads-to-text model. (2) We aim to gen-
erate data that are semantically different from the
training data. Hence, we collect all labels from the
training set and propose mixing them to create an
augmented quad set. We then randomly sample
several mixed quads and feed them into the quads-
to-text model to generate the corresponding source
text. (3) To further improve the performance of
our data augmentation, we propose two strategies
to filter out generated texts that do not match the
given quads and balance the sample difficulty distri-
bution of the augmented data. Finally, we combine
the augmented data with the original training set to
train an ASQP model.

3.1 Quads-to-Text Task

Before introducing our generative data augmenta-
tion method, we first define a new text generation
task, the quads-to-text (Q2T) task, and then design
a Q2T model based on a pre-trained sequence-to-
sequence model.

3.1.1 Task Definition of Quads-to-Text Task
To obtain parallel augmented data for our gen-
erative ASQP data augmentation, we first pro-
pose a quads-to-text task. Q2T aims to generate
text describing the given quads. Given n quads
{q1, q2, ..., qn}, where qi = (aci, ati, oti, spi), the
task requires generating a text x that includes and
only includes the input quads.

3.1.2 Quads-to-Text Model
To handle the Q2T problem, we utilize the pre-
trained sequence-to-sequence model following
other works on controllable text generation (Zhang
et al., 2022). Unlike conventional text generation
methods, our designed Q2T model not only gen-
erates texts but also provides a mechanism to con-
veniently judge whether the generated statement
meets the task requirements of Q2T. In our method,
we mainly focus on the input and output designs of
the model.

For the input sequence of the model, we formu-
late the given quads as template sentences similarly
to Hu et al. (2022). The difference is that we insert
special indexing markers before and after each sen-
tence to distinguish multiple quads. Specifically,
the i-th quad (aci, ati, oti, spi) is transformed into
a templated text:

[i][AT] ati [OT] oti [AC] aci [SP] spi [i]
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The final transformed texts are linked with a special
marker [SSEP] following previous work (Zhang
et al., 2021b; Hu et al., 2022).

For the output sequence of the model, instead
of only generating the source text, the Q2T model
can generate text with annotations. The annota-
tions identify aspect terms and opinion terms in the
text. In addition, the annotation also includes the
relation information between aspects and opinions.
The model annotates aspect and opinion terms of
i-th quad in the text using special markers “[AT]”,
“[i /AT]”, “[OT]”, and “[i /OT]”. Special tokens
[AT] and [OT] denote the beginning of an aspect
and opinion term while [i /AT] and [i /OT] denote
the ending position. When there are multiple as-
pects in a text that are described by the same opin-
ion or there are multiple opinions describing the
same aspect, they can be grouped together using
a comma-separated list of numbers within square
brackets, such as [1,2 AT] to indicate that the first
and second opinion describe the same aspect. We
will explain the function of these annotations in
detail in Section 3.2.2.

3.1.3 Training
To make the Q2T model generate text that meets
our requirements, we first build Q2T datasets based
on ASQP datasets. ASQP aims to predict quads
from the given text, thus, we obtain Q2T datasets
by simply inverting the input and label of the ASQP
dataset. To enhance the ability to understand the
meaning of the special index markers, we augment
Q2T data by permuting the order of quads in the
templated input of Q2T model. After training the
Q2T model, the model can be used to obtain more
abundant augmented data for the ASQP task.

3.2 Augmention Strategy

In this section, we first propose a novel method
for obtaining a diverse augmented dataset based on
the Q2T model. We then propose a filtering strat-
egy and a difficulty balancing strategy to further
improve the performance of data augmentation.

3.2.1 Synthesizing Augmented Quads
To obtain diverse data that are meaningfully dif-
ferent from the data in the original ASQP training
dataset, we propose to diversify the input of the
Q2T as shown in figure 2.

First, we collect all quads from the ASQP
training dataset as a quad collection, denoted as
Sorigin = {(aci, ati, oti, spi)}. Subsequently, for

those quads that share the same aspect category
aci, we randomly exchange their aspect term at
and opinion term ot with sentiment polarity sp to
create new quads. The opinion term and senti-
ment polarity from the same original quad will be
bound together to avoid getting new quads where
elements conflict with each other. For example,
given two quads: (price, pizza, cheap, POS) and
(price, steak, expensive, NEG), we can synthesize
new quads (price, steak, cheap, POS) and (price,
pizza, expensive, NEG). Finally, we balance the
number of synthesized quads for each aspect cate-
gory to obtain the augmented quad collection, de-
noted as Saugment. Subsequently, each time we ran-
domly select 1 ∼ 3 quads from Sorigin∪Saugment,
and feed them to the Q2T model for data augmen-
tation. During the training of the ASQP model, we
remove the annotations such as [AT] in the aug-
mented text.

3.2.2 Data Filtering
For ASQP data augmentation, a common problem
is that the augmented texts may not be faithful to
the given quads. Specifically, the generated texts
from the Q2T model may contain fewer or more
quads compared to input quads. Using unfaithful
text as ground truth for given quads to train the
ASQP model will introduce noise that decreases the
performance. Thus we propose a two-step filtering
strategy to remove these low-quality data.

The first step of filtering involves checking the
consistency between the output text of the Q2T
model and the input quads. As introduced in Sec-
tion 3.1.2, our Q2T model annotates aspect terms
and opinion spans using special markers when
generating texts. This allows us to collect aspect-
opinion pairs from the output text and then check
the consistency between the detected pairs and in-
put quads. We filter out the examples with incon-
sistent aspect and opinion terms.

However, the generated texts that pass the first
filtering step may contain additional aspect or opin-
ion terms that are not annotated with special mark-
ers. Training the ASQP model with such data may
lead to a lower recall. To address this issue, we
propose the second step of data filtering. The pro-
cess involves building two keyword sets (an aspect
word set and an opinion word set) and a context
word set. Specifically, we begin by collecting all
the texts from the training data. Because the aspect
and opinion terms are annotated, we categorize the
words in the text based on labels into three groups:
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aspect words, opinion words, and context words.
After that, we gather all the aspect words to create
the aspect word set. Similarly, we collect all the
opinion words to form the opinion word set and
all the context words to construct the context word
set. If the unmarked part (i.e., the context) of a
generated text contains any word that belongs to
the keyword sets but does not exist in the context
word set, we consider this example as containing
additional aspect/opinion terms and remove it from
the augmented dataset.

3.2.3 Difficulty Balancing

In addition to the existence of low-quality data, an-
other problem we observe is that more than half of
the generated texts are simple expressions. These
generated texts are far simpler than most texts in
the ASTE dataset. A text can be divided into three
different parts, aspect terms, opinion terms, and
context. Even if being given different quads as in-
puts, the Q2T model usually generates text with
relatively similar context, such as ‘The at is ot’.
When most augmented training data are too simple,
the model may not learn the complex patterns re-
quired to make accurate predictions on unseen data.
Therefore, it is necessary to balance the distribution
of the sample difficulty of the augmented dataset.

To assess the sample difficulty, we propose a
new measurement factor, called the Average Con-
text Inverse Document Frequency (AC-IDF). The
difficulty of a text can be defined as the level of
language proficiency required to understand the
text (Fulcher, 1997). A text that uses many uncom-
mon words is considered more difficult than one
that uses simple and common language. Therefore,
one way to measure the difficulty of a text is to
calculate the average IDF score of the words in the
text. Furthermore, because aspects and opinions
are directly copied from the input of the model, it
is critical to evaluate the difficulty of the context
part of the text. Therefore, we propose using the
context difficulty to measure the learning difficulty
of the sample for our model.

Specifically, given a text collection X from the
dataset, we remove all aspects and opinions terms
to obtain only the context words. We denote the
preprocessed text collection by X̄ . Then, for each
text x̄i after preprocessing, we calculate the AC-
IDFi of the text as follows:

AC-IDFi =
1

ni

ni∑

j=1

IDF(tij), (1)

IDF(tij) = ln
|X̄|

1 + |{x̄ ∈ X̄ : tij ∈ x̄}|
, (2)

where tij is the j-th word in x̄i, ni is the number
of words in x̄i, |X̄| denotes the size of X̄ , and
|{x̄ ∈ X̄ : tij ∈ x̄}| represents the total number of
texts where tij appears.

We build a subset according to the AC-IDF of the
generated texts so that the difficulty of the selected
data follows a uniform distribution. Specifically,
we set several intervals according to the sample
difficulty and randomly sample similar amounts of
data from the entire augmented dataset for each in-
terval. Finally, we create a subset whose data obey
an approximate uniform distribution with respect
to the sample difficulty. Thus, the model learns to
predict quads from diverse and balanced data to
improve performance.

4 Experiment

4.1 Datasets
We evaluate our method on two ASQP datasets:
Rest15 and Rest16 (Zhang et al., 2021b),
which originates from the SemEval Challenges
(Pontiki et al., 2015, 2016). Their domain is of
restaurant reviews. Detailed statistics are shown
in Appendix A. We also evaluate our method on
four Aspect Sentiment Triplet Extraction (ASTE)
datasets (Peng et al., 2020) in Appendix 5.

4.2 Experiment Setting
In accordance with previous studies (Zhang et al.,
2021a; Hu et al., 2022), our method also employs
T5-base (Raffel et al., 2020) as the pre-trained back-
bone for both Q2T and ASQP tasks. The parameter
count is twice the size of the backbone model (one
for the Q2T model and one for the ASQP model),
which is equivalent to 2× 220 million parameters.
We set the batch size to 8 and the learning rate to 1e-
4. During the inference stage, greedy decoding is
used to generate the output sequence. The amount
of augmented data is four times that of training
data. The experiments are run for a maximum of
20 epochs. All reported results are the average of
five runs initialized with different random seeds.
We use precision, recall, and micro F1 scores as the
evaluation metric. A sentiment quad prediction is
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considered accurate only when all of its predicted
elements match the ground truth exactly. We also
report the standard errors of our base model and
proposed data augmentation method.

4.3 Main Results
4.3.1 Compared Methods
Previous ASQP methods can be categorized into
two types: BERT (Devlin et al., 2019) based meth-
ods and T5 (Raffel et al., 2020) based methods. The
BERT based methods include HGCN (Cai et al.,
2020), TASO (Wan et al., 2020), and Extract-
Classify-ACOS (Cai et al., 2021). T5 based meth-
ods include GAS (Zhang et al., 2021b), PARA-
PHRASE (Zhang et al., 2021a), DLO and ILO
(Hu et al., 2022). We report the performance of
these methods directly copied from their paper.
PARAPHRASE + Marked Template is a variant
of the PARAPHRASE method. It uses a different
target template with special markers which are pro-
posed by Hu et al. (2022). We implement it by
ourselves and adopt it as our base model to apply
our data augmentation method.

4.3.2 Analysis
Table 1 shows the evaluation results on the ASQP
task. We observe that our proposed data augmen-
tation method, GenDA, clearly improves the per-
formance of the base model by +2.22 and +2.18 F1
score on Rest15 an Rest16. GenDA achieves
state-of-the-art performance on the ASQP bench-
mark. Note that GenDA has a higher precision
score while maintaining a good recall compared
with other methods. This observation indicates that
our proposed data augmentation method helps to
improve the robustness of our model, and therefore,
predicts the sentiment quadruplets more precisely.

Our base model PARAPHRASE + Marked
Template achieves better performance than the
original PARAPHRASE method but does not out-
perform DLO and ILO. The reason why we do not
choose DLO or ILO as our base model is that these
two methods are relatively complex and not suit-
able for integrating our data augmentation methods.

4.4 Effects of Augmentation Methods
To demonstrate the effectiveness of the data aug-
mentation method we proposed, we also compare
it with several representative data augmentation
methods on the ASQP benchmark. For all data
augmentation methods, the amount of augmented
data is four times that of training data.

EDA (Wei and Zou, 2019) adopts four opera-
tions including synonym replacement, random in-
sertion, random swap, and random deletion to the
input texts. We additionally design two ASQP-
specific variants of EDA: CEDA applies EDA only
in the context of input text whereas AOEDA ap-
plies EDA on the aspect terms and opinion terms of
the input text. Note that the terms in quads will also
be revised correspondingly. AEDA (Karimi et al.,
2021) is an simpler data augmentation method that
randomly inserts punctuation into the input texts.
Back Translation (Yu et al., 2018) augments data
by translating text from English to another lan-
guage and then back to English. We used the
machine translation models proposed by Ng et al.
(2019) in our experiment.

Comparison results are reported in Table 2. Com-
pared with existing data augmentation methods,
we observe that applying EDA and Back Transla-
tion on the base model brings no noticeable im-
provement and can even reduce performance. We
attribute it to the fact that sometimes these meth-
ods disrupt the matching of input text and labels
because they may revise some important spans
including aspects or opinion terms. To explore
whether directly modifying traditional data aug-
mentation methods to adapt the ASQP task can
improve model performance, we evaluate AOEDA
and CEDA, two simple variants of EDA which
avoid mismatches between text and labels of aug-
mented data. The results show that both two vari-
ants could improve the performance slightly, but
the improvement is limited, likely because the ex-
isting data augmentation methods cannot provide
training samples with high diversity. Finally, our
method GenDA significantly outperforms all tradi-
tional data augmentation methods under all evalua-
tion metrics. Compared with the best F1 scores of
previous data augmentation methods, the improve-
ment of our method reaches 1.26 and 1.04. These
results demonstrate the effectiveness of our data
augmentation method.

4.5 Analysis of the Text Diversity

We analyze the text diversity of different data aug-
mentation methods. In Figure 3, we visualize the
text representations of the entire Rest 16 train-
ing dataset and 4000 augmented data generated by
different data augmentation methods. Specifically,
we first adopt a BERT-based encoder to transform
each text into a representative vector and then use t-
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PLM Method
Rest 15 Rest 16

P R F1 P R F1

BERT

HGCN-Linear (Cai et al., 2020) 24.43 20.25 22.15 25.36 24.03 24.68
HGCN-TFM (Cai et al., 2020) 25.55 22.01 23.65 27.40 26.41 26.90
TASO-Linear (Wan et al., 2020) 41.86 26.50 32.46 49.73 40.70 44.77
TASO-CRF (Wan et al., 2020) 44.24 28.66 34.78 48.65 39.68 43.71
Extract-Classify-ACOS (Cai et al., 2021) 35.64 37.25 36.42 38.40 50.93 43.77

T5

GAS (Zhang et al., 2021b) 45.31 46.70 45.98 54.54 57.62 56.04
PARAPHRASE (Zhang et al., 2021a) 46.16 47.72 46.93 56.63 59.30 57.93
DLO (Hu et al., 2022) 47.08 49.33 48.18 57.92 61.80 59.79
ILO (Hu et al., 2022) 47.78 50.38 49.05 57.58 61.17 59.32
PARAPHRASE + Marked Template 47.40 ±0.20 48.18 ±0.44 47.79 ±0.30 57.85 ±0.30 59.58 ±0.42 58.70 ±0.35
+ GenDA 49.74 ±0.28 50.29 ±0.35 50.01 ±0.31 60.08 ±0.34 61.70 ±0.12 60.88 ±0.13

Table 1: Evaluation results (%) on Rest 16 and Rest 15 datasets of ASQP for comparing with previous state-
of-the-art methods. The best and second-best performances are highlighted in bold and underlined, respectively.

Type Method
Rest 15 Rest 16

P R F1 P R F1
Baseline PARAPHRASE + Marked Template 47.40 48.18 47.79 57.85 59.58 58.70

Previous Data Augmentation

+ EDA 47.77 48.27 47.85 57.70 58.85 58.27
+ CEDA 47.44 48.63 48.19 58.47 60.43 59.43
+ AOEDA 47.78 48.40 48.09 58.22 60.30 59.24
+ AEDA 48.17 48.65 48.40 58.40 59.70 59.04
+ Back Translation 47.08 47.30 47.19 58.58 59.86 59.21

Ablation

+ GenDA 49.74 50.29 50.01 60.08 61.70 60.88
+ GenDA (original label) 48.88 49.48 49.18 59.23 61.08 60.14
+ GenDA w/o Filtering & Balancing 47.95 48.55 48.25 58.33 60.45 59.37
+ GenDA w/o Balancing 48.34 49.21 48.77 58.84 60.61 59.71
+ GenDA w/o Filtering 48.63 49.18 48.91 59.39 61.05 60.21

Table 2: Evaluation results (%) on Rest 16 and Rest 15 datasets of ASQP for comparing different data
augmentation methods and ablations. All involved data augmentation methods use PARAPHRASE + Marked
Template as the base model for a fair comparison. GenDA (original label) denotes only using original labels from
the training dataset instead of augmented quads for Q2T.

SNE (Van der Maaten and Hinton, 2008) to reduce
dimension for visualizing the distributions.

To quantify the difference between the training
dataset and the augmented dataset, we calculate
the average Euclidean distance between each point
in the augmented dataset and its nearest neighbor
in the training dataset. We also provide the Self-
BLEU scores (Zhu et al., 2018) to evaluate the
diversity of each augmented dataset. Lower Self-
BLEU means better diversity.

From Figure 3, we observe that the semantic
representations of most EDA-augmented texts are
coincident with original texts, showing the smallest
average distance. The high Self-BLEU score of
EDA further indicates the low diversity of EDA-
augmented texts. Back Translation achieves a
much lower Self-BLEU score than EDA, but the
visualization shows a high semantic similarity be-
tween the original and augmented data. By contrast,
our proposed method GenDA achieves the largest
distance score and lowest Self-BLEU, demonstrat-
ing that it can generate texts that are more diverse

and less likely to semantically overlap with the
original texts.

4.6 Ablation Studies

To investigate the effectiveness of each compo-
nent of our proposed method, we conduct an ab-
lation study on two ASQP datasets as shown in
Table 2. Even without adopting our filtering or
balancing strategies, our model can outperform the
base model. After applying our filtering strategy,
we observe an improvement because it filters out
noisy and irrelevant data. The balancing strategy
also brings a performance gain, which indicates
that addressing the sample difficulty imbalance is-
sue in the augmented datasets is beneficial for mod-
els to learn. Note that compared to the filtering
strategy, the balancing strategy contributes more to
performance gains, which means that sample diffi-
culty imbalance has a worse impact on performance
than the low-quality problem. Furthermore, when
the filtering and balancing strategies are applied
jointly, our model achieves a further performance
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Figure 3: Visualization of text semantic representation.
Each subfigure shows the distribution of original texts
(in salmon color) from the Rest16 training dataset and
corresponding augmented texts (in blue color) obtained
using different methods. In each subcaption, we report
the distance between two datasets and the Self-BLEU
score (%) computed on each augmented dataset.

gain. In addition, when only the original labels are
input, the model’s f1 scores noticeably decline by
0.83 and 0.74 compared to when augmented labels
are input.

5 Effects on ASTE task

We conduct experiments on the ASTE task to verify
that our method is also effective on other ABSA
subtasks. We compare our method with strong
previous work.

ASTE methods Previous ASTE methods can be
categorized into three types: pipeline-based meth-
ods, end-to-end discrimination methods, and text-
generation methods. The pipeline-based methods
include CMLA (Wang et al., 2017), RINATE+ (Dai
and Song, 2019), Li-unified-R (Li et al., 2019), P-
pipeline (Peng et al., 2020), and Two-Stage (Huang
et al., 2021). End-to-end discrimination methods in-
clude BMRC (Chen et al., 2021), SPAN-ASTE (Xu
et al., 2021), EMC-GCN (Chen et al., 2022), and
COM-MRC (Zhai et al., 2022). Text-generation
methods for ASTE include GAS (Zhang et al.,
2021b) and PARAPHRASE (Zhang et al., 2021a).

We select three types of ASTE methods for
comparison: 1) Pipeline based methods includ-

ing CMLA (Wang et al., 2017), RINATE+ (Dai
and Song, 2019), Li-unified-R (Li et al., 2019), P-
pipeline (Peng et al., 2020) and Two-Stage (Huang
et al., 2021); 2) End-to-end discrimination methods:
BMRC (Chen et al., 2021), SPAN-ASTE (Xu et al.,
2021), EMC-GCN (Chen et al., 2022) and COM-
MRC (Zhai et al., 2022); and 3)Text-generation
methods: GAS (Zhang et al., 2021b) and PARA-
PHRASE (Zhang et al., 2021a).

Analysis Table 3 shows the evaluation results
of baselines and our methods on four datasets of
ASTE task, including Lap14, Rest14, Rest15,
and Rest16. Compared to ASQP, ASTE only
needs to predict three kinds of elements. In our
method, the target template of ASTE is changed to

[i] [AT] ati [OT] oti [SP] spi [i],

for the i-th triplet (ati, oti, spi). Other designs
for the ASTE task are the same as the ASQP task.
We find that with this slight revision, our methods
outperform the best results by 1.53, 1.73, 1.27, and
2.53 f1 score on these four datasets respectively,
achieving new state-of-the-art performance.

6 Related Work

6.1 Aspect-based Sentiment Analysis
ABSA aims to analyze fine-grained sentiment ele-
ments including not only the sentiment polarity but
also the aspect term, opinion term, and aspect cate-
gory. Intuitively, these elements are related. There-
fore, recent studies tried to model them jointly,
such as constructing aspect-sentiment pairs (Cai
et al., 2020) or triples (Peng et al., 2020). Further-
more, there is a growing interest in modeling these
four elements simultaneously, with two promising
directions being proposed. Cai et al. (2021) pro-
posed a two-stage method that first extracts aspect
and opinion terms, and then uses them to classify
aspect category and sentiment polarity. Another
framework is based on a generation model (Zhang
et al., 2021a,b), which predicts the quadruplet in
an end-to-end manner by paraphrasing the input
text to a target template. Since they additionally
exploit the information from label semantics, the
generation-based method achieves dominantly bet-
ter performance in the field of ABSA.

6.2 Data Augmentation
Data augmentation is a common technique in lan-
guage and vision domains to improve model per-
formance. Previous data augmentation methods

135



Backbone Method L14 R14 R15 R16

BERT

CMLA (Wang et al., 2017) 33.16 42.79 37.01 41.72
RINATE+ (Dai and Song, 2019) 34.95 20.07 29.97 23.87
Li-unified-R (Li et al., 2019) 42.34 51.00 47.82 44.31
P-pipeline (Peng et al., 2020) 42.87 51.46 52.32 54.21
Jet (Xu et al., 2018) 51.04 62.40 57.53 63.83
GTS (Wu et al., 2020) 55.21 64.81 54.88 66.08
Two-Stage (Huang et al., 2021) 58.58 68.16 58.59 67.52
BMRC (Chen et al., 2021) 57.82 67.99 60.02 65.75
SPAN-ASTE (Xu et al., 2021) 59.38 71.85 63.27 70.26
EMC-GCN (Chen et al., 2022) 58.81 71.78 61.93 68.33
COM-MRC (Zhai et al., 2022) 60.17 72.01 64.53 71.57

T5
GAS (Zhang et al., 2021b) 58.19 70.52 60.23 69.05
PARAPHRASE (Zhang et al., 2021a) 61.13 72.03 62.56 71.70
GenDA 62.66 73.76 65.80 74.23

Table 3: Evaluation results (%) on four datasets of ASTE for comparing with previous state-of-the-art methods. The
best and second-best performances are highlighted in bold and underlined, respectively.

can be categorized into three types. The first type
only augments the input, such as image flipping,
rotation, and scaling (Bjerrum, 2017) for images,
and text modification (Wei and Zou, 2019) as well
as back translation (Yu et al., 2018) for natural
language. The second type only augments the out-
put, such as generating target-side soft pseudo se-
quences (Xie et al., 2022). These approaches are
particularly relevant for generation tasks where the
order of words is important. The third type aug-
ments both the input and the output, such as the
mixup approach (Zhang et al., 2018) which gener-
ates virtual training examples through linear com-
binations of feature vectors and their associated
targets. To the best of our knowledge, our work is
the first to propose a data augmentation method of
the third type specifically for subtasks of ABSA.
Unlike previous methods in this realm that augment
only the input (Li et al., 2020) or output (Hu et al.,
2022), our method augments both input and output,
leading to augmenting more diverse samples. Our
method reduces the model’s reliance on a limited
set of examples and enables it to better generalize
to unseen data, thereby mitigating the problem of
overfitting and achieving better performance on test
data.

7 Conclusion

In this paper, we have proposed a new approach
to tackle the problem of data scarcity in the ASQP
task. To address this challenge, we present a gen-
erative data augmentation method based on a pre-

trained quads-to-text model. Our method generates
new parallel data by synthesizing a large number
of quads from the training dataset and generating
corresponding pseudo texts. Moreover, we pro-
pose a data filtering strategy to remove low-quality
generated data and a measurement to balance the
difficulty of augmented samples. Our empirical
studies on two ASQP datasets have demonstrated
the superiority of our method compared to other
data augmentation methods and the effectiveness
of each component in our method. Our approach
not only is an innovative solution to the problem of
data scarcity in ASQP, but also provides a poten-
tial direction for future work in other related fields,
such as relation extraction and event extraction.

Limitation

Firstly, because our data augmentation method
relies on the quality of the quads-to-text (Q2T)
model’s generation, the performance of our method
may be limited by the quality of the generated
text. Besides, the quads-to-text (Q2T) model is
trained by the original ASQP dataset, thus it may
fail to generate expressions that do not appear in
the dataset. Additionally, training an extra Q2T
model brings additional computational costs. Fur-
thermore, as the model inputs are randomly sam-
pled from the augmented quad collection, some
quad combinations may not be suitable for text
generation, which could affect the effectiveness of
data augmentation.
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Dataset
#Text

Rest15 Rest16

Train 834 1264
Validation 209 316
Test 537 544

Table 4: Statistics of datasets of ASQP task.

Dataset
#Text

Laptop14 Rest14 Rest15 Rest16

Train 1300 920 593 842
Validation 323 228 148 210
Test 496 339 318 320

Table 5: Statistics of datasets of ASTE task.

A Dataset Statistic

We conduct experiments on two publicly available
ASQP datasets, namely Rest15 and Rest16 (Zhang
et al., 2021a). In these datasets, each sample in-
cludes a text as input, with sentiment quads as
ground truth. Datasets are split to train, validation,
and test sets officially. Table 4 presents the relevant
statistics. We also conduct experiments for Aspect
Sentiment Triplet Extraction (ASTE) task, which
aims to predict (aspect, opinion, sentiment polar-
ity) triplets from the given text. Table 5 presents
statistics of four ASTE datasets.

B Experimental Environment and
Runtime

All our experiments are conducted with a single
NVIDIA Tesla V100 GPU. Our method was im-
plemented using the Hugging Face transformers
library (Wolf et al., 2019). The training process of
our method on GPU for one run took approximately
50 minutes including 20 minutes for training the
Q2T model and 30 minutes for the ASQP model.

C Distribution of Context Difficulty

We present the frequency distribution histogram of
the AC-IDF values of texts in the training dataset
and augmented datasets in Figure 4. The AC-IDF
frequency distribution of the training dataset fol-
lows a Gaussian distribution, with most data points
falling between AC-IDF values of 4 and 6. How-
ever, for the augmented dataset generated without
the balancing strategy, most of the data points fall
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(c) Augmented Dataset (After Balancing)

Figure 4: Frequency distribution histogram for AC-IDF
of texts in the training dataset and augmented datasets.

between AC-IDF values of 0 and 4. This indicates
that most of the generated texts are relatively sim-
ple and differ significantly from the distribution of
the training dataset. After applying the balancing
strategy, the augmented dataset shows a more uni-
form distribution of data points between AC-IDF
values of 3 and 7. This indicates that the balancing
strategy has effectively created a more balanced
distribution of sample difficulty.
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(food quality, food, happy, POS), (food quality, dinner, happy, pos)

I am [OT] happy [1,2 /OT] with the [AT] food [1 /AT] in this [AT] dinner [2 \AT].

I am [OT] happy [1,2 /OT] with [AT] food [1 /AT] and [AT] drinks [2 \AT].

I am [OT] happy [1,2 /OT] with [AT] food [1 /AT] and wine in this [AT] dinner [2 \AT].

Generated Text 1:

Generated Text 3:

Generated Text 4:

I am [OT] happy [1 /OT] with the [AT] food [1 /AT].

Generated Text 2:

('food', 'happy'), ('dinner', 'happy')

Aspect-Opinion Pairs

('food', 'happy'), ('dinner', 'happy')

('food', 'happy')

('food', 'happy'), ('drinks', 'happy')

Input Quads:

Figure 5: Examples of generative data.

Case 1
Sentence: If there is a line every day of the week for the entire time a place is open, you know it is great.
Predicted Quadruplet: (restaurant miscellaneous, place, great, positive)
Gold Quadruplet: (restaurant general, place, great, positive)
Case 2
Sentence: To be honest, I’ve had better frozen pizza.
Predicted Quadruplet: (food quality, frozen pizza, better, negative)
Gold Quadruplet: (food quality, pizza, better, negative)

Table 6: Two error examples of our methods.

D Examples of Generative Text

We present four examples of generative text: one
correct example and three low-quality examples.
The provided examples illustrate the issues of low-
quality generated text and the motivation of our
data filtering strategies. The first example is a high-
quality one, faithful to the input quads. The second
and third examples are low-quality ones that can
be filtered out by the first step of the proposed two-
step filtering strategy, which checks consistency
between the output text and input quads. The fourth
example is another low-quality one, which contains
an additional aspect that is not present in the input
but not annotated by the special markers. Such
noisy texts would escape the first-step filtering but
can be identified by the second-step filtering.

E Error Analysis

After conducting a comprehensive analysis of the
error cases, we present two specific examples to
shed light on the challenges encountered by our ap-
proach, as illustrated in Figure 6. In the first case,
our model incorrectly identifies the predicted as-
pect category as "restaurant miscellaneous" instead
of the correct label "restaurant general." This error
highlights a limitation of our model in accurately
categorizing certain aspects where the classifica-

tion boundaries become ambiguous. In the second
case, we observe a flaw in aspect extraction. The
predicted aspect is "frozen pizza," whereas the cor-
rect aspect should have been "pizza." This error
reveals that our model sometimes faces difficul-
ties in extracting the precise aspect when there are
subtle variations or distinctions within the aspect
terms. Consequently, our data augmentation ap-
proach may not effectively assist the model when
it encounters such challenging instances.
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Abstract

In psycholinguistics, semantic attraction is a
sentence processing phenomenon in which a
given argument violates the selectional require-
ments of a verb, but this violation is not per-
ceived by comprehenders due to its attraction
to another noun in the same sentence, which is
syntactically unrelated but semantically sound.

In our study, we use autoregressive language
models to compute the sentence-level and the
target phrase-level Surprisal scores of a psy-
cholinguistic dataset on semantic attraction.

Our results show that the models are sensitive
to semantic attraction, leading to reduced Sur-
prisal scores, although none of them perfectly
matches the human behavioral patterns.

1 Introduction

Cases of similarity-based interference have always
been at the center of interest for sentence process-
ing studies, as they offer strong evidence for cue-
based models of memory retrieval during language
comprehension (Cunnings and Sturt, 2018). Ac-
cording to such accounts, interference emerges be-
cause an item with some cues has to be retrieved
from memory, and because those cues are simul-
taneously matched by multiple items (Van Dyke,
2007; Lewis and Vasishth, 2013).

Consider the examples in (1) (Wagers et al.,
2009):

(1) a. The key to the cells unsurprisingly
were rusty.

b. The key to the cell unsurprisingly
were rusty.

Compared to fully grammatical sentences, both
elicit longer reading times in humans, but the effect
is attenuated in 1a., where there is an attractor
(cells) matching the number of the verb, causing an
illusion of grammaticality. This phenomenon is
known as morphological attraction.

Attraction has also been observed at the semantic
level, as in the following example from the eye-
tracking study by Cunnings and Sturt (2018):

(2) a. Julia saw the beer that the lady with
the meal quite happily ate during an
expensive night out.

b. Julia saw the beer that the lady with
the wine quite happily ate during an
expensive night out.

Again, both sentences are implausible, because
beer violates the selectional restrictions of the verb
ate, but the authors of the study observed that (2a)
was processed faster than (2b), due to the presence
of a semantically fitting noun (meal) that gener-
ates a semantic illusion. Both types of illusion
are facilitatory interferences, as they attenuate the
effects of anomalies leading to higher costs for the
human language processing system. This is a case
of semantic attraction.

The recent literature in Natural Language Pro-
cessing (NLP), on the other hand, has shown an
increasing interest in using the Surprisal scores
(Hale, 2001; Levy, 2008) computed with Neu-
ral Language Models (NLMs) to account for
sentence processing phenomena (Futrell et al.,
2018; Van Schijndel and Linzen, 2018; Wilcox
et al., 2018; Michaelov and Bergen, 2020, 2022a;
Michaelov et al., 2023). This also includes inves-
tigations on interferences at the morphosyntactic
level (Ryu and Lewis, 2021). To our knowledge,
there have been no attempts to model semantic
attraction with NLMs yet.

We aim at filling this gap by presenting a
Surprisal-based analysis of a psycholinguistic
dataset on semantic attraction with three autore-
gressive NLMs of different sizes. We found that
NLMs are sensitive to both the plausibility of the
sentences and semantic attraction effects. However,
NLM Surprisal for a target phrase seems to be af-
fected by attraction regardless of general sentence
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plausibility, differently from human reading behav-
ior. On the other hand, sentence-level Surprisal is
not affected by semantic attraction.

2 Related Work

2.1 Semantic Attraction in Implausible
Sentences

The work by Cunnings and Sturt (2018) has re-
cently brought evidence of the existence of seman-
tic attraction in semantically implausible sentences.
They collected eye-tracking fixations for sentences
in four conditions, by crossing the factors of the
plausibility of the sentence (the plausible or implau-
sible arguments are in italic) and the plausibility of
an attractor noun (in bold):

(3) a. Julia saw the cake that the lady with
the meal quite happily ate during an
expensive night out. (plausible sen-
tence, plausible attractor)

b. Julia saw the cake that the lady with
the wine quite happily ate during an
expensive night out. (plausible sen-
tence, implausible attractor)

c. Julia saw the beer that the lady with
the meal quite happily ate during an
expensive night out. (implausible sen-
tence, plausible attractor)

d. Julia saw the beer that the lady with
the wine quite happily ate during an
expensive night out. (implausible sen-
tence, implausible attractor)

The results showed that fixations were signif-
icantly longer in implausible sentences, but the
effect was attenuated in presence of a plausible
attractor (condition (3c)), while in plausible sen-
tences the attractor did not have any significant
effect. The authors explained the finding in terms
of “verb-specific cues that may guide retrieval to
grammatically illicit, but plausible, constituents
during the resolution of filler-gap dependencies”.

The follow-up study by Laurinavichyute and
von der Malsburg (2022) instead used a forced
choice completion judgement task to compare se-
mantic and morphosyntactic attraction. First, they
presented a target verb to the participants, and then
they presented them with a sentence fragment, ask-
ing participants whether the verb could have been
a fitting continuation for the sentence. In such a
scenario, it is expected that violations will elicit
negative answers, with attraction phenomena pos-

sibly increasing the error rates of the participants.
Their stimuli contained violations either at the mor-
phosyntactic or at the semantic level, and have ei-
ther a morphosyntactic or a semantic attractor. The
authors reported considerably higher error rates for
the conditions with a violation and an attractor of
the same type, supporting the idea that morphosyn-
tactic and semantic attraction work similarly.

Our study on NLMs uses the stimuli from the
datasets by Cunnings and Sturt (2018) to test
whether they are sensitive to semantic attraction
in sentence processing, which may be reflected by
the Surprisal scores of the stimuli words. We also
want to test whether semantic plausibility and at-
traction in NLMs interact like in humans, to what
extent (cf. the claim in Cunnings and Sturt (2018)
that semantic attraction has a facilitatory effect only
when the sentence is not plausible) and if the effects
are the same in NLMs of different sizes.

2.2 NLM Estimation of Word Surprisal

Transformer-based NLMs (Vaswani et al., 2017;
Devlin et al., 2019; Radford et al., 2019) have be-
come increasingly popular in NLP in recent years,
and a number of studies designed tests to investi-
gate their actual linguistic abilities (Tenney et al.,
2019a; Jawahar et al., 2019; Tenney et al., 2019b).
Some of these studies specifically analyzed the
Surprisal scores computed by the models, to un-
derstand to what extent they are sensitive to lin-
guistic phenomena that have been showed to affect
human sentence processing. For example, Misra
et al. (2020) investigated the predictions of BERT
in a setting aimed at reproducing human seman-
tic priming; they reported that BERT was indeed
sensitive to “priming” and predicted a word with
lower Surprisal values when the context included a
related word as opposed to an unrelated one.Using
a similar methodology, Cho et al. (2021) modeled
the priming effect of verb aspect on the prediction
of typical event locations, finding that BERT out-
puts lower surprisal scores for typical locations, but
differently from humans, it does so regardless of
verb aspect manipulations.

Michaelov and Bergen (2022a) investigated the
issue of collateral facilitation, that is, when anoma-
lous words in a sentence are processed more easily
by humans because of the presence of semantically-
related words in the context. They compared the
Surprisal scores obtained with several Transformer
NLMs and showed that most of them reproduce the
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same significant differences between conditions
observed in humans. In Michaelov et al. (2023)
the same authors used NLM Surprisal to repli-
cate the effect of discourse context in reducing
the N400 amplitude for anomalous words, using
the Dutch stimuli of the experiments by Nieuwland
and Van Berkum (2006).

Probably the closest relative to the topic of our
study, Ryu and Lewis (2021) proved that the Sur-
prisal values extracted with the GPT-2 language
model predict the facilitatory effects of interference
in ungrammatical sentences in which an attractor
noun is matching in number with the verb or with a
reflexive pronouns. However, they focused on mor-
phosyntactic attraction, while we aim at modeling
the facilitatory effects of semantic attraction.

3 Experimental Settings

3.1 Dataset
We derived our dataset from the Experiment 1
of the eye-tracking study by Cunnings and Sturt
(2018). The authors employed a total of 32 items,
each of them coming in four conditions, for a total
of 128 stimuli. The stimuli were stories composed
of an introduction sentence, a critical sentence and
a wrap-up sentence. In our experiment, we just fed
the NLMs with the critical sentence:

(4) Julia saw the cake/beer (plausi-
ble/implausible) that the lady with
the meal/wine (plausible/implausible)
quite happily ate during an expensive night
out.

The sentences in the four conditions, as shown in
Example (4), were differing for i) a fitting or a
selectional preference-violating direct object (in
italic) for the verb in the subordinate clause (un-
derlined), which would determine the plausibility
of the sentence; ii) a plausible or an implausible
attractor noun (in bold), not syntactically related
with the verb but with a high degree of thematic fit
with it.1 The authors reported main effects of both
sentence plausibility (implausible sentences induce
longer fixations) and attractor plausibility (a plau-
sible attractor has a facilitatory effect) in the total
viewing times.2 They also reported a significant in-

1We refer to the notion of thematic fit as the degree of
compatibility between a predicate and a noun filling one of
its semantic roles (McRae and Matsuki, 2009; Sayeed et al.,
2016; Santus et al., 2017).

2To address a remark by Reviewer 1, we checked the log-
arithmic frequencies of the attractor nouns (the target nouns

teraction between the two: total viewing times for
implausible sentences were shorter when the attrac-
tor was plausible compared to implausible, while
no significant difference was observed in plausible
sentences as a result of attractor plausibility.

3.2 Language Models
For the models in this paper, we use the implemen-
tation of Minicons (Misra, 2022)3, an open source
library that provides a standard API for behavioral
and representational analyses of NLMs. We make
the code and the test data available for additional
testing.4 We experiment with three variants of au-
toregressive LMs of different sizes: the original
GPT-2 Base, with 124 million parameters (Radford
et al., 2019); DistilGPT-2 with 82 million parame-
ters (Sanh et al., 2019), trained as a student network
with the supervision of GPT-2; and GPT-Neo that,
with 1.3 billion parameters (Gao et al., 2020; Black
et al., 2021), is close to the size of the smallest
models of the GPT-3 family.

Using autoregressive NLMs, we computed the
Surprisal scores at the target in the stimuli (the verb
in the subordinate clause), and also at the level of
the entire sentence. When the NLMs tokenizer
splits the target in more than one token, we take the
average of the Surprisal scores of its subtokens.

More formally, the Surprisal of the target T in
the context C (Surp) was computed as:

Surp(T |C) =
∑

t∈T −logP (t|C)
count(t)

(1)

whereP (t|C) is the probability of each subtoken
t ∈ T given the previous context C, while count(t)
is the number of subtokens in the target phrase T .

The Surprisal of the sentence S (SentSurp) in-
stead is simply the sum of the Surprisals of each
token T normalized by the length of the sentence:

SentSurp(S) =

∑
T∈S Surp(T )
count(T )

(2)

where count(T ) is the total number of tokens in
the sentence S.5

were the same in all conditions), which were not mentioned in
the original study (see the materials in the Appendix). We have
not found any significant difference between noun frequencies
across conditions.

3https://github.com/kanishkamisra/
minicons-experiments

4https://github.com/yancong222/
transformers-semantic-attraction-surprisal

5Notice that the sentences may differ in the number of
tokens, in the cases when the object and/or the attractor nouns
are splitted by the tokenizer. This is why we did not use the
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GPT-2 DistilGPT-2 GPTNeo
B SE p B SE p B SE p

Intercept 9.72 0.54 <.001 9.62 0.54 <0.001 9.92 0.49 <0.001
SentPlaus 3.40 0.28 <0.001 2.17 0.28 <0.001 4.39 0.31 <0.001
AttrPlaus 0.84 0.28 0.003 1.01 0.28 <0.001 0.84 0.31 .008
Length 0.13 0.20 0.08 0.22 0.19 0.09 0.05 0.18 0.78

SentPlaus:AttrPlaus 0.29 0.19 0.11
S1-A0 : S0-A0 -3.69 0.39 < 0.001 -2.45 0.31 < 0.001 -4.87 0.43 < 0.001
S0-A1 : S0-A0 -1.12 0.39 0.021 -1.38 0.31 < 0.001 -1.32 0.43 0.013
S1-A1 : S0-A0 -4.24 0.39 < 0.001 -3.26 0.31 < 0.001 -5.22 0.43 < 0.001
S0-A1 : S1-A0 2.56 0.39 < 0.001 1.07 0.31 0.003 3.55 0.43 < 0.001
S1-A1 : S1-A0 -0.56 0.39 0.48 -0.82 0.31 0.039 -0.36 0.43 0.84
S1-A1 : S0-A1 -3.12 0.39 < .001 -1.89 0.31 < 0.001 -3.91 0.43 < 0.001

Table 1: Summary for the results of predictors of Surp, and of the interaction between SentPlaus and AttrPlaus. In
the pairwise comparisons cond1:cond2, the reference level is cond2 (meaning, if the estimate B is negative, the
Surprisal of cond1 is lower than Cond2, otherwise it is higher).

GPT-2 DistilGPT-2 GPTNeo
B SE p B SE p B SE p

Intercept 7.20 0.53 <0.001 7.84 0.56 <0.001 7.94 0.51 <0.001
SentPlaus 0.10 0.02 <0.001 0.06 0.02 0.011 0.16 0.02 <0.001
AttrPlaus 0.02 0.02 0.382 0.03 0.02 0.06 0.01 0.02 0.829
Length -0.07 0.01 <.001 -0.08 0.02 <0.001 -0.10 0.01 <0.001

SentPlaus:AttrPlaus 0.33 0.038 0.84
S1-A0 : S0-A0 -0.10 0.03 < 0.001 -0.06 0.03 0.078 -0.172 0.03 < 0.001
S0-A1 : S0-A0 -0.01 0.03 0.96 -0.01 0.03 0.967 -0.02 0.03 0.89
S1-A1 : S0-A0 -0.12 0.03 < 0.001 -0.11 0.03 < 0.001 -0.17 0.03 < 0.001
S0-A1 : S1-A0 0.09 0.03 0.003 0.05 0.03 0.214 0.15 0.03 < 0.001
S1-A1 : S1-A0 -0.02 0.03 0.77 -0.05 0.03 0.249 0.01 0.03 0.992
S1-A1 : S0-A1 -0.11 0.03 < 0.001 -0.10 0.03 < 0.001 -0.15 0.03 < 0.001

Table 2: Summary for the results of predictors of SentSurp, and of the interaction between SentPlaus and AttrPlaus.
In the pairwise comparisons cond1:cond2, the reference level is cond2 (meaning, if the estimate B is negative, the
Surprisal of cond1 is lower than Cond2, otherwise it is higher).

For each NLM, we fitted a linear mixed-effects
model using Surp or SentSurp as the dependent
variable, which was estimated for each of the exper-
imental stimuli. The independent variables were:
the plausibility of the sentence SentPlaus (plausi-
ble vs. implausible; plausible as the base of com-
parison), the plausibility of the attractor AttrPlaus
(plausible vs. implausible; plausible as the base
of comparison), their interactions, and the token
length of the stimulus length. We included items
as a random intercept in our models. We use the
LME4 package (Bates et al., 2014) for model fitting
and results; the pairwise comparisons with Tukey
adjustment were carried out by the EMMEANS pack-
age (Lenth, 2019) in R.

4 Results

The findings of the experiments are summarized in
Tables 1 and 2.

Considering the main effects, we found that all
models were able to distinguish plausible from im-

sum of the Surprisal scores, as per Reviewer 3’s comment.

plausible items at the sentence level (see SentPlaus
in Tables 1 and 2), with significantly higher Sur-
prisal scores for the latter.

As shown in Table 1, the models based on Surp
were also sensitive to the attractor plausibility, and
marginally to the token length of the stimuli. No
significant main effect of interaction between sen-
tence and attractor plausibility was found. The
models based on SentSurp (Table 2) were sensi-
tive to token length, but not to the attractor plau-
sibility, with the only exception of a marginal sig-
nificance for DistilGPT2. The SentSurp model
based on DistilGPT2 is the only one showing (at
least marginally) significant effects for the plausi-
bility of both sentence (p = 0.011) and attractor (p
= 0.06) and for their interaction (p = 0.038) (see
Table 2 and Figure 1), while no interaction was
found in any of the other models. The fact that
this behavior was found in the smallest model may
represent another case of what has been called “in-
verse scaling” in the NLM literature, that is, the
performance decreases at the increase of model
size (Wei et al., 2022; Jang et al., 2023), or in the
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case of psycholinguistic modeling, the behavior
becomes less human-like (Michaelov and Bergen,
2022b; Oh and Schuler, 2022).

The post hoc analyses of the pairwise compari-
son showed some interesting contrasts. We noticed
that significant differences were found between the
plausible sentences with plausible attractors and
the two implausible conditions (i.e. in Figure 1, a
vs. c and a vs. d, with ps < 0.001). Differently
from human total viewing times, no significant dif-
ferences and no consistent facilitatory effects are
observed between c and d in the SentSurp models
(notice also in Figure 1 that the median of condi-
tion d. is actually slightly lower than c., and the
medians for c. and d. tend to be close in all the
SentSurp models, cf. the boxplots in the Appendix,
right column), while facilitation is found for all the
Surp models.

Figure 1: Sentence Surprisal scores from DistilGPT-2
(means in yellow). Conditions are the same of Ex. 3.

It is also noticeable that all models show no sensi-
tivity to plausible attractors with the sentence-level
Surprisal metrics, but the Surprisal at the target
word with implausible attractors is always signifi-
cantly higher. However, since no significant main
effect of interactions was found for Surp models,
we conclude that semantic attraction seems to to
have a general facilitation effect on its own, regard-
less of sentence plausibility.

It would be interesting, in the future, to analyze
how the attractors concretely affect the predictions,
for example using techniques like contrastive ex-
planations (Yin and Neubig, 2022) that can shed
light on which tokens contribute to the prediction

of the target verb rather than a plausible alternative
word (in our case, this could be a verb in a thematic
fit relation with the implausible attractor noun, e.g.
drank for wine in examples 2. b-d).

5 Conclusions

In this work, we presented a study on Surprisal
to investigate whether NLMs predictions are sen-
sitive to semantic attraction. Our results on the
data of the eye-tracking experiment by Cunnings
and Sturt (2018) reveal that all models are sensi-
tive to the general plausibility of the sentence, and
that semantically-plausible attractors decrease the
Surprisal at the target phrase, although this effect
generally does not interact with sentence plausibil-
ity as in humans.

At the sentence level, no effects of attractor plau-
sibility were observed, with the only, partial excep-
tion of a marginal significance with DistilGPT2. In-
terestingly, the most human-like pattern -including
the interaction- has been observed with this model,
the smallest one, although the specific contrasts
between conditions pattern differently from human
total viewing times.
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Appendix

Descriptive statistics
The statistics for the Surprisal scores can be seen
in Table 3 and 4, while the logarithmic frequencies
of attractor and target nouns are in Table 5 and 6
(notice that the target nouns were the same in all
the experimental conditions).

Boxplots
The boxplots for the Surprisal scores for all the
metrics and models are shown in Figure 2.

Sentence
Models Min Max Mean Std
GPT-2 3.88 5.76 4.525 0.319

DistilGPT-2 4.150 6.010 4.824 0.399
GPT-Neo 3.400 5.460 4.268 0.391

Table 3: Cunnings dataset Surprisal mean descriptive
statistics (sentence).

Target
Models Min Max Mean Std
GPT-2 0.74 17.35 7.597 3.759

DistilGPT-2 0.67 19.66 7.984 3.039
GPT-Neo 1.40 18.09 7.308 3.819

Table 4: Cunnings dataset Surprisal mean descriptive
statistics (target phrase).

Cond. Min Max Mean Std
a,c 0.000002 0.000513 0.000085 0.000123
b,d 0.000001 0.000513 0.000077 0.000122

Table 5: Log-transformed frequency statistics for the at-
tractor nouns across conditions in the Cunnings dataset.
The frequencies were extracted with the Wordfreq li-
brary (Speer, 2022), which relies on the SUBTLEX
database (Van Heuven et al., 2014).

Cond. Min Max Mean Std
a,b,c,d 0.000001 0.000525 0.000053 0.000109

Table 6: Log-transformed frequency frequency statis-
tics for the target nouns in the Cunnings dataset. The
frequencies were extracted with the Wordfreq library
(Speer, 2022), which relies on the SUBTLEX database
(Van Heuven et al., 2014).

147



Figure 2: Boxplots of the Surprisal for all the metrics-model combinations: target Surprisal scores on the left,
sentence Surprisal on the right; GPT-2 in the top row, DistilGPT-2 in the middle row, GPTNeo at the bottom.
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Abstract

Recent advances in large language models have
prompted researchers to examine their abilities
across a variety of linguistic tasks, but little
has been done to investigate how models han-
dle the interactions in meaning across words
and larger syntactic forms—i.e. phenomena at
the intersection of syntax and semantics. We
present the semantic notion of agentivity as a
case study for probing such interactions. We
created a novel evaluation dataset by utilitiz-
ing the unique linguistic properties of a sub-
set of optionally transitive English verbs. This
dataset was used to prompt varying sizes of
three model classes to see if they are sensitive
to agentivity at the lexical level, and if they
can appropriately employ these word-level pri-
ors given a specific syntactic context. Over-
all, GPT-3 text-davinci-003 performs
extremely well across all experiments, outper-
forming all other models tested by far. In fact,
the results are even better correlated with hu-
man judgements than both syntactic and seman-
tic corpus statistics. This suggests that LMs
may potentially serve as more useful tools for
linguistic annotation, theory testing, and dis-
covery than select corpora for certain tasks.

1 Introduction

Consider the English sentences in (1) below:

(1) a. This author writes easily.

b. This passage writes easily.

These sentences display an interesting property of
certain optionally transitive verbs in English. Al-
though they share an identical surface syntactic
structure—a noun phrase in subject position fol-
lowed by the intransitive form of the verb and an
adverb phrase modifying the verb—they entail very
different things about the roles of their subjects.

The subject of (1a) is someone that does the
action of writing; in other words, this author is
an agent in the writing event. On the other hand,

the subject of (1b), this passage, doesn’t do any
writing—it is what is created in the event of writ-
ing. In contrast to this author, this passage is a
patient. The agent and patient roles are not dis-
crete categories, but rather prototypes on opposite
ends of a continuum. These “protoroles” have a
number of contributing properties such as causing
an event for agents and undergoing change of state
for patients (Dowty, 1991).

The contrast between the minimal pair in (1)
suggests that there are lexical semantic properties
of the subjects that give rise to these two distinct
readings: one that describes how the subject gen-
erally does an action as in (1a), and another that
describes how an event generally unfolds when the
subject undergoes an action as in (1b). Intuitively,
a speaker may know from the meaning of author
that authors are animate, have some degree of voli-
tion, and typically write things, whereas passages
(of text) are inanimate, have no volition, and are
typically written. The knowledge of these aspects
of meaning must somehow interact with the syn-
tactic form of the sentences in (1) to disambiguate
between the two possible readings, and an agent or
patient role for the subject follows from the mean-
ing of the statement as a whole.

Now consider the (somewhat unusual) sentences
in (2) which use the transitive form of write:

(2) a. Something writes this author easily.

b. This passage writes something easily.

At first glance, the above sentences (with the same
sense of write as in 1) are infelicitous unless we
imagine some obscure context where this author
is something like a character in a text and this pas-
sage is somehow anthropomorphized and capable
of writing; these contexts go against our natural
intuitions of the semantics of “passage” and “au-
thor”.1 Unlike the syntactic form of the sentences

1There is another reading of (2a) that uses a different sense
of write, where this author is a recipient (Something writes

149



in (1), the explicit inclusion of both arguments (sub-
ject and direct object) now forces whatever is in
subject position to be the agent and whatever is in
object position to be more like a patient, regardless
of the typical semantic properties of the arguments.

Taken together, the examples in (1) and (2)
illustrate a compelling interaction at the syntax-
semantics interface. More specifically, we see
a two-way interaction: first, near-identical sur-
face forms acquire completely different entailments
about their subjects solely depending on the choice
of subject, while conversely certain syntactic forms
can influence the semantic role of an argument re-
gardless of the usual behavior of said argument.
We aim to investigate the linguistic capabilities of
language models with regards to this interaction.

Prior work in studying LMs as psycholinguis-
tic subjects has largely focused on syntax and
grammatical well-formedness (Futrell et al. 2019;
Linzen and Baroni 2021, inter alia). However, as il-
lustrated in the above examples, there are instances
of near-identical syntactic structures that can give
rise to different meanings depending on the indi-
vidual lexical items as well as surrounding context.
Thus evaluating LMs on syntax, while a necessary
starting point, does not give us a sufficient measure
of LM linguistic capabilities. While other work
such as Ettinger (2020), Kim and Linzen (2020),
and Misra et al. (2022) (among others) evaluate
LMs on a variety of tests involving semantics and
pragmatics, they do not investigate the interaction
between the meanings associated with syntactic
forms and those of individual lexical items.

Thus, we not only need to evaluate syntax and
utilization of semantic knowledge, but we also need
to understand how interactions of meaning at dif-
ferent linguistic levels—i.e. morphological, lexical,
phrasal—may alter model behavior. Exploring phe-
nomena within the syntax-semantics interface is a
compelling approach as it gives us access to spe-
cific aspects of semantics while allowing precise
control over syntactic form between levels.

In this work, we probe the syntax-semantics in-
terface of several language models, focusing on
the semantic notion of agentivity. We do this by
prompting models to label nouns in isolation or in
context as either agents or patients from a curated
test set of noun-verb-adverb combinations that dis-
(to) this author easily). Regardless, given that the agent and
patient roles as defined by Dowty (1991) are prototypes on
a scale, this author in the recipient reading is closer to the
patient role.

play the alternation shown in example (1). We then
compare the performance of LMs to both human
judgements and corpus statistics.

Probing for LMs for their knowledge of agentiv-
ity in syntactic constructions as in (1) and (2) is a
particularly insightful case study as it allows us to
explore three interconnected questions in a highly
controlled syntactic setting:

I. Do models display sensitivity to aspects of
word-level semantics independent of syntactic
context, and is such sensitivity aligned with
human judgements? (§3.1)

II. Can models employ lexical semantics to deter-
mine the appropriate semantics of a sentence
where the syntax is ambiguous between read-
ings (as in 1)? (§3.2)

III. Can models determine the semantics of a sen-
tence from syntax, disregarding lexical seman-
tics when necessary (as in 2)? (§3.3)

Additionally, the relatively infrequent pairings of
semantic function and syntactic form of sentences
such as (1b) are also interesting from a learnabil-
ity and acquisition perspective for both LMs and
humans. How both come to process and acquire
exceptions to a general “rule” has been a topic of
debate since early connectionist models (Rumel-
hart and McClelland, 1986). Hence, knowledge of
LM capabilities in acquiring and processing these
linguistic anomalies may serve as valuable insight
to linguists, cognitive scientists, and NLP practi-
tioners alike.

2 Methodology

We constructed three experiments, each targeting
one of the above questions through the lens of agen-
tivity. We will first give a broad overview of each,
and then go into detail about the general approach.

Experiment 1 (§3.1) tests whether language
models are sensitive to the word-level semantics of
nouns with regards to agentivity, such as whether
nouns like author and passage are more likely to
be agents or patients without any surrounding con-
text. This is analogous to the idea that speakers
have intuition for how entities prototypically act
in events, e.g. that authors write and passages are
written, and that this extends to how we categorize
their roles in events (Rissman and Majid, 2019).

Experiment 2 (§3.2) tests whether language
models can disambiguate between the possible
readings of sentences of the form in (1)—i.e. if
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Figure 1: Prompt setup for each experiment. Note that the examples given for Exp 1 are not meant to be hard
labels, rather they are “tendencies” for these nouns. In Exp 2, the noun itself determines whether the sentence is
considered intr-agent or intr-patient; in Exp 3, we force the noun to take the agent or patient role by placing it in
subject (trans-agent) or object (trans-patient) position.

they can identify whether the syntactic subject is
an agent or a patient when the verb can allow for
either. Sentences with the intransitive form of the
verb that describe how the subject (an agent) does
an action demonstrate object drop (as the direct
object of the normally transitive verb is “dropped”),
while sentences that describe how an event unfolds
when the subject (a patient) undergoes an action
are called middles, short for the linguistic term dis-
positional middle (van Oosten 1977; Jaeggli 1986;
Condoravdi 1989; Fagan 1992, inter alia).2 In our
experimental setup, we will refer to these as intr-
agent and intr-patient, respectively. If a model
can do this task successfully by employing seman-
tic information about the noun, we would expect
not only to see that nouns in subject position are
classified correctly as agents or patients, but also
that these predictions for the most part correlate to
the predictions in the first experiment.

Finally, Experiment 3 (§3.3) tests whether lan-
guage models can disregard word-specific priors
to identify whether the noun of interest in a sen-
tence with a transitive verb (such as those in 2)
is an agent or patient. Since the semantic role of
the noun maps directly to its syntactic position in
these sentences, all subjects should be agents and
all objects should be patients. For our test set, we
create sentences where the position of the noun is
the subject (trans-agent) and sentences where it is
the object (trans-patient) for every noun.

2Note that in English, dispositional middles also allow for
what are considered non-patient promoted objects (such as
paths, e.g. The desert crosses easily) (Tenny 1994, 1992),
but for convenience we will treat them as being in the same
category as patients.

2.1 General approach and data curation
In all of these experiments, we rely on the prompt-
ing paradigm to elicit LM probabilities of an “agent”
or “patient” label for a given noun in isolation or
within a sentence. Our prompting method con-
sists of four examples with gold labels, followed
by the unlabeled test example in the same format,
as shown in Figure 1. As this task has not been
explored in prior literature, we had to construct our
own examples to test on.

The highly controlled syntactic setting that al-
lows us to explore the alternation in agentivity as
displayed in (1) and (2) is a double-edged sword—
while this setting provides us with a minimal pair, it
also restricts the types of verbs that work in this ex-
perimental setup. The second (intr-agent vs. intr-
patient) and third (trans-agent and trans-patient)
experiments require verbs that are optionally transi-
tive and have no preference for whether an agent or
a patient is the subject of the intransitive form, as in
(1). These requirements together highly constrain
the class of verbs that work in this experimental
setup, and as far we can tell there exists no defini-
tive list in the linguistics literature of English verbs
that display both properties.

As a starting point to curate a list of verbs, we
consulted literature on verbs that display object
drop (Gillon 2012; Fillmore 1986, as well as Levin
1993 for an overview of English verb classes). We
compiled a list of 23 verbs (see Appendix A),
though this list is certainly non-exhaustive. For
each verb, we list nouns and adverbs that can work
in combination with each other in all of the tem-
plates in Table 1. Criteria for adding nouns and
adverbs are listed in the Appendix B.
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In total, we have 233 unique nouns and a total of
820 noun-verb-adverb combinations. Out of these
combinations, 343 form intr-agent sentences and
477 form intr-patient sentences. Since we can put
any noun into syntactic subject or object position
for the transitive sentences, we have 820 sentences
each for trans-agent and trans-patient.

Sentence Template

This <noun> <verb> <adverb>.
intr-agent This author writes easily.

intr-patient This paper writes easily.

This <noun> <verb> something <adv>.

trans-agent This author writes something easily.
This paper writes something easily.

Something <verb> this <noun> <adv>.

trans-patient Something writes this author easily.
Something writes this paper easily.

Table 1: Templates for experiments 2 and 3. Sentences
highlighted in pink contain a <noun> with an “agent”
label, while those in blue with “patient”.

2.2 Approximating “ground truth” agentivity
labels for nouns out of context

Getting a gold “agent” or “patient” label is straight-
forward in the experiments with nouns in context:
for sentences with the intransitive this was done ad
hoc during data curation, and for sentences with the
transitive this is a one-to-one mapping to syntax.
However, using a hard label for nouns in isolation is
problematic as a semantic role label is meaningless
without context of the event; in principle, given an
appropriate context, anything can act upon some-
thing else or have something done to it (literally or
figuratively).

To get around this, we have two methods for
finding an approximate label for the “typical” agen-
tivity of a noun. The first was to collect human
judgements. 19 annotators (native/fluent bilingual
English proficiency) were given nouns without any
context and were tasked to judge how likely each
noun is to be an agent in any arbitrary event where
both an agent and patient are involved. Their judge-
ments were collected via ratings on a scale from 1
(very unlikely to be an agent) to 5 (very likely to
be an agent). For nouns that have multiple com-
mon word senses (e.g. “model” can refer to both a
fashion model or machine learning model, among
other things) we include a disambiguating descrip-
tion. This description does not contain any verbs or
other explicit indications of what events the noun

may occur in (e.g. for “model”, we give human
annotators “model (person)”).3 We then average
the ratings across all annotators and normalize so
that the values fall between 0 and 1. To calculate
inter-annotator agreement, we randomly divide the
annotators into two groups (of 9 and 10), average
their ratings for each noun, and calculate the cor-
relation between the two; doing this seven times
yields an average inter-group correlation of 0.968.

The second method uses statistics from linguisti-
cally annotated corpora as a proxy for the “typical”
agentivity of a noun. We do this by calculating
the frequency of “agenthood” for a noun (agent
ratio), i.e. dividing the number of times the noun
appears as an agent by the number of times it is
either an agent or patient. The ideal annotated cor-
pus for this would be one with semantic role labels
such as Propbank (Kingsbury and Palmer, 2002),
where the “ARG0” label corresponds to agent and
“ARG1” to patient. However, many of the nouns in
our data appeared only a few times in Propbank or
not at all—out of all 233 nouns, only 166 of them
occurred within an ARG0 or ARG1 span.4

Thus, we also tried utilizing syntax as a proxy
using Google Syntactic Ngrams biarcs (Goldberg
and Orwant, 2013), as it is significantly larger. The
biarcs portion of the corpus covers dependency
relations between three connected content words,
which includes transitive predicates. To calculate a
similar ratio, we divide the number of times a noun
occurs as a subject by the total number of subject
and direct object occurrences (we call this the sub-
ject ratio). A value closer to 1 should correlate
with a tendency to occur more often as an agent, as
agents are generally coded as subjects of English
transitive verbs and patients as direct objects. All
but one of our nouns contained at least one instance
of occurring with a “nsubj” or “dobj” label.

3 Experimental Results

We evaluate BLOOM (Scao et al., 2022), GPT-2
(Radford et al., 2019), and GPT-3 (Brown et al.,
2020) models of varying sizes for all experiments.
Since previous work has shown that models are
highly sensitive to the ordering of examples (Lu
et al., 2021), we run each experiment twice: once
with the order shown in Figure 1 where an agent

3Additional details on collecting human ratings can be
found in Appendix C.

4We used Propbank annotations for BOLT, EWT,
and Ontonotes 5.0 from https://github.com/
propbank/propbank-release.
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Figure 2: Correlation between subject ratio (from
Google Syntactic Ngrams) and human ratings for each
noun (r = 0.762). The semantic role label is the role
the noun takes as the subject of the intransitive verb
within our test set.

is first (APAP ordering) and again with the first
example moved to the bottom (PAPA ordering).
We compare models based on their average perfor-
mance across both orderings. Note, however, that
some models are more sensitive to orderings than
others; some models (like text-davinci-003)
are largely invariant to example ordering. In Ap-
pendix D, we report results from both experiments.

3.1 Exp 1: Agentivity at the lexical level
In order to see if models are sensitive to the notion
of how “typically” agentive a noun is, we compare
the difference in log-likelihood between predicting
“agent” or “patient” for that noun (δ-LL) with the
normalized human ratings as well as corpus statis-
tics from Google Syntactic Ngrams and Propbank.

Before we compare models with Ngrams and
Propbank, we first ask how well-correlated both
are with human ratings. We find that the subject
ratio calculated from occurrence counts in Google
Syntactic Ngrams is positively correlated with the
average human rating with Pearson’s r of 0.762,
though the human rating has a stronger divide be-
tween agents and patients. This can be seen in
Figure 2. When comparing with humans, using
Syntactic Ngrams for this task actually turns out to
be better than using Propbank: for the 166 nouns
that occur with ARG0/1 labels, there is a correla-
tion of 0.555 with human ratings (see Appendix E
for details).

Overall, as seen in Table 2, we find
that most models have a weak correlation

Figure 3: Correlation between δ-LL in Experiment 1
for GPT-3 davinci-003 and the normalized human
rating in the APAP experiment. Note that a negative
δ-LL means the “patient” label is more likely.

with human ratings, with the exception of
GPT-3 text-davinci-003 (henceforth
davinci-003), shown in Figure 3. We also
see that davinci-003 is not only both better
correlated with human judgements than with
corpus statistics, but surprisingly there is also a
stronger correlation between its δ-LL and human
ratings than between these proxies (syntactic
and semantic) and human ratings. In fact,
davinci-003 is extremely close to the average
inter-annotator group correlation, and furthermore
this correlation is largely invariant to the ordering
of prompts.

The observation that davinci-003 is better
correlated with human judgement than both syn-
tactic (Ngrams) and semantic (Propbank) corpus
statistics is intriguing as both types of corpora have
been used in modeling prediction of thematic fit, or
how well a noun fulfills a certain thematic role with
a verb (Sayeed et al., 2016). Thus, we may natu-
rally expect this to also work well with “general
tendencies” or typicality judgements for nouns by
themselves. However, it seems that such corpora
may be too small or genre-biased to fully capture
the nuances of human judgements, and such judge-
ments may be better captured by LMs that have
seen vast quantities of data across a wide variety of
domains, even without explicit human annotation.

3.2 Exp 2: Disambiguating agentivity with the
intransitive

In this experiment, we evaluate models along two
metrics: how accurate the model is in predicting the
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Model Human Ngrams PB

BLOOM 560m 0.549 0.519 0.377
BLOOM 1b1 0.374 0.358 0.291
BLOOM 1b7 0.340 0.288 0.278
BLOOM 3b 0.305 0.348 0.231
BLOOM 7b1 0.016 -0.129 0.011

GPT-2 small 0.650 0.569 0.463
GPT-2 medium 0.394 0.451 0.333
GPT-2 large 0.499 0.544 0.412
GPT-2 xl 0.358 0.349 0.227

GPT-3 ada-001 0.594 0.575 0.490
GPT-3 babbage-001 0.311 0.337 0.158
GPT-3 curie-001 0.107 0.181 0.128
GPT-3 davinci-001 0.467 0.461 0.330
GPT-3 davinci-003 0.939 0.730 0.574

Inter-annotator 0.968 – –
Google Syntactic Ngrams 0.762 – –
Propbank 0.555 – –

Table 2: Correlation between the difference in log-
likelihood of predicting “agent” or “patient” with human
ratings, subject ratio calculated from Google Syntactic
Ngrams (232/233 nouns), and agent ratio calculated
from Propbank (166/233 nouns), averaged across APAP
and PAPA experiments.

correct label in context and how strongly correlated
the δ-LL in this experiment is with the δ-LL from
Experiment 1.

Figure 4: Average accuracy for predicting the label of
nouns in intr-agent/intr-patient sentences. The black
line indicates majority class performance; blue bars
indicate above majority class performance.

Figure 4 shows the accuracy of each model
in predicting (giving a higher probability to) the
correct semantic label. Over half of the models
do not achieve chance performance (predicting
the majority class ≈ 0.582). Interestingly, we
find that there is no monotonic increase in per-
formance for this task with respect to model size
(Kaplan et al., 2020)—for example, performance
drops drastically between text-ada-001 and

text-babbage-001. This is also the case in
Experiment 1.

We also evaluate how strongly correlated the δ-
LL between predicting “agent” or “patient” for the
noun in subject position of the intransitive is with
the δ-LL of the noun in isolation. Since the role of
the noun in the intransitive is heavily dependent on
the meaning of the noun itself, if a model is using
this information to disambiguate we would expect
that the δ-LL in this experiment is correlated with
δ-LL from Experiment 1. Furthermore, we would
also want it to be strongly correlated with our ap-
proximate “ground truth” measures for agentivity,
especially human ratings.

These correlations are shown in Table 3. As ex-
pected, davinci-003 displays a strong relation-
ship between the δ-LL from intransitive sentences
with the δ-LL from Experiment 1, and furthermore
also has a strong correlation with human ratings.
Like in Experiment 1, davinci-003’s perfor-
mance is invariant to changes in example orders.

Model Noun δ-LL Human Ngrams PB

BLOOM 560m 0.605 0.217 0.147 0.100
BLOOM 1b1 0.702 -0.0344 0.0200 0.0511
BLOOM 1b7 0.540 0.706 0.562 0.441
BLOOM 3b 0.258 0.280 0.190 0.0871
BLOOM 7b1 0.385 0.161 0.124 0.0689

GPT-2 small 0.655 0.424 0.309 0.290
GPT-2 medium 0.611 0.523 0.516 0.505
GPT-2 large 0.551 0.609 0.489 0.447
GPT-2 xl 0.548 0.507 0.445 0.363

GPT-3 ada-001 0.541 0.496 0.358 0.307
GPT-3 babbage-001 0.127 -0.176 -0.170 -0.125
GPT-3 curie-001 0.130 0.156 0.189 0.0953
GPT-3 davinci-001 0.487 0.647 0.515 0.376
GPT-3 davinci-003 0.914 0.919 0.715 0.567

Table 3: Correlation between the δ-LL from intr-
agent/intr-patient sentences with the δ-LL from the
noun in isolation, human ratings, subject (Google Syn-
tactic Ngrams), and agent ratios (Propbank).

3.3 Exp 3: Agentivity with the transitive
As previously discussed, the syntactic position of
the noun in the transitive sentences (subject or ob-
ject) directly map to their semantic roles (agent
and patient, respectively). Figure 5 shows accuracy
split by trans-agent and trans-patient.

As in the previous experiments, GPT-3
davinci-003 outperforms all other models
(0.994 for trans-agent and 0.991 for trans-
patient—it is actually the only model which per-
forms significantly above chance for both Experi-
ments 2 and 3, and is also consistent across both
example orderings.
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Figure 5: Average accuracy across trans-agent, trans-
patient, and all transitive sentences. The dashed line
indicates chance performance.

4 A Closer Look at davinci-003

Given that GPT-3 davinci-003 does ex-
tremely well, a natural question to ask is
whether davinci-003 “fails” in similar ways
to humans—i.e. we can see whether the nouns that
are misclassified in the intransitive sentence setting
(§3.2) are more ambiguous to humans as well.

In both APAP and PAPA orderings, all or nearly
all of what davinci-003 gets incorrect are pa-
tient subjects; all 78 incorrectly classified subjects
of sentences in the APAP ordering are patients, and
69 of the 70 incorrect subjects in the PAPA order-
ing are patients. From this, one way to answer the
above question is to compare this subset of nouns
with the subset of nouns with a “patient” label (in
the intransitive construction) that humans tend to
rate as more agentive.

4.1 Animacy and thematic fit
Table 4 lists the latter subset of nouns, i.e. the
most “agent-like” nouns with a “patient” label in
the intransitive construction. Recall that human
annotators were asked to rate each noun in isola-
tion from a scale from 1 (very unlikely to be an
agent) to 5 (very likely to be an agent) which is
then normalized to a scale from 0 to 1, whereas
the gold labels for nouns are determined by role it
takes in the constructed (in this case, intransitive)
sentences.

Animate nouns, such as “model (person)”, “an-
imal”, and “fish” are unsurprisingly in this list,
as many linguists have noted that the notion of
agentivity is closely related to animacy (Silverstein

1976; Comrie 1989, inter alia). However, across
both orderings, the only noun that was misclassi-
fied was “model” in the sentence This model pho-
tographs beautifully/nicely. Nevertheless, it could
be argued that an agent interpretation in this context
is plausible.

It appears that there are two interactions that
are occurring in the above example. First, we
must consider the selectional restrictions and of
the verb, i.e. what arguments are allowable in the
event described by the verb (Chomsky 1965; Katz
and Fodor 1963). While selectional restrictions are
traditionally viewed as binary features, a weaker,
gradient version of this is selectional preferences,
or the degree to which an argument fulfills the re-
strictions of the event (Resnik, 1996). A closely
related notion to this is thematic fit, which is how
much a word fulfills these preferences.

Secondly, the Animacy Hierarchy—of which hu-
mans are at the top—plays a role in such selectional
restrictions and preferences, and thus in thematic
fit (Trueswell et al., 1994). Since photograph re-
quires a human-like entity as an agent, it could be
argued that the interpretation of “model” being an
agent in this sentence is not invalid (though likely
a less salient interpretation by English speakers),
as nothing in the “photographing” event rules out a
subtype of a human “model” being the agent. This
contrasts with the example with “animal” in our test
set (This animal photographs beautifully/nicely),
which would be far less acceptable with an animal
agent interpretation, and falls below “human model”
in the Animacy Hierarchy.

4.2 Verbs with vehicle objects
The other class of nouns present in Table 4, which
also happen to be the remaining nouns, are ve-
hicles. With regards to the relationship between
animacy and agentivity, prior work such as Zae-
nen et al. (2004) has noted that “intelligent ma-
chinery” (such as computers and robots) and ve-
hicles also often act as animates (below humans
and above inanimates). Interestingly, nearly half
of the examples that davinci-003 gets wrong
are sentences containing verbs with vehicle objects
(This car/vehicle/SUV/tractor/etc. drives nicely,
This jet/plane/aircraft/etc. flies smoothly). In fact,
the examples that davinci-003 gets the “most
wrong” (higher LLincorrect − LLcorrect) are sen-
tences with these verb-noun combinations.

Like the above examples with “model”, some of

155



Noun Human Ngrams Noun δ-LL

model (person) 0.806 0.523 8.06
animal 0.722 0.699 2.97
jet 0.583 0.562 7.27
aircraft 0.583 0.551 3.92
fish 0.569 0.467 -4.08
vehicle 0.542 0.468 4.66
bus 0.542 0.394 0.537
tank 0.542 0.564 -0.639
plane 0.528 0.565 11.1
car 0.528 0.565 3.83
motorcycle 0.514 0.184 5.11
truck 0.514 0.437 13.6
SUV 0.480 0.500 -2.27
tractor 0.401 0.500 11.2

Table 4: Nouns in intr-patient sentences with normal-
ized human ratings ≥ 0.5, along with their subject ratio
from Google Syntactic Ngrams and the average δ-LL
from nouns in isolation (3.1). The average δ-LL for “pa-
tient” nouns ranges from -15.7 to 13.6. Note that model
was presented to annotators with a disambiguating word
sense (person).

these sentences have a possible alternative reading
and are more ambiguous compared to sentences
with verbs like sell (as in, This car sells well.).
More specifically, they have a possible (though
also less salient) unergative reading: e.g. in This jet
flies smoothly, it could be a statement about how
the jet flies on its own as opposed to about how
the jet flies when someone flies it. Out of all the
sentences in the test set, these are the only ones
(along with some sentences with “turn”) where the
intr-agent has this possible unergative reading.

5 Related Works

There has been extensive work in the psycholin-
guistics literature investigating how humans make
use of the relationship between events described
by verbs and nouns that may participate in these
events, which is especially relevant to the analysis
described in §4.1. Works such as Tanenhaus et al.
(1989) and Trueswell et al. (1994) have shown that
humans utilize information about thematic fit to
resolve ambiguity in sentence processing, mainly
focusing on garden-path sentences.

Along this line of work, McRae et al. (1998) and
Padó (2007) created human judgement datasets for
thematic fit by asking humans to rate nouns asso-
ciated with events (e.g. a crook arresting/being ar-
rested by someone) on a scale from 1 (very uncom-
mon/implausible) to 7 (very common/plausible).
As stimuli, humans are given the noun, the verb de-
scribing the event, and the role of the noun. While

this setup is similar to our dataset, they focus on
the explicit relationship between the event and the
noun, while our data is meant to focus on the re-
lationship between the prototypical role of a noun
(out of context) and its role in a controlled syntactic
environment. Furthermore, as we would like the
agent/patient distinction to be a minimal pair result-
ing changing the noun in an identical surface form,
the sets of nouns and verbs between their studies
and ours only partially overlap.

This study also follows a well-established line of
work on LMs as psycholinguistic subjects (Futrell
et al. 2019; Ettinger 2020; Linzen and Baroni
2021, inter alia). A large portion of this work fo-
cuses on probing LMs for sensitivity to the well-
formedness of sentences containing various syn-
tactic structures such as subject-verb agreement
(Linzen et al., 2016), relative clauses (Gulordava
et al. 2018; Ravfogel et al. 2021), and filler-gap de-
pendencies (Wilcox et al., 2018), among others. A
closely-related work by Papadimitriou et al. (2022)
investigates how BERT classifies grammatical role
of entities in non-prototypical syntactic positions,
similar to our setup in Experiment 3.

There have also been works on evaluating and
probing LMs for semantic/pragmatic knowledge.
Ettinger (2020) created a suite of tests drawn
from human language experiments to evaluate com-
monsense reasoning, event knowledge, and nega-
tion. The COGS challenge (Kim and Linzen,
2020), which contains related tests to ours with
regards to argument alternation, tests for whether
LMs can learn to generalize about passivization
and unnacusative-transitive alternations in English.
Misra et al. (2022) test LMs for their ability to at-
tribute properties to concepts and further test prop-
erty inheritance. With regards to lexical semantics,
Vulić et al. (2020) investigate how type-level lexi-
cal information from words in context is stored in
models across six typologically diverse languages.

However, our work is distinct from both pre-
vious syntax- and semantics-focused probing and
evaluation in its focus on the interactions between
the aspects of meaning in individual lexical items
with larger syntactic structures or constructions.
Nevertheless, methodologies from these research
areas have informed the construction of our experi-
ments. Our use of minimal pairs to form sentences
with contrasting semantic roles is similar to the
construction of the BLiMP dataset (Warstadt et al.,
2020) and other test suites. Furthermore, we treat
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the “agent”/“patient” labelling task as classifica-
tion based on the generation probabilities of the
labels, following Linzen et al. (2016)’s method of
using generation probabilities for grammaticality
judgements.

Another relevant recent line of work within
NLP is inspired by Construction Grammar (CxG),
a branch of theories within cognitive linguistics
that posits that constructions—defined as form-
meaning pairings—are the basic building blocks of
language (Goldberg 1995; Croft 2001, inter alia).
Mahowald (2023) conducted a similar prompt-
ing experiment on the English Article-Adjective-
Numeral-Noun construction, though this was fo-
cused on grammaticality judgements as opposed
to aspects of semantics. Weissweiler et al. (2022)
probe for both syntactic and semantic understand-
ing of the English comparative correlative. Our
study differs in that we analyze the impact of indi-
vidual lexical items in what otherwise appears to
be an identical syntactic construction, as opposed
to analyzing competence of the construction as a
whole. Finally, Li et al. (2022) find that sentences
sharing the same argument structure constructions
(ASCs) are closer in the embedding space than
those sharing the main verb; in light of our results,
an interesting direction would be to see if sentences
of the same surface construction may cluster based
on finer-grained semantic distinctions.

One consequence of our work—specifically with
regards to davinci-003’s extremely high cor-
relation with human judgements—is the potential
for LMs as a tool for discovery in theoretical lin-
guistics. This also has been argued recently by
Petersen and Potts (2022), who demonstrate this in
the realm of lexical semantics through a case study
of the English verb break.

6 Conclusion

In order to gain insight into the behavior of LMs
with respect to the syntax-semantics interface, we
created a suite of prompting experiments focus-
ing on agentivity. We prompt varying sizes of
BLOOM, GPT-2, and GPT-3 to see if they are sen-
sitive to aspects of agentivity at the lexical level,
and then to see if they can either utilize or discard
these word-level priors given the appropriate syn-
tactic context. GPT-3 davinci-003 performs
exceptionally well in all three of our experiments—
outperforming all other models tested by far—and
is even better correlated with human judgements

than some proxy corpus statistics. We find it sur-
prising that davinci-003 is able to capture an
abstract notion of agentivity extremely well, but
this ability does not appear to come from the size of
the model alone as performance does not increase
monotonically across any of the model families
tested. What aspects of model training/data con-
tribute to davinci-003’s (or other models’) per-
formance on linguistic tasks may be an interesting
area for future work.

Furthermore, a qualitative analysis of what
davinci-003 gets incorrect reveals examples
involving a number of linguistic confounders that
make them more ambiguous to humans as well.
The model’s ability to “pick out” these linguisti-
cally interesting examples, combined with the high
correlation with human ratings in Experiment 1,
showcases the potential of LMs as tools for linguis-
tic discovery for new phenomena, such as finding
new classes of words or syntactic constructions that
behave in unexpected ways. We hope these results
encourage a more lively discussion between NLP
researchers and linguists to unlock the potential of
LMs as tools for theoretical linguistics research.

7 Limitations

While the use of a particular subset of English tran-
sitive verbs allows us to have precise control over
the surface forms we are evaluating LMs on, this
restricts our scope to a specific alternation in one
language as well as a relatively small evaluation set.
Nevertheless, we hope the methodology presented
in this work can be extended to other phenomena
across languages.

Additionally, while we explored a variety of
ways to prompt these models, it may be the case
that the prompt is non-optimal and therefore does
not elicit the best possible output with respect to the
task. Furthermore, the “prompt” to elicit human
judgements is not the same as the prompt given
to models, nor are the output formats (humans are
asked to respond on a discrete scale from 1-5, while
models are evaluated by their label log likelihoods).
Evaluating whether the methodology in this line
of work is a fair comparison between models and
humans may be an interesting direction for future
work.
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. BLOOM: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Michael Silverstein. 1976. Shifters, linguistic cate-
gories, and cultural description. Meaning in anthro-
pology.

Michael K. Tanenhaus, Greg Carlson, and John C.
Trueswell. 1989. The role of thematic structures in
interpretation and parsing. Language and Cognitive
Processes, 4(3-4):SI211–SI234.

Carol Tenny. 1992. The aspectual interface hypothesis.
pages 490–508. CSLI Publications, Stanford.

Carol Tenny. 1994. Aspectual Roles and the Syntax-
Semantic Interface. Kluwer, Dordrecht.

J.C. Trueswell, M.K. Tanenhaus, and S.M. Garnsey.
1994. Semantic influences on parsing: Use of the-
matic role information in syntactic ambiguity resolu-
tion. Journal of Memory and Language, 33(3):285–
318.

Jeanne van Oosten. 1977. Subjects and agenthood in
English. In CLS 13, pages 451–471.
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A Noun-Verb-Adverb Combinations
verb sells

nouns
patients: toy, book, novel, magazine,
hat, lotion, album, car, SUV, prod-
uct, make, item, CD, drug, snack
agents: salesman, saleswoman,
businessman, businesswoman,
trader, peddler, telemarketer, dealer,
shopkeeper

adverbs easily, well, quickly

verb drives

nouns
patients: car, SUV, truck, convert-
ible, vehicle, tank, bus, tractor, van
agents: driver, person, chauffeur

adverbs nicely, smoothly, well

verb flies

nouns
patients: plane, kite, jet, aircraft
agents: pilot, person, aviator, cap-
tain

adverbs nicely, smoothly, well

verb cooks

nouns
patients: mushroom, pepper, fish,
salmon, tuna, fillet, vegetable, herb,
meat, ingredient, steak
agents: chef, cook, baker, caterer

adverbs nicely, well, terribly

verb bakes

nouns
patients: pizza, potato, bread, cake,
pastry, dough, pie, clay
agents: patissier, chef, cook, baker,
person, confectioner

adverbs nicely, well, terribly

verb reads

nouns
patients: passage, poem, verse, line,
passage, script, abstract, essay, let-
ter, report
agents: student, orator, person,
narrator, announcer, broadcaster,
teacher

adverbs nicely, well

verb paints

nouns
patients: wall, fabric, glass, canvas,
wood, surface, panel
agents: painter, artist, person, illus-
trator, portraitist

adverbs easily, terribly, well, beautifully

verb writes

nouns
patients: section, passage, proposal,
code, essay
agents: student, person, notetaker,
journalist, scribe, doctor, professor,
essayist, blogger, poet, novelist, au-
thor

adverbs quickly, easily

verb performs

nouns
patients: routine, song, choreogra-
phy, sonata, concerto, scene
agents: musician, person, actor, co-
median, dancer, singer, soloist

adverbs easily

verb photographs

nouns
patients: building, animal, land-
scape, lake, mountain, model, view
agents: photographer, cameraman

adverbs nicely, beautifully

verb plays

nouns
patients: cello, piano, violin, instru-
ment, flute, clarinet
agents: musician, violinist, cellist,
pianist, drummer, flutist, clarinetist

adverbs nicely, beautifully

verb cuts

nouns
patients: meat, cardboard, packag-
ing, board, paper, fabric
agents: hairdresser, barber, butcher,
chef

adverbs nicely, roughly, cleanly, effortlessly

verb cleans

nouns
patients: jewelry, window, counter-
top, floor, surface, carpet, wind-
shield, mirror, pot, silverware, bed-
ding
agents: janitor, maid, cleaner,
housekeeper, busboy, waiter, wait-
ress

adverbs easily, quickly, effortlessly

verb washes

nouns
patients: bottle, tub, shirt, car, wind-
shield, dish, bedding, blanket, bowl
agents: worker, maid, cleaner, bus-
boy

adverbs easily, quickly

verb shaves

nouns
patients: beard, stubble, sideburn
agents: barber, hairdresser

adverbs neatly, nicely, smoothly
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verb packs

nouns
patients: crate, lunchbox, basket, con-
tainer, coat, jacket, bag, duffle, food,
suitcase, tent, backpack
agents: mover, traveller, clerk, worker,
backpacker, roadtripper, hiker, camper

adverbs well, easily

verb stitches

nouns
patients: silk, quilt, cotton, cut, cloth,
fabric, wound
agents: surgeon, tailor, machine, up-
holsterer, dressmaker

adverbs easily, smoothly, nicely, poorly

verb embroiders

nouns
patients: cushion, thread, cloth, fabric
agents: tailor, seamster, seamstress

adverbs well, nicely, beautifully, poorly

verb knits

nouns
patients: yarn, wool, pattern
agents: person, lady, man, woman

adverbs well, nicely, beautifully, poorly, easily

verb sews

nouns
patients: fabric, material
agents: tailor, seamster, machine

adverbs well, nicely, beautifully, poorly

verb turns

nouns
patients: screw, knob, car, bike, motor-
cycle, valve, handle
agents: driver, racer, motorist, pilot

adverbs smoothly, easily, nicely, roughly

verb carves

nouns
patients: pumpkin, wood, stone, gem,
ice, steak, turkey
agents: sculptor, person, jeweler, arti-
san, carver

adverbs beautifully, nicely, cleanly, flawlessly

verb sculpts

nouns
patients: wood, stone, marble, ice,
clay
agents: sculptor, person, potter, ma-
son, carver

adverbs beautifully, nicely, cleanly

B Data Curation Criteria

After collecting a list of optionally transitive verbs
that appear as intransitive via object drop (agent
subject) or object promotion in the form of the mid-
dle construction (patient subject), we then had to

curate adverbs and nouns that work in the templates
as described in Table 1.

Adverbs must be manner adverbs, but they
should not be agent-oriented adverbs (Jackendoff
1972; Ernst 2001) that express the mental state of
the agent. Examples of such adverbs include furi-
ously, happily, angrily, etc.

Then for each verb and a list of adverbs for each
verb, we come up with a list of patient and agent
nouns. All of the nouns must work in intransitive
and transitive templates using the same sense of the
verb. For nouns added as patients in the intransitive,
the noun must not be an entity that causes the event
described by the verb. Furthermore, it should not
be necessarily oblique in the transitive form. In the
example below, needle cannot be the direct object
of the transitive and can only appear in the with
prepositional phrase, so we do not include it in the
list of nouns:

(4) a. This needle sews easily.

b. The tailor sews easily with this needle.

c. *The tailor sews this needle easily.

For nouns added as agents, in the intransitive it
must be clear that the noun is the one doing the
action. For human agents, we try to add agents that
are most closely associated to the action described
for the event, especially with those that tend to take
human direct objects in the transitive form, such as
shave.

C Human Annotation Details

We had 19 human annotators rate all 233 unique
nouns on Google Forms. Each annotator saw a
different random order of the nouns and were pre-
sented with 10 nouns on each page of the form,
though they could go back to alter previous re-
sponses. All annotators are fluent in English. An-
notators were also asked to self-identify as native or
non-native speakers; 14 of 19 consider themselves
native speakers.

For nouns that have multiple common and highly
distinct word senses, we gave annotators a short dis-
ambiguating description. This description does not
contain any verbs or any other indicator for what
types of events the entity may occur in. A list of
these nouns with their disambiguating description
is given in Table 5.
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Noun Description

make product of a particular company, such as of a
car

plane airplane
kite a light frame covered with paper, cloth, or plas-

tic, often with a stabilizing tail
jet aircraft

line of a text/a poem/etc.
passage of a text/an essay/etc.
panel of wood/a hard surface/etc.
model person
routine a part of an entertainment act
board a long, thin, flat piece of wood or other hard

material
letter a sheet of paper with words on it in an envelope

proposal a formal plan or suggestion
turkey meat

Table 5: Nouns and disambiguating descriptions given
to annotators.

C.1 Instructions provided to annotators
An agent is something that initiates an action,
possibly with some degree of volition. In other
words, nouns that tend to be agents have a tendency
to do things.

A patient is something that undergoes an action
and often experiences a change. In other words,
nouns that tend to be patients have a tendency to
have things done to it.

In this form, you are tasked to annotate how
"agentive" you think a noun typically is—in other
words, how likely it is to be an agent or a patient
when an action involving both an agent and a
patient occur.

Ex: The plant was watered by John.
The plant = patient
John = agent

Ex: The sun burns John.
The sun = agent
John = patient

A more formal definition is given by Dowty (1991),
who outlines contributing properties of agents and
patients:

(1) Contributing properties for the Agent Proto-
Role:

• volitional involvement in the event or
state — sentience (and/or perception)

• causing an event or change of state in
another participant

• movement (relative to the position of an-
other participant)

• (exists independently of the event named
by the verb)

(2) Contributing properties for the Patient Proto-
Role:

• undergoes change of state

• incremental theme (something that
changes incrementally over the course
of an event)

• causally affected by another participant

• stationary relative to movement of an-
other participant

• (does not exist independently of the
event, or not at all)

For the sake of simplicity, disregard events de-
scribed by reflexives (such as John shaved himself).
For each of the following nouns, rate it on the
following scale:

1 = very unlikely to be an agent
2 = somewhat unlikely to be an agent
3 = no preference between agent and patient
4 = somewhat likely to be an agent
5 = very likely to be an agent

Figure 6: Example of Google Form question format
given to annotators.
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Model APAP PAPA δ

BLOOM 560m 0.566 0.531 0.036
BLOOM 1b1 0.384 0.365 0.019
BLOOM 1b7 0.308 0.371 0.062
BLOOM 3b 0.476 0.133 0.343
BLOOM 7b1 -0.118 0.150 0.268

GPT-2 small 0.648 0.652 0.004
GPT-2 medium 0.420 0.367 0.053
GPT-2 large 0.501 0.496 0.005
GPT-2 xl 0.486 0.231 0.255

GPT-3 ada-001 0.589 0.598 0.009
GPT-3 babbage-001 0.394 0.228 0.166
GPT-3 curie-001 0.418 -0.204 0.622
GPT-3 davinci-001 0.579 0.356 0.223
GPT-3 davinci-003 0.934 0.943 0.010

Table 6: Experiment 1: Correlation between the differ-
ence in log-likelihood of predicting “agent” or “patient”
with human ratings for nouns in isolation in both exam-
ple orderings.

D Results by Example Order

Tables 6, 7, and 8 show performance in both APAP
and PAPA orderings in Experiments 1 (nouns in
isolation), 2 (nouns in intransitive sentences), and
3 (nouns in transitive sentences) respectively. For
simplicity, we only report correlations with human
judgements.

Both GPT-3 davinci-001 and
davinci-003 are very robust to changes
in example ordering for all three experiments, as
are BLOOM 560m and 1b1. The three largest
BLOOM models are remarkably sensitive to
ordering, especially in Experiment 3, as are GPT-2
xl and GPT-3 curie-001 and babbage-001.

E Propbank Statistics

When calculating model correlations with Prop-
bank, we use all nouns with at least one occurrence
of appearing within an ARG0/1 span in the parse
tree to maximize the number of nouns we can com-
pare with. However, we recognize that this may
mess with correlation values since nouns with only
one occurrence will have values at either 0 or 1.
Furthermore, depending on the role the noun has in
that particular sentence, it may push its agent rat-
ing to the opposite end of the spectrum compared
to its “typical” behavior. Thus, we also tried cal-
culating the correlation only for nouns that occur

Model APAP PAPA δ

BLOOM 560m 0.214 0.219 0.005
BLOOM 1b1 -0.096 0.027 0.124
BLOOM 1b7 0.618 0.795 0.177
BLOOM 3b 0.049 0.512 0.463
BLOOM 7b1 0.050 0.272 0.223

GPT-2 small 0.658 0.190 0.468
GPT-2 medium 0.546 0.500 0.047
GPT-2 large 0.632 0.586 0.045
GPT-2 xl 0.484 0.531 0.047

GPT-3 ada-001 0.574 0.417 0.157
GPT-3 babbage-001 -0.030 -0.322 0.292
GPT-3 curie-001 0.045 0.266 0.221
GPT-3 davinci-001 0.673 0.622 0.051
GPT-3 davinci-003 0.927 0.911 0.017

Table 7: Experiment 2: Correlation between the differ-
ence in log-likelihood of predicting “agent” or “patient”
with human ratings for nouns in intransitive sentences
in both example orderings.

some greater number of times (within an ARG0/1
span) in Propbank. We call the minimum number
of times the noun must appear the count threshold.

Figure 7 plots the Propbank agent ratio correla-
tion with human ratings against the count threshold
(in green). We also plot the number of nouns that
meet this count threshold (in blue). The minimum
count threshold to have a greater correlation than
Google Syntactic Ngrams (pink line) is 27, how-
ever only 33 nouns meet this threshold. To meet
meet the average human inter-annotator group cor-
relation, the threshold is 268; only two nouns meet
this.

F Adjusting Threshold for Exp 2

We also considered the possibility that the mod-
els may have a bias towards either the “agent” or
“patient” label and may actually be correctly classi-
fying nouns given an appropriate non-zero thresh-
old for δ-LL. To account for this, we recalculate
accuracies with thresholds that provide the best per-
formance for each model as an “upper bound” for
performance, as seen in Figure 8. After this adjust-
ment, all models do at least as well as predicting
the majority class, with GPT-2 xl experiencing
the largest gain in accuracy. Nevertheless, GPT-3
davinci-003 still outperforms all other models
by far.
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trans-agent trans-patient

Model APAP PAPA δ APAP PAPA δ

BLOOM 560m 0.034 0.090 0.056 0.962 0.932 0.031
BLOOM 1b1 0.620 0.781 0.161 0.516 0.457 0.059
BLOOM 1b7 0.940 0.013 0.927 0.007 0.989 0.982
BLOOM 3b 1.000 0.059 0.941 0.000 0.895 0.895
BLOOM 7b1 0.974 0.017 0.957 0.088 1.000 0.912

GPT-2 small 0.313 0.796 0.483 0.811 0.210 0.600
GPT-2 medium 0.121 0.000 0.121 0.877 1.000 0.123
GPT-2 large 0.829 0.389 0.440 0.163 0.623 0.461
GPT-2 xl 0.978 0.001 0.977 0.018 1.000 0.982

GPT-3 ada-001 0.313 0.089 0.224 0.611 0.933 0.322
GPT-3 babbage-001 0.987 0.044 0.943 0.023 0.994 0.971
GPT-3 curie-001 0.353 0.034 0.319 0.740 0.963 0.224
GPT-3 davinci-001 0.987 0.968 0.018 0.413 0.427 0.013
GPT-3 davinci-003 0.996 0.993 0.004 0.999 0.984 0.015

Table 8: Experiment 3: Accuracy in both example orderings for predicting the role of the noun in transitive
sentences, where trans-agent corresponds to the noun in subject position and trans-patient to object position.

Figure 7: Count threshold versus the correlation be-
tween noun agent ratios and human ratings and the num-
ber of unique nouns that surpass the threshold. The pink
horizontal line shows the correlation of Google Syntac-
tic Ngrams with human ratings; the black line shows the
average inter-annotator group correlation.

Figure 8: Average accuracy for predicting the label in
intr-agent/intr-patient sentences with adjusted thresh-
olds. After this adjustment, all models are at or above
majority class accuracy. Magenta segments show in-
crease in performance.
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Abstract
For Pretrained Language Models (PLMs), their
susceptibility to noise has recently been linked
to subword segmentation. However, it is un-
clear which aspects of segmentation affect their
understanding. This study assesses the robust-
ness of PLMs against various disrupted segmen-
tation caused by noise. An evaluation frame-
work for subword segmentation, named Con-
trastive Lexical Semantic (CoLeS) probe, is
proposed. It provides a systematic categoriza-
tion of segmentation corruption under noise and
evaluation protocols by generating contrastive
datasets with canonical-noisy word pairs. Ex-
perimental results indicate that PLMs are un-
able to accurately compute word meanings if
the noise introduces completely different sub-
words, small subword fragments, or a large
number of additional subwords, particularly
when they are inserted within other subwords.

1 Introduction

The capability to understand the meaning of noisy
words through character arrangements is a crucial
aspect of human cognitive abilities (Rawlinson,
2007). This capability is highly sought after in
practical applications such as machine translation
and sentiment analysis (Belinkov and Bisk, 2018).
However, despite their success in in-distribution
test data with standardized word forms, Pretrained
Language Models (PLMs), which serve as the back-
bone models, tend to perform poorly on rare or
noisy words (Kumar et al., 2020; Baron, 2015).
These noisy words may be caused by accidental ty-
pos (Belinkov and Bisk, 2018) or spelling variants
on social media (Ritter et al., 2010).

Prior studies show that most subword-based
PLMs perform poorly under noise largely due to
subword segmentation (Zhuang and Zuccon, 2022),
while character-based PLMs show more robustness
(El Boukkouri et al., 2020). Examining the impact
of subword segmentation factors on PLMs is also
crucial for defending against the adversarial attacks

that leverage the sensitivity of subword segmenta-
tion to noise (Liu et al., 2022). However, rare work
has investigated how the subword segmentation
from noisy words affects the word meaning.

To help address this question, we design and de-
velop a contrastive framework (CoLes) to assess
the robustness of PLMs in the face of various forms
of segmentation corruption. As subword segmen-
tation can be influenced by noise in various ways,
such as adding extra subwords or losing original
subwords, we systematically categorize the ways
into four main categories and two additional sub-
categories based on three subword sets, as exem-
plified in Table 1. Two types of noise models are
proposed to effectively generate all the types of
corruption except missing corruption, and a con-
trastive dataset consisting of noisy and standard
word pairs is created. This framework enables us
to evaluate the significance of preserved subwords
and the impact of subwords added by noise.

The experimental results provide the following
insights: 1) complete corruption: the PLMs strug-
gle to infer meaning accurately if no subwords from
the original segmentation are retained. The worst
performance is observed when the meaning of orig-
inal words is stored in the embedding; 2) partial
corruption: preserving larger subword chunks can
aid the understanding of PLMs, whereas retaining
smaller subword pieces tend to be ineffective; and
3) additive corruption: even with all original sub-
words, however, the addition of subwords can harm
the meaning of words, particularly when they are
placed within other subwords. The more additive
subwords, the greater the deviation in word seman-
tics. All the results are consistent on the three
PLMs with different vocabularies and segmenta-
tion algorithms.

2 Contrastive Lexical-Semantic Probe

The CoLeS probe framework has segmentation
corruption and noise models that produce noisy
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Corruption Types Examples Segmentation Sets

Missing Overlap Additive

Complete (intact) tasty→ taaasty tasty ta, aa, sty
Complete stun→ stunn s, tun stu, nn
Partial effectiveness→ efeectiveness effect iveness efe, ect
Additive (infix) insubstantial→ insuubstantial ins, ub, stan, tial u
Additive (affix) hilarious→ hilariousss hil, ario, us s, s
Missing insubstantial→ insstantial ub ins, stan, tial

Table 1: Examples of different types of segmentation corruption. Complete/partial: completely/partially disrupting
the original segmentation; additive: creating unnecessary subwords; missing: ignoring a token. A distinct form of
complete corruption, referred to as “intact corruption”, arises when a clean word is tokenized into a single subword
that does not appear in the segmentation of its noisy counterpart. In the given example of intact corruption, the term
“tasty” serves as an intact token.

words leading to different types of segmentation
corruption. These noisy words, along with their
corresponding canonical forms, are organized in a
contrastive lexical dataset Dcontrastive

1. An evalua-
tion protocol is designed to examine the effect of
various corruption types.

2.1 Segmentation Corruption under Noise

A PLM consists of a tokenizer Seg(·), which seg-
ments a given word w into a sequence of subwords,
i.e., Seg(w) = (w̃1, ..., w̃K), and a PLM encoder
Enc(·), which takes Seg(w) and outputs a word
representation. Formally, the segmentation of a
canonical word Seg(w) can be represented as a set
S, while the segmentation of a noisy word Seg(w̃)
can be represented as set S̃ = {w̃1, ..., w̃K}. We
can then utilize set operations to define the over-
lap set (consisting of retained subwords), the miss-
ing set, and the additive set (comprising additional
tokens that are not present in S) as O = S ∩ S̃,
M = S−O and A = S̃−O, respectively.

The set data structure cannot count duplicated to-
kens, which frequently occur in additive corruption
scenarios, such as the additive (affix) corruption
example presented in Table 1. Hence, we utilize
a multiset implementation of S and S̃ since such
a data structure also stores the frequencies of ele-
ments, helping us assess the impact of duplicated
tokens. Since the multiset implementation only in-
cludes unique elements without considering their
order of appearance, we further differentiate the
two types of additive corruption by iteratively com-
paring elements from two queue implementations
of Seg(w) and Seg(w̃).

In this study, we distinguish a unique category of
1Sentiment lexicon used is from https://www.

cs.uic.edu/~liub/FBS/sentiment-analysis.
html#lexicon.

corruption referred to as “intact corruption” from
complete corruption, as the canonical words in
this category (with whole-word vectors) remain
unchanged. In total, there are six different types of
corruption, as outlined in Table 1.

Identification of corruption types. During the
evaluation, we need to filter each word pair ac-
cording to its corruption type. First, we segment
each word pair in Dcontrastive by a model-specific
tokenizer Seg(·) into subwords (S, S̃). We then
identify the corruption type according to the fol-
lowing conditions: 1) Complete corruption: S and
S̃ are disjoint, i.e., O = ∅. If the length of the miss-
ing set M is 1, this noise leads to intact corruption;
2) Partial corruption: the corruption only occurs to
one of the subwords (i.e., the one in M), and the
other subwords (i.e., those in O) are not affected.
The prerequisite is that there exist more than one
subwords in the original segmentation set S. We
can find such word pairs satisfy M,O,A ̸= ∅; 3)
The conditions for additive corruption and missing
corruption are S ∈ S̃ (or M = ∅) and S̃ ∈ S (or
A = ∅), respectively. 2

2.2 Creation of Contrastive Dataset

Most prior noisy datasets added noise to sentences,
not individual words (Belinkov and Bisk, 2018; Ku-
mar et al., 2020; Warstadt et al., 2019; Hagiwara
and Mita, 2020). Besides, as contrastive datasets
containing both the original and noisy form of a
word are not readily available, we create our own
lexical dataset which includes both forms. Exam-
ples of the generated dataset can be found in Table
2.

2See https://github.com/xinzhel/word_
corruption/blob/main/word_corruption.py
for concrete implementation.
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Canonical Words Keyboard Swap Letter-reduplication
bad NA NA badddddddd, baaaadddd, bbbbaaaaddddd
crazy craxy carzy crazzyyyyyyyyy, crazzzzzy
amazing amazijg amzaing amazing, amazinnng, amazinggg, amaaazzziiingggg

Table 2: Examples of contrastive datasets with canonical-noisy word pairs. Three types of noise models are applied:
Swap-typos, Keyboard typos and letter reduplication. NA: we discard generated noisy words since typos on these
words generate noisy words that are even unrecognizable to humans.

Noise models. Two sources of noise models are
used to generate the lexical dataset. Findings given
in Appendix E indicate that both types of noise
models have comparable effects on model perfor-
mance.

1) Naturally and frequently occurring typos.
Users often type neighboring keys due to mobile
penetration across the globe and fat finger problem
(Kumar et al., 2020), while typing quickly may
result in swapping two letters Belinkov and Bisk
(2018). We refer to them as Keyboard and Swap
typos, respectively. Our implementation of these
typos is based on Wang et al. (2021). Specifically,
for Keyboard, we only use letters in the English
alphabet within one keyboard distance as the sub-
stitute symbols. Further, we avoid unrecognizable
word forms (e.g., “bad→bqd” or “top→ tpp”) by
selecting words with more than four characters.

According to the psycholinguistic study (Davis,
2003), to make noisy words recognizable for hu-
mans, we only apply noise to the middle characters
and keep characters at the beginning and the end.
Besides such a constraint, Swap typo also requires
at least two distinct characters in the middle for
swapping. However, words like “aggressive” can
still be transformed into the same word by swap-
ping “ss”, so we transform them until we get a
distinct word. Finally, we set a one-edit constraint
for typos.

2) Non-standard orthography. We gather
words with letter reduplication from 1.6 million
tweets (Go et al., 2009). To create the canoni-
cal and noisy word pairs, we match specific noisy
word forms (e.g. words with repeated letters for
emphasis) to their corresponding canonical forms
(a sequence of definite characters). We use sim-
ple regular expression patterns to search for words
with repeated letters 3. Examples in Table 3 show
how effective these types of noise are in triggering
different types of segmentation corruption.

3For example, pattern “\bb+a+d+” for “bad” matches “bad-
ddddddd”.

Data-generating process. We create a con-
trastive dataset, Dcontrastive, by applying the noise
models to the lexical dataset Dcanonical, which con-
tains words in their canonical form. The noise
models are applied to each word in Dcanonical to
create two misspelled words. Additionally, a ran-
dom number of noisy words is extracted from the
collection of 1.6 million tweets. As for the lexi-
cal dataset, Dcanonical, we choose adjectives from
a sentiment lexicon that, by definition, provides
positive or negative sentiment labels for use with
downstream classifiers.

Evaluation. To assess the extent to which the
meanings of noisy words diverge from the standard
word forms, we calculate the cosine similarity be-
tween Enc(S) and Enc(S̃). For words that consist
of multiple subwords, we aggregate their vectors
into a single representation by averaging the token
embeddings obtained from the PLMs. It is impor-
tant to note that the output embedding spaces of
PLMs exhibit varying levels of anisotropy (Etha-
yarajh, 2019; Yan et al., 2021; Gao et al., 2019).
Thus, the similarity scores cannot be directly com-
pared across different models. It is necessary to
set a baseline by computing the similarity between
Enc(S) and a random embedding (we use the em-
bedding of token “the”, i.e., Enc(the)).

Additionally, we fine-tune downstream classi-
fiers denoted as y = Cls(x), where y represents
an arbitrary semantic dimension and x corresponds
to the encoded representation obtained from the
PLMs Enc(Seg(·)). We focus on sentiment clas-
sification as individuals frequently use sentiment
words creatively on social media to express their
emotions. To conduct our experiments, the senti-
ment of each word and its noisy variations is de-
rived from the sentiment lexicon.

To gauge the semantic deviation caused by noise,
we measure the accuracy of the noisy counterparts
of words that are accurately classified in their orig-
inal form.
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Tokenizers Intact Complete Partial

BERT 0.36 0.14 0.49
RoBERTa 0.46 0.12 0.42
ALBERT 0.38 0.13 0.49

(a) Typos.

Intact Complete Partial Additive
affix infix

0.70 0.02 0.06 0.22 0
0.61 0 0.06 0.30 0.01
0.61 0.02 0.06 0.29 0.02

(b) Letter Reduplication.

Table 3: Frequency of each segmentation corruption.

3 Experimental Results

Experiments are performed on three widely
used PLMs: BERTBASE, RoBERTaBASE and
ALBERTBASE (See Appendix A for details).
BERT (Devlin et al., 2019) accepts inputs from
a Wordpiece tokenizer (Schuster and Nakajima,
2012), while RoBERTa (Liu et al., 2019), another
popular frequent-based segmentation scheme, uses
BPE (Sennrich et al., 2016). For comparison, we
include ALBERT (Lan et al., 2020) with a proba-
bilistic tokenizer called Sentencepiece (Kudo and
Richardson, 2018).

Subwords retention is important for maintain-
ing the correct semantics. Table 4 shows the
severity of semantic deviation for each type of cor-
ruption. Generally, the more subwords the segmen-
tation retains, the better the semantics are main-
tained (additive corruption > partial corruption >
complete and intact corruption). Under additive
corruption, the PLMs can always maintain more
semantics from noisy words than random words
(the baseline), while only RoBERTa has similarity
score higher than the baseline under partial cor-
ruption. All the PLMs cannot infer word meaning
from complete corruption.

What subwords, if retained, would enhance the
comprehension of PLMs? We find that partial cor-
ruption can preserve word meaning if it retains a
significant portion of the words, such as “upset”
for “upsetting” or “phenomena” for “phenomenal”
(See Appendix B). This is backed up by the find-
ing that PLMs have the capability of learning mor-
phological information, where stems contain more
semantic meaning in a word compared to smaller
components such as inflectional morphemes (Hof-
mann et al., 2021).

Are words more impacted by noise under com-
plete corruption if their meaning is stored in
the embeddings? According to Hofmann et al.
(2021), if a word is represented as a single vector,
PLMs can access its meaning directly from the em-

bedding (referred to as the “storage route”) instead
of deducing it from the combination of subwords
(known as the “computation route”). We presume
that PLMs struggle to maintain the original mean-
ing of these words when exposed to noise. We
classify this type of corruption as “intact corrup-
tion”, which is a particular variation to complete
corruption. To validate our assumption, we evalu-
ate the performance of PLMs on words under intact
corruption. Results show that words with intact
corruption consistently perform worse than those
with complete corruption, despite both having com-
pletely distinct subwords. Although intact corrup-
tion consistently yields the lowest similarity score,
the PLMs may still be able to better infer some
semantic dimensions, such as sentiment, under in-
tact corruption compared to complete corruption.
(Appendix C).

Presence of additive subwords can damage the
meaning of words, particularly when they are
inserted in the middle of other subwords. In
some cases, words under additive corruption (keep-
ing all subwords) can perform worse than those
under partial corruption (keeping only some sub-
words), as seen in the letter reduplication experi-
ment (Appendix C). The finding suggests that the
retention of subwords is not the only factor impact-
ing the performance of PLMs. To uncover other
factors affecting the word meaning, we analyzed 10
worst and best instances for each corruption type
based on similarity scores (Appendix B). All the
poorly performing cases have incorrect predictions,
further highlighting the damaging impact on se-
mantic meaning. The results show that the number
of additive tokens (i.e., the cardinality of A) is a dis-
tinct feature between good and bad instances. All
the good cases have only 1 additive token, while
the bad cases have at least 2 additive tokens (3.8 for
partial corruption and 8.7 for additive corruption
on average).

Thus, our hypothesis is that as the number of
additive subwords increases, PLMs will have dif-

168



Models Intact Complete Partial Additive Baseline

BERT 0.29 0.41 0.58 0.69 0.69
RoBERTa 0.54 0.66 0.76 0.85 0.72
ALBERT 0.41 0.47 0.62 0.74 0.68

(a) Similarity.

Intact Complete Partial Additive

0.56 0.65 0.8 0.91
0.66 0.60 0.75 0.95
0.61 0.63 0.76 0.93

(b) Accuracy.

Table 4: Performance of PLMs under various types of corruption. Similarity scores of pretrained representations and
accuracy of downstream classifiers are evaluated. The best result per row is highlighted in gray, and the second-best
is in light gray. As a baseline, we compare the similarity scores between canonical and random words (“the” used).
The unaffected accuracy is 1 since the canonical forms selected for evaluation are always correctly predicted.

Models Infix Suffix

BERT 0.59 0.70
RoBERTa 0.85 0.95
ALBERT 0.66 0.74

(a) Similarity.

Infix Suffix

0.74 0.91
0.95 1
0.82 0.94

(b) Accuracy.

Table 5: Comparison of two types of additive corruption.

ficulty determining the correct meaning of words.
We test the hypothesis by examining the perfor-
mance of PLMs on both additive and intact corrup-
tion, where the missing and overlap sets remain
constant. For additive corruption, we limit our ex-
periments to only one unique additive subword and
vary its frequency. We find 23 words with at least
3 noisy versions, each creating an additive set with
the same element but different multiplicities. Take
“amazing” as an example: one of its noisy instances
(“amazinggggggg”) has the multiplicity of 3 ac-
cording to its additive set A = {“gg”, “gg”, “gg”}
while “gg” only appears twice in another instance
(“amazinggggg”). We sort every collection of noisy
words in either of two ways, depending on the simi-
larity scores or the multiplicities of additive tokens.
In 17 out of 23 collections, these two sorting crite-
ria produce identical results. This discovery also
holds true for intact corruption, where the subwords
within an additive set are typically diverse. Figure
1 illustrates a strong negative correlation between
the number of additive tokens and the average simi-
larity of noisy words for all the three models under
intact corruption, where the sizes of missing sets
and overlap sets are fixed to 1 and 0.

Besides, as shown in Table 5, additive subwords
placed within subwords cause more harm than
those that act as suffixes.

4 Conclusion

We proposed the CoLeS framework which can eval-
uate how corrupt segmentation under noise affects

Figure 1: Correlation between the number of additive
subwords and the cosine similarity of noisy words with
their canonical forms. The range of quantity of additive
subwords is subject to change depending on the tok-
enizer used.

PLMs’ understanding. The experimental results
show that three challenges can impair the PLMs’
understanding of noisy words: insertion of additive
subwords (especially within existing subwords),
loss of original subwords, and incapacity of com-
puting the word meanings through the aggregation
of smaller subword units.

Reproducibility. Data and source code for noisy
data generation, corruption types identification and
PLMs’ performance evaluation are released on
Github 4.

Limitations

The omission of missing corruption from the evalu-
ation process is justified due to its infrequent occur-
rence in real-world scenarios (refer to Appendix D
for elaboration). Nevertheless, further investigation
into rare instances of missing corruption may be
warranted for research purposes. Our evaluation
of language models was limited to auto-encoders
based on the BERT architecture. Future studies
are anticipated to expand the scope of PLMs under

4https://github.com/xinzhel/word_
corruption
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consideration 5.
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A Fine-tuning Pretrained Language Models

All the PLMs use BERT-based architecture, i.e., the encoding part of the transformer (Vaswani et al., 2017).
BERTBASE (110M parameters) and RoBERTaBASE (125M parameters) are pretrained on BookCorpus
and Wikipedia as masked language models. Only the pretraining of ALBERTBASE (11M parameters)
includes extra news and web data (Wolf et al., 2020). They are then fine-tuned for sentiment classification
on the SST-2 dataset. All the models are publicly available on the Huggingface Hub website https:
//huggingface.co/textattack. Some configurations are shown as below. The BERT and
RoBERTa models are fine-tuned using a learning rate of 2e−5 with no scheduling employed. The batch
size is set to 32, and the training process spans 3 epochs, maintaining a gradient norm of 1. ALBERT is
fined-tuned with a learning rate of 3e−5, a batch size of 32, and a total of 5 training epochs.

B Good and Bad Cases

Figure 2 shows the good and bad cases of partial and additive corruption under letter reduplication.

Figure 2: Good and bad cases of partial and additive corruption under letter reduplication.

C PLM Robustness to Segmentation Corruption under Different Types of Noise

Table 6 displays the robustness of PLMs to segmentation corruption under various forms of noise. The
results are largely consistent with those seen in Table 4. However, we notice that for letter reduplication,
PLMs may perform worse with additive corruption than with partial corruption. Additionally, the accuracy
of intact corruption can be better than that of complete corruption, despite they consistently having the
lowest similarity score.

D Noisy words for Missing Corruption

As per the findings of Heath et al. (Heath, 2018), English word recognition by humans is predominantly
influenced by consonants. Consequently, our investigation aims to identify abbreviations that disregard
vowels and certain consonants when examining tweets. To be precise, an abbreviation is considered
acceptable if its first letter and arbitrary consonants appear in a sequence that adheres to canonical words.
For instance, the pattern of regular expression for term “sorry” can be “\bsr?r?y?” in such cases. However,
we find that even humans have difficulties in recognizing all these abbreviations. While the inclusion
of all consonants may enhance human recognition, we contend that assessing this form of corruption is
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Models Intact Complete Partial Additive

BERT 0.24 0.34 0.62 0.69
RoBERTa 0.54 0.73 0.8 0.85
ALBERT 0.42 0.53 0.77 0.74

(a) Similarity.

Intact Complete Partial Additive

0.54 0.47 0.92 0.91
0.54 0.73 0.87 0.95
0.63 0.79 0.91 0.93

(b) Accuracy.

Letter Reduplication

Models Intact Complete Partial Additive

BERT 0.34 0.41 0.58 /
RoBERTa 0.55 0.65 0.75 /
ALBERT 0.4 0.47 0.61 /

(c) Similarity.

Intact Complete Partial Additive

0.59 0.66 0.79 /
0.6 0.57 0.74 /

0.59 0.61 0.75 /

(d) Accuracy.

Typos

Table 6: Performance of PLMs under different types of corruption. Similarity scores of pretrained representations
and accuracy of downstream classifiers are measured. The best result per row is highlighted in gray, the second-best
is in light gray. There is no result for additive corruption under typos because intra-word noise (modifying characters
except for the first and last characters) (i.e., typos) never results in additive corruption. Baseline similarity scores
are calculated between canonical words and the word “the”.

superfluous. This assertion stems from our demonstration in Table 7 that such aggressive search criteria
are improbable to produce missing corruption.

Models Intra

BERT 0.50%
RoBERTa 0.52%
ALBERT 0.43%

Table 7: Proportion of abbreviations causing missing corruption.

Provided below is a comprehensive inventory of the canonical words and their corresponding noisy
counterparts responsible for inducing missing corruption. It is worth noting that these noisy words are
completely imperceptible to human cognition.

• 24 word pairs under RoBERTa: enthral-enth, upgradable-upgr, abysmal-abys, chintzy-chzy, emphatic-
emph, enslave-ensl, extraneous-extr, implacable-impl, implausible-impl, implicate-impl, imprudent-
impr, inflame-infl, instable-inst, intransigent-intr, irksomeness-irks, obscenity-obsc, obtrusive-obtr,
ungrateful-ungr, unscrupulous-unsc, unsteadily-unst, unsteadiness-unst, unsteady-unst, unsteady-
unsty, untruthful-untr;

• 23 word pairs under BERT: enthral-enth, exemplar-expl, exemplar-empl, idyllic-idyl, stylish-styl,
abysmal-abys, brutish-brsh, crummy-crmy, enslave-ensl, hysteric-hyst, impenitent-impt, incognizant-
inct, inconstant-inct, inexplainable-inpl, infamy-inmy, inflame-infl, irksomeness-irks, obscenity-obsc,
obtrusive-obtr, unscrupulous-unsc, unspeakable-unsp, untrue-untr, untruthful-untr;

• 2 word pairs under ALBERT: enthral-enth, exemplar-exmp.

E Performance of PLMs under Different Noise

We compare the effect of two noise models “Naturally and frequently occurring typos” and “Non-standard
orthography” with both the lexicon dataset and two sentential datasets. For a fair comparison, we constrain
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the length of letter-reduplication to 1. The accuracy of the noisy data and their standard deviation
are reported in Table 8 and Table 9, respectively. It can be seen that the types of noise models in our
experiments have no much distinction on model performance, except for the Swap.

Data Noise Type BERT RoBERTa ALBERT

Accuracy

SST-2

Clean 0.93 0.85 0.92
Keyboard 0.66 0.66 0.67
Swap 0.71 0.72 0.72
Letter-repetition 0.63 0.7 0.65

AG-News

Clean 0.95 0.8 0.92
Keyboard 0.88 0.62 0.86
Swap 0.89 0.62 0.86
Letter-repetition 0.88 0.61 0.86

Similarity

Setiment Lexicon
Keyboard 0.39 1 0.47
Swap 0.45 1 0.5
Letter-repetition 0.36 1 0.49

SST-2

Keyboard 0.5 0.52 0.61
Swap 0.61 0.56 0.66
Letter-repetition 0.46 0.55 0.58

AG-News

Keyboard 0.85 0.47 0.72
Swap 0.87 0.5 0.75
Letter-repetition 0.85 0.48 0.74

Table 8: Performance of PLMs under Different Noise

Data BERT RoBERTa ALBERT

Similarity
Lexicon 0.037 0 0.016
SST-2 0.061 0.016 0.035
AG-News 0.009 0.013 0.013
Accuracy
SST-2 0.035 0.022 0.033
AG-News 0.004 0.004 0.004

Table 9: Standard deviations of PLMs’ performance under different types of noise.
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Abstract

Idioms such as “call it a day” and “piece of001
cake”, are ubiquitous in natural language. How002
do Transformer language models process id-003
ioms? This study examines this question by004
analysing three models - BERT, Multilingual005
BERT, and DistilBERT. We compare the em-006
beddings of idiomatic and literal expressions007
across all layers of the networks at both the008
sentence and word levels. Additionally, we in-009
vestigate the attention directed from other sen-010
tence tokens towards a word within an idiom011
as opposed to in a literal context. Results indi-012
cate that while the three models exhibit slightly013
different internal mechanisms, they all repre-014
sent idioms distinctively compared to literal015
language, with attention playing a critical role.016
These findings suggest that idioms are semanti-017
cally and syntactically idiosyncratic, not only018
for humans but also for language models.019

1 Introduction020

“Why would you put all your eggs in one basket? I021

can’t wrap my head around it”. Idioms such as “put022

all one’s eggs in one basket” and “wrap one’s head023

around” are used frequently in natural conversa-024

tions. Despite their abundance, much remains to be025

explored regarding their syntactic, semantic, and026

pragmatic characteristics, and how they are pro-027

cessed by the human brain as well as NLP models.028

Recent Transformer-based large language models029

have demonstrated strong capabilities in a sweep030

of tasks involving natural language understanding031

(e.g. Brown et al. (2020)). However, few attempts032

have been made to understand the inner workings033

of these language models in terms of idiom process-034

ing. In this study, we conduct three experiments to035

explore the inner workings of transformer language036

models in idiom processing. Specifically, we inves-037

tigate the processing of BERT, Multilingual BERT038

and DistilBERT by comparing the embeddings on039

the sentence level and on the word level. We also040

explore the attention mechanism on idioms com- 041

pared to literal contexts. We ask three questions: 042

• How do Transformer language models (LMs) 043

represent idiomatic sentences as opposed to 044

their literal spelt-out counterparts across dif- 045

ferent layers in the network? For example, 046

“Birds of a feather flock together” versus “Peo- 047

ple with similar interests stick together”. 048

• How do LMs represent a word inside an id- 049

iom compared to the same word in a literal 050

context? For example, the word “feather” in 051

“Birds of a feather flock together” versus “My 052

parakeet dropped a green feather.” 053

• How do LMs pay attention to a word inside 054

an idiom compared to a literal context? 055

1.1 Related Work 056

The current study is related to linguistic research 057

on idioms, research on the inner workings of BERT, 058

often coined “BERTology”, and more specifically 059

BERT’s processing of idiomatic expressions. 060

Linguistic theories of idioms: Idioms seem easy 061

to spot but difficult to define. They are convention- 062

alised, affective, and often figurative multi-word ex- 063

pressions used primarily in informal speech (Bald- 064

win and Kim, 2010). Idioms are non-compositional 065

- their meanings often cannot be predicted based 066

on the words they is composed of (Nunberg et al., 067

1994). Sinclair and Sinclair (1991) postulate that 068

humans process idioms by treating them as a “sin- 069

gle independent token”. 070

BERT and BERTology: BERT (Devlin et al., 071

2018) is a large Transformer network pre-trained on 072

3.3 billion tokens of written corpora including the 073

BookCorpus and the English Wikipedia (Vaswani 074

et al., 2017). Each layer contains multiple self- 075

attention heads that compute attention weights be- 076

tween all pairs of tokens. Attention weights can 077

1
174



be seen as deciding how relevant every token is078

in relation to every other token for producing the079

representation on the following layer (Clark et al.,080

2019).081

Many studies have explored how different082

linguistic information is represented in BERT083

(Mickus et al., 2020; Jawahar et al., 2019; Tenney084

et al., 2019). Jawahar et al. (2019) observed that085

different layers encode different linguistic informa-086

tion. Lower layers capture phrase-level informa-087

tion (i.e. surface features), middle layers capture088

syntactic information and higher layers capture se-089

mantic features. Studies disagree on where and090

how much semantic information is encoded. For091

example, Tenney et al. (2019) suggests that seman-092

tics is spread across the entire model. Lenci et al.093

(2021) found that the uppermost layer in BERT094

was the worst-performing in downstream tasks. So095

far, there has been less research on the inner work-096

ings of DistilBERT (Sanh et al., 2019) and Mul-097

tilingual BERT (Pires et al., 2019). Most studies098

focus on comparing performance cross-lingually or099

in downstream tasks between these models (Ulčar100

and Robnik-Sikonja, 2021; Wu and Dredze, 2020;101

Sajjad et al., 2021; Lenci et al., 2021).102

Idiom processing in Language Models: Stud-103

ies are becoming increasingly engaged with the104

challenge of idiom representation in language mod-105

els (Socolof et al., 2021; Garcia et al., 2021b;106

Dankers et al., 2022). Nedumpozhimana and Kelle-107

her (2021) investigated how BERT recognises id-108

ioms, suggesting that the indicator is found both109

within the expression and in the surrounding con-110

text. Madabushi et al. (2021) explored how various111

input features (e.g. the effect of different prob-112

lem setups - zero-shot, one-shot, and few-shot)113

affect LMs’ ability to represent idioms. Both stud-114

ies analyse the aggregated embeddings in the final115

layer, and do not investigate how representations116

vary across different layers. Garcia et al. (2021a)117

probed the representation of noun compounds in118

LMs, varying in compositionality, in order to assess119

the retention of idiomatic meaning. Our paper fol-120

lows a similar paradigm but includes an attention121

analysis. Finally, Dankers et al. (2022) analysed122

idiom processing for pre-trained neural machine123

translation Transformer models from English to124

seven European languages and found that when the125

model produces a non-literal (intended) translation126

of the idiom, the encoder processes idioms more as127

single lexical units compared to literal expressions.128

2 Experiments 129

To look into the black box of how LMs process id- 130

iomatic language, we conducted three experiments 131

to assess sentence embeddings, word embeddings 132

and attention across all layers of the networks. 133

2.1 Dataset 134

We utilised the idioms from the EPIE dataset (Sax- 135

ena and Paul, 2020) to obtain a list of 838 English 136

idioms that occur frequently in language. We then 137

created sentences for the following conditions: for 138

each idiom, we created (1) a sentence containing 139

that idiom, (2) a spelt-out sentence expressing the 140

same idiom in literal language, and (3) two unre- 141

lated literal sentences containing a key-word from 142

the idiom (for experiment 2). An example of a 143

datapoint1: 144

• Idiom : under the weather 145

• Idiom sentence : I’m feeling under the 146

weather today. 147

• Spelt-out meaning: I’m feeling unwell today. 148

• Unrelated literal sentence 1: Today’s 149

weather is nice. 150

• Unrelated literal sentence 2: The weather is 151

meant to change at 10am today. 152

2.2 Experiment 1: Idiom versus Spelt-out 153

sentence embedding analysis 154

Experiment 1 investigates how sentence embed- 155

dings of idiomatic sentences evolve across layers. 156

2.2.1 Methods and Results 157

To embed the sentences, we used the Python li- 158

brary Transformers from Hugging Face (Wolf 159

et al., 2020). We used the medium-sized BERT 160

model (BERT-base-uncased), Multilingual BERT 161

(BERT-base-multilingual-uncased), and Dis- 162

tilBERT (distilBERT-base-uncased). The first 163

two models contain 12 layers and 12 attention 164

heads, while DistilBERT contains 6 layers and 12 165

attention heads. Let S denote the dataset of all (id- 166

iom, and spelt-out) sentence tuples (in the notations 167

below we represent idiom sentences with si, and 168

spelt-out sentences with ss). 169

We determine whether an LM’s representation 170

of an idiom sentence is similar to its spelt-out coun- 171

terpart using two metrics: 172

1The entire dataset is released with the paper.
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• Metric 1: the raw cosine similarity173

ϕ(si, ss) = si·ss
max(||si||2·||ss||2,ϵ) computed for174

all (si, ss) ∈ S.175

• Metric 2: the cosine similarity ranking com-176

puted for all (si, ss) with (si, ss) ∈ S × S .177

The raw cosine similarity in Metric 1 indicates178

how close an idiom and spelt-out pair is in the179

embedding space, while the similarity ranking in180

Metric 2 determines the quality of an embedding in181

capturing semantic nuances compared to controls182

(all other non-counterpart spelt-out sentences). A183

close idiom and spelt-out pair relative to controls184

should converge to a rank close to 0. The reasoning185

is that when an idiomatic sentence si is compared186

against all spelt-out sentences ss in the dataset, its187

spelt-out counterpart should be the most similar in188

semantic content.189

Figure 1: Experiment 1 - Sentence Cosine similarity of
Idiom and Spelt-out sentence pairs

Figure 2: Experiment 1 - Similarity ranking, where we
plot the similarity ranking of the spelt-out counterpart -
the closer to zero, the more similar the spelt-out coun-
terpart is to the idiom sentence compared to controls.

The results are shown in Figure 1 and Figure190

2. Overall, the cosine similarity2 between idiom191

2We concatenated the activations of all sentence tokens
into a single flattened vector. In order to calculate the co-

sentence and its spelt-out counterpart is higher than 192

the random baseline for all three models. For all 193

three models and for every layer in each model, 194

there was a significant difference (all p-values < 195

0.001) in sentence cosine similarity. Moreover, the 196

t-values increased in deeper layers, which shows 197

that these layers better processed semantic similar- 198

ities between idioms and their spelt-out counter- 199

parts, supporting our hypothesis that the semantic 200

meaning of idioms is captured in deeper layers of 201

BERT. 202

Among the three LMs, the patterns of Distil- 203

BERT and Multilingual BERT most resemble each 204

other, with similarity rising steadily, peaking on the 205

penultimate layer, and dropping on the last layer. 206

In order to evaluate if the LMs represent a literal 207

spelt-out sentence to be more similar to random 208

controls, we evaluated a similarity ranking metric. 209

The pair ranking results (Figure 2) show that 210

similarity ranking reaches the highest point in mid 211

to late layers for all 3 LMs, peaking at layer 10 212

for BERT, at layer 9 for Multilingual BERT and at 213

layer 5 (penultimate layer) for DistilBERT. 214

2.3 Experiment 2: How does the embedding 215

of a word within an idiom change 216

compared to the same word in a literal 217

context 218

Experiment 2 investigates how word embeddings 219

change for words in idiomatic versus literal con- 220

texts. To do this, we see how the the cosine simi- 221

larity of the embedding of a word inside an idiom 222

versus in a literal context changes across layers, 223

and compare that with a baseline cosine similarity 224

where the word appears in two literal contexts. 225

Dataset: For each idiom sentence we manually 226

created two unrelated literal sentences which con- 227

tain a word from the associated idiom. For example, 228

idiom sentence: Don’t beat around the [bush]. Un- 229

related literal sentences: (1) There’s a small [bush] 230

in the garden, and (2) The dog jumped over the 231

[bush]. Target word: “bush”. 232

Methods and Results: We identified the index of 233

the target word after the sentences were tokenised, 234

and retrieved the embedding for this word across 235

sine similarity between two sentences of different lengths, we
pad the shorter sentence in each pair with [PAD] so that the
two have the same number of tokens. We calculate the co-
sine similarity between each idiom sentence and its spelt-out
counterpart. As a baseline, we calculate the cosine similarity
between an idiom sentence and a random spelt-out sentence.
In all cases, we report the mean cosine similarity.
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Figure 3: Experiment 2 - Cosine similarities of word
embeddings between idiomatic and literal uses of the
word

all layers for the idiom sentence and the two un-236

related literal sentences. We calculated the cosine237

similarity for the word embedding (1) between id-238

iom and literal contexts and (2) between the two239

literal contexts as a baseline.240

Figure 3 shows that for all three language mod-241

els, the similarity of word in two literal contexts242

(dotted line) is higher than that between idiom and243

literal contexts (solid line). Like in experiment 1,244

DistilBERT and Multilingual BERT resemble each245

other in their patterns. For BERT, the similarity of246

word embedding between literal and idiom contexts247

drops significantly more than between two literal248

contexts. T-test results showed the same pattern249

observed in experiment 1 as well; there was a sig-250

nificant difference (all p-values < 0.001) in cosine251

similarity in every layer for all three models, and252

the absolute value of t-value increased in deeper253

layers. This confirms our hypothesis that the se-254

mantic meaning of idioms is captured in deeper255

layers of BERT, where words inside idiom drift256

further from their literal meaning. We see a simi-257

lar but reduced pattern in Multilingual BERT and258

DistilBERT.259

2.4 Experiment 3: Does BERT pay different260

attentions to words inside idioms versus261

literal context262

Experiment 1 and 2 show that LMs treat idioms263

differently to literal expressions. What is the mech-264

anism that allows the networks to process this dif-265

ference? As self-attention is central to the power266

of Transformer models, we hypothesise that the267

network integrates idioms by paying different at-268

tention when a word is in an idiom versus a literal269

context. Specifically, we hypothesise that words in-270

side idioms are less connected to the rest of the sen-271

tence, following the linguistic theory that idiomatic 272

expressions function as a single unit (Sinclair and 273

Sinclair, 1991). 274

2.4.1 Methods and Results 275

For each idiom sentence, we selected a word in- 276

side the idiom and the indices of the target word 277

(e.g. “bush”) in both the idiom and the literal sen- 278

tence. Then for each sentence and for each layer, 279

we calculated the average attention from all other 280

sentence tokens to the target word. 281

Figure 4: Experiment 3 - Attention from other sentence
tokens to word inside an idiom sentence versus a literal
sentence

Figure 4 plots the attention in each layer of LMs 282

from all other sentence tokens to the target word. 283

For all three language models, sentence tokens pay 284

less attention to a word inside an idiom (solid lines) 285

than they do to the same word in a literal context 286

(dotted lines), meaning that words inside idioms 287

interact less with the rest of the sentence compared 288

to words in literal contexts. Like in experiment 289

1 and experiment 2, there was a significant differ- 290

ence between attention to a word inside an idiom 291

and that inside a literal context in each layer in 292

all three models (p-values < 0.01). This supports 293

the idea that LMs see idioms as more idiosyncratic 294

units. However, while DistilBERT and Multilin- 295

gual BERT showed a similar trend in t-values that 296

decreased in degree in the last 2 layers, BERT did 297

not show any particular pattern in t-statistics. Once 298

again we observe that DistilBERT and Multilin- 299

gual BERT share a similar pattern, whereas BERT 300

displays more variations across its layers. 301

3 Results Summary 302

We investigated how Transformer LMs process id- 303

ioms across their layers on a sentence level and a 304

word level. Experiment 1 shows that on a sentence 305

level, LMs represent an idiom sentence to be simi- 306
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lar to its literal spelt-out counterpart. Experiment 2307

shows that on a word level, LMs represent a word308

inside an idiom versus a literal context differently309

across layers. Experiment 3 shows that words in an310

idiom receive less attention from the rest of the sen-311

tence, and thus have a weaker link to words outside312

of the idiom, echoing the findings of Dankers et al.313

(2022). All of these results hold across BERT, Mul-314

tilingual BERT and DistilBERT. We also observe315

slight differences between the three LMs, with Dis-316

tilBERT and Multilingual BERT resembling each317

other in their internal workings more closely than318

they each do with BERT. In future work we will in-319

vestigate this phenomenon in models with different320

architectures, for example GPT and XLNet.321

4 Conclusion322

Idiomatic expressions are part and parcel of every-323

day language use. This study investigates the inner324

workings of idiom processing in three Transformer325

language models. Results show that LMs represent326

idioms differently to literal language. Words inside327

idioms receive less attention compared to words in328

literal contexts, supporting the linguistic theory that329

idioms are idiosyncratic even for language models.330

A Limitations331

While this work sheds light on how language mod-332

els process idioms, we recognise that experimenta-333

tion at present has been constrained to BERT. As334

mentioned in section 3, we aim to probe our find-335

ings further by repeating these experiments on a336

wider range of model architectures, such as GPT,337

Flan-T5, and LLaMA. Additionally, we recognise338

that our current dataset only contains English id-339

ioms; it would be interesting to extend this to in-340

clude other languages for future studies.341
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Abstract

Some applications of artificial intelligence
make it desirable that logical formulae be con-
verted computationally to comprehensible nat-
ural language sentences. As there are many
logical equivalents to a given formula, finding
the most suitable equivalent to be used as input
for such a “logic-to-text" generation system is
a difficult challenge. In this paper, we focus on
the role of brevity: Are the shortest formulae
the most suitable? We focus on propositional
logic (PL), framing formula minimization (i.e.,
the problem of finding the shortest equivalent
of a given formula) as a Quantified Boolean
Formulae (QBFs) satisfiability problem. We ex-
periment with several generators and selection
strategies to prune the resulting candidates. We
conduct exhaustive automatic and human eval-
uations of the comprehensibility and fluency
of the generated texts. The results suggest that
while, in many cases, minimization has a posi-
tive impact on the quality of the sentences gen-
erated, formula minimization may ultimately
not be the best strategy.

https://gitlab.nl4xai.eu/eduardo.
calo/brevity-PL

1 Introduction

Logical formulae (LFs) are essential for scholars
in many scientific fields, such as artificial intelli-
gence and linguistics (e.g., formal semantics). For
instance, some explainable artificial intelligence
(XAI) methods (e.g., Guidotti et al., 2018) use LFs
to provide interpretable and faithful explanations to
black-box models. However, one of the drawbacks
of these XAI methods is that their output formulae
might be complex, hindering their understandabil-
ity. Grasping the meaning of formulae is also hard
for students of logic, especially when they are ex-
posed to formalisms they are not yet accustomed to
(Rector et al., 2004). Natural language generation

(NLG) methods can be employed to simplify and
translate LFs into understandable text in natural lan-
guages (NLs), effectively providing explanations
for them.

Recently, NLG has made remarkable progress.
In particular, in the context of data-to-text gener-
ation, good results have been achieved in differ-
ent domains and datasets, such as sport (e.g., the
ROTOWIRE dataset (Wiseman et al., 2017; Thom-
son et al., 2020)), restaurant (e.g., the E2E Chal-
lenge (Smiley et al., 2018; Dušek et al., 2020)),
or WebNLG (Gardent et al., 2017). However, the
texts produced in these contexts are often relatively
poor in logical and rhetorical structure. Moreover,
neural language models still fail to encode the se-
mantics of logical formulae (Traylor et al., 2021b)
and acquire analytical and deductive logical rea-
soning capabilities (Ryb et al., 2022). In particular,
they struggle with logical connectives, where they
fail to differentiate between conjunction and dis-
junction (Traylor et al., 2021a). Logic-to-text gen-
eration thus addresses an area of natural language
processing where further progress is much needed.

One way in which the task of generating NL from
complex LFs could be facilitated is by simplifying
the input. We are interested in understanding the
factors that make a formula more or less suitable
as an input for a generator. In our work, we fo-
cus on brevity. The concept of brevity has long
been a topic of linguistic discussion, dating back
to at least Grice (1975), where Grice’s submaxim
of brevity states that shorter utterances should be
favored over longer ones, avoiding unnecessary ver-
bosity. Brevity has loomed large in computational
accounts of language use as well, especially in the
modeling of the human production of referring ex-
pressions (see §6 for discussion), a research area
known as referring expressions generation (REG).
Brevity could also be useful in our situation, in
which case a shorter formula, instead of a lengthier
logical equivalent, once verbalized using an NLG
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algorithm, might lead to NL sentences that are more
fluent and easier to understand.

In this paper, we study the role of brevity in logic-
to-text generation, focusing on propositional logic
(PL), a formalism for which logical equivalence is
decidable. We formulate propositional logic for-
mula minimization (i.e., finding the shortest logi-
cal equivalent of a given formula) as a Quantified
Boolean Formulae (QBFs) satisfiability problem
and employ the algorithm introduced in Calò and
Levy (2023) that consistently identifies the shortest
equivalents for a given formula.

It is not a foregone conclusion that the shortest
formula must always lead to the best verbalization
in English. To see this, suppose the input to the
generator is of the form ¬p ∨ ¬q. If the Sheffer
stroke, |, (i.e., the NAND operator) is a permitted
symbol, then the same information can be written
more briefly as p|q, yet a “direct" verbalization of
the former formula (e.g., Not p or not q) could well
be more comprehensible and fluent than a direct
verbalization of the latter (e.g., It is not the case
that p and q), because the Sheffer stroke does not
have a convenient shorthand in English.

Following this line of thought, several questions
arise: When verbalizing an input logical formula
into English, is it useful to start by finding the
shortest formula that is equivalent to the input? Is
the resulting text comprehensible to humans? How
do we choose among the pool of potential shortest
equivalent candidates?

The last question specifically opens up the issue
of selecting the optimal translation, given that all
potential shortest candidates are exactly of the same
length. In our work, we experiment with several
deterministic rule-based generators (thus control-
ling for faithfulness) and a number of selection
strategies based on linguistic criteria, ranging from
heuristics to neural metrics, to prune the resulting
NL candidates. Finally, we conduct comprehensive
automatic and human evaluations to assess compre-
hensibility and fluency of the generated texts.

2 Background

Logical Optimization Extensive research has
been conducted on optimizing complex Boolean
expressions, particularly in the field of electronic
circuits, where practical considerations (i.e., a more
complicated circuit with more logic gates takes up
more physical space and produces more heat) make
it paramount to find the smallest possible circuit,

and hence the shortest possible (i.e., “minimal")
formula representing its content. Popular methods
for minimization include the Quine-McCluskey al-
gorithm (Quine, 1952, 1955; McCluskey, 1956),
Karnaugh maps (Karnaugh, 1953), the Petrick’s
method (Petrick, 1956), and the Espresso heuristic
logic minimizer (Brayton et al., 1982). However,
most work has focused on a limited set of canonical
forms, such as conjunctive normal form (CNF) or
disjunctive normal form (DNF). For our purposes
(i.e., studying the interactions between logic and
language), we need a general approach where a
larger set of connectives and a wider variety of
logical structures can be taken into account.

Quantified Boolean Formulae Quantified
Boolean Formulae (QBFs) are an extension of
propositional logic, where universal and existential
quantifications over Boolean variables are allowed
(Kleine Büning and Bubeck, 2009). Any QBF ϕ can
be rewritten in a canonical prenex conjunctive nor-
mal form (PCNF) without any loss in expressivity,
as follows. Let B be a finite set of Boolean vari-
ables, and Q = {∀,∃}. A QBF ϕ over B in PCNF

is given by ϕ := Q1B1.Q2B2 . . . QnBn.ψ, where
Qi ∈ Q, Bi ⊆ B, and ψ is a Boolean formula over
B in CNF. The part including only quantifiers and
bound variables Q1B1.Q2B2 . . . QnBn is called
the prefix, and ψ is called the matrix.

The QBF satisfiability problem (Giunchiglia
et al., 2009) involves determining the truth of a
given QBF ϕ. For example, given the QBF ϕ :=
∃x1, . . . , xn.∀y1, . . . , ym.∃z1, . . . , zt.ψ, ϕ is true
iff, there exists a truth assignment to x1, . . . , xn,
such that, for all truth assignments to y1, . . . , ym,
there exists a truth assignment to z1, . . . , zt such
that ψ is true. To solve this problem, several QBF

solvers have been developed.1 Practical applica-
tions of QBFs include AI, logic, planning, and
games (Cashmore and Fox, 2010; Diptarama and
Shinohara, 2016; Shukla et al., 2019). In our study,
we utilize QBFs to encode and solve PL formula
minimization.

Logic-to-Text Generation Logic-to-text gener-
ation is the task of generating NL text, starting
from a logical formalism (e.g., propositional logic,
description logic, or first-order logic). Although
the bulk of recent work on NLG (see e.g., Gatt
and Krahmer (2018) for a survey) has focused on
other areas, generating text from logic nonetheless

1http://www.qbflib.org
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has a long tradition, with approaches ranging from
rule-based methodologies (Wang, 1980; De Roeck
and Lowden, 1986; Calder et al., 1989; Shieber
et al., 1989; Shemtov, 1996; Carroll and Oepen,
2005; Mpagouli and Hatzilygeroudis, 2009; Cop-
pock and Baxter, 2010; Butler, 2016; Flickinger,
2016; Kasenberg et al., 2019) to statistical (Wong
and Mooney, 2007; Lu and Ng, 2011; Basile, 2015)
and neural models (Manome et al., 2018; Hajdik
et al., 2019; Chen et al., 2020; Liu et al., 2021;
Wang et al., 2021; Lu et al., 2022).

One of the complicating factors for this task is
the problem of logical-form equivalence (Appelt,
1987; Shieber, 1988, 1993), which implies that ev-
ery logical formula is equivalent to infinitely many
other formulae, where the question of whether two
formulae are logically equivalent is, in many for-
malisms (e.g., first-order logic), undecidable. In the
present paper, we circumvent this problem by fo-
cusing on a decidable fragment of logic, as did, e.g.,
van Deemter and Halldórsson (2001) and Minock
(2014) before us in different ways.

In a closely related work, Calò et al. (2022)
manipulate a given first-order formula to obtain
logically equivalent simplified versions via logical
equivalence laws, yet their algorithm is not guaran-
teed to return the shortest formula.

3 Algorithm

To solve our PL minimization problem, we lever-
age the QBF-based algorithm presented in Calò and
Levy (2023). We define formula length as the num-
ber of symbols (i.e., predicates and connectives,
parentheses excluded) contained in a formula.

In outline, given (i) a PL formula ψ and (ii) a
functionally complete set C of PL connectives, the
algorithm produces the set P = {ψ′

1, . . . , ψ
′
n} of

all those PL formulae such that (a) ψ and ψ′
i are

logically equivalent, (b) ψ′
i does not contain any

connectives that are not members of C, and (c) there
does not exist any strictly shorter sentence χ satis-
fying (a) and (b).

The strength of the QBF-based algorithm is that
it computes a scheme Tn of all candidates ψ′

i

of length n, instead of checking each one of ψ′
i

for equivalence with ψ. Tseitin transformation
(Tseitin, 1983) is used to encode the equivalence
of Tn and ψ as a QBF formula, which is checked
for satisfiability (see Section 2) by a QBF solver
(Tentrup, 2019). The algorithm can find all ψ′

i ∈ P
of a certain length n. By making several calls to

the QBF solver, increasing n, we make sure that the
first found solution is a minimal solution.

The fact that the algorithm computes a unique
scheme for all candidates of length n makes it very
efficient, compared with other straightforward ap-
proaches. We refer the reader to Calò and Levy
(2023) for details on the implementation.

4 Experiments

Our experimentation strategy can be summarized as
follows: (i) we simplify the input formulae using
the algorithm described in §3, (ii) we realize all
the outputs using different generators, and (iii) we
prune the resulting candidate realizations using a
number of selection strategies.

We use three rule-based generators: (i) a BASE-
LINE, (ii) the system presented in Ranta (2011),
and (iii) LOLA (Calò et al., 2022). BASELINE is
a system that generates near-literal translations of
the formulae. Ranta performs some syntactic op-
timization (e.g., flattening, aggregation, etc.) to
improve fluency. LOLA is an extension of Ranta
that performs heuristic logical optimization based
on standard equivalence laws to the input formula
before verbalizing it. The generators were evalu-
ated for faithfulness (i.e., whether the generated
text conveys all and only the information of the
input formula) in Calò et al. (2022) and shown to
guarantee faithful translations. We refer the reader
to Ranta (2011) and Calò et al. (2022) for more
details on the systems.

For pruning, we experiment with the following
five selection strategies: (i) length in number of
words, (ii) pseudo-perplexity using BERT (Devlin
et al., 2019), (iii) pseudo-SLOR using BERT, (iv)
perplexity (PPL) using GPT-2 (Radford et al., 2019),
(v) SLOR using GPT-2.2 SLOR (Syntactic Log-Odds
Ratio; Pauls and Klein, 2012; Kann et al., 2018)
is a metric based on negative log-likelihood that
penalizes highly probable unigrams. In detail, the
score given by SLOR consists of the log probability
of a sentence under a given language model, nor-
malized by unigram log probability and sentence
length. The intuition behind the normalizations is
that a rare token should not bring down the sen-
tence’s score and shorter sentences should not be
preferred over equally fluent longer ones. In our
case, this should help us make fairer comparisons,
as the length of the sentences generated by the re-

2We use bert-large-cased and gpt-2-large, respec-
tively.
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alizers varies considerably, and logical variables
and constants (e.g., x, y, etc., which a language
model treats as unigrams), which appear regularly
in our sentences, have a unigram probability much
higher than the other tokens in the lexicon. We
compute PPL and SLOR with BERT, following the
methodologies described in Salazar et al. (2020)
and Lau et al. (2020) for masked language models.

For the experiments, we consider the Grade
Grinder Corpus (GGC; Barker-Plummer et al.,
2011), a parallel corpus where each NL sentence is
paired with multiple logically equivalent formulae.
We retrieve all PL formulae that are parsable by the
generators we use. We first simplify the formulae
using the algorithm described in §3 and obtain, for
each formula, a set of logical equivalents, maxi-
mally reduced in terms of length. Out of 1092 PL

formulae, 680 got simplified; the others were al-
ready in their shortest form. Table 1 shows some
descriptive statistics. As a concrete example, start-
ing from the following GGC formula containing 10
symbols:

(Tet(a)∧Tet(c))→ ¬(¬Large(a)∧¬Large(c))

we end up with these shortest equivalents, with the
number of symbols reduced to 7:3

Large(a) ∨ ((Tet(c) ∧ Tet(a))→ Large(c))

(Tet(c)→ Large(c)) ∨ (Tet(a)→ Large(a))

(Tet(c) ∧ Tet(a))→ (Large(c) ∨ Large(a))
. . .

µ σ Min. Max.

Original 7.12 2.62 1 18
Minimized 5.52 1.97 1 11

Table 1: Statistics on the length of the GGC formulae
before and after minimization.

We proceed with translating the resulting formu-
lae into English using the three rule-based gener-
ators. Additionally, we also translate the original
GGC formula with the three generators.

At the logic level, all potential candidates are
exactly of the same length. Therefore, once NL sen-
tences are generated, we prune the candidates by
(i) scoring them using the five selection strategies

3We list just some of the equivalents, as the algorithm
returns many more formulae of length 7 in the actual output.

mentioned above, (ii) selecting the one with the
lowest score for each strategy. After this process,
for each GGC input formula, we end up with 18 re-
alizations: 15 after the pruning process (3 realizers
× 5 selection strategies), plus 3 from translating
the original GGC formula with the three realizers.
Table 2 presents some examples.

5 Evaluation

5.1 Automatic Evaluation

We set up an automatic evaluation comparing the
translations by the 18 systems presented in §4 vs.
the ground truth NL references associated with the
original input formulae in the GGC. We use six
automatic metrics, three of which are based on
n−gram overlap, namely, BLEU (Papineni et al.,
2002),4 METEOR (Banerjee and Lavie, 2005), and
ROUGE-L (Lin, 2004), and three on BERT, namely,
BERTScore (Zhang et al., 2020),5 BLEURT (Sellam
et al., 2020), a learned metric based on human rat-
ings,6 and SBERT (Reimers and Gurevych, 2019).7

For all the metrics except SBERT, we use the imple-
mentations provided by HuggingFace (Wolf et al.,
2020).8 Table 3 summarizes the results obtained.

Several trends emerge from analyzing the table.
The results hint that formula minimization gener-
ally improves the translations, as the scores (partic-
ularly n−gram-based metrics) for the systems that
get the minimized versions of the formulae as input
are generally higher than the others. Different selec-
tion strategies score very similarly, sometimes with
negligible differences. The difference in behavior
between semantics-based and n−gram-based met-
rics corroborates the findings in Calò et al. (2022).
Excluding BLEURT, whose low results are proba-
bly due to the nature of the data on which it was
pre-trained and the lack of fine-tuning on our side,
the results of semantics-based metrics are compa-
rable across the systems, especially when it comes
to BERTScore. This can be seen as a confirmation
that the generated texts are paraphrases of the GGC

ground truth references. However, BERTScore’s
results need to be taken with a grain of salt, since
BERT-like models are known for missing semantic

4We adopt the SacreBLEU (Post, 2018) implementation for
improved reproducibility.

5We use the model roberta-large_L17_no-idf.
6We use the model bleurt-base-128 without fine-tuning.
7We compute cosine similarity after obtaining sentence

embeddings with the model all-distilroberta-v1.
8https://huggingface.co/evaluate-metric
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System + Selection Strategy Translation

Orig. BASELINE If f is large, then f is a cube or if f is large, then f is a dodecahedron.
Orig. Ranta At least one of these holds: - if f is large, then f is a cube

- if f is large, then f is a dodecahedron.
Orig. LOLA f is not large, f is a cube, f is not large or f is a dodecahedron.
Minim. BASELINE BERT SLOR f is a dodecahedron or if f is large, then f is a cube.
Minim. Ranta GPT PPL If f is large, then f is a cube or f is a dodecahedron.
Minim. LOLA Length f is not large, f is a cube or f is a dodecahedron.

Table 2: Some translations from the original formula (Large(f)→ Cube(f)) ∨ (Large(f)→ Dodec(f)).

System + Selection Strategy n−gram-based Metrics Semantics-based Metrics

METEOR ROUGE-L SacreBLEU BERTScore BLEURT SBERT

Orig. BASELINE 0.5514 0.4386 10.8638 0.9051 −0.0916 0.7819
Orig. Ranta 0.5654 0.4697 12.1577 0.9082 −0.1099 0.7464
Orig. LOLA 0.5655 0.5012 14.0046 0.9115 −0.0492 0.7672
Minim. BASELINE Length 0.5639 0.4955 14.7115 0.9129 −0.0131 0.7935
Minim. BASELINE BERT PPL 0.5677 0.4977 14.8686 0.9123 0.0028 0.7928
Minim. BASELINE BERT SLOR 0.5652 0.4980 14.8386 0.9129 −0.0151 0.7926
Minim. BASELINE GPT PPL 0.5752 0.4999 14.9506 0.9122 −0.0017 0.7916
Minim. BASELINE GPT SLOR 0.5717 0.5077 14.5815 0.9136 0.0008 0.7935
Minim. Ranta Length 0.5802 0.5037 15.5895 0.9130 0.0126 0.7794
Minim. Ranta BERT PPL 0.5807 0.5143 15.1632 0.9123 0.0077 0.7720
Minim. Ranta BERT SLOR 0.5865 0.5099 15.6208 0.9132 0.0117 0.7797
Minim. Ranta GPT PPL 0.5759 0.5020 15.3613 0.9120 0.0092 0.7720
Minim. Ranta GPT SLOR 0.5780 0.5005 15.3833 0.9132 0.0141 0.7792
Minim. LOLA Length 0.5722 0.5050 15.5769 0.9133 −0.0005 0.7805
Minim. LOLA BERT PPL 0.5771 0.5137 15.2999 0.9134 −0.0028 0.7769
Minim. LOLA BERT SLOR 0.5811 0.5131 15.3199 0.9133 −0.0006 0.7800
Minim. LOLA GPT PPL 0.5689 0.4995 15.0712 0.9132 0.0048 0.7756
Minim. LOLA GPT SLOR 0.5709 0.4967 15.3573 0.9132 −0.0107 0.7799

Table 3: Performance of the 18 systems against the GGC ground truth references according to the automatic metrics.

nuances, such as negation (Ettinger, 2020), which
is crucial for evaluating our task.

5.2 Human Evaluation

We conduct a human evaluation to understand the
impact of formulae minimization on the transla-
tions. We recruit a group of 42 human evaluators
and ask them to give feedback on (i) comprehensi-
bility (i.e., whether the message conveyed by the
sentence is understandable and not open to multi-
ple interpretations), and (ii) fluency (i.e., whether
the sentence sounds like a natural English sentence
and is grammatically correct). These are central re-
quirements to look for, as text generated from logic
can be extremely disfluent and incomprehensible
(e.g., a literal translation from a formula), while
still being faithful to the input.

Evaluators are asked to rate the comprehensibil-
ity and fluency of each translation on a 7−point
Likert scale (Likert, 1932). If comprehensibility
receives a score < 4, participants are asked to give
the motivations for which the sentence is hard to un-
derstand (i.e., ambiguity, complexity, or length of
the sentence, or other). See Appendix A for more

information on how we conduct the evaluation and
the instructions given to the evaluators.

We sample 48 references from the GGC and se-
lect translations of the corresponding formula by 6
systems. The systems we choose are Orig. BASE-
LINE, Orig. Ranta, and Orig. LOLA and Minim.
BASELINE BERT SLOR, Minim. Ranta BERT SLOR,
and Minim. LOLA BERT SLOR (henceforth, Minim.
BBS, Minim. RBS, and Minim. LBS, respectively;
see §4). Among the minimized variants, we choose
BERT SLOR for two reasons: (i) BERT-based scor-
ing seems to perform slightly better than the other
selection strategies (see §5.1), and (ii) given that
SLOR and PPL scores are nearly identical across
systems, we opt for SLOR for theoretical reasons
(see §4). After the selection, we end up with a total
of 48 (references) × 6 (systems) = 288 experimen-
tal items.

Participants and experimental items are ran-
domly assigned to one of six groups and rotated
through a 6 (systems) × 6 (participant groups)
Latin square (Fisher, 1925). This guarantees that
every item is shown to approximately the same
number of participants, that every participant is
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shown the same number of items (48), and that
participants only see one system translation per
original formula.

5.3 Results

The overall comprehensibility and overall fluency
of each translation are computed as the means
of the ratings given by the evaluators on the two
dimensions. The inter-annotator agreements for
both dimensions are low (comprehensibility: Krip-
pendorff’s α = 0.329; fluency: Krippendorff’s
α = 0.282). We find a very strong positive cor-
relation between the two dimensions (Pearson’s
r = 0.89; p≪ 0.001), indicating that more fluent
translations are also more comprehensible.

Figure 1 shows the boxplot with the distribu-
tion of the ratings on comprehensibility and flu-
ency for all the systems. The translations from
Minim. RBS receive the highest mean on both com-
prehensibility (µ = 5.19) and fluency (µ = 4.89).
One-way ANOVA analyses reveal that for both com-
prehensibility and fluency, the differences between
systems are statistically significant (comprehensi-
bility: F (5, 282) = 21.72; p ≪ 0.001; fluency:
F (5, 282) = 13.39; p≪ 0.001).
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Figure 1: Boxplot with the distribution of translations’
mean ratings across systems, for both comprehensibility
and fluency.

Tukey’s HSD tests for multiple comparisons
show comparable results on the two dimensions.
In general, Orig. LOLA is not significantly differ-
ent from all the minimized variants. This suggests
that human evaluators did not perceive a difference
between settings where the input was manipulated
using equivalence laws (à la LOLA) and settings
where QBF minimization was used. Moreover, the
tests show that all the minimized variants do not
significantly differ from each other. This may be

an indication that formula minimization plays an
important role beforehand and the choice of the
realizer used for translation does not matter much.
Lastly, we notice less variance when BERT SLOR

variants are involved, especially in comprehensibil-
ity with Ranta and LOLA.

We compute correlations between the human rat-
ings and the score assigned by BERTScore, ROUGE-
L, and SBERT to the questions rated by the evalua-
tors, for both comprehensibility and fluency. Fig-
ure 2 shows the scatterplots and Table 4 the nu-
merical results. The results are comparable across
the two dimensions and we find low, but statisti-
cally significant positive correlations with human
judgments on both comprehensibility and fluency.
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Figure 2: Scatterplots with the correlations between
translations’ mean ratings on comprehensibility and flu-
ency and scores assigned by the automatic metrics.

BERTScore ROUGE-L SBERT

Comprehensibility 0.331 0.315 0.223
Fluency 0.342 0.302 0.205

Table 4: Correlations between human ratings and au-
tomatic metrics on comprehensibility and fluency. All
results are computed using Pearson’s r and are statisti-
cally significant (p < 0.001).

We shed some light on the reasons why cer-
tain translations achieve low comprehensibility by
inspecting the responses to the follow-up ques-
tions that were presented when comprehensibility
is rated poorly (see §5.2). In most cases, low in-
telligibility corresponds to ambiguities detected in
the translation (selected 330 times). Next comes
the complexity of the linguistic structure (306), and
finally the length of the translation (110). Other
reasons are also chosen (118). We break down in
Table 5 the detailed figures per system. We clearly

185



Orig. BASELINE Orig. Ranta Orig. LOLA Minim. BBS Minim. RBS Minim. LBS

Ambiguity 119 56 48 39 33 35
Complexity 110 58 46 38 28 26
Length 46 13 11 14 7 9
Other 33 26 14 15 12 18

Table 5: Figures for the reasons of translations’ low comprehensibility per system.

Sentence If b is a tetrahedron, then b is a tetrahedron and it is not the case that c is a tetrahedron.

Interpretation 1 (If b is a tetrahedron, then b is a tetrahedron) and (it is not the case that c is a tetrahedron).
Interpretation 2 If (b is a tetrahedron), then (b is a tetrahedron and it is not the case that c is a tetrahedron).

Original Formula Tet(b)→ (Tet(b) ∧ ¬Tet(c))

Table 6: An ambiguous translation and its possible interpretations.

notice that manipulating the input formula helps
improve the comprehensibility of the sentences, as
the number of problematic cases decreases with
LOLA and the minimized variants. We proceed
with a manual check of the translations and report
some interesting cases.

A noteworthy example of ambiguity is presented
in Table 6. The sentence can have (at least) two
interpretations. We need to resort to the original
formula in the GGC to disambiguate the sentence
and retrieve the intended meaning, which corre-
sponds to the second interpretation. The sentence
is generated by Orig. BASELINE. Other systems
greatly improve the translation’s comprehensibility,
e.g., the corresponding translation by Minim. LBS

b is not a tetrahedron or c is not a tetrahedron is
rated much higher by the evaluators (µ = 4.43 vs.
µ = 2.86).

Problematic cases pertaining to the complexity
and length of the sentence include those presenting
bulleted lists. Evaluators are ambivalent about
their use: Some systematically give high scores
to sentences containing bulleted lists, while
others severely criticize them. One example that
particularly baffled the evaluators is the following,
as it contains nested levels of indentation:

At least one of these holds:
• d is a dodecahedron and d is small
• all these hold:

– d is not a dodecahedron or d is not small
– a is small

Further, we inspect in which circumstances for-
mula minimization leads to better translations. We
consider the scores on comprehensibility9 of the

9We get similar results when we look at fluency.

translations by Orig. BASELINE vs. Minim. BBS,
and Orig. Ranta vs. Minim. RBS. We select
the top 10 instances where the score difference is
the highest. We do not consider LOLA to keep
the analysis controlled, as LOLA performs fur-
ther logical manipulation before verbalization. We
manually inspect the original and minimized for-
mulae, and find out, unsurprisingly, that the out-
puts are improved mostly thanks to redundancy
removal (e.g., repeated predicates and double nega-
tion) from the input. As an example, the GGC

formula ¬(BackOf(c, a)→ ¬FrontOf(c, e)) ∧
FrontOf(c, e) gets translated by Orig. Ranta as
It is not the case that if c is in back of a, then c is
not in front of e and c is in front of e. After mini-
mization, the resulting formula FrontOf(c, e) ∧
BackOf(c, a) gets translated by Minim. RBS as c
is in front of e and in back of a, gaining 2.71 points
in comprehensibility.

6 Conclusion

We have studied the role of brevity in logic-to-
text generation. We employed a state-of-the-art (in
terms of speed) QBF-based algorithm (Calò and
Levy, 2023) that always finds the shortest equiv-
alents to an input PL formula. We verbalized the
outputs experimenting with several realizers and se-
lection strategies to study whether the translations
from shorter formulae are more comprehensible
and fluent than those from their longer logically
equivalent counterparts.

The results of our evaluations suggest that ma-
nipulating the original input formula (using logical
equivalence laws as in LOLA or via minimization)
improves the sentences generated. Our study taught
us some other lessons as well. For example, the free
text comments that our evaluators provided suggest
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that there is a need to (i) take measures to mitigate
ambiguity in the generated sentences (see also Ta-
ble 5 and Table 6), and (ii) further improve fluency,
despite the fact that both Ranta and LOLA already
take some measures to do it (the former performing
syntactic optimizations and the latter performing
both syntactic and logical optimizations).

In conclusion, is brevity valid as a principle that
guides logic-to-text generation? A comparison
with referring expressions generation (REG) might
be helpful here. Researchers in REG build compu-
tational models of the choices that human speakers
make when referring. Early REG algorithms (Dale,
1992) always generated the shortest expression that
singles out the intended referent. However, such
brevity-oriented REG algorithms have been found
both computationally infeasible (Dale and Reiter,
1995) and dissimilar to the approaches followed by
human speakers. Recent REG models all strike a
compromise between brevity and a number of other
factors (Van Deemter, 2016); they can be seen as
approximating brevity to different degrees. It is
conceivable, likewise, that future work on logic-to-
text generation ends up following a similar pattern.
For example, although the results reported in this
paper suggest that brevity has a role to play, fu-
ture logic-to-text algorithms might achieve even
better performance by deviating from brevity to
some extent. Perhaps brevity in logic-to-text gener-
ation should be weighed less heavily in some com-
municative situations, just as speakers are known
to generate more elaborate referring expressions
when referential situations are complex (Koolen
et al., 2011; Paraboni and van Deemter, 2014).

We hope that future research, in which logical
formulae and their natural language “translations"
are embedded in well-understood practical tasks,
for example in logic teaching or XAI, may shed
further light on these questions.

Limitations

In the present paper, we have concentrated on PL.
The first natural extension of this work would be
to see if the QBF-based algorithm (or similar meth-
ods) could scale up to other (more expressive) for-
malisms, e.g., first-order logic. This would open
up a range of interesting research questions, as in
first-order logic, equivalence is in general unde-
cidable. As a first step, an approach based on the
use of a first-order theorem prover (e.g., VAMPIRE

(Riazanov and Voronkov, 2002)) to check logical

equivalence could be explored. This would not
guarantee total coverage but might handle the vast
majority of cases.

Our work has focused on four common logical
operators, i.e., negation, conjunction, disjunction,
and implication. When including other operators,
such as the biconditional or the Sheffer stroke, the
results could differ. For example, given that the
Sheffer stroke is functionally complete on its own,
we could have very short formulae but that may
result in incomprehensible or disfluent texts.

Our conclusions are drawn from a limited num-
ber of realizers sharing similar properties (i.e., all
of them are rule-based and derived from the system
originally presented in Ranta (2011)). On the other
hand, because of this, we were able to perform con-
trolled generation and zoom in on the impact of
minimization, which would not be straightforward
in other settings, e.g., neural.

Moreover, we have only tackled English as NL.
Brevity is drastically language-dependent and ex-
perimenting with other (especially typologically
diverse) languages could bring different results.

Finally, the evaluation process could be further
refined, as hinted by some comments we received
in the human evaluation. For instance, some sug-
gest that working within practical domains, espe-
cially with the help of pictures, would have eased
the work of the evaluators.
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Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the state-of-the-art of end-to-end
natural language generation: The e2e nlg challenge.
Computer Speech & Language, 59:123–156.

Allyson Ettinger. 2020. What BERT Is Not: Lessons
from a New Suite of Psycholinguistic Diagnostics for
Language Models. Transactions of the Association
for Computational Linguistics, 8:34–48.

Ronald Aylmer Fisher. 1925. Statistical methods for
research workers. Edinburgh, Scotland: Oliver and
Loyd.

Dan Flickinger. 2016. Generating English paraphrases
from logic. From Semantics to Dialectometry.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artifi-
cial Intelligence Research, 61:65–170.

188

https://doi.org/10.18653/v1/W16-0601
https://doi.org/10.18653/v1/W16-0601
https://doi.org/10.18653/v1/W16-0601
https://aclanthology.org/E89-1032
https://aclanthology.org/E89-1032
https://aclanthology.org/2022.gem-1.13
https://aclanthology.org/2022.gem-1.13
https://aclanthology.org/2022.gem-1.13
https://doi.org/10.48550/ARXIV.2303.06643
https://doi.org/10.48550/ARXIV.2303.06643
https://doi.org/10.1007/11562214_15
https://doi.org/10.1007/11562214_15
https://doi.org/10.18653/v1/2020.findings-emnlp.190
https://doi.org/10.18653/v1/2020.findings-emnlp.190
https://aclanthology.org/C86-1136
https://aclanthology.org/C86-1136
https://aclanthology.org/C86-1136
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518


Enrico Giunchiglia, Paolo Marin, and Massimo Nar-
izzano. 2009. Reasoning with quantified boolean
formulas. In Handbook of satisfiability, pages 761–
780. IOS Press.

Herbert P Grice. 1975. Logic and conversation. In
Speech acts, pages 41–58. Brill.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri,
Dino Pedreschi, Franco Turini, and Fosca Giannotti.
2018. Local rule-based explanations of black box
decision systems.

Valerie Hajdik, Jan Buys, Michael Wayne Goodman,
and Emily M. Bender. 2019. Neural text generation
from rich semantic representations. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2259–2266, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Katharina Kann, Sascha Rothe, and Katja Filippova.
2018. Sentence-level fluency evaluation: References
help, but can be spared! In Proceedings of the
22nd Conference on Computational Natural Lan-
guage Learning, pages 313–323, Brussels, Belgium.
Association for Computational Linguistics.

Maurice Karnaugh. 1953. The map method for synthe-
sis of combinational logic circuits. Transactions of
the American Institute of Electrical Engineers, Part
I: Communication and Electronics, 72(5):593–599.

Daniel Kasenberg, Antonio Roque, Ravenna Thielstrom,
Meia Chita-Tegmark, and Matthias Scheutz. 2019.
Generating justifications for norm-related agent de-
cisions. In Proceedings of the 12th International
Conference on Natural Language Generation, pages
484–493, Tokyo, Japan. Association for Computa-
tional Linguistics.

Hans Kleine Büning and Uwe Bubeck. 2009. Theory of
quantified boolean formulas. In Handbook of satisfi-
ability, pages 735–760. IOS Press.

Ruud Koolen, Albert Gatt, Martijn Goudbeek, and
Emiel Krahmer. 2011. Factors causing referential
overspecification in definite descriptions. Journal
of Pragmatics, 43(13):3231–3250. Factors causing
referential overspecification in definite descriptions
Pagination: 20.

Jey Han Lau, Carlos Armendariz, Shalom Lappin,
Matthew Purver, and Chang Shu. 2020. How fu-
riously can colorless green ideas sleep? sentence
acceptability in context. Transactions of the Associa-
tion for Computational Linguistics, 8:296–310.

Rensis Likert. 1932. A technique for the measurement
of attitudes. Archives of psychology.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2021. Text generation from discourse representation
structures. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 397–415, Online. Association
for Computational Linguistics.

Wei Lu and Hwee Tou Ng. 2011. A probabilistic forest-
to-string model for language generation from typed
lambda calculus expressions. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing, pages 1611–1622, Edinburgh,
Scotland, UK. Association for Computational Lin-
guistics.

Xuantao Lu, Jingping Liu, Zhouhong Gu, Hanwen Tong,
Chenhao Xie, Junyang Huang, Yanghua Xiao, and
Wenguang Wang. 2022. Parsing natural language
into propositional and first-order logic with dual re-
inforcement learning. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 5419–5431, Gyeongju, Republic of Korea.
International Committee on Computational Linguis-
tics.

Kana Manome, Masashi Yoshikawa, Hitomi Yanaka,
Pascual Martínez-Gómez, Koji Mineshima, and
Daisuke Bekki. 2018. Neural sentence generation
from formal semantics. In Proceedings of the 11th In-
ternational Conference on Natural Language Genera-
tion, pages 408–414, Tilburg University, The Nether-
lands. Association for Computational Linguistics.

Edward Joseph McCluskey. 1956. Minimization of
boolean functions. The Bell System Technical Jour-
nal, 35(6):1417–1444.

Michael Minock. 2014. In pursuit of decidable’logical
form’. In The Fifth Swedish Language Technology
Conference, 13-14 November 2014, Uppsala.

Aikaterini Mpagouli and Ioannis Hatzilygeroudis. 2009.
A Knowledge-based System for Translating FOL For-
mulas into NL Sentences. In Iliadis, Maglogiann,
Tsoumakasis, Vlahavas, and Bramer, editors, Arti-
ficial Intelligence Applications and Innovations III,
volume 296, pages 157–163. Springer US, Boston,
MA. Series Title: IFIP Advances in Information and
Communication Technology.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ivandré Paraboni and Kees van Deemter. 2014. Refer-
ence and the facilitation of search in spatial domains.
Language, Cognition and Neuroscience, 29(8):1002–
1017.

189

https://doi.org/10.48550/ARXIV.1805.10820
https://doi.org/10.48550/ARXIV.1805.10820
https://doi.org/10.18653/v1/N19-1235
https://doi.org/10.18653/v1/N19-1235
https://doi.org/10.18653/v1/K18-1031
https://doi.org/10.18653/v1/K18-1031
https://doi.org/10.1109/TCE.1953.6371932
https://doi.org/10.1109/TCE.1953.6371932
https://doi.org/10.18653/v1/W19-8660
https://doi.org/10.18653/v1/W19-8660
https://doi.org/10.1162/tacl_a_00315
https://doi.org/10.1162/tacl_a_00315
https://doi.org/10.1162/tacl_a_00315
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2021.naacl-main.35
https://doi.org/10.18653/v1/2021.naacl-main.35
https://aclanthology.org/D11-1149
https://aclanthology.org/D11-1149
https://aclanthology.org/D11-1149
https://aclanthology.org/2022.coling-1.481
https://aclanthology.org/2022.coling-1.481
https://aclanthology.org/2022.coling-1.481
https://doi.org/10.18653/v1/W18-6549
https://doi.org/10.18653/v1/W18-6549
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1007/978-1-4419-0221-4_20
https://doi.org/10.1007/978-1-4419-0221-4_20
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135


Adam Pauls and Dan Klein. 2012. Large-scale syntactic
language modeling with treelets. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 959–968, Jeju Island, Korea. Association for
Computational Linguistics.

Stanley R. Petrick. 1956. A direct determination of
the irredundant forms of a boolean function from the
set of prime implicants. Air Force Cambridge Res.
Center Tech. Report, pages 56–110.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Willard V. Quine. 1952. The problem of simplify-
ing truth functions. The American Mathematical
Monthly, 59(8):521–531.

Willard V. Quine. 1955. A way to simplify truth
functions. The American Mathematical Monthly,
62(9):627–631.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. Techni-
cal report, OpenAI.

Aarne Ranta. 2011. Translating between language and
logic: what is easy and what is difficult. In Proceed-
ings of the International Conference on Automated
Deduction, pages 5–25. Springer.

Alan Rector, Nick Drummond, Matthew Horridge,
Jeremy Rogers, Holger Knublauch, Robert Stevens,
Hai Wang, and Chris Wroe. 2004. Owl pizzas: Prac-
tical experience of teaching owl-dl: Common errors
& common patterns. In Engineering Knowledge in
the Age of the Semantic Web: 14th International Con-
ference, EKAW 2004, Whittlebury Hall, UK, October
5-8, 2004. Proceedings 14, pages 63–81. Springer.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Alexandre Riazanov and Andrei Voronkov. 2002. The
design and implementation of vampire. AI communi-
cations, 15(2-3):91–110.

Samuel Ryb, Mario Giulianelli, Arabella Sinclair, and
Raquel Fernández. 2022. AnaLog: Testing analytical
and deductive logic learnability in language mod-
els. In Proceedings of the 11th Joint Conference on
Lexical and Computational Semantics, pages 55–68,
Seattle, Washington. Association for Computational
Linguistics.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2699–2712, Online. Association for Computational
Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Hadar Shemtov. 1996. Generation of paraphrases from
ambiguous logical forms. In COLING 1996 Volume
2: The 16th International Conference on Computa-
tional Linguistics.

Stuart M. Shieber. 1988. A uniform architecture for
parsing and generation. In Coling Budapest 1988
Volume 2: International Conference on Computa-
tional Linguistics.

Stuart M. Shieber. 1993. The problem of logical form
equivalence. Computational Linguistics, 19(1):179–
190.

Stuart M. Shieber, Gertjan van Noord, Robert C. Moore,
and Fernando C. N. Pereira. 1989. A semantic-head-
driven generation algorithm for unification-based for-
malisms. In 27th Annual Meeting of the Association
for Computational Linguistics, pages 7–17, Vancou-
ver, British Columbia, Canada. Association for Com-
putational Linguistics.

Ankit Shukla, Armin Biere, Luca Pulina, and Martina
Seidl. 2019. A Survey on Applications of Quantified
Boolean Formulas. In 2019 IEEE 31st International
Conference on Tools with Artificial Intelligence (IC-
TAI), pages 78–84, Portland, OR, USA. IEEE.

Charese Smiley, Elnaz Davoodi, Dezhao Song, and
Frank Schilder. 2018. The E2E NLG challenge: A
tale of two systems. In Proceedings of the 11th Inter-
national Conference on Natural Language Genera-
tion, pages 472–477, Tilburg University, The Nether-
lands. Association for Computational Linguistics.

Leander Tentrup. 2019. CAQE and QuAbS: Abstrac-
tion Based QBF Solvers. Journal on Satisfiability,
Boolean Modeling and Computation, 11:155–210.

Craig Thomson, Ehud Reiter, and Somayajulu Sripada.
2020. SportSett:basketball - a robust and maintain-
able data-set for natural language generation. In Pro-
ceedings of the Workshop on Intelligent Information
Processing and Natural Language Generation, pages
32–40, Santiago de Compostela, Spain. Association
for Computational Lingustics.

Aaron Traylor, Roman Feiman, and Ellie Pavlick. 2021a.
AND does not mean OR: Using formal languages to
study language models’ representations. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International

190

https://aclanthology.org/P12-1101
https://aclanthology.org/P12-1101
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.1080/00029890.1952.11988183
https://doi.org/10.1080/00029890.1952.11988183
https://doi.org/10.1080/00029890.1955.11988710
https://doi.org/10.1080/00029890.1955.11988710
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2022.starsem-1.5
https://doi.org/10.18653/v1/2022.starsem-1.5
https://doi.org/10.18653/v1/2022.starsem-1.5
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://aclanthology.org/C96-2155
https://aclanthology.org/C96-2155
https://aclanthology.org/C88-2128
https://aclanthology.org/C88-2128
https://aclanthology.org/J93-1008
https://aclanthology.org/J93-1008
https://doi.org/10.3115/981623.981625
https://doi.org/10.3115/981623.981625
https://doi.org/10.3115/981623.981625
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.18653/v1/W18-6558
https://doi.org/10.18653/v1/W18-6558
https://doi.org/10.3233/SAT190121
https://doi.org/10.3233/SAT190121
https://aclanthology.org/2020.intellang-1.4
https://aclanthology.org/2020.intellang-1.4
https://doi.org/10.18653/v1/2021.acl-short.21
https://doi.org/10.18653/v1/2021.acl-short.21


Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 158–167, Online.
Association for Computational Linguistics.

Aaron Traylor, Ellie Pavlick, and Roman Feiman. 2021b.
Transferring representations of logical connectives.
In Proceedings of the 1st and 2nd Workshops on
Natural Logic Meets Machine Learning (NALOMA),
pages 22–25, Groningen, the Netherlands (online).
Association for Computational Linguistics.

Grigori Samuilovitsch Tseitin. 1983. On the Complex-
ity of Derivation in Propositional Calculus. In Jörg H.
Siekmann and Graham Wrightson, editors, Automa-
tion of Reasoning: 2: Classical Papers on Compu-
tational Logic 1967–1970, pages 466–483. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Kees Van Deemter. 2016. Computational models of
referring: a study in cognitive science. MIT Press.

Kees van Deemter and Magnús M. Halldórsson. 2001.
Logical form equivalence: the case of referring ex-
pressions generation. In Proceedings of the ACL
2001 Eighth European Workshop on Natural Lan-
guage Generation (EWNLG), Toulouse, France. As-
sociation for Computational Linguistics.

Chunliu Wang, Rik van Noord, Arianna Bisazza, and
Johan Bos. 2021. Evaluating text generation from
discourse representation structures. In Proceedings
of the 1st Workshop on Natural Language Generation,
Evaluation, and Metrics (GEM 2021), pages 73–83,
Online. Association for Computational Linguistics.

Juen-tin Wang. 1980. On computational sentence gener-
ation from logical form. In COLING 1980 Volume 1:
The 8th International Conference on Computational
Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yuk Wah Wong and Raymond Mooney. 2007. Genera-
tion by inverting a semantic parser that uses statistical
machine translation. In Human Language Technolo-
gies 2007: The Conference of the North American
Chapter of the Association for Computational Lin-
guistics; Proceedings of the Main Conference, pages

172–179, Rochester, New York. Association for Com-
putational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2020. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

A Details on Human Evaluation

We conduct the human evaluation via Prolific.10

The 42 evaluators we recruit are all native speakers
of English and completed at least high school. They
are paid £3 for an estimated workload of 20 min-
utes. Figure 3 presents the instructions provided to
the evaluators and an example sentence.
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Thank you very much for participating in this experiment!

It will take approximately 20 minutes to fill in this survey. If you do wish to participate, your response
will be handled anonymously: The information in this study will only be used in ways that will not reveal
who you are. You will not be identified in any publication from this study or in any data files shared with
other researchers. Your participation in this study is confidential. If at any point you would like to stop,
you can close this form and your response will be deleted.

I have read the above information and understand the purpose of the research and that data will be
collected from me. I agree that data gathered for the study may be published or made available, provided
my name or other identifying information is not used.

⃝ I confirm this.
⃝ I do not confirm this and I want to withdraw from participation.

The purpose of the experiment is to assess the quality of some automatically generated English sentences
concerning geometrical shapes and their properties. We are interested in receiving feedback on (i)
comprehensibility (i.e., do you understand precisely the message conveyed by the sentence?), and (ii)
fluency (i.e., does the sentence sound natural to you?).

We will present to you 48 sentences, and for each, we would like to know your feedback on the
aforementioned aspects. In detail, you will have to answer the following questions:

1. How comprehensible is the sentence? By a comprehensible sentence, we mean that it is
understandable and does not have multiple interpretations.

2. How fluent is the sentence? By a fluent sentence, we mean that it sounds like a natural English
sentence and is grammatically correct.

Please, note down the definitions of comprehensibility and fluency, in case you want to refer to them later.

Here’s an example:

Sentence:
If it is not the case that c is a cube, then a is a tetrahedron, and if it is not the case that d is a cube, then b
is a cube.

Comprehensibility
1⃝ 2⃝ 3⃝ 4⃝ 5⃝ 6⃝ 7⃝
Fluency
1⃝ 2⃝ 3⃝ 4⃝ 5⃝ 6⃝ 7⃝

Why do you think that the sentence is hard to understand?
(In the real questionnaire, this appears only if comprehensibility < 4)
Note: with ‘the sentence is ambiguous’, we mean ‘the sentence has multiple meanings’.

⃝ The sentence is ambiguous
⃝ The sentence is too long
⃝ The language structure is too complex
⃝ Other:

Now it is your turn!

Figure 3: The instructions provided to the evaluators during our human evaluation.
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Abstract

The automatic extraction of hypernym knowl-
edge from large language models like BERT
is an open problem, and it is unclear whether
methods fail due to a lack of knowledge in the
model or shortcomings of the extraction meth-
ods. In particular, methods fail on challenging
cases which include rare or abstract concepts,
and perform inconsistently under paraphrased
prompts. In this study, we revisit the long line
of work on pattern-based hypernym extraction,
and use it as a diagnostic tool to thoroughly
examine the hypernomy knowledge encoded in
BERT and the limitations of hypernym extrac-
tion methods. We propose to construct prompts
from established pattern structures: definitional
(X is a Y); lexico-syntactic (Y such as X); and
their anchored versions (Y such as X or Z). We
devise an automatic method for anchor pre-
diction, and compare different patterns in: (i)
their effectiveness for hypernym retrieval from
BERT across six English data sets; (ii) on chal-
lenge sets of rare and abstract concepts; and
(iii) on consistency under paraphrasing. We
show that anchoring is particularly useful for
abstract concepts and in enhancing consistency
across paraphrases, demonstrating how estab-
lished methods in the field can inform prompt
engineering.1

1 Introduction

Semantic relations play a central role in knowl-
edge representation (Miller, 1995) and taxonomy
construction (Snow et al., 2006; Navigli et al.,
2011). As the backbone of semantic relations, hy-
ponymy/hypernymy relations express a hierarchi-
cal relation between a specific concept (the hy-
ponym; e.g., dog) and a general one (the hyper-
nym; e.g., mammal), and form the foundation of
human concept understanding (Yu et al., 2015)
and relation reasoning (Lyons, 1977; Green et al.,

∗Now at Google DeepMind.
1Code and test sets are available at https://github.

com/ChunhuaLiu596/AnchoredPrompts

Lexico-Syntactic Prompt

  __ such as keas. 

Anchored Prompt

  __ such as keas and parrots.

fish  

birds

Definitional Prompt

  A kea is a __. 
fish  

Figure 1: Example prompts for hypernym prediction,
derived from established pattern structures.

2002). Given its fundamental role, the automatic
extraction of hypernym knowledge from large texts
(Hearst, 1992; Roller et al., 2018) or pre-trained lan-
guage models (PLMs) (Takeoka et al., 2021; Jain
and Espinosa Anke, 2022), and its injection into
NLP methods are active areas of research (Peters
et al., 2019).

The unsupervised extraction of hypernyms from
PLMs by prompting has attracted recent attention,
e.g., using patterns like A dog is a type of [MASK]
and retrieving the most likely filler words from the
model (Ettinger, 2020; Weir et al., 2020; Jain and
Espinosa Anke, 2022). Results were mixed: while
PLMs can reliably predict hypernyms of concrete
and frequent hyponyms (Ettinger, 2020; Weir et al.,
2020), experiments on more challenging data sets
show a quick deterioration in the face of rare con-
cepts (Schick and Schütze, 2019), and a lack of
response consistency across paraphrased prompts
(Ravichander et al., 2020; Elazar et al., 2021). How
to alleviate these issues and extract more reliable
hypernyms from PLMs remain open questions.

In this paper, we draw connections between
prompting for hypernyms and pattern-based hyper-
nym extraction (Hearst, 1992; Snow et al., 2004)
(see Figure 1 and Table 1). We systematically in-
vestigate the utility of different styles of patterns as
BERT prompts, and use them as diagnostic tools
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to better understand the conditions under which
probing for hypernyms is effective and consistent.

Pattern-based hypernym extraction from raw text
has a long history, starting from Hearst (1992)’s
seminal work which promotes lexico-syntactic pat-
terns (Y such as X)2 as more effective than defini-
tional patterns (X is a type of Y). Follow-up work
(Hovy et al., 2009) incorporated a co-hyponym, a
concept that shares a hypernym with X, into the
pattern (Y such as X and Z) to provide additional
context signals. Figure 1 illustrates this, where the
anchor parrot provides additional information to
facilitate the prediction of the correct hypernym of
kea. This method of ‘anchoring’ has been shown
to improve the quality of automatically extracted
hypernym knowledge. We apply these established
patterns from the hypernym extraction literature
in the context of language model prompting, and
systematically study the existence and gaps of hy-
ponym/hypernym knowledge in BERT. We conduct
experiments on six English data sets and address
three questions:

How to effectively construct anchored prompts?
We devise a scalable method to automatically re-
trieve high-quality anchors (co-hyponyms) to con-
struct anchored prompts. Anchors are mined from
PLMs with established co-hyponym patterns (e.g.,
such as X and ) and evaluated with WordNet
(Miller, 1995).

How do different pattern structures compare
as prompts under different data conditions? We
ground our prompts in hypernym patterns from
which have been successfully used to mine hyper-
nyms from raw corpora, and investigate their ef-
fectiveness for zero-shot PLM hypernym retrieval.
We find strong, consistent benefits of anchored
prompts, particularly for rare or abstract concepts.

Robust extraction of hypernym knowledge.
Much recent work has shown that PLM prompt-
ing results are brittle under prompt paraphrases,
calling into question whether prompting surfaces
robust knowledge encoded in the PLMs or rather
superficial associations. We compare the robust-
ness of different patterns under paraphrasing, and
find, again, a benefit of anchored prompts for re-
trieving more consistently correct hypernyms.

In summary, we contribute to the on-going re-
search on hypernym extraction by unifying the
long-standing work of pattern-based and prompt-

2We use Y to denote hypernyms, X for hyponyms and Z
for the co-hyponym of X .

D
F
P

A(n) X is a Y.

D
F
P
+
A A(n) X or Z is a Y.

A(n) X is a type of Y. A(n) X or Z is a type of Y.
A(n) X is a kind Y. A(n) X or Z is a kind Y.

L
S
P

Y such as X.

L
S
P
+
A

Y such as X and Z.
Y, including X. Y, including X and Z.
Y, especially X. Y, especially X and Z.
X or other Y. X, Z or other Y.
X and other Y. X, Z and other Y.
such Y as X. such Y as X and Z.

Table 1: Four types of pattern structures: defini-
tional patterns (DFP; top) and lexico-syntactic patterns
(LSP; bottom); and their anchored versions: DFP+A and
LSP+A (right).

based approaches, demonstrating that anchoring
prompts can unlock a wealth of hidden knowledge
within BERT, and providing a framework of auto-
matic construction of anchoring prompts.

2 Background

We introduce the two approaches for hypernym
extraction on which we build in this paper: pattern-
based (§ 2.1) and prompting PLMs (§ 2.2).

2.1 Pattern-based Hypernym Extraction
The pattern-based approach applies hyponym-
hypernym patterns to large corpora to extract hy-
pernyms. Two widely-used pattern structures have
been identified: lexico-syntactic and definitional.

2.1.1 Lexico-Syntactic Patterns (LSP)
Lexico-syntactic patterns (LSP; Table 1 bottom
left) were first introduced by Hearst (1992) and
have since been used to mine hyponym-hypernym
pairs or build ontologies from large corpora (Pasca,
2004; Pantel and Pennacchiotti, 2006; Etzioni et al.,
2005; Roller et al., 2018). The six LSP (1) all indi-
cate the hyponym-hypernym relation with explicit
signals (e.g., such as, especially), (2) frequently
occur in text, and (3) are applicable to nouns or
noun-phrases.

Anchored LSP (LSP+A) Hovy et al. (2009) pro-
posed an ‘anchored’ version of LSP to mine hy-
pernyms (LSP+A)3 which uses patterns like Y such
as X and Z, where Z is an anchor which reduces
ambiguity and assists the extraction of Y (Table 1,
bottom right). A similar idea of using anchors to
improve hypernym classifiers is used in Snow et al.
(2004) and Bernier-Colborne and Barrière (2018).
LSP+A has been shown to be effective at extract-
ing reliable hypernyms from text corpora, however,

3LSP+A is referred to as DAP-1 in the original paper.
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Anchored Prompts: 
● __ such as dogs and cats.
● __ such as dogs and pigs.
● __ such as dogs and rabbits.
● … (b) Hypernym Extraction(a) Anchored Prompts Construction

Co-Hyponym Prompts:
● such as X and __. 
● including X and __.
● especially X and __.
● ...

X: dogs Anchors Z: 
● cats
● pigs
● rabbits

….

Hypernyms Y:
● pets
● animals
● mammals

….

Figure 2: The workflow of constructing anchored prompts (a) and extracting hypernyms from PLMs (b).

like all pattern-based approaches, it suffers from
low recall because it needs X, Y and Z to co-occur.
The sparsity issue can be potentially remedied by
using embeddings from PLMs to represent X and
Z when used as prompts. However, this hasn’t
been studied in the context of extracting knowl-
edge from PLMs. Inspired by this line of work and
PLM prompting, we use LSP+A to mine hypernyms
from PLMs and examine the benefit of anchors.

2.1.2 Definitional Patterns (DFP)
In contrast to LSP that conveys the hypernym re-
lation implicitly, definitional Patterns (DFP; Ta-
ble 1 top left) explicitly define an Is-A relation
between X and Y (Lyons, 1977). A common use
of DFP is to mine sentences for definition extrac-
tion (Borg et al., 2009; Navigli et al., 2010) or
ontology/dictionary building (Muresan and Kla-
vans, 2002). Recently, DFP has been widely used
in prompting studies (Schick and Schütze, 2020;
Ettinger, 2020; Ravichander et al., 2020; Hanna
and Mareček, 2021) to probe hypernym knowledge
in PLMs.

Anchored DFP (DFP+A) Analogous to LSP+A,
we augment DFP with anchors for disambiguation
(Table 1 top right). To the best of our knowledge,
Hanna and Mareček (2021) is the only work which
uses anchored definitional patterns to prompt PLMs
for hypernyms, described in more detail below.

2.2 Prompting-based Hypernym Extraction

With recent advances in PLMs, increasingly rich
knowledge is captured language models. A stream
of research aims at automatically extracting this
knowledge, e.g., by probing PLMs for hypernym
knowledge (Ettinger, 2020; Weir et al., 2020; Peng
et al., 2022). Hanna and Mareček (2021) examined
the effects of single hypernym patterns (e.g., ‘X
is a Y’, ‘A Y such as X’) on prompting PLMs and

showed that performance varies with patterns. Sim-
ilarly, Ravichander et al. (2020) found that PLMs
fail to retrieve consistent knowledge over prompts
paraphrased with singular vs plural hyponyms.

Most previous work on prompting was con-
ducted under relatively simple conditions with one
pattern structure and a single data set. We system-
atically investigate the effects of well-established
patterns (LSP/LSP+A and DFP/DFP+A) on extract-
ing hypernyms across six widely-used datasets and
paint a more nuanced picture of hypernym knowl-
edge in BERT by explicitly studying the challeng-
ing cases of rare or abstract concepts.

3 Anchored Prompts

We now introduce our framework of extracting
hypernyms from a PLM by constructing sets of
prompts given a hyponym X and a pattern type
∈ {DFP, DFP+A, LSP, LSP+A }. We illustrate the
workflow in Figure 2, with LSP+A as an example.

Prompt Construction For each pattern type, we
construct a set of prompts by instantiating each
of its assigned patterns (cells in Table 1) with a
concept in positions X and Z, and a [MASK] token
in position Y. For DFP and LSP we can construct
prompt sets directly given a hyponym X of interest.
To construct prompts for LSP+A and DFP+A we
need to additionally provide meaningful anchors
Z. We next describe a way to effectively mine such
anchors from language models (see Figure 2 (a)).

Anchor Extraction Given X, we use BERT to
automatically extract a set of anchors, i.e., con-
cepts Z that share a hypernym with X. To acquire
such anchors, we again adopt a set of established
lexico-syntactic patterns that indicate the fact that
X and Z share a common hypernym (Hearst, 1992;
Snow et al., 2004; Etzioni et al., 2005). Table 2
presents the full list of patterns we used to mine
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such as X and Z. including X and Z.
such as X or Z. including X or Z.
such as X, Z, including X, Z,

especially X and Z. X, Z or other
especially X or Z. X, Z and other
especially X, Z,

Table 2: Co-hyponym patterns for anchor extraction,
adapted from Hearst (1992).

anchors. Each pattern is converted into a prompt by
filling in X and replacing Z with a [MASK] token,
resulting in a set of co-hyponyms prompts C. We
retrieve the 10 most likely filler words according to
language model probability for each pattern Ci ∈ C.
We score candidates z by their average probabil-
ity across the patterns that contained z among the
top 10 fillers:

sLM (z|x, C) = 1

|Cz|

|C|∑

i=1

PLM (z|x, Ci), (1)

where PLM (z|x, C) is the probability of z in the ith

pattern instantiated with x and |Cz| is the number
of patterns that predicted z. We finally keep the M
highest scoring concepts as anchors, and instantiate
M copies of LSP+A and DFP+A with the different
anchors, respectively.

Hypernym Extraction Being able to construct
sets of prompts for vanilla (PDFP,PLSP) and an-
chored prompts (PDFP+A ,PLSP+A), we are now in
a position to prompt PLMs for hypernyms. Sepa-
rately for each prompt set P ,4 we score hypernym
candidates y by their average probability across
patterns Pi ∈ P:

sLM (y|x,P) = 1

|P|

|P|∑

i=1

logPLM (y|x,Pi), (2)

where P = {PLSP,PDFP,PLSP+A ,PDFP+A}. The
hypernyms ranked by sLM (y|x,P) and the top K
are retained as hypernym candidates.

4 Experimental Setup

Datasets We conduct experiments on six English
datasets. CLSB (Devereux et al., 2014) and DIAG
(Ravichander et al., 2020) have been recently used

4We drop subscripts to avoid clutter.

to probe for hypernym knowledge in PLMs (De-
vlin et al., 2019). The remaining four data sets
are widely-used test sets for hypernym extraction
more generally (Shwartz et al., 2017; Roller et al.,
2018), namely BLESS (Baroni and Lenci, 2011),
EVAL (Santus et al., 2015), LEDS (Baroni et al.,
2012), and SHWARTZ (Shwartz et al., 2017). We
only consider NOUN-NOUN hyponym-hypernym
pairs from the datasets. Dataset statistics are re-
ported in Table 9 in the Appendix. Data sets vary
widely in terms of their corpus size, the ratio of ab-
stractness and concreteness, concept frequency and
their construction methods, and hence underlying
knowledge sources. While most data sets are based
on WordNet, SHWARTZ builds on a wider set of
resources, including ConceptNet and Wikipedia
and hence includes more obscure concepts. EVAL
stands out with a relatively high proportion of ab-
stract concepts, unlike the other data sets which
are predominantly concrete. Section 6 explores
performance using these data conditions.

Model All our experiments are based on BERT-
large-uncased (Devlin et al., 2019) from Hugging-
face5 and use a zero-shot approach to probe the
model. To allow for comparability of results across
data sets, we adopt an open vocabulary approach
throughout, considering the whole BERT vocab-
ulary as hypernym candidates.6 We remove test
instances where the hypernym is not in the BERT
vocabulary.7 We set the number of anchors in an-
chored prompts to M = 5.8

Evaluation Metrics Following previous
work (Petroni et al., 2019; Qin and Eisner, 2021),
we retain the K=10 hypernym candidates and
report Precision at 10 (P@10) as the extent to
which correct hypernyms are included in the top
10 model predictions ranked by Equation 2. We
also report mean reciprocal rank (MRR) of the true
label. We evaluate model predictions at the concept
level, normalizing predictions into their canonical
form, i.e., accepting any inflection of the correct
hypernym,9 and exclude punctuation, stop words,
numbers and the hyponym x from the predictions.

5https://huggingface.co/
bert-large-uncased

6Prior work (Ravichander et al., 2020) adopted a closed-
vocabulary approach, limiting the set of candidate y to hyper-
nyms in a particular data set.

7Note that there is no such restriction on hyponyms so that
results in § 6.2 are not biased.

8This number was optimized on BLESS.
9We used pyinflect 0.5.1.
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Dataset MRR P@1 P@5 P@10

BLESS 73.9 66.0 86.6 89.6
DIAG 34.9 28.6 43.8 48.8
CLSB 60.3 51.2 73.2 77.7
SHWARTZ 23.7 16.8 33.1 39.8
EVAL 33.6 26.1 44.1 49.4
LEDS 45.8 35.7 59.7 66.3

Table 3: Anchor evaluation results, where predicted
anchors z for a concept x are validated by checking
whether x and z share a hypernym in WordNet.

We measure the significance of differences with
paired t-tests at p<0.05 after Holm-Bonferroni
correction for multiple comparisons to adjust
for comparisons across six data sets (Dror et al.,
2017).

Analyses In addition to the main results, we aim
to understand underlying factors that might affect
the performance of hypernym extraction. We anal-
yse the performance of pattern types on different
types of concepts. We distinguish sets of hyponyms
and hypernyms in terms of their frequency and ab-
stractness and test consistency of predictions across
prompt paraphrases.

5 Anchor Validation

How accurate are the automatically mined an-
chors? We qualitatively and quantitatively inspect
retrieved anchor concepts. We use WordNet for
this purpose, and follow Schick and Schütze (2020)
to consider a candidate z to be a valid anchor of x
if they share a common ancestor, within two lev-
els above x and four levels above z. We exclude
hyponyms that are not in WordNet in this analysis.

Table 3 reports the results across six datasets.
For three of the data sets (BLESS, CLSB, LEDS),
a correct anchor is predicted as top 1 result more
than 33% of the time, and contained among the
top 10 predictions we consider close to 70% of the
time. The other data sets are overall challenging
due to diversity and/or low frequency of concepts.

Qualitative inspection reveals that retrieved an-
chors that are not WordNet siblings according to
our definition above are often reasonable, see Ta-
ble 4. As we shall see in Section 6 the utility of
anchors does not seem to hinge on them being ac-
tual co-hyponyms, and that the topically related
anchors as produced by our method effectively im-
prove hypernym extraction.

x Top 5 predicted anchors (Z)

car truck, motorcycle, boat, yes, bike
apple grape, pear, nuts, vegetable, date
train bus, plane, car, tram, truck
corn bean, potato, barley, wheat, pea
panzer tank, infantry, gun, artillery, panther

motel hotel, yes, sure, restaurant, actually
daisy rose, yes, lavender, rush, fern
murre dog, bird, fox, crow, rabbit
trireme warship, frigate, ship, ferry, battleship

Table 4: Examples of mined anchors (Z) for hyponyms
that share ≥ 1 (top) or zero (bottom) co-hyponyms with
WordNet. Anchors confirmed in WordNet in bold.

6 Hypernym Evaluation

We first examine the effectiveness of LSP vs DFP
and the added value of anchoring on our six data
sets overall (§ 6.1). Afterwards, we inspect specifi-
cally rare (§ 6.2) and abstract (§ 6.3) concepts as
well as the well-known issue of inconsistency of
responses in the face of prompt paraphrases (§ 6.4),
explore different patterns in these contexts and end
with an error analysis (§ 6.5).

6.1 Main Results

Table 5 presents the main results. Performance over
datasets varies widely, with SCHWARTZ standing
out with particularly low performance. SHWARTZ
is dominated by proper noun hyponyms (e.g.,
city/person names), and includes a very broad
range of hypernyms (1.1K). Performance on the
other data sets are more comparable.

Do LSP and DFP differ? Comparing row one
(DFP) and three (LSP) in Table 5, we see no con-
sistent trend. While performance is often compara-
ble, on BLESS LSP outperforms DFP. The reverse
is true for EVAL. BLESS contains frequent and
largely unambiguous hyponyms which are presum-
ably more frequently discussed in natural patterns
as comprised by LSP. EVAL is dominated by am-
biguous and abstract concepts, which are perhaps
more commonly described by formal, definition-
style language.

Do anchors help retrieve more accurate hyper-
nym knowledge? Table 5 reveals a consistent im-
provement of adding anchors for DFP (row 1 vs.
2) but not for LSP (row 3 vs. 4): definitional
patterns benefit from anchoring via co-hyponyms
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BLESS DIAG CLSB SHWARTZ EVAL LEDS
MRR P@10 MRR P@10 MRR P@10 MRR P@10 MRR P@10 MRR P@10

DFP 23.6 42.4 42.6 66.8 39.8 67.5 6.3 12.8 24.0 46.7 32.6 60.1
DFP+A 25.7+ 47.2+ 45.5+ 67.2+ 42.3+ 70.5+ 5.9+ 13.6+ 22.1+ 43.3+ 35.7+ 64.3+

LSP 27.1∗ 53.9∗ 45.5 66.1 40.8 68.2 6.4 15.2∗ 17.3∗ 39.5∗ 33.4 60.5
LSP+A 26.5 53.2 42.8+ 62.7 40.4 67.7 6.5 14.9 17.0 38.1 34.0 61.6

Table 5: Main results on six hypernym extraction datasets. Bold number indicates the highest score per data set and
metric. ∗ indicates significant difference of LSP vs. DFP; + indicates significant difference wrt. the non-anchored
counterpart (i.e., LSP vs LSP+A and DFP vs. DFP+A).
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Figure 3: Performance of different pattern structures
rare vs common hyponyms. Left: hyponyms seen in
BERT vocabulary and not. Right: hyponyms frequency
of different frequency bands estimated from large cor-
pora. + and ∗ as in Table 5.

while lexico-syntactic patterns don’t.10

Next, in §6.2-§6.4 we disentangle the main re-
sults, considering a range of conditions which have
been identified as challenging in prior work, and
examine whether different patterns and/or anchor-
ing can improve hypernym retrieval from BERT in
these contexts.

6.2 The Impact of Frequency
Previous work (Ravichander et al., 2020; Hanna
and Mareček, 2021; Schick and Schütze, 2020)
found that BERT often fails to predict hypernyms
for uncommon hyponyms. Here, we examine
whether incorporating anchors can alleviate this
issue. This is driven by the intuition that humans
often draw on surrounding context signals to help
understand the relationship between concepts. For
example, even if we are unfamiliar with the concept

10We estimate the upper-bound of anchoring prompts with
oracle anchors from WordNet, finding that better anchors can
bring more benefits (see Table 10 in the Appendix).
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Figure 4: Performance of different pattern structures
on: abstract hypo- and hypernym (Abs-Abs); abstract
hypo- concrete hypernym (Abs-Conc); concrete hypo-
abstract hypernym (Conc-Abs); and concrete hypo- and
hypernym (Conc-Conc). + and ∗ as in Table 5.

of kea, knowing an anchor like parrot can help us
infer that bird is one of the hypernyms. We expect
that anchors can provide more linking context to
the hypernym and improve the hypernym extrac-
tion performance when the hyponyms are rare. To
verify this, we look into two aspects that reflect
frequency: (a) existence in the BERT vocabulary
- hyponyms that are included as single-tokens are
frequent; (b) frequency in large corpora. We obtain
term frequency from WorldLex (Gimenes and New,
2016) and categorize frequency into four levels
based on absolute count: High (> 100), Medium
(10-100), Low (1-10), and Unseen (0). For this
analysis, we aggregate instances from all datasets
to increase statistical power.

Figure 3 presents experimental results. We find
that rare hyponyms have lower performance in gen-
eral, aligning with previous work (Ravichander
et al., 2020; Hanna and Mareček, 2021). More in-
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x DFP Predictions DFP+A Predictions Top 5 predicted anchors (Z)

terebinth stone, sculpture, rock tree, plant, sculpture fern, shell, plant, shrub, tree
dray boat, machine, tool vehicle, cart, wagon wagon, tractor, cart, horse, yes
gannet computer, net, network bird, fish, dolphin seal, dolphin, herr, whale, penguin

happiness joy, life, pleasure joy, feeling, emotion love, joy, good, personal, maybe
principle rule, law, concept rule, law, value practice, rule, procedure, guideline, value
snoopy toy, pigeon, mouse toy, puppet, character peanut, snoop, batman, garfield, cartoon

Table 6: Examples of rare (top) and abstract (bottom) hyponyms x, along with their predicted hypernyms from DFP
and DFP+A, and predicted anchors. Correct hypernyms are in bold.

Singular Probes Plural Probes BLESS DIAG CLSB SHWARTZ EVAL LEDS

DFP A(n) X is a(n) Y. X are Y. 2.7 4.5 3.5 0.4 1.7 4.8
DFP+A A(n) X or Z is a(n) Y. X or Z are Y. 0.2 2.3 0.3 0.0+ 0.1 0.6
LSP Y such as a(n) X. Y such as X. 51.2 46.0 60.9 4.4 26.2 40.6
LSP+A Y such as a(n) X or Z. Y such as X or Z. 51.2 51.6+ 65.0+ 10.4+ 32.5+ 52.5+

Table 7: Experimental results (P@10) on pairwise number consistency. X/Z in singular probes are instantiated as
singular (e.g., car), and in plural probes as plural (e.g., cars). + as in Table 5.

BLESS DIAG CLSB SHWARTZ EVAL LEDS

DFP 21.9 42.5 44.7 4.6 23.7 34.3
DFP+A 31.7+ 49.0 53.8+ 8.3+ 28.3+ 42.2+

LSP 26.8 32.8 45.8 2.6 10.2 29.0
LSP+A 31.7+ 39.9+ 52.5+ 4.7+ 13.3+ 36.1+

Table 8: Experimental results (P@10) on group consis-
tency. + as in Table 5.

terestingly, unlike in the main results, LSP exhibits
a significant advantage over DFP on unseen and
low frequency hyponyms (solid bars in UNSEEN
and LOW blocks in Figure 3). Moreover, on the
same blocks, we see that incorporating anchors
into DFP significantly improves the performance
on low frequent hyponyms (solid gray vs dashed
gray). This confirms our hypothesis that anchors
are beneficial for uncommon hyponyms by guid-
ing BERT to predict hypernyms (see examples in
Table 6). This is of practical relevance as it demon-
strates that anchored prompts help for uncommon
hyponyms, which can inform hypernym extraction
in domain-specific or low-resources situations.

6.3 The Impact of Concreteness
Previous work on distributional semantics has
shown that abstract words have higher contextual
variability and are more difficult to predict than
concrete concepts (Naumann et al., 2018). Here,
we examine specifically whether the degree of con-
cept abstractness affects hypernym extraction accu-
racy, as well as the impact of different patterns and
anchoring in this context. To obtain the concept

concreteness level, we use the Brysbaert dataset
(Brysbaert et al., 2014),11 which covers abstract-
ness ratings for 40K common English concepts.
Each concept was scored by at least 25 human an-
notators on a scale from 1 (most abstract) to 5 (most
concrete). We use the median score to represent
the abstractness of each word and bin them into
Abstract (< 3) and Concrete (≥ 3). We inspect all
four possible combinations of {concrete, abstract}
× {hypernym, hyponym}, and again aggregate in-
stances across data sets.

Figure 4 shows that hypernyms of hyponyms at
same abstraction levels (e.g., Conc–Conc) are pre-
dicted with higher accuracy than those under differ-
ent levels (e.g., Abs-Conc). This result is intuitive
as words in same abstraction level tend to co-occur
more (Bhaskar et al., 2017; Frassinelli et al., 2017).
Overall, concrete hyponym-hypernym pairs are pre-
dicted with higher accuracy than pairs involving
an abstract concept, indicating that abstract knowl-
edge is more difficult to retrieve from BERT. More
interestingly, we find that DFP+A brings remarkable
improvements on abstract hypernyms, effectively
reducing the gap between abstract and concrete hy-
pernyms. A closer look at abstract hypernyms that
failed with DFP but succeed on anchored prompts
reveals failure on abstract hypernyms such as {emo-
tion, organization, language, event}. For example,
for the prompt excitement is a BERT predicts
{thrill, fear, rush}. However, by incorporating an-
chors like surprise or anxiety, BERT predicts the

11We exclude hyponyms and hypernyms that are not in the
Brysbaert dataset.
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correct hypernym emotion. This finding is encour-
aging because it points to the weakness of using
hyponyms alone to prompt PLMs for abstract hy-
pernyms and can potentially inform future work
on prompt design for retrieving specific types of
knowledge (e.g., concrete or abstract) and building
ontologies.

6.4 Consistency

Despite the success of prompting, a persistent chal-
lenge is an inconsistency of responses under slight
rephrasing of the prompt (Elazar et al., 2021). In
the context of hypernomy prediction, Ravichan-
der et al. (2020) showed that compared to singular
prompts (a car is a .), plural versions (cars are

.) returned different and worse results. We
study consistency more systematically by includ-
ing different paraphrases, and exploring the utility
of anchoring on the robustness of results. We inves-
tigate: (a) consistency across prompts paraphrased
with singular and plural hyponyms; and (b) consis-
tency over prompts paraphrased with pattern type
instantiations (cells in Table 1). We only score the
prediction for a test instance as correct, if it was
correctly predicted by all prompt paraphrases.

Pairwise Number Consistency Following
Ravichander et al. (2020), we construct pairwise
probes for singular and plural hyponyms, obtaining
one representative pair for each of our four pattern
types as listed in Table 7 (left). The results in
Table 7 show that consistency strongly correlates
with the choice of patterns: DFP prompts (row 1)
produce inconsistent results, while LSP (row 3)
shows strong potential for retrieving consistent
knowledge. One reason is ambiguity in the plural
DFP: the prompt Xs are [MASK] tends to return
verbs and adjectives as candidates (e.g., carrots are
{grown, eaten, orange}.), as plausible completions.
In contrast, LSP contexts are more specific.
Moreover, the consistency improves significantly
for all but one data set when incorporating the
anchors into LSP.12 This finding is important
as it identifies a promising means of retrieving
consistent knowledge from PLMs.

Group Consistency Our sets of pattern-type spe-
cific prompts suggest a natural, stricter consistency
evaluation, namely to test whether BERT reliably
predicts the same, true hypernym for all prompts

12Indeed, when comparing against the less strict evaluation
in Table 5, LSP+A incurs the smallest performance drop.

associated with a pattern type (i.e, each of the cells
of Table 1). Table 8 presents the results. What
stands out in the table is that anchored prompts sig-
nificantly improve group consistency, which aligns
with our observation in the pairwise number con-
sistency tests above. In summary, our results show
that anchors, in particular LSP+A, can help retrieve
more robust and consistent hypernyms from PLMs.
This is not only important for downstream tasks
which rely on (automatic) high-quality hypernym
knowledge, such as taxonomy creation, but could
also inform strategies to probe BERT for genuine,
systematic knowledge, rather than superficial asso-
ciations.

6.5 Error Analysis

When does anchoring hurt? Beyond benefits from
anchors, we also observed that incorporating an-
chors at times degrades performance. Closer in-
spection identified sense ambiguity as a preva-
lent reason, especially for polysemous hyponyms,
which have multiple hypernyms of different senses
(e.g., fan is a person or an appliance.) With anchors,
BERT predictions are skewed to a specific sense
as selected by the anchor, which can be different
from the true hypernym. Another situation is noisy
anchors, including generic and irrelevant anchors
(e.g., actually), or topically related anchors that are
not co-hyponyms (e.g., wood and lake).

How do anchors improve consistency? We anal-
yse hypernyms that are not consistently predicted
correctly without anchors but are correct with an-
chors. There are three reasons for the inconsistency:
(a) overly generic predictions from non-anchored
patterns, e.g., Y, especially X often produces hy-
pernyms like things or items; (b) predictions of
co-hyponyms instead of hypernyms without an-
chors (e.g., a dog is a cat.), which is especially
common with pattern A X is a Y, for which 30%
of its predictions contain co-hyponyms from Word-
Net; (c) hypernyms in the intermediate levels of the
WordNet taxonomy (e.g., garment, jewelry, sweet)
are less consistent for patterns without anchors,
e.g., anchors improve consistency by 11% for hy-
pernyms whose minimum taxonomy depth is 7.13

This suggests that anchors can improve the consis-
tency of mining new intermediate hypernyms from
PLMs, aligning with prior work of using anchors to
mine intermediate hypernyms from corpora (Hovy

13Table 12 in the Appendix lists the consistency of all
depths.
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et al., 2009).

7 Conclusion

In this work, we bridge two powerful techniques
in hypernym extraction: the pattern-based and
prompt-based approach and use them as a diag-
nose tool to probe knowledge in BERT. We pro-
vide a thorough study of how patterns from the
corpus-mining literature can be used to probe neu-
ral models. We find that LSP and DFP exhibit
similar capacities, while anchored patterns bring
consistent and significant benefits, suggesting a
way to overcome challenging scenarios. In partic-
ular, we demonstrated clear benefits for rare hy-
ponyms and abstract hypernyms, and an increase
in the reliability of retrieved hypernyms under para-
phrased prompts. This finding can direct future
work on prompt design to extract robust and consis-
tent hypernyms knowledge. The idea of anchoring
prompts can be extended to other semantic relations
such as part-of and synonyms to advance taxonomy
induction and knowledge graph construction.

8 Limitations

Effectiveness beyond noun-noun concepts: we
apply our method to hyponym-hypernym pairs over
nouns in the general domain. This idea of an-
chored prompts can also be extended mine hyper-
nyms for other parts-of-speech using patterns devel-
oped for text corpora (Chklovski and Pantel, 2004;
Kozareva, 2014), as well as semantic relations be-
yond hyponyms-hyponyms, e.g., Part-Whole (Girju
et al., 2003). We leave this exploration for future
work.

Time efficiency vs performance boost: incor-
porating anchors boost the performance for hyper-
nym extraction, however, we also need to con-
sider that the performance improvements comes
with additional time cost. Querying with anchored
prompts require more computation when multiple
anchors are used, although runtimes for the experi-
ments in the paper are all very low.

Hypernym diversity: current work on extract-
ing hypernyms with BERT predominantly consid-
ers single-word hypernyms and does not consider
multi-word hypernyms or hypernyms that are not
in the BERT vocabulary. Our work is no exception.

Language diversity: Most work in both hyper-
nymy retrieval as well as language model prompt-
ing focuses on English, and as a consequence there
is a lack of data sets in other languages. The ex-

tension of technologies to less well-resourced lan-
guages is a pressing direction for future research.

Scale of Language Models We focus on com-
paring different pattern structures with a single
model, BERT-large. The behaviours of patterns un-
der larger language models such as GPT3 (Brown
et al., 2020) remains to be examined (Wei et al.,
2022).
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A Hypernym Evaluation

Dataset Statistics Table 9 presents the statistics
on all datasets we used for experiments. We ex-
clude hypernyms that are not included as single
tokens in BERT vocabulary. The ratio of discarded
(x, y) pairs is lower than 1% for most datasets,
except for BLESS (30% is discarded) and CLSB
(17% is discarded).

Comparison with oracle anchors To estimate
the upper bound of anchored prompts, we treat
siblings from WordNet (Miller, 1995) as oracle
anchors and evaluate their effects on hypernym ex-
traction. We select top five siblings with the highest
rank of their path similarities calculated from Word-
Net, i.e., 1

p(x,z)+1 , where p is the length of the short-
est path between the x and z among their top two
synsets. We use random sampling among siblings
with the same score to select up to five anchors.
The experimental results are presented in Table 10.
We observe that using WordNet anchors can indeed
lead to significant improvements in performance
on datasets directly built from WordNet. For ex-
ample, we observed large improvements for DIAG
and LEDS when using WordNet anchors in com-
bination with DFPA patterns. However, for other
datasets, BERT anchors produce similar results as
WorNet anchors. This highlights that with the im-
provement of anchor quality, anchoring prompts
can unlock more hidden knowledge within BERT.

Computational Resources All experiments are
conducted on single NVIDIA V100 GPU. A single
run on each data set takes less than 2 hours, except
for the large-scale dataset SHWARTZ, which takes
nearly 24 hours on anchored prompts.

B Consistency

B.1 Pairwise consistency on close vocab
To compare our work with Ravichander et al.
(2020) on pairwise probes using close vocab (nine
hypernyms), we conduct the same experiments on
DIAG dataset. Table 11 presents the results. The
conclusion aligns with the open vocab set up: an-
chored patterns improve the consistency largely.

B.2 Group consistency over different depths
of hypernyms

Table 12 reports the group consistency across dif-
ferent depths of hypernyms.
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Dataset #Hypon #Hyper #Pairs WordNet Coverage (%) Concreteness

BLESS (Baroni and Lenci, 2011) 200 85 935 99.8 100 / 91.4
DIAG (Ravichander et al., 2020) 576 9 576 100 97.9/ 100
CLSB (Devereux et al., 2014) 508 232 1079 98.1 100/ 98.2
SHWARTZ (Shwartz et al., 2017) 11061 1101 12724 44.1 66.4/ 92.3
LEDS (Baroni et al., 2012) 1073 364 1262 100 83.7/ 79.2
EVAL (Santus et al., 2015) 621 348 953 99.8 88.1/ 83.4

Table 9: The statistics of datasets. WordNet Coverage is the coverage of hyponym-hypernym that are connected in
WordNet on hypernyms hierarchy. Concreteness is the percentage of concrete hyponyms/hypernyms, measured by
the concreteness rating from Brysbaert et al. (2014) for the shared vocab.

BLESS DIAG CLSB SHWARTZ EVAL LEDS
MRR P@10 MRR P@10 MRR P@10 MRR P@10 MRR P@10 MRR P@10

DFP 23.6 42.4 42.6 66.8 39.8 67.5 6.3 12.8 24.0 46.7 32.6 60.1
DFP+A 25.7+ 47.2+ 45.5+ 67.2+ 42.3+ 70.5+ 5.9+ 13.6+ 22.1+ 43.3+ 35.7+ 64.3+

DFP+Aoracle ♯ 23.9 41.9 65.4 84.6 41.2 68.2 8.9 15.6 23.3 45.1 37.7 66.2

LSP 27.1∗ 53.9∗ 45.5∗ 66.1 40.8 68.2 6.4 15.2∗ 17.3∗ 39.5∗ 33.4 60.5
LSP+A 26.5 53.2 42.8+ 62.7+ 40.4 67.7 6.5 14.9 17.0 38.1 34.0 61.6
LSP+Aoracle ♯ 26.2 49.6 65.6 85.8 41.9 68.3 9.1 18.8 18.7 40.5 37.1 66.3

Table 10: Main results on six hypernym extraction datasets with oracle anchors from WordNet. Bold number
indicates the highest score per data set and metric. ∗ indicates significant difference of LSP vs. DFP; + indicates
significant difference wrt. the non-anchored counterpart (i.e., LSP vs LSP+A and DFP vs. DFP+A). The ♯ symbol
denotes that we report the average over 3 runs on sampled anchors from WordNet.

Model Patterns Accuracy
Singular Plural Singular Plural Singular&Plural

Majority - - 22.9 22.9 22.9
BERT (Ravichander et al., 2020) 14 A(n) X is a(n) Y X are Y 67.5 44.1 36.6
DFP A(n) X is a(n) Y. X are Y. 70.8 52.3 43.6
DFP+A A(n) X or Z is a(n) Y. X or Z are Y. 73.8 61.6 57.1
LSP Y such as a(n) X. Y such as X. 47.6 64.6 42.7
LSP+A Y such as a(n) X or Z. Y such as X or Z. 59.2 73.3 55.6

Table 11: Experimental results on pairwise singular-plural probes. X in singular patterns are singular format (e.g.,
car), while X in plural patterns are plural format (e.g., cars).

Depth #Instances LSP LSP+A ∆ Hypernym Examples

1 5 20.0 20.0 0.0 transaction, conflict
2 104 1.0 7.7 6.7 object, group, relation, proceeding, battle
3 352 2.8 3.7 0.9 person, language, event, collection, trait
4 1335 8.5 12.2 3.7 band, organization, island, food, lake
5 1572 6.7 11.1 4.4 place, river, mountain, organisation, settlement
6 4829 8.4 11.5 3.1 film, village, company, animal, work
7 1017 29.7 41.5 11.8 vehicle, tool, country, plant, sport
8 1773 9.4 14.8 5.4 city, town, fruit, weapon, illness
9 1110 32.0 36.2 4.2 book, bird, magazine, mammal, tree
10 348 28.2 32.5 4.3 fish, ship, flower, airline, word
11 15 6.7 6.7 0.0 airplane, hawk, plane, vulture, murder
12 12 16.7 25.0 8.3 cancer, lizard, falcon, pine
13 55 5.5 9.1 3.6 human, pest, cat
14 54 7.4 7.4 0.0 horse
16 2 50.0 100.0 50.0 cattle
17 2 0.0 0.0 0.0 cow

Table 12: Analysis on depth of hypernyms in WordNet. Column LSP and LSP+A are the group consistency (as in
§ 6.4) across depth. ∆ is the gains from anchors (i.e., LSP+A- LSP).
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Abstract
Model explanations that shed light on the
model’s predictions are becoming a desired ad-
ditional output of NLP models, alongside their
predictions. Challenges in creating these ex-
planations include making them trustworthy
and faithful to the model’s predictions. In this
work, we propose a novel framework for guid-
ing model explanations by supervising them ex-
plicitly. To this end, our method, LEXPLAIN,
uses task-related lexicons to directly supervise
model explanations. This approach consistently
improves the plausibility of model’s explana-
tions without sacrificing performance on the
task, as we demonstrate on sentiment analysis
and toxicity detection. Our analyses show that
our method also demotes spurious correlations
(i.e., with respect to African American English
dialect) on toxicity detection, improving fair-
ness.

1 Introduction

Extensive recent work has sought to advance NLP
models so that they offer explanations for their
predictions (Rajani et al., 2019; Lundberg and Lee,
2017; Camburu et al., 2018). Here we focus on
methods that extract features from the input text to
explain a classifier’s prediction, known variously
as “feature attribution” or “rationales” (Lundberg
and Lee, 2017; Li et al., 2016).

Beyond high accuracy on unseen data, classifiers
that offer explanations are expected to provide ex-
planations that are faithful to the workings of the
model and also intuitive to human users, goals that
might be contradicting. We begin with an approach
designed for faithfulness (SELFEXPLAIN, §2 and
Rajagopal et al., 2021a) and introduce supervision
that guides its explanations toward lexical clues
already established to be associated with the classi-
fication task. Ancillary goals are to improve model
accuracy through the construction of explanations,
and to remove reliance on spurious features that
can bias a classifier’s output in unwanted ways.

Our method, LEXPLAIN (§3), encourages the
model to be “confused” in the absence of words
from a task-specific lexicon, i.e., to assign a uni-
form probability distribution across labels, and pro-
motes model explanations that contain task-specific
lexemes. We apply LEXPLAIN to sentiment analy-
sis and toxicity detection tasks, and our controlled
experiments (§5, §6) comparing LEXPLAIN to
SELFEXPLAIN (which does not use supervision
for explanations) show that:

(a) LEXPLAIN does not show an accuracy drop
relative to the baseline. (b) LEXPLAIN not only
promotes lexicon entries as explanations, but also
generalizes to additional terms that are related to
them but excluded from the lexicon. (c) LEX-
PLAIN’s explanations are usually more sufficient
than the baseline’s explanations (i.e., the model
makes the same prediction on the explanation as on
the full input). (d) In toxicity detection, spurious
correlations between the toxicity label and African
American English (Sap et al., 2019) are reduced in
the predictions of LEXPLAIN, relative to the base-
line. We view this result as a positive side effect of
guiding the model to use task-relevant lexemes. (e)
Most importantly, LEXPLAIN’s explanations are
preferred by human judges 3–4× more often than
the baseline’s explanations.

We believe these results are encouraging, as they
suggest that type-level (lexicon) supervision is a
viable alternative to methods that require costly an-
notation of explanations (Zaidan and Eisner, 2008;
Huang et al., 2021).1

2 Background: SELFEXPLAIN

Our goal is to improve model explanations in su-
pervised text classification tasks. By supervising
explanations, we incorporate inductive biases into
models, making them robust to spurious artifacts.
Our base model is SELFEXPLAIN (Rajagopal et al.,

1Code available at https://github.com/orevaahia/
supex
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2021a), a framework that explains a text classifier’s
predictions with phrase attribution. We describe
SELFEXPLAIN (omitting the global interpretable
layer, as we focus on local explanations) and in Sec-
tion 3 present our proposed method, LEXPLAIN.

Starting with a neural classifier, let us be the
masked LM’s (Yang et al., 2019) final layer repre-
sentation of the “[CLS]” token for one instance. us

is passed through ReLU, affine, and softmax layers
to yield a probability distribution over outputs; the
loss is the negative log probability, summed over
training instances i:

ℓ = softmax(affine(ReLU(us))) (1)

Ltask = −∑i log ℓ[y
∗
i ] (2)

y∗i is the correct label for instance i. Parameters of
the affine layer are suppressed here for simplicity.

A set of phrases is extracted from the data with
a phrase-structure parser (Kitaev and Klein, 2018).
Let uj be the average of the MLM representations
of tokens in phrase j. The output distribution with-
out phrase j is modeled by transforming the dif-
ference (Shrikumar et al., 2017; Montavon et al.,
2017) between us and uj .

sj = softmax(affine(ReLU(us)− ReLU(uj)))
(3)

Vector sj is a probability distribution over labels,
with phrase j absent: the closer sj is to ℓ (Eq. 1),
the less important phrase j is. A secondary log loss
LLIL is formed from the probability assigned to
the correct label without phrase j, taking a learned
weighted sum over all of instance i’s phrases, and
interpolating with the original log loss (Eq. 2) with
a hyperparameter α1 to weight the secondary loss:

loss = Ltask + α1LLIL (4)

The relevance of each phrase j can be defined as
the change in probability of the correct label when
j is included vs. excluded:

rj = [ℓ]y∗i − [sj ]y∗i (5)

where higher rj signify more relevant phrases to the
prediction, and as such serve as better explanations.

3 Supervising Explanations

On inspecting explanations retrieved from SELF-
EXPLAIN, in many cases they do not align intu-
itively with the predictions. Table 1 illustrates the

problem: the explanation of SELFEXPLAIN sen-
tence (1) is the phrase on this planet which is not
a good explanation for the predicted toxic label,
unlike the biggest idiot, which can better explain
the model’s prediction, having the toxic word idiot.

Our modeling innovation is to supervise the ex-
planations encoded in the LIL, rather than letting
them emerge from the secondary loss function
(LLIL in Equation 4). We incorporate a task lexi-
con as a source of supervision during training via
a third loss component to encourage the model to
prefer phrases that contain words in our lexicon as
explanations. Table 1 lists examples in the datasets,
showing the advantage of our method with more in-
tuitive explanations that better reflect the predicted
label.

Our proposed method, named LEXPLAIN, as-
sumes that good explanations within the input
are crucial for predictions, thus we encourage the
model to be “confused” in the absence of lexicon
entries, which we expect to be good explanations.

Formally, we minimize the KL divergence be-
tween the predicted label distribution sj , which
stands for the distribution in the absence of phrase
j (as described in Section 2) and the uniform distri-
bution sunif , for every phrase j:

LLEXPLAIN = DKL(sj , sunif ) (6)

This objective is used for only lexicon phrases.
LEXPLAIN interpolates the third loss, weighted
by hyperparameter α2, with the other two:

loss = Ltask + α1LLIL + α2LLEXPLAIN (7)

4 Experimental Setup

Datasets We experiment on three datasets and
evaluate explanations based on alignment with
model predictions and plausibility with humans.
We focus on sentiment analysis and toxicity detec-
tion, as judging explanations is easy, intuitive and
high-quality lexicons are available. Toxicity detec-
tion also allows us to analyze the efficacy of our
method in demoting spurious racial correlations, as
detailed in §6.

For sentiment analysis, we use the SST-2 dataset
(Socher et al., 2013), where the task is to predict
the sentiment of movie reviews. For toxicity de-
tection we use DWMW17 (Davidson et al., 2017)
and FDCL18 (Founta et al., 2018); both Twitter
datasets annotated for toxicity and dialect: African
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Input SELFEXPLAIN LEXPLAIN

she is the biggest idiot on the planet. on this planet the biggest idiot
Haha , says the little bitch who let someone take his phone . a real man
would n’t have let that happen . a little bitch would.

someone take his
phone

a little bitch would

All you hoes wanna be like me so bad. bad you hoe s
I ’m so ugly & april fools bitch you thought. you thought so ugly
He draw ( for “ big bad love ” ) is a solid performance by arliss howard. big bad love a solid performance
A lackluster , unessential sequel to the classic disney adaptation of j.m.
barrie ’s peter pan

the classic dis ney
adaptation

the classic disney adaptation

Table 1: Explanations from SELFEXPLAIN and LEXPLAIN for DWMW17, FDCL18 and SST2 (2 examples each).
Predicted labels are toxic for DWMW17 and FDCL18. First and second SST2 examples are positive and negative,
respectively. Explanations of LEXPLAIN align better with the model prediction and contain more task-related terms.

American English (AAE) and White American En-
glish. The AAE annotations are obtained from a de-
mographically aligned ensemble model that learns
a posterior distribution of topics corresponding to
African American tweets (Blodgett et al., 2016).
Our task lexicons and full experiment details are
described in appendix section A.

Training We use SELFEXPLAIN as our baseline.
When training both the baseline and LEXPLAIN,
we keep the same hyperparameters and weights
from the pretraining of the XLNet encoder and
finetune the model for 5 epochs. In LEXPLAIN

we do not use the GIL, since initial experiments
showed no difference between adding and remov-
ing the GIL.

For LEXPLAIN, we perform hyperparameter
tuning for α1 ∈ {0.01, 0.05, 0.1} and α2 ∈
{0.8, 1.5.2.0} on the development set. We report
results on the best configuration on the test sets.

We extract phrases from sentences, by parsing
each sentence with a constituency parser (Kitaev
and Klein, 2018) and extracting all non-terminals
with a token length of up to 5 words in the parse
tree.

5 Evaluating Explanations

The goal of LEXPLAIN is to train models to pro-
duce plausible explanations that align with their
predictions. We start with an intrinsic evaluation,
verifying that LEXPLAIN indeed promotes lexicon
entries as explanations. We then analyze the suffi-
ciency of the explanations and conduct human eval-
uation to show that explanations from LEXPLAIN

are more plausible and preferred by humans.

Intrinsic evaluation: are lexicon entries ranked
higher as explanations of the model? The LIL
outputs explanations as a rank of all input phrases.
Following lexicon supervision, we expect to see
that phrases ranked higher contain more lexicon

entries, indicating that supervision was effective.
To quantify this, we compute in Table 2 the mean
reciprocal rank (MRR) of the lexicon entries within
the ranked phrases of LEXPLAIN vs. the baseline.

Across all datasets, LEXPLAIN ranks lexicon en-
tries higher than the baseline on average, showing
the effectiveness of our supervision in providing
explanations included in the task lexicon. We note
that high-rank phrases should be the focus, thus
in Appendix 2 we plot the raw counts of lexicon
entries that appear in each rank, across sentences
in each dataset. Clearly, LEXPLAIN puts more lex-
icon entries higher in the rank, this is especially no-
ticeable in the highest ranked explanations (rank 1).

Dataset Model MRR(Full lexicon) MRR(50% lexicon)

FDCL18
Baseline 0.29 0.31

LEXPLAIN 0.33 0.35

DWMW17
Baseline 0.32 0.20

LEXPLAIN 0.35 0.24

SST2
Baseline 0.23 0.18

LEXPLAIN 0.25 0.22

Table 2: Mean reciprocal rank (MRR) of lexicon phrases
across the full ranking of explanations on the test set.

Do explanations sufficiently reflect model pre-
dictions? Sufficiency measures how indicative
explanations alone are of the model’s predicted la-
bel (Jacovi et al., 2018; Yu et al., 2019). Sufficient
explanations are expected to reflect the prediction
of the predicted label on their own. To measure
that, we use the FRESH pipeline (Jain et al., 2020):
we train a BERT-based classifier to perform the
task with only the explanations as input, and with
the originally predicted labels as output. Higher
accuracy on this task indicates that the explanations
are more reflective of the model predictions. We
train the sufficiency models with the top ranking
explanations of each sentence as input.

Following Jain et al. (2020), we measure this
with a BERT classifier trained with top ranked
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phrases as input and predicted label as output.
Higher accuracy indicates more sufficient explana-
tions. Table 3 shows that LEXPLAIN explanations
have higher predictive performance and are more
sufficient on average compared to the baseline.

Dataset Model Top 1 Top 2

SST-2
Baseline 64.99 68.90

LEXPLAIN 68.00 70.00

FDCL18
Baseline 82.25 87.37

LEXPLAIN 83.79 87.79

DWMW17
Baseline 88.16 89.00

LEXPLAIN 85.12 91.10

Table 3: Test set accuracy of sufficiency models trained
on the top-1 and top-2 explanation as input.

Do humans prefer LEXPLAIN explanations?
To evaluate how plausible our model’s explana-
tions are (Singh et al., 2019; Jin et al., 2020) we
ask annotators to select their preferred explanations,
comparing explanations from both the baseline and
LEXPLAIN. We provide 3 annotators with 50 sam-
ples from the test set of each of our three datasets
(9 annotators in total). All annotators are computer
science graduate students and were already famil-
iar with the tasks. Annotators were given a pair of
explanations about the same input (one from the
baseline, one from LEXPLAIN), in random order,
and asked to select the one they prefer. They could
also judge “both unsatisfactory” or “both satisfac-
tory.” The exact phrasing of the instructions can be
found in Section B in the Appendix.

We analyse the human evaluations and take the
max-vote preference of all three annotations per
task. In Figure 1, we present the results of the
human judgments. The differences between LEX-
PLAIN and the baseline are striking with LEX-
PLAIN being preferred about 3-4× more often than
the baseline.

DMW FDCL SST2
Dataset
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Figure 1: Results of human evaluation of explanation
preference. LEXPLAIN is preferred by annotators 3-4×
more often than the baseline.

6 Downstream Performance Analysis

To test our hypothesis that supervising explanations
not only leads to plausible explanations, but robust
models overfitting less to spurious confounds, we
evaluate downstream classification performance.

Sentiment Analysis We obtain an accuracy of
93.92% and 93.35% for LEXPLAIN and SELF-
EXPLAIN respectively. This slight improvement
shows that the added supervision for explanations
maintains the utility of the model.

Toxicity Detection We report the results on toxi-
city detection in Table 4. The accuracy results of
LEXPLAIN are competitive with the baseline, also
showing that additionally supervising explanations
does not hurt the results of the classification task.

Dataset Dialect Model Accuracy FPR FNR

FDCL18
All dialects

Baseline 93.94 3.94 10.05
LEXPLAIN 94.10 4.24 9.03

AAE
Baseline 93.60 12.43 4.21

LEXPLAIN 93.60 13.87 3.36

DWMW17
All dialects

Baseline 96.06 10.98 2.48
LEXPLAIN 96.30 5.99 3.24

AAE
Baseline 98.00 21.69 1.10

LEXPLAIN 97.95 12.05 1.59

Table 4: Toxicity accuracy, FPR, FNR on the test sets.

Demoting Spurious Correlations with Race
Neural classifiers have been shown to rely on spu-
rious artifacts in the training data (Kumar et al.,
2019; Gururangan et al., 2018; McCoy et al., 2019),
sometimes causing unfair predictions, when they
relate to attributes like gender or race (Sap et al.,
2019; Xia et al., 2020). We ask if guiding models
to influential input phrases using lexicon reduces
reliance on these artifacts and promote fairness.

Our toxicity data have dialect labels: African
American English (AAE) and White American En-
glish. We inspect if our model demotes racial corre-
lations. When a model relies on correlations harm-
fully, we expect higher false negatives rate (FNR),
as more non-toxic instances are falsely labelled
toxic because of reliance on dialectal features. In
Table 4 we report the FPR (false positive rate) and
FNR on DWMW17 and FDCL18. We get a much
lower FPR on the full DWMW17, and more signif-
icant reduction on AAE samples. On the FDCL18
data, we see a slightly higher FPR than the baseline.

Lexicon Generalization We inspect the general-
ization abilities of LEXPLAIN: does it generalize
and promote task related terms in explanations but
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not present in the lexicon? We randomly select
50% of lexicon words and use them only to super-
vise while training. We compute MRR with respect
to the other half not used for supervision on the
same test set. If the phrases are ranked higher on
average, even without being seen during training, it
indicates that LEXPLAIN generalizes over lexicon
phrases.

Table 2 shows the MRR of lexicon entries (not
used as supervision). We show that our method gen-
eralizes consistently across all tasks: even lexicon
entries absent during supervision are ranked higher
with LEXPLAIN when compared to the baseline.

7 Related Work

Different works have approached interpreting mod-
els trained for various downstream tasks using
post hoc (Simonyan et al., 2014; Jin et al., 2020;
Smilkov et al., 2017) and intrinsic (Rajagopal et al.,
2021b; Alvarez Melis and Jaakkola, 2018) meth-
ods. In this work we focus on intrinsic methods
that highlight rationales (Denil et al., 2014; Rajani
et al., 2019; Luo et al., 2021) – where parts of the
input influential for prediction are extracted.

Some works leveraged interpretability methods
to improve model performance (Han and Tsvetkov,
2021; Hase and Bansal, 2022). Wei et al. (2022)
teach models to do commonsense tasks by pro-
viding step-by-step instructions. For classification
tasks, Madaan et al. (2021) use free-form explana-
tion generation and Hayati et al. (2022); Zaidan and
Eisner (2008); Huang et al. (2021) use human ra-
tionales as model feedback. These methods require
expensive annotation to elicit good explanations.
We instead aim to supervise rationales using task
lexicons, and show it yields improved explanations.

8 Conclusion

We propose LEXPLAIN, a method to improve
model explanations by directly supervising them
using task lexicons as the source of supervision.
We show that our method is indeed able to pro-
mote dictionary entries as explanations, resulting
in explanations that align well with the model’s pre-
dicted label without sacrificing accuracy, and that
the explanations are more plausible according to
human evaluation. We also show that LEXPLAIN

is able to generalize well to features that are not
present in the supervising lexicon. Finally, we show
that by promoting task related lexicon entries, we
are able to demote spurious correlations with AAE

annotations on toxicity datasets.
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Limitations and Future Work

One limitation of LEXPLAIN stems from the re-
liance on task lexicons. First, a reliable task lexicon
is required in order to adequately supervise expla-
nations, and this might be non-trivial to create for
an arbitrary task. We do show, however, that LEX-
PLAIN is able to generalize beyond lexicon entries,
which suggests that even partial lexicon for the task
at hand can provide a significant improvement in
explanations. Second, the chosen lexicon might
include certain biases itself, that might in turn be
incorporated in the model and its explanations.

Another limitation, shared with the majority of
existing interpretability methods, is that the faith-
fulness of interpretations is not guaranteed. In other
words, there is no theoretical guarantee that the re-
trieved explanations reflect the actual mechanisms
of the model in making predictions. We partially
mitigate this by choosing SELFEXPLAIN as our
base model. It is more faithful by design: it is
trained to enforce the alignment between model
outputs in the task classification and the LIL.

Finally, LEXPLAIN requires fine-tuning the
model for the task and incorporating the LIL on top
of a pretrained language model, and we established
its success only with one model (XLNet). Future
work should explore adaptations of other language
models, and extensions to language generation, to
facilitate model interpretability in new settings.

Ethics Statement

Our work aims at developing interpretable models
that do not overfit to artifacts in the training data.
However, there is no guarantee that we fully mit-
igate model reliance on all spurious correlations.
Further, by incorporating new lexicons that might
contain annotation biases (Sap et al., 2022), there is
an additional risk to incorporate and amplify social
biases. We mitigate these risks through manual
analyses and fairness evaluations presented in §6.

We conduct fairness evaluations on the com-
monly used toxicity datasets (Davidson et al., 2017;
Founta et al., 2018) annotated for AAE (Blodgett
et al., 2016). These AAE annotations for the tox-
icity datasets are a useful but imperfect proxy for
information about race. For example, these datasets
are not annotated by in-group members and anno-
tators had insufficient social context (Sap et al.,
2019). Future work should focus on a more careful
dataset curation that would enable a more reliable
fairness evaluation.
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A Experimental Details

Training We use SELFEXPLAIN as our baseline.
When training both the baseline and LEXPLAIN,
we keep the same hyperparameters and weights
from the pretraining of the XLNet encoder and
finetune the model for 5 epochs. In LEXPLAIN

we do not use the GIL, since initial experiments
showed no difference between adding and remov-
ing the GIL.

For LEXPLAIN, we perform hyperparameter
tuning for α1 ∈ {0.01, 0.05, 0.1} and α2 ∈
{0.8, 1.5.2.0} on the development set. We report
results on the best configuration on the test sets.

Toxicity Dataset DWMW17 is a Twitter dataset
with 25,000 tweets that have been annotated for
hate speech, offensive, or none alongside dialect la-
bels: African American English (AAE) and White
American English. We merge the hatespeech and
offensive examples and regard all of them as toxic.
FDCL18 is also a Twitter dataset with 100,000
tweets annotated for hate, abuse, spam, and none.
We select all instances, except for the ones labeled
as spam. Again, we merge the hate and abuse exam-
ples and regard all of them as toxic. For all datasets
we use the provided splits to train/dev./test.2

Task Lexicons Our sentiment lexicon of 2,470
words is derived by combining two existing lex-
icons: Hutto and Gilbert (2014) and Hu and Liu
(2004). For toxicity detection, we use the lexicon
from Wiegand et al. (2018), from which we extract
350 toxic words that appear in our datasets. We
were only able to obtain a toxic lexicon. Our at-
tempts to create a lexicon of non-toxic words by
extracting the most salient words present in the
non-toxic instances did not yield improved expla-
nations. We opt to only supervise toxic instances
in the training data.

B Human Evaluation

We ask annotators to select preferred explanations
between the baseline and LEXPLAIN. They are
presented with the model input, the original label
and the predicted label and also All annotators are
familiar with the tasks and are computer science
graduate students.

Instructions given to human evaluators The
task here is sentiment analysis. The labels are 0

2Train/dev./test: FDCL18: 54120/10145/11825,
DWMW17: 17849/3001/3501, SST2: 66976/872/1821.

for negative instances and 1 for positive instances.
Please enter X or Y in the last column for the al-
gorithm that provides the best explanation for the
predicted label. If the explanations are the same for
both algorithms, please enter XY. If the explana-
tions for both algorithms are not satisfactory, please
enter NXY. If explanations are not same, but both
are satisfactory, please enter SXY.
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Figure 2: Number of lexicon entries in each rank across
all sentences in each test set in the order of [FDCL18,
DWMW17 and SST2].
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Abstract
The ability of knowledge graphs to represent
complex relationships at scale has led to their
adoption for various needs including knowl-
edge representation, question-answering, and
recommendation systems. Knowledge graphs
are often incomplete in the information they
represent, necessitating the need for knowledge
graph completion tasks. Pre-trained and fine-
tuned language models have shown promise in
these tasks although these models ignore the
intrinsic information encoded in the knowledge
graph, namely the entity and relation types. In
this work, we propose the Knowledge Graph
Language Model (KGLM) architecture, where
we introduce a new entity/relation embedding
layer that learns to differentiate distinctive en-
tity and relation types, therefore allowing the
model to learn the structure of the knowledge
graph. In this work, we show that further pre-
training the language models with this addi-
tional embedding layer using the triples ex-
tracted from the knowledge graph, followed
by the standard fine-tuning phase sets a new
state-of-the-art performance for the link predic-
tion task on the benchmark datasets.

1 Introduction

Knowledge graph (KG) is defined as a directed,
multi-relational graph where entities (nodes) are
connected with one or more relations (edges)
(Wang et al., 2017). It is represented with a set
of triples, where a triple consists of (head entity,
relation, tail entity) or (h, r, t) for short, for ex-
ample (Bill Gates, founderOf, Microsoft) as shown
in Figure 1. Due to their effectiveness in iden-
tifying patterns among data and gaining insights
into the mechanisms of action, associations, and
testable hypotheses (Li and Chen, 2014; Silvescu
et al., 2012), both manually curated KGs like DB-
pedia (Auer et al., 2007), WordNet (Miller, 1998),
KIDS (Youn et al., 2022), and CARD (Alcock et al.,
2020), and automatically curated ones like Free-
Base (Bollacker et al., 2008), Knowledge Vault

Bill Gates

Microsoft

Washington

Melinda French

Jennifer Gates

founderOf
locatedIn

bornIn

daughter
Of

daughterOf

di
vo

rc
ed

W
ith

Figure 1: Sample knowledge graph with 6 triples. The
graph contains three unique entity types (circle for per-
son, triangle for company, and square for location) and
5 unique relation types or 10 if considering both the for-
ward and inverse relations. The task of the knowledge
graph completion is to complete the missing links in the
graph, e.g., (Bill Gates, bornIn?, Washington) using the
existing knowledge graph.

(Dong et al., 2014), and NELL (Carlson et al.,
2010) exist. However, these KGs often suffer from
incompleteness. For example, 71% of the people in
FreeBase have no known place of birth (West et al.,
2014). To address this issue, knowledge graph
completion (KGC) methods aim at connecting the
missing links in the KG.

Graph feature models like path ranking algo-
rithm (PRA) (Lao and Cohen, 2010; Lao et al.,
2011) attempt to solve the KGC tasks by extract-
ing the features from the observed edges over the
KG to predict the existence of a new edge (Nickel
et al., 2015). For example, the existence of the
path Jennifer Gates daughterOf−−−−−−−→ Melinda French

divorcedWith←−−−−−−−− Bill Gates in Figure 1 can be used as
a clue to infer the triple (Jennifer Gates, daugh-
terOf, Bill Gates). Other popular types of models
are latent feature models such as TransE (Bordes
et al., 2013), TransH (Wang et al., 2014), and Ro-
tatE (Sun et al., 2019) where entities and relations
are converted into a latent space using embeddings.
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Figure 2: Proposed pre-training approach of the KGLM. First, both the forward and inverse triples are extracted
from the knowledge graph to serve as the pre-training corpus. We then continue pre-training the language model,
RoBERTa in our case, using the masked language model training objective, with an additional entity/relation-type
embedding layer. The entity/relation-type embedding scheme shown here corresponds to the KGLMGER, the most
fine-grained version where both the entity and relation types are considered unique. Note that the inverse relation
denoted by -1 is different from its forward counterpart. For demonstration purposes, we assume all entities and
relations to have a single token.

TransE, a representative latent feature model, mod-
els the relationship between the entities by inter-
preting them as a translational operation. That is,
the model optimizes the embeddings by enforcing
the vector operation of head entity embedding h
plus the relation embedding r to be close to the tail
entity embedding t for a given fact in the KG, or
simply h + r ≈ t.

Recently, pre-trained language models like
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019) have shown state-of-the-art perfor-
mance in all of the natural language processing
(NLP) tasks. As a natural extension, models like
KG-BERT (Yao et al., 2019) and BERTRL (Zha
et al., 2021) that utilize these pre-trained language
models by treating a triple in the KG as a textual se-
quence, e.g., (Bill Gates, founderOf, Microsoft) as
‘Bill Gates founder of Microsoft’, have also shown
state-of-the-art results on the downstream KGC
tasks. Although such textual encoding (Wang et al.,
2021) models are generalizable to unseen entities
or relations (Zha et al., 2021), they still fail to learn
the intrinsic structure of the KG as the models are
only trained on the textual sequence. To solve this
issue, a hybrid approach like StAR (Wang et al.,
2021) has recently been proposed to take advantage
of both latent feature models and textual encoding
models by enforcing a translation-based graph em-
bedding approach to train the textual encoders. Yet,
current textual encoding models still suffer from en-
tity ambiguation problems (Cucerzan, 2007) where
an entity Apple, for example, can refer to either the
company Apple Inc. or the fruit. Moreover, there
are no ways to distinguish forward relation (Jen-
nifer Gates, daughterOf, Melinda French) from

inverse relation (Melinda French, daughterOf -1,
Jennifer Gates).

In this paper, we propose the Knowledge Graph
Language Model (KGLM) (Figure 2), a simple
yet effective language model pre-training approach
that learns from both the textual and structural in-
formation of the knowledge graph. We continue
pre-training the language model that has already
been pre-trained on other large natural language
corpora using the corpus generated by converting
the triples in the knowledge graphs as textual se-
quences, while enforcing the model to better under-
stand the underlying graph structure and by adding
an additional entity/relation-type embedding layer.
Testing our model on the WN18RR dataset for the
link prediction task shows that our model improved
the mean rank by 21.2% compared to the previous
state-of-the-art method (51 vs. 40.18, respectively).
All code and instructions on how to reproduce the
results are available online.1

2 Background

Link Prediction. The link prediction (LP) task,
one of the commonly researched knowledge graph
completion tasks, attempts to predict the missing
head entity (h) or tail entity (t) of a triple (h, r,
t) given a KG G = (E,R), where {h, t} ∈ E is
the set of all entities and r ∈ R is the set of all
relations. Specifically, given a single test positive
triple (h, r, t), its corresponding link prediction test
dataset can be constructed by corrupting either the
head or the tail entity in the filtered setting (Bordes
et al., 2013) as

1https://github.com/ibpa/KGLM
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D(h,r,t)
LP =

{(h, r, t’) | t′ ∈ (E − {h, t}) ∧ (h, r, t′) /∈ D}
∪{(h’, r, t) | h′ ∈ (E − {h, t}) ∧ (h′, r, t) /∈ D}

∪{(h, r, t)},
(1)

whereD = Dtrain∪Dval∪Dtest is the complete
dataset. Evaluation of the link prediction task is
measured with mean rank (MR), mean reciprocal
rank (MRR), and hits@N (Rossi et al., 2021). MR
is defined as

MR =

∑
(h,r,t)∈Dtest

rank((h, r, t) | D(h,r,t)
LP )

|Dtest|
,

(2)
where rank(·|·) is the rank of the positive triple

among its corrupted versions and |Dtest| is the num-
ber of positive test triples. MRR is the same as MR
except that the reciprocal rank 1/rank(·|·) is used.
Hits@N is defined as

hits@N =

∑
(h,r,t)∈Dtest

{
1, if rank((h, r, t) | D(h,r,t)

LP ) < N

0, otherwise

|Dtest|
,

(3)
where N ∈ {1, 3, 10} is commonly reported.

Higher MRR and hits@N values are better,
whereas, for MR, lower values denote higher per-
formance.

3 Proposed Approach

In this work, we propose to continue pre-training,
instead of pre-training from scratch, the language
model RoBERTaLARGE (Liu et al., 2019) that has al-
ready been trained on English-language corpora of
varying sizes and domains, using both the forward
and inverse knowledge graph textual sequences
(Figure 2). Following the convention used in the
KG-BERT and StAR (see Appendix A), we use a
textual representation of a given triple, e.g., (Bill
Gates, founderOf, Microsoft) as ‘Bill Gates founder
of Microsoft’, to generate the pre-training corpus.
However, instead of extracting only the forward
triple as done in the previous work, we extract both
the forward and inverse versions of the triple, e.g.,
(Jennifer Gates, daughterOf, Bill Gates) and (Bill
Gates, daughterOf -1, Jennifer Gates), where the -1

Table 1: Statistics of the benchmark knowledge graphs
used for link prediction.

Dataset # ent # rel # train # val # test

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,951 237 272,115 17,535 20,466

UMLS 135 46 5,216 652 661

notation denotes the inverse direction of the corre-
sponding relation.

To enforce the model to learn the knowledge
graph structure, we introduce a new embedding
layer entity/relation-type embedding (ER-type em-
bedding) in addition to the pre-existing token and
position embeddings of RoBERTa as shown in Fig-
ure 2. This additional layer aims to embed the
tokens in the input sequence with its corresponding
entity/relation-type, where the set of entities E in
the knowledge graph can have tE different entity
types depending on the schema of the knowledge
graph, (e.g., tE = 3 for person, company, and lo-
cation in Figure 1). Note that many knowledge
graphs do not specify the entity types, in which
case tE = 1. For the set of relations R, there exist
tR = 2nR, where nR is the number of unique rela-
tions in the knowledge graph and the multiplier of
2 comes from forward and inverse directions (e.g.,
tR = 10 for the sample knowledge graph in Figure
1).

In this work, we propose three different varia-
tions of ER-type embeddings. KGLMBase is the
simplified version where all entities are assigned
a single entity type and relations are assigned ei-
ther forward or inverse relation type regardless of
their unique relation types, resulting in a total of 3
ER-type embeddings. The KGLMGR is a version
with granular relation types with tR + 1 ER-type
embeddings. The KGLMGER is the most granular
version where we utilize all tE + tR ER-type em-
beddings. In other words, all entity types as well
as all relation types including both directions are
considered.

To be specific, we convert a triple (h, r, t) to a
sequence of tokens w(h,r,t) = ⟨[s]wh

aw
r
bw

t
c[/s] :

a ∈ {1..|h|} & b ∈ {1..|r|} & c ∈ {1..|t|}⟩ ∈
R(|h|+|r|+|t|+2), where [s] and [/s] are special
tokens denoting beginning and end of the sequence,
respectively. The input to the RoBERTa model is
then constructed by adding the ER-type embedding
t(h,r,t) and the p(h,r,t) position embeddings to the
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Table 2: Link prediction results on the benchmark datasets WN18RR, FB15k-237, and UMLS. Bold numbers denote
the best performance for a given metric and class of models. Underlined numbers denote the best performance for
a given metric regardless of the model type. Note that we do not report KGLMGER performance since the tested
datasets do not specify entity types in their schema.

WN18RR FB15k-237 UMLS

Method Hits @1 Hits @3 Hits @10 MR MRR Hits @1 Hits @3 Hits @10 MR MRR Hits@10 MR

Model type: Not based on language models

TransE .043 .441 .532 2300 .243 .198 .376 .441 323 .279 .989 1.84
TransH .053 .463 .540 2126 .279 .306 .450 .613 219 .320 - -

DistMult .412 .470 .504 7000 .444 .199 .301 .446 512 .281 .846 5.52
ComplEx .409 .469 .530 7882 .449 .194 .297 .450 546 .278 .967 2.59

ConvE .390 .430 .480 5277 .46 .239 .350 .491 246 .316 .990 1.51
RotatE .428 .492 .571 3340 .476 .241 .375 .533 177 .338 - -
GAAT .424 .525 .604 1270 .467 .512 .572 .650 187 .547 - -

LineaRE .453 .509 .578 1644 .495 .264 .391 .545 155 .357 - -
QuatDE .438 .509 .586 1977 .489 .268 .400 .563 90 .365 - -

Model type: Based on language models

KG-BERT .041 .302 .524 97 .216 - - .420 153 - .990 1.47
StAR .243 .491 .709 51 .401 .205 .322 .482 117 .296 .991 1.49

KGLMBase .305 .518 .730 47.97 .445 - - - - - - -
KGLMGR .330 .538 .741 40.18 .467 .200 .314 .468 125.9 .289 .995 1.19

w(h,r,t) token embeddings, as

X(h,r,t) = w(h,r,t) + p(h,r,t) + t(h,r,t). (4)

Unlike the segment embeddings in the KG-BERT
and StAR that were used to mark the input tokens
with either the entity (se) or relation (sr), the ER-
type embedding now replaces its functionality. Fi-
nally, we pre-train the model using the masked lan-
guage model (MLM) training objective (Liu et al.,
2019).

For fine-tuning, we extend the idea of how the
KG-BERT scores a triple (see Equation 6 in Ap-
pendix A) to take advantage of the ER-type embed-
dings learned in our pre-training stage. For a given
target triple, we calculate the weighted average
score of both directions as

scoreKGLM (h, r, t) = αSeqCls(X(h,r,t))+

(1− α)SeqCls(X(t,r−1,h)),
(5)

where SeqCls(·) is a RoBERTa model transformer
with a sequence classification head on top of the
pooled output (last layer hidden-state of the [CLS]
token followed by dense layer and tanh activation
function), (t, r−1, h) denotes the inverse version of
(h, r, t), and 0 ≤ α ≤ 1 denotes the weight used
for balancing the scores from forward and inverse
scores. For example, α = 1.0 considers only the
forward direction score.

4 Experiments and Results

4.1 Datasets

We tested our proposed method on three bench-
mark datasets WN18RR, FB15k-237, and UMLS
as shown in Table 1. WN18RR (Dettmers et al.,
2018) is derived from WordNet (Miller, 1998), a
large English lexical database of semantic relation-
ships between words, FB15k-237 (Toutanova and
Chen, 2015) is extracted from Freebase (Bollacker
et al., 2008), a large community-drive KG of gen-
eral facts about the world, and UMLS contains
biomedical relationships. WN18RR and FB15k-
237 are subsets of WN18 (Bordes et al., 2013) and
FB15k (Bordes et al., 2013), respectively, where
the inverse relation test leakage problem, i.e. the
problem of inverted test triples appearing in the
training set, has been corrected.

4.2 Settings

We used RoBERTaLARGE (Liu et al., 2019), a
BERTLARGE-based architecture with 24 layers,
1024 hidden size, 16 self-attention heads, and
355M parameters, for the pre-trained language
model as it has been shown in a previous study to
perform better than BERT (hits@1 0.243 vs. 0.222
and MR 51 vs. 99, link prediction on WN18RR)
(Wang et al., 2021). For pre-training, we used
learning rate = 5e-05, batch size = 32, epoch = 20
(WN18RR), 10 (FB15k-237), and 1,000 (UMLS),
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Table 3: Breakdown of the original hypothesis and their results on WN18RR. For claim 1, we continued to pre-train
RoBERTaLARGE using the knowledge graph without the ER-type embeddings. Note that we did not also use
the ER-type embeddings layer in the fine-tuning stage. For claim 2, we learned the ER-type embeddings in the
fine-tuning stage only without any further pre-training.

ER-type embeddings

Model Continue pre-training Pre-train Fine-tune Hits @1 Hits @3 Hits @10 MR MRR

Claim 1 o x x 0.331 0.529 0.728 53.5 0.462
Claim 2 x - o 0.322 0.489 0.672 66.4 0.439

KGLMGR o o o 0.330 0.538 0.741 40.18 0.467

and AdamW optimizer (Loshchilov and Hutter,
2017). For fine-tuning training data, we sampled
10 negative triples for a positive triple by corrupt-
ing both the head and tail entity 5 times each. We
used the validation set to find the optimal learning
rates = {1e− 06, 5e− 07}, batch size = {16, 32},
epochs = {1, 2, 3, 4, 5} for WN18RR and FB15k-
237 and 25, 50, 75, 100 for UMLS, and α from
0.0 to 1.0 with an increment of 0.1. For all exper-
iments, we set α = 0.5 based on the WN18RR
validation set performance. Both pre-training and
fine-tuning were performed on 3 × Nvidia Quadro
RTX 6000 GPUs in a distributed manner using
the 16-bit mixed precision and DeepSpeed (Rasley
et al., 2020; Rajbhandari et al., 2020) library in the
stage-2 setting. We used the Transformers library
(Wolf et al., 2019).

4.3 Link Prediction Results

The hypothesis behind the KGLM was that learning
the ER-type embedding layers in the pre-training
stage using the corpus generated by the knowl-
edge graph, followed by fine-tuning has the best
performance. To test our hypothesis, we broke
down the hypothesis into two separate claims. For
the first claim, we only continued pre-training
RoBERTaLARGE followed by fine-tuning without
the ER-type embeddings. This test removes the
contribution from the ER-type embeddings and
solely tests the performance gained by further pre-
training the model with the knowledge graph as
input. Table 3 shows that claim 1 falls behind the
KGLMGR in all metrics except for hits @1 (0.331
vs. 0.330, respectively). For the second claim, we
did not continue pre-training and instead used the
RoBERTaLARGE pre-trained weights as-is. We then
learned the ER-type embeddings in the fine-tuning
stage. This test shows if the ER-type embeddings
can be learned only during the fine-tuning stage.
Table 3 shows that KGLMGR outperforms all of the
metrics obtained using the second claim. This re-

sult shows that the combination of these two claims
works in a non-linear fashion to maximize perfor-
mance.

The results of performing link prediction on the
benchmark datasets are shown in Table 2. Com-
pared to StAR, which had the best performance on
MR and hits@10 on WN18RR, KGLMGR outper-
formed all the metrics with 21.2% improved MR
(40.18 vs. 51, respectively) and 4.5% increased
hits@10 (0.709 vs. 0.741, respectively). Al-
though still inferior compared to the graph embed-
ding approaches, KGLMGR has 35.8% improved
hits@1 compared to the best language model-based
approach StAR (0.243 vs. 0.330, respectively).
Across all model types, KGLMGR has the best per-
formance on all metrics for WN18RR except for
hits@1. Although we did not observe any improve-
ment compared to StAR for the FB15k-237 dataset,
we had the best performance on all metrics for
UMLS with 21.2% improved MR than ComplEx
(1.19 vs. 1.51, respectively). KGLMGR outper-
formed KGLMBase in all metrics.

5 Conclusion

In this work, we presented KGLM, which intro-
duces a new entity/relation (ER)-type embedding
layer for learning the structure of the knowledge
graph. Compared to the previous language model-
based methods that only fine-tune for a given task,
we found that learning the ER-type embeddings
in the pre-training stage followed by fine-tuning
resulted in better performance. In future work, we
plan to further test the version of KGLM that takes
into account entity types, KGLMGER, on domain-
specific knowledge graphs like KIDS (Youn et al.,
2022) with entity types in their schema.

Limitations

Although KGLM outperforms state-of-the-art mod-
els when the training set includes full sentences
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(e.g., UMLS and WN18RR), the model performed
similarly to the state-of-the-art in cases where the
training dataset had only ontological relationships,
such as the /music/artist/origin relation present in
the FB15k-237 dataset. One major limitation of
the proposed method is the long training and infer-
ence time, which we plan to alleviate by adopting
Siamese-style textual encoders (Wang et al., 2021;
Li et al., 2022) in future work.
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A Previous Work

A.1 KG-BERT

KG-BERT (Yao et al., 2019) is a fine-
tuning method that utilizes the base version
of the pre-trained language model BERT
(BERTBASE) (Devlin et al., 2018) as an encoder
for entities and relations of the knowledge
graph. Specifically, KG-BERT first converts
a triple (h, r, t) to a sequence of tokens
w(h,r,t) = ⟨[CLS]wh

a[SEP]w
r
b[SEP]w

t
c[SEP] :

a ∈ {1..|h|} & b ∈ {1..|r|} & c ∈ {1..|t|}⟩,
where wn denotes the nth token of either entity
or relation, [CLS] and [SEP] are the special
tokens, while |h|, |r|, and |t| denote the number of
tokens in the head entity, relation, and tail entity,
respectively. This textual token sequence is then
converted to a sequence of token embeddings
w(h,r,t) ∈ Rd×(|h|+|r|+|t|+4), where d is the
dimension of the embeddings and 4 is from the
special tokens. Then the segment embeddings
s(h,r,t) = ⟨(se)×(|h|+2)(sr)×(|r|+1)(se)×(|t|+1)⟩,
where se and sr are used to differentiate en-
tities from relations, respectively, as well as
the position embeddings p(h,r,t) = ⟨pi : i ∈
{1..(|h|+|r|+|t|+4)}⟩ are added to the token
embeddings w(h,r,t) to form a final input repre-
sentation X(h,r,t) ∈ Rd×(|h|+|r|+|t|+4) that is fed
to BERT as input. Then, the score of how likely a
given triple (h, r, t) is to be true is computed by

scoreKG-BERT(h, r, t) = SeqCls(X(h,r,t)). (6)

KG-BERT significantly improved the MR of the
link prediction task compared to the previous state-
of-the-art approach CapsE (Vu et al., 2019) (97
compared to 719, an 86.5% decrease), but suffered
from poor hits@1 of 0.041 due to the entity am-
biguation problem and lack of structural learning
(Wang et al., 2021; Cucerzan, 2007).
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A.2 StAR
StAR (Wang et al., 2021) is a hybrid model that
learns both the contextual and structural informa-
tion of the knowledge graph by augmenting the
structured knowledge in the encoder. It divides
a triple into two parts, (h, r) and (t), and applies
a Siamese-style transformer with a sequence clas-
sification head to generate u = Pool(X(h,r)) ∈
Rd×(|h|+|r|+3) and v = Pool(X(t)) ∈ Rd×(|t|+2),
respectively, where Pool(·) is the output of the
RoBERTa’s pooling layer. The first scoring module
focuses on classifying the triple by applying a

scorecStAR(h, r, t) = Cls([u;u× v;u− u;v]),
(7)

where Cls(·) is a neural binary classifier with a
dense layer followed by a softmax activation func-
tion. The second scoring module then adopts the
idea of how translation-based graph embedding
methods like TransE learns the graph structure by
minimizing the distance between u and v as

scoredStAR(h, r, t) = −||u− v||, (8)

where || · || is the L2-normalization. During
the training, StAR uses a weighted average of
the binary cross entropy loss computed using
scorecStAR(h, r, t) and the margin-based hinge loss
computed using scoredStAR(h, r, t), whereas only
the scorecStAR(h, r, t) is used for inference. This
approach shows a new state-of-the performance
over the metrics MR (51) and hits@10 (0.709), as
well as significantly improving the hits@1 com-
pared to the KG-BERT (0.041 to 0.243, a 492.7%
increase).
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Abstract

As the size of the pre-trained language
model (PLM) continues to increase, numerous
parameter-efficient transfer learning methods
have been proposed recently to compensate for
the tremendous cost of fine-tuning. Despite
the impressive results achieved by large pre-
trained language models (PLMs) and various
parameter-efficient transfer learning (PETL)
methods on sundry benchmarks, it remains un-
clear if they can handle inputs that have been
distributionally shifted effectively. In this study,
we systematically explore how the ability to de-
tect out-of-distribution (OOD) changes as the
size of the PLM grows or the transfer meth-
ods are altered. Specifically, we evaluated var-
ious PETL techniques, including fine-tuning,
Adapter, LoRA, and prefix-tuning, on three dif-
ferent intention classification tasks, each uti-
lizing various language models with different
scales.

1 Introduction

Pre-trained language models (PLM), which are pre-
trained on large-scale corpora using transformer-
based architectures (Vaswani et al., 2017), have
achieved groundbreaking success on sundry bench-
marks (Wang et al., 2019b; Rajpurkar et al., 2016;
Wang et al., 2019a), establishing themselves as the
standard neural model in countless applications.
Moreover, language models pre-trained with larger
parameters on a rich volume of corpora tend to ex-
hibit more intriguing potentials, such as the ability
to capture world knowledge (Petroni et al., 2019),
generate codes (Poesia et al., 2022), and even solve
mathematical problems (Henighan et al., 2020), on
top of understanding linguistic knowledge (e.g.,
semantic or syntactic). To explore the apex of pre-
trained language models (PLMs), the size of PLMs
is growing exponentially and has reached billions
to a trillion (Brown et al., 2020; Chowdhery et al.,
2022; Fedus et al., 2022; Hoffmann et al., 2022).

Under these circumstances, the conventional
method for transferring PLMs to a target task
(i.e., fine-tuning) is now infeasible as it entails
prohibitive costs to train and store the entire pa-
rameters of large PLMs for every desired task.
To mitigate this issue, several recent parameter-
efficient transfer learning (PETL) methods have
been proposed to improve task scalability. For in-
stance, adapter-based (Houlsby et al., 2019; Hu
et al., 2022) approaches insert small neural mod-
ules into each layer of the PLM and update those
lightweight modules in the training phase. Inspired
by the recent success of textual prompts (Brown
et al., 2020), prompt-based methods (Li and Liang,
2021; Lester et al., 2021; Shin et al., 2020) concate-
nate extra tunable tokens to the front of the input or
hidden layers and update prepended soft prompts
in the training phase.

Despite these breakthroughs in NLP, even very
recent anomaly detection studies (Cho et al., 2022;
Shen et al., 2021) are still limited to relatively small
bi-directional PLMs (e.g., BERT, RoBERTa). Thus,
how large-scale PLMs or auto-regressive PLMs
cope with outliers is uncharted territory, naturally
begging the following questions:
• Q1: Does increasing model size improve OOD
detection performance without model parameters?
• Q2: If so, does scaling the size of PLM makes
the model robust enough to utilize them without
any additional process?
• Q3: Do fine-tuning and various PETL method-
ologies display differences in OOD detection per-
formance according to the size of PLMs?
• Q4: Can the OOD detection methods from previ-
ous works (usually for the bi-directional PLMs) be
transferred to auto-regressive PLMs (GPT)?

To resolve these questions, this paper investi-
gates the capability of large PLMs as outlier de-
tectors from various perspectives. Specifically, we
compare the robustness to outliers with various
transfer learning techniques on several OOD bench-
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marks: Full fine-tuning, LoRA (Hu et al., 2022),
Adapter (Houlsby et al., 2019), and prefix-tuning
(Li and Liang, 2021) on various auto-regressive
PLMs with different sizes, i.e., GPT2-S, M, L, XL
(Radford et al., 2019), GPT-Neo (Black et al., 2021)
and GPT-J (Wang and Komatsuzaki, 2021). From
in-depth investigations, we share several intriguing
observations: (1) As the size of the PLM increases,
the performance improves without any update of
model parameters. However, it is still challeng-
ing to use it without supervision since their perfor-
mances still lag far behind compared to the fine-
tuned small PLM (i.e., BERT-base). (2) PETLs out-
perform fine-tuning with sufficiently large PLMs
in both IND and OOD metrics. (3) Lastly, lever-
aging the information of the last hidden represen-
tation, which is the most prevailing method for
bi-directional PLM in recent OOD detection, does
not transfer well in auto-regressive PLM, requiring
a novel representation extracting technique. We
believe that these findings will help future anomaly
detection studies.

2 Probing OOD Robustness

2.1 Backbones and Models

To investigate the trend of OOD performance under
varying scales of PLM, we consider three factors
during backbone selection. They should be (1)
publicly available, (2) reasonably large, and (3)
share identical structures to eliminate factors other
than size. Since recent large PLMs utilize auto-
regressive objectives due to their computational
complexity, we adopt six auto-regressive PLMs
as the backbone of our experiments accordingly:
GPT2 (S,M,L,XL), GPT-Neo, and GPT-J.

For the parameter-efficient transfer methods,
we selected two methods: two adapter-based and
one prompt engineering-based. Namely, Adapter
(Houlsby et al., 2019), LoRA (Hu et al., 2022), and
Prefix-tuning (Li and Liang, 2021) are selected
for the adapter approach, which is compatible with
classification tasks, for the prompt approach. We
also report the performance of linear evaluation,
i.e., single layer perceptron (SLP) on top of PLMs,
and fine-tuning, which act like a lower-bound and
upper-bound, respectively.

2.2 Dataset and Metrics

Dataset. We evaluate our model on two datasets,
CLINC150 and Banking77, widely used in OOD
detection. CLINC150 dataset (Larson et al., 2019)

contains 150 class labels (15 intents for 10 do-
mains), while Banking77 dataset (Casanueva et al.,
2020) consists of fine-grained 77 bank-related in-
tents. Following the experimental settings from pre-
vious works (Cho et al., 2022; Zhang et al., 2022;
Shu et al., 2017; Fei and Liu, 2016; Lin and Xu,
2019), we validate our models in two different sce-
narios: far-OOD setting and close-OOD setting.
For CLINC dataset, we train our model with the
whole training dataset and test with an indepen-
dent OOD test split from CLINC dataset, which
does not overlap with 150 classes in the training
dataset. Outliers in CLINC OOD split are distribu-
tionally far from the training distribution (Zhang
et al., 2022), so it is relatively easy to discern. For
Banking77, we partition the dataset into 2 disjoint
datasets (i.e., IND / OOD dataset) based on the
class label. Since both IND and OOD datasets orig-
inated from the equivalent dataset, they share sim-
ilar distributions and properties, making the task
more demanding. Thus, we refer to a CLINC OOD
setting as far-OOD and split settings in Banking as
close-OOD settings, respectively.
Metrics. To evaluate IND performance, we mea-
sured the classification accuracy. And for OOD per-
formance, we adopt two metrics commonly used
in recent OOD detection literature:
• FPR@95. The false-positive rate at the true-
positive rate of 95% (FPR@95) measures the prob-
ability of classifying OOD input as IND input when
the true-positive rate is 95%.
• AUROC. The area under the receiver operating
characteristic curve (AUROC) is a threshold-free
metric that indicates the ability of the model to
discriminate outliers from IND samples.

2.3 OOD Evaluation Methods
Evaluation in OOD detection is done via a scoring
function, which outputs the appropriateness of the
input into a single scalar value (p). Then we com-
pare p with the pre-set threshold δ to determine
whether the input is an outlier or not:

Iδ(x) =

{
IND p(x) ≥ δ
OOD p(x) < δ,

(1)

In this paper, we evaluate the performance of
our method in 4 different evaluation methods,
which can be categorized into 2 higher branches:
representation-based and logit-based.

Logit-based approaches exploit the PLM’s predic-
tion result extracted from the classification layer as
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(a) Performance on far-OOD setting. (b) Performance on close-OOD setting.

Figure 1: OOD detection performance of PLMs without updating the model parameters.

their primary information to discern outliers. Logit-
based approaches are simple and have their own
dominance in computational cost since it pursues
OOD detection and general classification nigh si-
multaneously.
• MSP is a baseline method in this branch that
employs the maximum softmax probability to score
the appropriateness of the given input, based on the
idea that the model will output more certain output
(higher probability) to a normal sample (Hendrycks
and Gimpel, 2017):

p(x) =
efi(x)

ΣN
j=1e

fj(x)
, (2)

where fi(x) refer to as max value from the classifi-
cation layer (max logit value).
• Energy is a variant of MSP, which calibrates logit
value based on energy function (Liu et al., 2020):

p(x) = −E(x; f) = T · log ΣN
i e

f(x)/T . (3)

Representation-based approaches, on the other
hand, employ the hidden representation from PLM
as their primary source. Since the size of the hidden
representation is larger and inheres more copious
information, they generally yield a more precise
decision than logit-based approaches. However,
they require more inference time to derive a final
score. We employed Mahalanobis distance-based
and cosine similarity-based methods in this branch.
•Mahalanobis distance refers to the distance be-
tween the specific distribution and the input. In
OOD detection, we estimate the gaussian distribu-
tion of the training dataset and utilize the minimum
Mahalanobis distance to score the input suitability

(Lee et al., 2018):

p(x) = (h− µk)
⊤Σ−1(h− µk), (4)

where training distribution is (N (µi,Σ) for i ∈
i = {1, 2, · · · , |C|}), and k refers to a index of
minimum mahalanobis distance.
• Cosine Similarity method utilizes the cosine
distance between the representation of the given
input (z(x)) and the nearest neighbor z(xnn) (Tack
et al., 2020):

p(x) = sim(z(x), z(xnn)) (5)

3 Analysis

In this section, we share several intriguing findings
and insights from various settings.

3.1 OOD Robustness of PLMs without
Supervision.

In this experiment, we investigate the OOD detec-
tion capability of PLMs without parameter tuning.
Precisely, we extract the final layer representation
from each frozen PLM and evaluate their perfor-
mance via representation-based evaluation meth-
ods. (Logit-based evaluation methods are not used
as they require additional training of the classifi-
cation layer.) Figure 1 summarizes the results in
two scenarios (i.e., far-OOD and close-OOD). We
verified the correlation between the size of PLMs
and their OOD detection ability, but utilizing them
without parameter supervision is roughly impossi-
ble since they still lag far behind the small super-
vised methods (i.e., BERT-base with Mahalanobis
evaluation) in a barebone setting. Moreover, perfor-
mance improvement from the scaling saturates in a
more harsh setting (i.e., close-OOD), displaying an
unbridgeable gap with the fine-tuned model.
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Figure 2: OOD detection performance of PLMs without updating the model parameters.

Setting Backbone
Evaluation Method

MSP Energy Mahal. Cosine

CLINC
Setting

GPT2-S 93.22 95.79 77.63 76.34
GPT2-M 95.41 97.63 82.42 79.82
GPT2-L 96.21 97.77 96.93 97.57
GPT2-XL 96.48 97.99 97.28 97.66
GPT-Neo 96.04 97.72 96.59 97.64
GPT-J 97.34 98.50 97.91 98.20

Banking
Split 25%

GPT2-S 90.12 91.32 75.32 73.11
GPT2-M 91.74 92.78 78.03 76.56
GPT2-L 93.02 93.45 92.44 93.41
GPT2-XL 94.29 94.95 93.24 94.10
GPT-Neo 93.83 94.85 92.79 93.88
GPT-J 94.11 95.10 93.66 94.80

Table 1: AUROC of each PLMs trained with LoRA. En-
ergey function consistently outperforms other methods .

3.2 Evaluation methods for auto-regressive
PLMs.

Many recent OOD works (Zhou et al., 2021; Shen
et al., 2021) leverage hidden representation-based
evaluation, as they generally surpass logit-based
evaluations (Podolskiy et al., 2021). The reason-
able conjecture behind their success is that hid-
den representations have more copious information
than the logit value. However, in auto-regressive
PLMs, logit-based evaluations (i.e., MSP and En-
ergy) outperform representation-based methods
(i.e., Mahalanobis distance and cosine similarity),
as shown in Table 1. The reasonable conjecture
for this phenomenon is due to the characteristic
of the language model. Unlike bi-directional mod-
els (e.g., BERT, RoBERTa, DeBERTa), decoder
models (e.g., GPT and its variants) do not have
[CLS] embedding, which assembles the token em-
beddings to capture holistic information (Devlin

et al., 2019; Kim et al., 2021). Therefore, auto-
regressive PLMs generally utilize the last token
embedding as a final feature embedding replacing
[CLS] embedding of encoder-based models. While
the last token of GPT is befitted for predicting the
next token, however, it cannot extract the holistic
semantics of the sentence suitably, unlike [CLS]
embedding. We believe extracting a better repre-
sentation through various pooling (Wang and Kuo,
2020) methods might be a possible avenue for auto-
regressive models to improve the OOD robustness
further.

3.3 PETLs VS. Fine-tuning

In this experiment, we investigate the performance
gap between various PETL methods (i.e., Adapter,
LoRA, prefix-tuning) and model fine-tuning. To
compare the performance of each method under
similar circumstances, we set every PETL method
to utilize a similar number of parameters sufficient
enough to reach maximum accuracy. Moreover,
we utilized the energy function to evaluate each
method as they displayed the best performance
among other evaluation methods, i.e., cosine, Ma-
halanobis, and MSP, in the previous experiments.
Table 2 summarizes the results.

From this experiment, we observed that PETL
methods are more robust than fine-tuning with
reasonably large PLMs (i.e., GPT-J). Specifically,
most PELT methods on GPT-J outperform fine-
tuning with proper tunable parameters. Neverthe-
less, size is not the ultimate answer. While it is
clear that the scale of a model is an essential factor
in OOD robustness, larger models are still vulnera-
ble to close-OOD inputs. The capability to detect
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Setting Method # Params.
Backbone

GPT2
(S)

GPT2
(M)

GPT2
(L)

GPT2
(XL)

GPT
Neo

GPT-J

CLINC
(far-ood)

Linear (SLP) 0% 83.03 87.39 88.47 89.55 89.44 91.94
Fine-tuning 100% 96.84 97.71 98.24 98.33 98.01 98.41

LoRA
0.1% 95.00 96.54 97.66 97.72 98.14 97.79
0.5% 96.41 96.04 97.52 97.45 98.12 97.89
1% 96.13 95.89 97.61 97.40 98.11 98.50

Adapter
0.1% 96.62 97.52 97.74 97.71 97.81 96.80
0.5% 95.64 97.07 97.86 96.94 97.98 98.37
1% 95.79 97.63 97.77 97.99 98.12 98.50

Prefix
0.1% 95.53 96.93 96.38 97.88 90.25 98.55
0.5% 96.91 96.96 97.78 97.88 89.81 97.92
1% 96.97 97.50 97.69 97.81 88.98 98.62

Banking
split 25%

(close-ood)

Linear (SLP) 0% 72.97 75.17 80.46 77.59 86.55 89.12
Fine-tuning 100% 90.06 92.06 93.14 93.23 92.54 93.73

LoRA
0.1% 91.18 91.74 94.65 94.58 94.29 95.82
0.5% 91.16 92.98 94.54 94.04 94.55 94.65
1% 91.39 92.39 93.45 93.59 94.81 95.29

Adapter
0.1% 91.97 93.24 94.90 94.69 93.26 95.59
0.5% 92.90 92.63 95.18 95.24 93.61 95.83
1% 91.32 92.78 95.41 94.95 94.41 95.37

Prefix
0.1% 91.22 91.92 93.96 93.48 81.9 94.93
0.5% 91.85 92.55 93.84 93.34 80.82 93.99
1% 92.09 92.65 94.38 93.74 89.66 94.39

Table 2: AUROC of various PETL methods with various number of parameters evaluated by the energy function.

far-OOD inputs (far from the training distribution)
improves proportionally as the size grows, while
the ability to identify close-OOD input improves
rather trivially. PLM’s vulnerability to close-OOD
has already been reported in other studies (Zhang
et al., 2022), and this may be related to shortcut
learning (Geirhos et al., 2020) that predicts with
high probability by looking at specific words. Gen-
erating OOD data with particular keywords or uti-
lizing another pretext task, such as (Moon et al.,
2021), can be worthy approaches to alleviate such
phenomena. A suitable OOD approach is neces-
sary to alleviate the aforementioned issue, as it
can further boost the robustness. We conduct addi-
tional experiments with PETLs on three different
numbers of tunable parameters: 0.1%, 0.5%, and
1% of the PLM parameters. Figure 2 summarizes
the results. With sufficient parameters to reach
maximum performance, there is no meaningful dif-
ference or improvement within each methodology.
Also, empirically, we confirmed that LoRA is the
most stable during learning and that prefix-tuning
fluctuates severely according to learning.

4 Conclusion and Future Work

In this study, we showed that the scale of the lan-
guage model is an important factor in OOD ro-
bustness. Moreover, we also showed that various
methodologies outperform fine-tuning when ap-
plied to sufficiently large PLM. Our follow-up work
seeks to create a methodology that allows large
PLMs to be more robust to OOD input. The per-
formance improvement that can be achieved by the
size of PLM and OOD technique is orthogonal. In
line with the growing size of PLM, the OOD tech-
nique needs to be developed in a more parameter-
efficient way. As such, developing a proper OOD
technique compatible with the parameter-efficient
transfer methods is our proper goal.
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Appendix

A Related Work

Parameter-Efficient Transfer Learning is draw-
ing considerable attention lately, emerging as an
alternative strategy to fine-tuning. Compared to
fine-tuning, parameter-efficient transfer methods
show superiority in the number of trainable param-
eter usage while achieving performance analogous
to fine-tuning. Depending on the characteristics of
the methods, parameter-efficient transfer methods
can be categorized into Adapter-based and Prompt-
Engineering approaches.

Adapter (Houlsby et al., 2019; Pfeiffer et al.,
2021) refers to a lightweight neural module in-
jected within each layer of PLM. The structure of
the adapter generally consists of a bottleneck layer
(down-projection and up-projection), a nonlinear
function, a normalization layer, and a residual con-
nection. The adapter has many different variants
due to numerous design choices, such as the order
or specifics of each component (e.g., which nor-
malization technique will be used) and where the
adapter will be attached. For example, LoRA (Hu
et al., 2022) inserts low-rank decomposition matri-
ces in each weight in self-attention (Vaswani et al.,
2017) (i.e., query, key, and value).

Another line of work, prompt engineering, casts
the existing task as a text generation problem to
fully leverage the capability of PLMs to predict
the appropriate word in the given sentence. This
approach requires an empirical endeavor of opti-
mizing the prompt to maximize a PLM’s perfor-
mance. Earlier works exploit handcrafted manual
prompts (Schick and Schütze, 2021; Jiang et al.,
2020) or by providing demonstrations to PLM 1

(Brown et al., 2020; Raffel et al., 2020; Gao et al.,
2021; Zhao et al., 2021). More recent work re-
places the manual prompt with a soft prompt (Li
and Liang, 2021; Lester et al., 2021; Shin et al.,
2020; Liu et al., 2021), a machine trainable contin-
uous vector. The soft prompt is a more modular
and versatile method that evades additional latency
in the inference phase because it detaches the ad-
ditionally trained parameters and solely employs
the final output of the trained parameters as the
prompt.

While former parameter-efficient transfer meth-
ods showed noticeable achievements, their evalu-
ations generally assume the train and test distribu-

1also termed as in-context learning.

tions are identical (i.e., i.i.d. assumption); however,
this condition is rarely satisfied in real-world sce-
narios due to the diversity and volatility of user
input. Consequently, if the model can not correctly
handle distribution-shifted malicious input and mis-
conceives it as an in-distribution (IND) example, it
may lead to fatal accidents.

Despite its practical importance, how large
PLMs or parameter-efficient transfer learning cope
with unknown input is poorly understood. This
work aims to understand language models’ capabil-
ities to detect outliers through parameter-efficient
transfer learning methods.

B Parameter-Efficient Transfer Learning

Adapter The adapter approach inserts small train-
able adapter modules between transformer layers
while the parameters of the original network remain
fixed. The adapter module uses a bottleneck archi-
tecture which projects the input dimension h to a
lower-dimensional space specified by bottleneck
dimension r, followed by a nonlinear activation
function, and a up-projection to initial dimension
h. In this work, we attach adapter modules in two
places, i.e., after the projection following multi-
head attention and after the two feed-forward lay-
ers, following original implementation in (Houlsby
et al., 2019). Also, we use relu as a nonlinear func-
tion and layer normalization (Ba et al., 2016).
LoRA LoRA injects trainable low-rank matrices
into transformer layers to approximate the weight
updates. For a pre-trained weight matrix W ∈
Rh×k, LoRA decompose ∆W = WdownWup

where Wdown ∈ Rh×r,Wup ∈ Rr×k are trainable
parameters. Specifically we attach LoRA in weight
matrices in the self attention module. Specifically
we attached LoRA to query and key vector follow-
ing the original implementation.
Prefix-Tuning Prefix tuning prepends l tunable
prefix vectors to the keys and values of the multi-
head attention at every layer. Following the original
implementation, we reparametrize the prefix matrix
of dimension h by a smaller matrix of dimension r
composed with a large feedforward neural network
with tanh as a nonlinear function.

C Expanded Configuration Details

C.1 Common Environment
For the experiments, 4 Tesla V100 SXM2 32GB
GPUs are used. The batch size is 8 per GPU. When
the GPU is too small for the batch size, we set
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dataset #domain #intent #data (train/val/test/ood)

CLINC 10 15 15000/3000/4500/1000
Banking 1 77 7812 / 1520 / 3040

Table 3: Dataset statistics.

BERT-base
CLINC150 Full

ACC ↑ FPR-95 ↓ AUROC ↑
Shu et al. (2017) 94.51±0.45 23.33±1.27 95.92±0.05
Li et al. (2021) 96.1±0.37 10.6±0.26 97.72±0.03
Zeng et al. (2021) 94.19±0.28 23.4±1.97 95.75±0.2
Zhou et al. (2021) 95.79±0.13 10.7±0.95 97.6±0.11
Shen et al. (2021) 96.66 10.88 97.43
Cho et al. (2022) 96.96±0.39 6.67 ±0.51 98.27 ±0.16

Table 4: Results of each model trained on the
CLINC150 dataset. The best performance in each met-
ric is indicated in bold.

batch size to 4 and the number of gradient accu-
mulation steps to 2. We implemented our model
based on Transformers (Wolf et al., 2020) library
by Huggingface. Additionally, we used deepspeed
(Rajbhandari et al., 2020) to train models. Specifi-
cally, we used ZeRO2 with cpu offload on a 240GB
RAM CPU. In this setting, fine-tuning GPT-J on
CLINC150 full dataset takes about 7.1 GPU hours
per epoch. We used AdamW (Loshchilov and Hut-
ter, 2019) optimizer with epsilon 1e-6 and weight
decay 0.1. Furthermore, we apply the cosine an-
nealing scheduler. For GPT-neo, the minimum
learning rate is 0. For GPT-J, the minimum learn-
ing rate is the one fifth of maximum learning rate.

C.2 Number of Trainable-Parameter

For each method, a feed-forward layer is added at
the end of the model. In this section, we will calcu-
late the number of additional trainable parameters
of each training methods discussed in this paper.
Biases are omitted for better readability.
Adapter Adapter method adds four feed-forward
layers per transformer layer in the model. Two of
them are down-projection layers, and the others are
up-projection layers. When the original embedding
size of the model is h, the bottleneck dimension is
r, and the number of transformer layers is L, the
number of the trainable parameters of these layers
is calculated as 4Lhr, excluding the bias of the
added layers.
LoRA Similar to adapter, LoRA also adds feed-
forward layers per transformer layer. Therefore,
the number of the trainable parameters of 4Lhr.
However, the number of parameters are less than
adapter if h and r is the same, since LoRA does

not use bias of the feed-forward layers.
Prefix-Tuning There are two trainable elements
in prefix tuning. The first one is the prefix em-
beddings. When the number of prefixes is l, and
the embedding size is h, lh parameters are used
by the prefixes. Second, the reparametrization ma-
trix is also trained. The down-projection matrix
has hr parameters, when the reduced dimension
for reparametrization is r. The up-projection ma-
trix has 2Lhr parameters. As a result, there are
h(2Lr + l) trainable parameters on prefix tuning
approach.

C.3 Hyper-parameter Search
Tab 5 summarizes hyper parameters for each
model.

D Selecting SOTA OOD Method.

The Tab.4 summarizes the results with recently
proposed OOD approaches on BERT-base with
CLINC dataset. The best performing model (Cho
et al., 2022) is selected as the baseline.
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Method Parameters Values

LoRA
Learning rate 2e-4 (GPT-Neo), 5e-5 (GPT-J)
Bottleneck dim 8 (GPT-Neo / 0.1%), 80 (GPT-Neo / 1%), 12 (GPT-J /0.1%), 128 (GPT-J / 1%)
Location query, value

Adapter
Learning rate 8e-5 (GPT-Neo / 0.1%), 1e-4 (GPT-Neo / 1%), 5e-5 (GPT-J), 5e-4 (GPT-J / 0.1%), 1e-4 (GPT-J / 1%)
Bottleneck dim 6 (GPT-Neo / 0.1%), 80 (GPT-Neo / 1%), 11 (GPT-J /0.1%), 128 (GPT-J / 1%)
Location after Multi-head, after Feed-forward,

Prefix-tuning
Learning rate 2E-4 (GPT-Neo), 5E-5 (GPT-J)
Bottleneck dim 12 (GPT-Neo / 0.1%), 160 (GPT-Neo / 1%), 20 (GPT-J /0.1%), 256 (GPT-J / 1%)
Prefix length 5, 10, 20

Table 5: Hyper-parameter search for each model.
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Abstract

With the advent of large language models
(LLMs), the trend in NLP has been to train
LLMs on vast amounts of data to solve diverse
language understanding and generation tasks.
The list of LLM successes is long and varied.
Nevertheless, several recent papers provide em-
pirical evidence that LLMs fail to capture im-
portant aspects of linguistic meaning. Focusing
on universal quantification, we provide a theo-
retical foundation for these empirical findings
by proving that LLMs cannot learn certain fun-
damental semantic properties including seman-
tic entailment and consistency as they are de-
fined in formal semantics. More generally, we
show that LLMs are unable to learn concepts
beyond the first level of the Borel Hierarchy,
which imposes severe limits on the ability of
LMs, both large and small, to capture many
aspects of linguistic meaning. This means that
LLMs will continue to operate without formal
guarantees on tasks that require entailments and
deep linguistic understanding.

1 Introduction

The success of large language models (LLMs) has
led researchers in NLP to harness LLMs trained on
vast amounts of data to solve a variety of language
understanding and generation tasks, and some have
claimed that LLMs can solve any task that can be
specified via prompting (Brown et al., 2020). While
the list of LLM successes is long, there have been
several recent papers that provide empirical evi-
dence that LLMs at least sometimes fail to capture
important aspects of linguistic meaning (Kuhnle
and Copestake, 2019; Sinha et al., 2020; Yuksek-
gonul et al., 2022; Chaturvedi et al., 2022; Kalouli
et al., 2022). Those who have dabbled in “BERTol-
ogy” with respect to linguistic meaning often have
the feeling that fixing one LLM deficiency just
leads to the discovery of new ones.

This paper provides a theoretical explanation
of certain of these observed failings of LLMs. In

particular, we prove that LLMs cannot learn the
notions of semantic entailment or consistency as
defined in formal semantics (Dowty et al., 1981)
because they are incapable of mastering universal
quantification. Our work builds on Siegelmann
and Sontag (1992); Siegelmann (2012); Weiss et al.
(2018), concerning the expressive power of neu-
ral networks, but we focus on the learnability of
semantic concepts and use novel tools.

Our argument has widespread implications: not
only does a general capacity to recognize seman-
tic entailment and consistency underlie everyday
conversational interactions, but the meanings of a
great many common linguistic expressions depend
on universal quantification. This set includes—but
is certainly not limited to—a long list of quanti-
fiers (every, some, many, most,... every other, ...),
temporal adverbs (always, never, eventually) that
are essential to planning (Lamport, 1980), modal
operators (possibly, necessarily,...), and certain dis-
course connectives and adverbs (therefore, if / then,
except, because, ...).

We begin in Section 2 by contextualizing our
claims in terms of expectations about the linguistic
capacities and applications of LLMs. In Section 3,
we introduce the framework of continuation seman-
tics, which will allow us to adapt certain notions
central to truth-conditional semantics to the case of
LLMs. Section 4 lays out the core of our theoretical
argument, focusing first on what is needed to learn
universal quantification and then generalizing our
argument to a wide range of linguistic expressions.
Our theoretical argument suggests that we should
expect certain empirical failures from LLMs, and in
Section 5, we provide evidence that our predictions
are borne out. Section 6 concludes.

2 Context

Our results are particularly relevant to downstream
tasks that require an agent to not only create fluent,
creative and contextually relevant speech but also
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to act precisely based on the meaning of linguistic
expressions and reliably recognize semantic incon-
sistency. For a robot that has been instructed (via
conversation) to tighten every screw of a door, to
never walk on an airplane wing, or to stop drilling
immediately if certain conditions hold, acting ap-
propriately requires being able to infer what do to
based on the linguistic meaning of the words every,
never, stop, immediately and if —and in these cases,
getting things mostly right won’t do, especially if
lives or substantial economic loss are at risk.

An important corollary of our argument is that
while it might be tempting to separate reasoning
and linguistic competence (Mahowald et al., 2023),
the former is in fact inextricably tied to our ability
to draw inferences based on linguistic content—not
just on, say, mathematical or real-world facts. This
in turn suggests that approaches which attempt to
patch up knowledge deficiencies for LLMs by giv-
ing them access to external models (Mialon et al.,
2023) will fall short in developing reliable models
of linguistic understanding because LLMs fail to
grasp the notions that underlie the very way that
sentences (and actions) are woven together in con-
versation.

Empirical studies like Chaturvedi et al. (2022)
show that LLM failures to respect semantic en-
tailment in question answering tasks follow from
fundamental features of LLM training; thus while
extensive training and large data sets may improve
LLM results, performance will inevitably remain
unstable and we should continue to expect hallu-
cinations and reasoning errors in NLP tasks like
question-answering and natural language inference.

3 Language models and formal semantics
with continuations

3.1 LLMs and strings

We consider LLMs trained on transformer architec-
tures over very large corpora using classic language
modeling tasks, namely masked language modeling
or next sentence prediction. The former involves
masking certain words in a given corpus and train-
ing the model to guess the missing words, while
in the latter, a context (a sentence typically) is pro-
vided to the model, which is trained to predict the
sentence that follows. This unsupervised training
allows language models to build rich internal rep-
resentations that have been shown through probing
to contain at least implicitly a large amount of lin-
guistic information (Devlin et al., 2019; Liu et al.,

2019; Tenney et al., 2018).
Formally, LLMs learn a function f : C ×X →

[0, 1] that assigns a probability to a word (or string
or discourse move) x ∈ X given a context (or finite
string) C. More abstractly, let V be a countable set
called the vocabulary. For i > 0, let V i denote the
set of all length i strings in the vocabulary V and
V ≤i denote the set of all strings V whose length
is at most i. V ∗ denotes the set of all finite strings
and V ω the set of countably infinite strings in V .
We can then rewrite f as f : V ≤n → µ, where µ
is a probability measure (which is often called its
prediction) over V n+m for m ≥ 1. Typically, the
prediction function is used on strings of length m
where m is smaller than n.

By exploiting f , an LLM can extend µ to a
distribution on the set of strings V ∗. The most
straightforward way is to follow autoregressive
models that calculate the probability of strings
via conditionalization. For a new sentence s′ =
(w1, w2, ..., wm+1), and an input string s of length
n provided as context, we have:

µn+m+1(s′|s) = µn+1(w1|s)×µn+2(w2 |s, w1)×
(1)

...× µn+m(wn |s, wm−1, ..., w1)

For any s′ ∈ V ∗, µ(s′) represents the confidence
with which an LLM predicts s′, after training on
strings in V ≤n.

3.2 Linguistic meaning
In what follows, we are in interested strings that
have a well formed meaning and are evaluable as
true or false. Linguists use truth conditional se-
mantics to define the meanings of strings or well
formed sentences in terms of the conditions under
which they are true. Thanks to the work of Tarski
(1944, 1956), we can formalize the notion of truth
conditions using the set-theoretic notion of a model
that defines denotations or truth conditions for sen-
tences recursively from denotations for sentential
constituents (Dowty et al., 1981).

The notion of a model not only serves to define
truth conditions; it also captures entailments. We
define the notion of semantic consequence using
the notion of a model or structure A as follows
(Chang and Keisler, 1973):
Definition 1. ϕ is a semantic consequence of Γ (in
symbols, Γ |= ϕ) if and only if in every structure A
in which Γ is satisfied (A |= Γ), A also makes true
or satisfies ϕ (A |= ϕ). That is: ∀A, A |= Γ ⇒
A |= ϕ
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The notion of semantic consequence integrates
entailment with truth conditional meaning; two
strings have exactly the same entailments just in
case they are true in the same models. Accordingly
we can capture the truth conditional meaning of a
string in terms of the strings that it entails. Socrates
is a man, for example, entails Socrates is human,
Socrates is mortal, Socrates is an adult but also that
someone is a man, human, mortal and so on. What
it means for Socrates to be a man (and, indirectly,
the meaning of man) can be captured by the full set
of these entailments.

Our idea is to apply truth conditional semantics
to LLMs by representing models themselves as
strings. Semanticists have used strings and con-
tinuation semantics (Reynolds, 1974) —in which
the meaning of a string s is defined in terms of
its possible continuations, the set of longer strings
S that contain s—to investigate the meaning and
strategic consequences of conversational moves
(Asher et al., 2017), temporal expressions (Fer-
nando, 2004), generalized quantifiers (Graf, 2019),
and the “dynamic” formal semantics of (Kamp and
Reyle, 1993; Asher, 1993)(De Groote, 2006; Asher
and Pogodalla, 2011). In our case, we will use
strings to define models As. We will use this trick
to reformulate semantic consequence: where ∥ϕ∥
is the set of strings describing models that satisfy a
truth evaluable string ϕ:Γ |= ϕ iff ∥Γ∥ ⊆ ∥ϕ∥.

LLMs naturally find their place in such a frame-
work (Fernando, 2022): given their training regime,
the meaning of any natural language expression for
an LLM is a function from input contexts to sets
of larger strings or continuations. LLMs provide a
probability distribution over possible continuations
and can predict possible continuations of a given
text or discourse.

4 Learning limits for semantic concepts

Semantic consequence defines linguistic entail-
ments and importantly provides the fundamental
connection between meaning and inference that en-
sures linguistic understanding (Montague, 1974).
Crucial to |= is the use of universal quantification
over all possible structures—an infinite space of
possible circumstances of evaluation or set of pos-
sibilities. A true grasp of semantic consequence
thus requires an understanding of universal quan-
tification at least over countably infinite domains.
In Section 4.1, we show that an LLM’s training
regime makes it fundamentally unable to learn the

concept of universal quantification. In Section 4.2,
we generalize our argument to show that LLMs are
incapable of learning a wide variety of everyday
semantic concepts.

4.1 Learning the full meaning of every

To see if the set of strings that define the concept
every is learnable for an LLM, consider (1).

(1) Every object is blue.

We will use strings of atomic formulas and their
negations to define models (or more precisely their
atomic diagrams) that we will use to test whether an
LLMM can learn the concept of universal quantifi-
cation through inductive reasoning from a series of
individual trials over finite subsequences of strings
representing countably infinite domains. In partic-
ular, we will ask whether it is possible to train an
LLM M to judge, for a string s of arbitrary length
n, whether s is consistent with (1), or equivalently,
given that s defines a model As, whether given As,
(1) is true. IfM can reliably judge in which models
As (1) is true, we can conclude it has learned the
meaning of every.

To this end, consider a language L containing
negation, the predicate is blue and a countably in-
finite number of constants ai enumerating objects
of a countably infinite domain. L formulas are of
the form ai is blue and ai is not blue. We use the
formulas of L as “words” to define the set of finite
strings, V ∗

L and the set of countably infinite strings
V ω
L . Each such string corresponds to a finite or

countably infinite model in which (1) is true or not.
In the course of training, M will be presented

with finite sequences that define structures of in-
creasing size. For each n and set of models of
size n, M will form a set of hypothesesHn, where
for h ∈ Hn, h : V n

L → {0, 1}. Hn corresponds
to the hypothesis space of the problem; each hn

says whether a presented sequence of length n is
consistent with (1). As each hn ∈ Hn is a charac-
teristic function of a subset of V n

L , we can identify
hypotheses with sets of strings. So for instance,
hn∀ is the set of strings in V n

L that are consistent
with (1) and that define models in which (1) is true.
We will additionally assume that hn∀ picks out a
suitable set for each V n, and similarly for each hnk .

However simply learning hn∀ for some n will not
be sufficient for M to learn the meaning of every.
Universal quantification is a concept that applies to
arbitrarily large domains. So the question, Can M
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inductively learn the meaning of every? becomes
Can M inductively learn hypothesis hω∀ ∈ Hω?

To answer this question, we first have to spec-
ify what we mean by inductive learning. Recall
that an LLM M has learned from unsupervised
training a function f : V ≤n → µ(V ≤n+m) with
µ(V ≤n+m) a probability distribution over comple-
tions of length m of contexts of length n. An LLM
can use this distribution to compute probability
values for arbitrarily long strings or continuations
using Equation 1.

In the case at hand, M needs to use this distribu-
tion over L strings to compute the probability that a
string s is in h∀ or the probability of s given h∀. To
learn inductively M must use its training data D≤n

to update its prior for the distribution µn using a
rationally justifiable form of inductive inference;
e.g., for h ∈ Hn, µn(s|h) = µn(h|s)×µn(s)

µn(h) .
Additionally, we consider two constraints on dis-

tributions to define learning in terms of an induc-
tively inferred change in the distribution from the
priors. The first constraint, Max Ent, says that the
distribution µ prior to training should assign all
hypotheses a weight based on maximum entropy or
a least informative distribution. This is usual with
auto-regressive models and a common assumption
in other models.

The second constraint is that distributions for
inductive learning should be non-degenerate. We
have assumed that our LLM M has been trained
over sequences of length n. Through Equation
1, M can extend the distribution it has learned
for V n to one over V n+m for any string of fi-
nite length n + m. Recall that we are looking
at strings of L that define structures; the structures
defined by strings of length n + m are indepen-
dent of those defined in V n and none is intuitively
more likely than another. So the prior distribu-
tion over V n+m should consider as equally likely
all continuations s.a ∈ V n+m, where s ∈ V n,
a ∈ V m and . is concatenation. There are also
correspondingly more hypotheses in Hn+m than
inHn, since there are V |m| more strings in V n+m

than in V n. Thus µn+m(s.a|hk) < µn(s.a|hk) for
s.a ∈ V n+m, s ∈ V n for each hk. Non-degenerate
distributions will reflect this and should make the
model converge to the least general hypothesis sup-
ported by the evidence (Muggleton et al., 1992;
Plotkin, 1972).

Definition 2. M ’s distributions over sets of hy-
potheses Hn, µn(Hn), after training over V n are

non-degenerate if ∀h ∀δ (0 < δ ≤ 1),∃m > 0
such that ∀a ∈ V m ∀s ∈ V n : µn(s.a|h) =
max{0, µn(s|h)− δ}, where s.a ∈ V n+m.

Proposition 1. Models that calculate distributions
over strings using Equation 1 have non-degenerate
distributions.

As continuations get longer the probability of the
continuation will decrease monotonically.2

Because quantifiers like every and some are elim-
inable in terms of Boolean functions when we con-
sider finite structures definable with strings in V ∗,
we must consider strings in V ω to define countably
infinite models that capture the full truth conditions
of every. To extend a distribution over V n for finite
n to a distribution over V ω, we lift the probability
of a string to the set of its continuations. In V ω, the
set of strings A characterizes the set A.V ω, where
A.V ω is the set of all strings formed by concatenat-
ing a string from A with a string from V ω. Using
this correspondence, the probabilities of sets of fi-
nite strings in V n can lifted to probabilities of sets
of the form V n.V ω. The laws of probability extend
the distribution to complements, intersections and
unions of such sets.

We now propose a simple but general notion of
inductive learning.

Definition 3. Suppose µ0 is M ’s Max Ent prior
distribution and let h ∈ Hβ for some countable β.
M effectively learns h iff after some finite amount
of training using inductive inference, there is an α,
such that: for any s ∈ V β , µβ(s|h) > α > µ0(s|h)
iff s ∈ h.

Proposition 2. If M can effectively learn hn∀ from
sequences of V n

L for arbitrarily large n ∈ ω, then
M can effectively learn hω∀
Assume that M cannot effectively learn hω∀ but it
can effectively learn hn∀ for arbitrarily large n ∈ ω.
Then it must admit some string s ∈ V ω

L , such that
s ̸∈ hω∀ . But then at some finite stage i, si must
have ¬blue(ai). By hypothesis M has learned hi∀.
So it has ruled out si and a fortiori s. 2

We now negatively answer our question, Can
M inductively learn hypothesis hω∀?, under either
of two conditions: (i) M has non-degenerate dis-
tributions; (ii) M obeys Max Ent and inductive
inference.

Proposition 3. Suppose M ’s distributions are non-
degenerate. Then hω∀ is not effectively learnable by
M overHω.
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Suppose M trained on V ≤n has effectively
learned hn∀ . So ∀s ∈ hn∀ , µn(s|h∀) > α where
α is as in Definition 3. Since M ’s distributions are
non-degenerate, ∃m, such that for all s ∈ V m,∃δ :
0 < δ ≤ 1 where µm(s|h∀) − δ < α and a
continuation of s, s.a, such that s.a ∈ hm+n

∀ but
µm+n(s.a|h∀) = µm(s|h∀)− δ < α. 2

By Propositions 1 and 3, a basic auto-regressive
model cannot learn h∀. We can generalize Proposi-
tion 3 to other :

Proposition 4. SupposeM ’s priors only obey Max
Ent and M uses inductive inference. Then hω∀ is
not effectively learnable by M overHω.

Suppose M ’s training data D≤n ⊆ V ≤n and M
has learned hn∀ . To learn hn+m

∀ , M must project
its distribution of Hn onto Hn+m. But the dis-
tributions in Hn and Hn+m are independent; for
one thing the cardinality ofHn, |Hn|, is such that
|Hn| < |Hn+m| = |Hn| × 2m. Our assump-
tions about inductive inference on D≤n make it
no more likely that every will be associated with
h∀ than it is with any of the 2m h ∈ Hn+m, where
strings in h contain the same n prefix as an s ∈ hn∀
but h ∩ hn+m

∀ = ∅. In Hn+m these hypotheses
h can be distinguished from h∀. Max Ent pri-
ors over Hn+m imply that for any s ∈ V n+m,
µn+m(s|h∀) = 1

2mµ
n(s|h∀). 2

Corollary 1. M cannot effectively learn hn∀ from
sequences in V n

L for arbitrarily large n ∈ N. There
is some n such that hn∀ is not effectively learnable.

While LLMs can represent any Borel function
to an arbitrary degree of precision (Hornik et al.,
1989), Propositions 3 and 4 shows they cannot al-
ways learn such functions, given either the con-
straints of inductive epistemology or the way LLMs
generate probabilities for strings. In particular,
given our assumptions, no LLM can effectively
learn hω∀ . In addition, each LLM is bounded by
some number n in the size of sequences for which
it can learn hn∀ . LLMs do not have the capacity to
learn the meaning of ‘every’ even over all finite
domains.1

Even supposing that an LLM can effectively
learn hn∀ for some n, this does not amount to under-
standing every. hn∀ can be effectively represented
with quantifier free conjunctions of formulae, and

1Unlike Hume’s problem of induction (Popper, 1963) and
(Wolpert et al., 1995), we exploit particularities of LLMs and
the structure of a classification problem. The finite bound on
learning of hypotheses goes beyond standard Humean conclu-
sions

these do not correctly approximate reasoning with
a sentence like (2) that applies to arbitrarily large
domains. Identifying ∀ with a finite conjunction of
length n will make ∀xFx consistent with ¬∀xFx
in larger structures. In ω structures, for example,
¬∀xFx is consistent with every finite subset of the
Π0

1 string blue(0), blue(1), blue(2), . . ., in hω∀ ,
making it inevitable that LLMs will reason incor-
rectly with every in large enough structures.

The situation worsens with sampling: suppose
that when we present our model M a long string,
M only samples some of the elements in the string;
the threat of inconsistency in such a situation can
become high and we have no guarantees that such
inconsistencies will not arise.2 But this reason-
ing is not independent of the meaning of every; as
the semantics and rules of first order logic show,
this reasoning is an integral part of the meaning
of every. As a result, LLMs unable to grasp se-
mantic consequence defined in terms of universal
quantification; and we thus cannot provide them
guarantees that they follow semantic entailments
when asked to do semantic tasks. This predicts
phenomena like LLM hallucinations and observed
elementary reasoning errors.

4.2 Generalizing our answer to Q2

Using tools from statistical learning and the Borel
Hierarchy, we now generalize Propositions 3 and 4
to other concepts beyond every.

Statistical learning examines the application of
a learned function over a test domain and the ex-
pected loss over novel applications. The ability to
bring the error over test to that over the training
set is typically taken to indicate an ability to gen-
eralize (Neyshabur et al., 2017). Villa et al. (2013)
define learnability in statistical learning theory via
the notion of uniform consistency. Let µ be a dis-
tribution over H and µn the update of µ after n
training samples zi = (xi, yi). Let Azn be an algo-
rithm for picking out a hypothesis from H based
on n training samples. inf H is the hypothesis in
H with the lowest possible error (Shalev-Shwartz
et al., 2010; Kawaguchi et al., 2017).

Definition 4. An algorithm A on a hypothesis
spaceH is uniformly consistent if and only if
∀ϵ > 0 limn→∞supµ

µn({zn : Eµ({Azn − inf HEµ > ϵ}) = 0

2Approximation and approximation error can also affect
learnability of mathematical functions (Colbrook et al., 2022).
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In our case, the best hypothesis, inf H, for in-
stance h∀, will yield 0 error. Our question is
whether there is an algorithm that converges to
that hypothesis given a certain H and certain as-
sumptions.

Definition 5. A class of hypotheses H is unifor-
mally learnable just in case there exists a uniformly
consistent algorithm forH.

This enables us to link learnability with a number
of other features:

Theorem 1. (Anthony et al., 1999) Let Y = {0, 1}.
Then the following conditions are equivalent: (i)
H is uniformly learnable; (ii) Empirical risk mini-
mization onH is uniformly consistent; (iii)H is a
uGC-class; (iv) the VC-dimension ofH is finite.

The Borel Hierarchy We now turn to generalize
the hypotheses we are investigating. V ω has a nat-
ural topology, the Cantor topology, which allows
us to characterize linguistic concepts precisely. To
define the topology, we first define the basic open
sets to be sets of the form A.V ω, denoted as O(A),
whereA ⊆ V ∗ is a set of finite strings. Importantly,
O(A) sets are both open and closed or clopen, be-
cause if A ⊂ V ∗ is a countable set, then the com-
plement of A.V ω, (V ∗ \A).V ω, is also open. And
thus, A.V ω is also closed. The ∆0

1 class is at the
intersection of the Σ0

1 and Π0
1 classes and consists

of the clopen sets. Σ0
1 sets include countable unions

of ∆0
1 sets, while Π0

1 are complements of Σ0
1 sets

and so include countable intersections of ∆0
1 sets.

These sets form the basis of the Borel hierar-
chy of sets that includes the ∆0

1, Σ0
1, and Π0

1 sets,
and more generally includes Σ0

α+1 as the countable
union of all Π0

α and ∆0
α sets, and Π0

α+1 as the com-
plement of Σ0

α+1 sets, with ∆0
α = Σ0

α ∩ Π0
α. The

hierarchy is strict and does not collapse (Kechris,
1995). We will use this hierarchy to characterize
linguistic concepts. Below is a picture of some
simple Borel sets and their ⊆ relations.

Σ0
1 Σ0

2 Σ0
3

Π0
1 Π0

2 Π0
3

∆0
1 ∆0

2 ∆0
3

As an example, hω∀ ⊆ V ω
L of the previous section

is a Π0
1 Borel set; i.e., hω∀ =

⋂
i∈ω Bi where the Bi

are ∆0
1.

We are interested in the learnability of Borel
sets B with respect to a hypothesis space. The
hypothesis spaceHn for V ≤n and algorithem An

that an LLM can consider is typically fixed by the

maximal length strings it has been trained on. But
we will be looking at how an LLM extends its
training generalizing to longer and longer strings.
More generally, we consider a countable collection
of hypotheses—in the case of every and VL, the set
consists of h∀, hthefirst 2n etc. We will assume a
countable hypothesis spaceHω for the Borel sets in
V ω, with |V | > 2 we want to learn in what follows.

Definition 6. An LLM M can effectively learn a
Borel set S ⊂ V ω out of a countable set of hypothe-
sesH iff M has a uniformly consistent algorithm
such that hS = infH, as in Definition 4, and where
hS : V ω → {0, 1} defines S.

Clearly if h is infH, and A is uniformly con-
sistent, then Definition 3 is satisfied; i.e., there is
some α > ϵ such that µ(s|h) > α iff s ∈ h.

Theorem 2. An LLM with either (a) non degener-
ate distribution or (b) Max Ent priors and trained
on V <n for some finite n to learn h ⊂ V ω via
inductive inference (i) can effectively learn a ∆0

1

set O(S) ⊂ V ω
L , where S is a finite subset of V ≤n,

given HO(V <n), a hypothesis space restricted to
∆0

1 sets; but (ii) it cannot effectively learn any Π0
1

Borel set B ⊂ V ω
L .

We first show (i). Let H = {O(A) : A ⊆ V <n}.
Any h ∈ H is determined by a finite set of prefixes
P in V <n. There are only finitely many such sets in
V ≤n, and so M has an algorithm A that eliminates
at each finite stage of training some ∆0

1 O(P ) sets.
This enables it to converge uniformly toward 0
expected error for the set of finite prefixes that
determines O(S) and so eventually M will have
effectively learned O(S).

Now for (ii). We first consider the case (ii.a)
where our learned model has non-degenerate distri-
butions. Consider an arbitrary Π0

1 complete set B.
So B =

⋂
n∈ωO(Bn), with O(Bn+1) ⊂ O(Bn),

where the Bi ⊂ V ∗. To compute B, M needs a
uniformly consistent algorithm A over our count-
able hypothesis spaceH that converges on hB , the
hypothesis defining B. Now suppose M has been
trained on strings in V <n; its algorithmsA are thus
restricted toH<n.

Suppose M trained on V ≤n has effectively
learned hnBn

. Let s ∈ hnBn
. SinceM ’s distributions

are non-degenerate, ∀α ≥ 0, ∃m, δ : 0 < δ ≤ 1
where µm(s|hB) − δ < α and a continuation of
s, s.a, such that s.a ∈ hm+n

Bn
but µmM (s.a|hB) =

µmM (s|hB)− δ < α. So there is no convergence at
any finite stage n of A towards hB . Non uniform
learnability ofH then follows.
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(ii.b) Let’s now assume that M only has Max
Ent priors and learns by inductive inference. Uni-
form convergence of any algorithm obeying these
conditions is not guaranteed as a similar argument
as in Proposition 3 applies. 2

Corollary 2. The hypothesis spaceHB is not uni-
formly learnable. Hence the the VC-dimensions of
HB are not finite, and empirical risk minimization
onHB are not uniformly consistent.

Corollary 3. M cannot effectively learn Σ0
1 com-

plete Borel sets.

Assume M can effectively learn a Σ0
1 complete

set. Then it can effectively learn a Π0
1 set that is its

complement, which is impossible by Theorem 2.2

Proposition 5. An LLM M cannot effectively
learn Borel sets B of higher complexity than ∆0

1.

Proposition 2 and Corollary 2 show that M cannot
effectively learn Π0

1 or Σ0
1 sets. But any Π0

n or
Σ0
n complete Borel set B for n > 1 is at least a

countable intersection or countable union of such
sets. So B is not effectively learnable.2

Asher et al. (2017); Asher and Paul (2018) exam-
ine concepts of discourse consistency and textual
and conversational coherence, which true, human-
like conversational capacity requires. Using con-
tinuations in a game-theoretic setting, they show
those concepts determine more complex Π0

2 sets in
the Borel Hierarchy; and intuitive measures of con-
versational success—like the fact that one player
has more successful unrefuted attacks on an op-
ponent’s position than vice versa—determine Π0

3

sets. Given Proposition 5, LLMs cannot learn these
concepts, which are needed for full conversational
mastery.

Proposition 6. For any LLM M , there is a max-
imally large and fixed number n such that Hn is
uniformly learnable for M but Hn+k is not uni-
formly learnable, for k > 0.

Suppose that for M Hn is uniformly learnable for
all n. Then, M can compute the countable intersec-
tion of sets defined by the best hypotheses in Hn

for each n. So M can effectively learn a Π0
1 set,

which contradicts Theorem 2.2

Corollary 4. M cannot effectively learn ∆0
1 sets

of the form O(A) if the length of A is longer than
the maximal number n such thatHn is uniformly
learnable for M .

4.3 The importance of order

Order is important for the most elementary rea-
soning about linguistic content in finite domains.
Let us add another predicate A to L to form the
language L+. Now consider the strings in V ω

L+ .
Strings consistent with (2) may include formu-
lae like A(ai) or ¬A(ai), paired with a choice of
blue(ai) or ¬blue(ai). Even to find effectively ini-
tial segments of strings in hω∀L+

, M must learn
some sentence structure or word order. The nega-
tion sign has to be paired with the predicate blue; if
it’s appended to A (e.g., large, or some other inde-
pendent term), this should count as a string in hn∀ .
If s is a finite string,M does not effectively capture
word order if it does not distinguish between s and
permutations of elements in s.

Proposition 7. If M does not effectively capture
word order, it cannot effectively learn basic sets of
the form O(A) for A ⊂ V ∗.

Let s ∈ A be a string containingA(ai)∧¬blue(ai)
but A has no string containing ¬A(ai) ∧ blue(ai).
If M does not capture word order, M cannot dis-
tinguish between s and s’s permutation containing
¬A(ai) ∧ blue(ai). 2

Corollary 5. If M does not effectively capture
word order, it will not reason soundly in proposi-
tional logic.

The example in Proposition 7 shows that M will
not be able to reason about logical structure if it
does not effectively capture word order. 2

Yuksekgonul et al. (2022); Sinha et al. (2020)
provide evidence that small to moderate sized
LLMs do not reliably capture word order. Our
empirical examples show even GPT3.5 and Chat-
GPT have difficulties with sentential word order,
and, worryingly, with the order of arguments in a
logical operator; the example in Appendix B sug-
gests that even ChatGPT can’t be trusted to always
do elementary inferences involving conditionals
correctly. Thus, LLMs with their initial training do
not necessarily find basic ∆0

1 sets of the form a.V ω

where a is a single string but only setsA.V ω where
A is a set of prefixes that are permutations on a.
This is surprising and poses extreme difficulties
for valid reasoning with operators that have order
dependent arguments.
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5 Empirical investigations of LLMs with
every

While the theoretical argument laid out in Section
4 does not hinge on empirical statistics of LLM
failures, it certainly suggests that we should expect
such failures. In this section, we describe some of
the tests we have performed using continuations to
query LLMs directly about their mastery of univer-
sal quantification.

Let us return to our simple example from above,
repeated here as (2):

(2) Everything is blue.

We used finite sequences of formulas as a context,
e.g., a1 is blue, a2 is red , a3 is red ,..., ai is blue
to determine a model. We then asked an LLM M
whether (2) in this model, allowing us to gauge its
behavior with respect to finite domains.

BERT-large and RoBERTa-large already failed
to reliably distinguish very small models (contain-
ing 2 and 5 objects respectively) in which (2) is
true from those in which it is not. To test these
models, we fine-tuned BERT-large and RoBERTa-
large on the CoQA dataset (Reddy et al., 2019). For
finetuning, the model had 4 output heads for yes,
no, unknown, and span type questions. Since the
CoQA dataset provides a rationale for each ques-
tion, the models were jointly trained on question
answering and rationale tagging tasks to enhance
their performance. We report scores on the fine-
tuned models on CoQA for 1 epoch as we did not
observe significant improvement with an increased
number of epochs.

For BERT-large, we provided strings like (3) and
then asked Is everything blue?

(3) My car is blue. My house is blue

We generated a total of 5 examples in which (2)
was true and 5 examples in which (2) is false. All
the examples had only 2 objects. The inconsistent
examples were constructed by varying the position
of the object which was inconsistent with the asked
question and by trying out different combination of
colours and objects.

The consistent examples were of the form:
1. The car is blue. The house is blue.
2. The car is purple. The house is purple.
3. The car is yellow. The house is yellow.
3. The shirt is violet. The table is violet.
4. The cup is black. The plate is black.

Object Count Pass Fraction

2 1/1
3 2/3
4 1/4
5 0/5
6 0/6
7 0/7
8 0/8
9 0/9

10 0/10

Table 1: Pass fraction on inconsistent examples for
RoBERTa-large

Inconsistent examples were of the form:
1. The car is blue. The house is red.
2. The car is green. The house is purple.
3. The car is yellow. The house is brown.
2. The shirt is violet. The table is brown.
3. The cup is black. The plate is white.

BERT-large was able to correctly identify the
consistent examples but failed for all the incon-
sistent examples. As the model failed for all the
inconsistent examples with 2 objects, we did not
experiment with models containing more than 2
objects.

For RoBERTa-large, we generated a total of 9
consistent examples and 53 inconsistent examples.
We constructed sequences ranging from 2 to 10
objects. For each number, the inconsistent exam-
ples were constructed by varying the position of
the object in the string (context) which is respon-
sible for the inconsistency. The model was able to
correctly identify all the consistent examples. For
models of a given size (i.e., number of objects), we
defined the pass fraction as the ratio of the exam-
ples in which the model was able to report models
inconsistent with (2) correctly to the total number
of inconsistent examples. Table 1 reports the pass
fraction on inconsistent examples.

While BERT’s and RoBERTa’s behavior was
stable on the strings tested, GPT3.5 davinci and
ChatGPT, while more robust, are unstable from
one day to the next, even when temperature is set
to 0 (on GPT3.5). This made it difficult to pin down
the models’ abilities, though some generalizations
emerged. Typically (though not always), these
models can recognize which objects in a string
have a certain property, but they cannot necessarily
exploit this information to answer questions about
the string as a whole (see the “hats” example in
Appendix A). In addition both GPT3.5 and Chat-
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GPT will sometimes (frequently in our most recent
tests) over-generalize and say that all items in a
list are, say, blue if it is specified for all items but
one that they are blue and it is not specified one
way or the other for the remaining item (see the
fifteen hearts example from ChatGPT in Appendix
A). Thus, even these sophisticated models still fail
on more complicated questions and longer strings.

Our empirical observations on LLMs like BERT
and RoBERTa and probing of ChatGPT strongly
support our argument that LLMs are unable to mas-
ter quantification, complementing observed LLM
difficulties with negation (Naik et al., 2018; Kass-
ner and Schütze, 2019; Hossain et al., 2020; Hos-
seini et al., 2021) and to some extent quantifiers
(Kalouli et al., 2022).

6 Conclusions

We have shown that LLMs’ demonstrably inade-
quate grasp of the meanings of words like every
and other linguistic constructions has a theoretical
foundation and explanation: for certain expressions
S, S’s content should be defined via consistent sets
of strings in V ω, and LLMs cannot effectively learn
certain sets in V ω. More generally, LLMs cannot
effectively learn full meanings of first order quanti-
fiers or any Borel sets beyond the basic open sets,
which means that they fail to grasp the meaning of a
long list of mundane, frequently used expressions.

Many of these expressions are syncategorematic
terms and express what we might call precise con-
cepts. Such concepts are needed for understand-
ing ordinary entailment across all expressions; in
addition, correctly reasoning with these concepts
and grasping their entailments is essential to un-
derstanding them. Reasoning and entailment are
intimately tied with meanings. For us and most
formal semanticists (Montague, 1974), grasping
meaning and correctly reasoning with linguistically
expressed concepts go hand in hand; if you cannot
exploit the meanings of words in correct reasoning,
you do not really know what they mean. The incor-
rect reasoning of LLMs exemplifies their failure to
grasp semantic entailments and meaning.

Our arguments go beyond those of Bender and
Koller (2020), who argue that stochastic models
cannot capture linguistic meaning because they
consider only form, not denotation. While we agree
that denotation plays a very important role in mean-
ing for many expressions, the meaning of most
expressions, and especially that of syncategoreg-

matic ones, requires us to capture their semantic
entailments. We have shown that we can capture
these entailments within the semantic framework
of LLMs using continuation semantics. But we
have also shown that LLMs nevertheless fail in this
task.

LLMs can learn certain types of ∆0
1 sets and

finite intersections and unions of learnable ∆0
1

sets. For many open class words—including many
nouns, adjectives and verbs—whose characteristic
denotations can be determined given a finite sam-
ple, this probably suffices to capture their meaning
or at least a very good approximation of it. In ad-
dition, many NLP tasks may not involve logical
inference but an independent form of string op-
timization; in text summarization or translation,
where given a context s, M tries to find an optimal
continuation s′. If the length of s.s′ falls within the
constraints of Corollary 4, then we can expect an
LLM to succeed at such a task.

Proposition 6 and Corollary 4 generalize Corol-
lary 1 and they all point to a general limit on learn-
ability for LLMs. They establish that language
models have strict bounds even on the ∆0

1 sets
they can effectively learn. So we cannot count on
LLMs having full linguistic competence even on fi-
nite domains. Different models may have different
limits; smaller models generally with lower limits.
This motivates a comparative study of the limits
of learnability for different LLMs, complementing
Colbrook et al. (2022).

Because we do not make assumptions about
memory but only about inductive processes and
learning, our results hold for arbitrarily large LLMs
and for any task that relies on an LLM’s capacity
of string prediction, even if strings are not directly
predicted.

Our research implies that full language mastery
needs a different approach from one in which one
seeks to build ever larger LLMs with language
masking or autoregressive training. Following
Raissi et al. (2017), we believe we need to inject
knowledge about linguistic structure and content
into our models to further constrain learning and in
particular hypothesis sets and learning architectures
as suggested in Steinert-Threlkeld and Szymanik
(2019).
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Limitations

Our paper offers an in-depth look at the limits of
statistical learnability for LLMs in terms of Borel
sets. Our results however rely on certain, rather
mild hypotheses about learning. We do not know
how our claims fare when different assumptions
about learning are made.

Another limitation is that we have not looked at
potential ways of restricting learning hypotheses
about the meanings of linguistic expressions. Di-
rectly relevant are the constraints on generalized
quantifiers of Barwise and Cooper (1981). Nor
have we said much about compositionality and
learning, although they are well known to inter-
act. Ideally, we should assign a meaning to every
which consists in a reduced hypothesis space, but
that has to combine with the meanings of, say, the
other words in (2).

A third limitation concerns the extent to which
an LLM can leverage what it has been trained to
do in learning semantic concepts on other tasks. In
many experiments we see that an LLM can appear
to learn X but then cannot exploit X in task Y. We
leave this issue for future research, but we believe
it may be key to understanding debates about LLM
performance and the role of forgetting in LLM
learning (Kirkpatrick et al., 2017).

Ethics Statement

We show that LLM reliability in gauging the ac-
curacy of universal quantifiers is limited. Given
how quantification is linked to concepts like seman-
tic consequence, it means that we cannot assume
LLMs to have anything like full semantic compe-
tence. This suggests that we cannot fully trust them
with tasks where accuracy on reasoning is required.
Thus, our work has certain ethical implications and
provides a cautionary tale for those working on
LLMs as general AI models.
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A GPT 3.5 and ChatGPT on every

Because our access to GPT 3.5 and ChatGPT is lim-
ited and the responses that we receive seem to vary
depending on the day that we query the models, we
qualify the results in these appendices as anecdotal.
Nevertheless, we emphasize that for each type of

example that we provide, we made numerous trials
in order to make sure that the results were repeated
and so seemed to follow from features of the model,
not just random quirks.

In the queries below, GPT3.5 on 18.01.2023,
with temperature set to 0, correctly classifies both
blue hats as being blue when queried directly about
the color of the beret, but still fails to correctly an-
swer Were all of the hats blue? (Results sometimes
varied with the form of the prompt; e.g., using com-
mas rather than and can impact GPT’s answers).
Input Text: One guy was wearing a blue beret and
another guy was wearing a pink bonnet and a third
guy was wearing a blue baseball cap.

Q: Were all of the hats blue?
GPT: No, only one of the hats was blue.
Q: Which hat was blue? GPT: The blue baseball
cap.
Q: Is a beret a hat? GPT: Yes, a beret is a type of
hat.
Q: What color is the beret? GPT: The beret is blue.

Here is an input and query to ChatGPT on
20.01.2023, showing that it ignores underspecifica-
tion
Input text: I have a shirt with a picture of ten blue
bears, five blue snails, three blue guitars, fifteen
hearts, 15 blue fluffy rabbits and 25 blue stars. Is
everything on my shirt blue?

ChatGPT: Yes, everything on your shirt is blue.

B ChatGPT and GPT3.5 on word order
and argument order

The examples below illustrate how both GPT3.5
and ChatGPT fail to recognize instructions about
word order. When asked to write sentences that end
with a particular word, for example, the models
manage to produce sentences in which the target
word appears, but in most cases, it is not in the
correct position.

Instruction: Write five sentences that end with
the word “house”.

ChatGPT:
1. I built a house with my own two hands.
2. The storm destroyed the old house.
3. We found a beautiful house to rent for the
summer.
4. The house was haunted, so we left in the middle
of the night.
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5. I always dreamed of living in a big white house.

GPT 3.5:
1. I can’t wait to get home and relax in my own
house.
2. The old house had been abandoned for years.
3. The house was filled with the smell of freshly
baked cookies.
4. The house was surrounded by a tall white picket
fence.
5. The house was the perfect place to spend a lazy
summer day.

For GPT3.5 we set temperature to 0. These ob-
servations suggest both GPT 3.5 and ChatGPT fail
to respect the last word constraint.

Finally, we offer this example that shows that
ChatGPT can confuse the order of arguments in a
logical operator, thus leading to incorrect reason-
ing.

Prompt: If p then q. q, therefore p.

ChatGPT:
This is a valid logical argument. It is known as
modus ponens and it is a valid rule of inference
in propositional logic. The statement “If p then
q” is known as the conditional statement and “q,
therefore p” is the conclusion that can be drawn
from the conditional statement.
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Abstract

Even in the era of massive language models,
it has been suggested that character-level rep-
resentations improve the performance of neu-
ral models. The state-of-the-art neural seman-
tic parser for Discourse Representation Struc-
tures uses character-level representations, im-
proving performance in the four languages
(i.e., English, German, Dutch, and Italian) in
the Parallel Meaning Bank dataset. However,
how and why character-level information im-
proves the parser’s performance remains un-
clear. This study provides an in-depth analysis
of performance changes by order of character
sequences. In the experiments, we compare
F1-scores by shuffling the order and random-
izing character sequences after testing the per-
formance of character-level information. Our
results indicate that incorporating character-
level information does not improve the perfor-
mance in English and German. In addition, we
find that the parser is not sensitive to correct
character order in Dutch. Nevertheless, perfor-
mance improvements are observed when using
character-level information.

1 Introduction

Character-level information is sometimes help-
ful in grasping the meanings of words for hu-
mans. Previous studies have suggested that
character-level information helps to improve the
performance of neural models on various NLP
tasks (Cherry et al., 2018; Zhang et al., 2015).
In multilingual NLP systems, character-level in-
formation contributes to performance improve-
ments on Named Entity Recognition tasks (Lam-
ple et al., 2016; Yu et al., 2018) and semantic pars-
ing tasks (van Noord et al., 2020). However, due
to the black-box nature of neural models, it is still
unclear how and why character-level information
contributes to model performance.

The rapid developments of neural models have
led to a growing interest in investigating the

extent to which these models understand natu-
ral language. Recent works have indicated that
pre-trained language models are insensitive to
word order on permuted English datasets on lan-
guage understanding tasks (Sinha et al., 2021a,b;
Pham et al., 2021; Hessel and Schofield, 2021).
Meanwhile, other works have shown controver-
sial results regarding inductive biases for word or-
der (Abdou et al., 2022), especially in different lan-
guages (Ravfogel et al., 2019; White and Cotterell,
2021).

In this work, we explore the extent to which neu-
ral models capture character order. By focusing on
character order rather than word order, we present
an in-depth analysis of the capacity of models to
capture syntactic structures across languages. To
analyze whether the importance of character or-
der information differs across languages, we in-
vestigate multilingual Discourse Representation
Structure (DRS; Kamp and Reyle (1993)) pars-
ing models. Van Noord et al. (2020) proposed
an encoder-decoder DRS parsing model incorpo-
rating character-level representations. The study
concluded that incorporating character-level rep-
resentations contributes to performance improve-
ments of the model across languages. However,
the underlying mechanism remains unclear.

We examine the influence of character-level in-
formation on DRS-based semantic parsing tasks
using the state-of-the-art model (van Noord et al.,
2020). We analyze whether the model is
sensitive to the order of character sequences
in various units of granularity (i.e., characters,
words, and sentences) across the languages. In
addition, we investigate whether the amount
of information per character-level token affects
the model performance. Our data will be
publicly available at https://github.com/
ynklab/character_order_analysis.
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Sentence Brad Pitt is an actor.

Correct order (unigrams) ^^^ b r a d ||| ^^^ p i t t ||| i s ||| a n ||| a c t o r ||| .

UNI a a a a a a a a a a a a a a a a a a a a a a a a a
SHF (word-level) d a r ^^^ b ||| t ^^^ p t i ||| i s ||| a n ||| o t c a r ||| .
SHF (sentence-level) c t r r i i . ||| a ||| d a t ||| b p ||| s t ||| ^^^ o n a ^^^
RND " i c v , t 9 d j : l ’ n 6 0 b 0 1 q w ! j w u q

Bigrams ^^^b br ra ad d||| |||^^^ ^^^p pi it tt t||| |||i is s|||
|||a an n||| |||a ac ct to or r||| |||.

Table 1: All of character-level information of the same input sentence Brad Pitt is an actor. “^^^” and “| | |” are
special characters representing capitals and spaces, respectively.

2 Background

Multilingual DRS corpus The Parallel Mean-
ing Bank (PMB; Abzianidze et al. (2017)) is a mul-
tilingual corpus annotated with DRSs. The PMB
contains sentences for four languages (English,
German, Dutch, and Italian) with three levels of
DRS annotation: gold (fully manually checked),
silver (partially manually corrected), and bronze
(without manual correction). The PMB also pro-
vides semantic tags, which are linguistic annota-
tions for producing DRSs (Abzianidze and Bos,
2017).

Neural DRS parsing models There have been
various attempts to improve the performance of
neural DRS parsing models, such as by using
graph formats (Fancellu et al., 2019; Poelman
et al., 2022), stack LSTMs (Evang, 2019), and se-
quence labeling models (Shen and Evang, 2022).
Van Noord et al. (2020) proposed a sequence-to-
sequence model with neural encoders and an at-
tention mechanism (Vaswani et al., 2017). In the
study, the number and type of encoders and the
type of embeddings of the pre-trained language
models, including BERT (Devlin et al., 2019),
were changed to evaluate the model. Moreover,
linguistic features and character-level representa-
tions were added to the model, concluding that
character-level representations contribute to the
performance improvements in all four languages,
compared to using only BERT embeddings as in-
put.

Sensitivity to word order Several studies have
analyzed whether generic language models under-
stand word order (Sinha et al., 2021a,b; Pham
et al., 2021; Hessel and Schofield, 2021; Abdou
et al., 2022). However, these studies have fo-
cused on text classification benchmarks, such as
GLUE (Wang et al., 2019), rather than semantic

parsing tasks, such as DRS parsing. In addition,
these studies did not investigate whether models
are sensitive to character order.

3 Experimental Setup

We explore whether character-level information
influences the predictions of the state-of-the-art
DRS parsing model using character representa-
tions (van Noord et al., 2020) across languages.
This section introduces the common experimental
setup.

Dataset In all experiments, we use the PMB re-
lease 3.0.0 and follow the same setup as in the orig-
inal study (van Noord et al., 2020). We use gold
test sets for evaluation after fine-tuning. See Ap-
pendix B for details of the dataset settings.

Models We focus on two types of architectures:
English BERT with semantic tags (BERT + sem)
for English and multilingual BERT (mBERT) for
the other languages, achieving the highest F1-
scores on the PMB release 3.0.0 in the original
study (van Noord et al., 2020). These setups use
a single bi-LSTM encoder for BERT (or mBERT)
embeddings and semantic tags (only English), in
the previous study. Whereas the original model
used their trigram-based tagger and predicted se-
mantic tags for English, we use the gold semantic
tags in the PMB to exclude performance changes
based on the accuracy of the tagger. Although
PMB also has gold semantic tags for non-English
languages, we adopt them only for English to com-
pare with van Noord et al. (2020). We define
BERT + sem + char for English and mBERT + char
for the other languages with an additional bi-
LSTM encoder for character-level representations
as the default setting 2-enc + char.

Evaluation metrics To evaluate model perfor-
mance precisely, we report averaged micro F1-
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scores of 15 runs, which are more than those on the
settings of the original study (five runs). We use
Counter and Referee (van Noord et al., 2018a,b)
to calculate the micro F1-score. See Appendix A.1
for further details.

4 Method

We provide multiple methods to reanalyze whether
the DRS parsing models van Noord et al. (2020)
are sensitive to character-level information across
languages in a more fine-grained way. First, we re-
examine whether character-level information ben-
efits the model in terms of character sequences
compared to the setup without an encoder for char-
acters. Second, we examine whether the model
trained with correct character order predicts cor-
rect DRSs even with incorrect character sequences
obtained using techniques such as shuffling. In
the above two methods, we prepare models trained
with correct character sequences and evaluate the
performance when incorrect character order is in-
put to them. Third, we explore the capacity of the
models to understand character-level information
using unigrams or bigrams of characters as charac-
ter tokens. By using unigrams, we mean one char-
acter at a time, and by using bigrams, we mean
two characters at a time.

4.1 Do models use characters as a clue?

Before examining whether the model is sensitive
to character order, we have to reveal whether in-
corporating character sequences is useful or not
for the model. To test this, we prepare the mod-
els trained on correct character order and evalu-
ate them using unified character sequences (UNI).
Note that our method is a more detailed analysis
of van Noord et al. (2020) in claiming whether
character-level information is useful (or not). UNI
consists of a single character a (see Table 1). As
this type of sequences is entirely irrelevant to
the input sentences, the model should perform al-
most the same as setups without an encoder for
character-level information. Additionally, we re-
produce to compare the values of the no char se-
tups.

4.2 Are models sensitive to character order?

For languages in which the usefulness of character-
level information is confirmed (Section 4.1), we
analyze whether the model understands correct
character order across languages. We create two

types of incorrect character sequences by (i) shuf-
fling the order of the character sequences and (ii)
randomizing the sequences (see Table 1). If the
model is sensitive to correct character order during
training, it should fail to predict the correct DRSs
with incorrect order.

Shuffled (SHF) We shuffle the sequences on
two levels, word-level and sentence-level. A word-
level shuffled character sequence is obtained by
shuffling character order within each word (sepa-
rated by “| | |”, see Table 1). In contrast, a sentence-
level shuffled sequence can be created by rearrang-
ing the characters in the entire sentence, including
spaces. By comparing the performance of these
two shuffling levels, we investigate the extent to
which the model is confused, depending on the ex-
tent of disturbance in the character order.

Randomized (RND) We provide an additional
types of character sequences, randomized charac-
ter sequences. The randomized sequences consist
of characters randomly selected from the PMB in
each language.

4.3 Can models be improved performance by
extended character sequences?

The original model uses a unigram character as the
character token. Typically, the amount of informa-
tion per character-level token is increased by using
bigrams instead of unigrams. Also, the four lan-
guages in the PMB consist of alphabets, and the
number of letters is limited, unlike several Asian
languages such as Chinese and Japanese. Thus
we provide bigram sequences other than unigram
sequences, treated them as extended character se-
quences, and train the models using them. In
the bigram sequence settings (BIGRAMS), as illus-
trated in the bottom line of Table 1, the models can
obtain not only character order but also the con-
nections of characters from character tokens. If
an encoder for character-level representations af-
fects the model performance, the use of bigram
sequences is expected to improve the model per-
formance.

5 Results and Discussion

Character contribution for models Table 2
shows the micro averaged F1-scores with their
standard errors. The values in the NO CHAR col-
umn are F1-scores of the setups without character
encoders. The stander errors corresponding to En-
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(a) English (b) German (c) Dutch (d) Italian

Figure 1: F1-scores for four languages. Green bars show the average scores of runs, including standard error, and
blue and orange dots show the minimum and maximum scores, respectively. The exact results are in Appendix C.

glish and German showed significant differences.
However, these differences suggest that character-
level information is not crucial in DRS parsing.
On the other hand, we can see effectiveness in the
other languages: Dutch and Italian. In particular,
an F1-score change of more than 50% can be ob-
served in Italian. However, values of UNI are far
lower than ones of NO CHAR in Dutch and Ital-
ian. This tendency suggests that providing incor-
rect character-level information decreases scores
critically when incorporating character-level infor-
mation is effective.

Models’ sensitivity to character order Figure
1 shows the micro averaged, maximum, and min-
imum F1-scores for each type of character-level
information: CORRECT, SHF-WORD (word-level
SHF), SHF-SENT (sentence-level SHF), RND,
and UNI (for comparison). In English (Figure 1a)
and German (Figure 1b), only minor changes (1%)
were observed in the averaged F1-scores for all
types of characters. This observation supports less
effectiveness of incorporating character-level in-
formation for these two languages. We also exper-
imented with the 2-enc + char model without se-
mantic tags in English and obtained similar trends
(see Appendix D).

In Dutch (Figure 1c), even though we can see
a slight performance decrease from CORRECT to
RND, shuffling the character order does not affect
the performance of the models. These results indi-
cate that DRS parsing models are not sensitive to
character order for Dutch.

For Italian (Figure 1d), we can see that the cor-
rect character order contributes to the performance
of the model. Shuffling the characters within each
word decreased the model’s performance by 20%
(from 79% to 59%). The performance decreased
by another 20% (from 59% to 39%) when shuf-

CORRECT UNI NO CHAR

English 89.05 ± 0.06 88.76 ± 0.09 88.89 ± 0.08
German 76.07 ± 0.12 75.09 ± 0.17 75.33 ± 0.14
Dutch 69.23 ± 0.18 65.69 ± 0.30 68.81 ± 0.13
Italian 78.75 ± 0.10 26.66 ± 1.30 77.54 ± 0.09

Table 2: F1-scores (%) on the gold test set depending
on character-level information: CORRECT and UNI.

NO CHAR UNIGRAMS BIGRAMS

English 88.89 ± 0.08 88.99 ± 0.08 89.10 ± 0.07
German 75.33 ± 0.14 75.94 ± 0.11 76.96 ± 0.11
Dutch 68.81 ± 0.13 69.22 ± 0.18 69.62 ± 0.11
Italian 77.54 ± 0.09 78.73 ± 0.11 79.46 ± 0.08

Table 3: F1-scores (%) on the gold test set depend-
ing on character-level information: UNIGRAMS and BI-
GRAMS.

fling in a whole sentence, compared with SHF-
WORD. One of the possible reasons that the Ital-
ian model is significantly sensitive to the character-
level information is the existence of the accented
characters specific to Italian (e.g., é), especially
the loss of it by shuffling characters within sen-
tences (SHF-WORD → SHF-SENT). For exam-
ple, the character é plays the role of an auxil-
iary verb in Italian by itself. When characters are
lost by shuffling them within words (CORRECT →
SHF-WORD), shuffled character sequences within
words appear to affect the incorrect prediction of
words. Further investigation into differences be-
tween languages is needed, which is left as future
work.

Extending character tokens improves model
performance Table 3 shows the averaged
F1-scores and standard errors obtained us-
ing character-level information (BIGRAMS, UNI-
GRAMS, and NO CHAR). We observe no signif-
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icant differences in the overall setups in English.
In contrast, in German, Dutch, and Italian, we
can find performance improvements in extensions
from unigrams to bigrams and from no character-
level information to unigrams. In particular, the
model achieves the largest improvements by incor-
porating unigrams as character-level information
in Italian and by extending from unigrams to bi-
grams in German, respectively. These results in-
dicate that although models are not usually sen-
sitive to character order, character-level informa-
tion helps performance improvements in German,
Dutch, and Italian.

One of the reasons models cannot achieve any
improvements in English, while improvements are
observed in non-English languages, is the quantity
and quality of data in the PMB. As noted in the
statistics of PMB 3.0.0 (Appendix B and Table 4),
we can use over 6.6k English gold training data.
In addition, nearly 100k sliver cases are available.
In contrast, the German dataset only contains 1.2k
gold and 5.3k silver cases, and there is no gold
case in both Dutch and Italian.

6 Conclusion and Future Work

In this study, we carried out a further exploration
of the extent to which character-level representa-
tions contribute to the performance improvements
of multilingual DRS parsing models. We found
that character-level information provided little per-
formance improvement in English and German but
improved performance in Dutch and Italian. How-
ever, we find that the model is sensitive to charac-
ter order in Italian but not in Dutch. The take-away
message from our investigation is that the impor-
tance of character-level information in DRS-based
semantic parsing depends on the language and syn-
tactic structures of the sentences.

In future work, we will analyze in more de-
tail the significant differences between the four
languages, especially Italian, and other languages.
Another direction of our future work is to inves-
tigate the relationship between the neural models
and humans in reading performance for incorrect
character order. It would be interesting to analyze
whether the results on DRS parsing tasks are con-
sistent with those of these studies (Ferreira et al.,
2002; Gibson et al., 2013; Traxler, 2014).

Limitations

In this study, we focus on DRS parsing tasks, and
do not consider other representation formats for se-
mantic parsing tasks.
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Gold Silver Bronze
Train Dev Test Train Train

English 6,620 885 898 97,598 146,371
German 1,159 417 403 5,250 121,111
Dutch 0 529 483 1,301 21,550
Italian 0 515 547 2,772 64,305

Table 4: The data statistics of PMB release 3.0.0.

A DRS Parsing Task

DRS parsing is a task to convert natural lan-
guage sentences into DRS-based meaning repre-
sentations. In van Noord et al. (2020) and this
study, the outputs of the models are clausal forms
with relative naming for the variables. See van No-
ord et al. (2018b) for the further details.

A.1 Evaluation

This study follows micro F1-scores based on
matching clauses between predicted and gold
DRSs adopted by van Noord et al. (2020). The
tool for calculating the values is Counter (van No-
ord et al., 2018a), which searches for the best map-
ping of variables between two DRSs and calcu-
lates the values based on the number of clauses.
Referee (van Noord et al., 2018b) verifies whether
an output DRS is well-formed. An output DRS is
ill-formed (i.e., not well-formed) when it has ille-
gal clauses or the tool fails to solve variable refer-
ences.

B Dataset Settings

We use PMB release 3.0.0 and the same setup as
that in the previous study (van Noord et al., 2020).
As pre-training datasets, we use a merged set of
the gold and the silver training sets for English, a
merged set of all training sets (gold, silver, and
bronze) for German1, and combined sets of silver
and bronze training sets for Dutch and Italian. As
datasets for fine-tuning, we use the gold training
set for English, a combined set of the gold and sil-
ver training sets for German, and the silver train-
ing sets for Dutch and Italian. Table 4 shows data
statistics of the PMB release 3.0.0.

C Numerical Results

Table 5 shows numerical values reported in Figure
1.

1We also experiment on the setup described in van Noord
et al. (2020). See Appendix E.2

D Results in English without Semantic
Tags

Figure 2 and Table 6 show the results of the 2-
enc + char model without semantic tags in English.
Compared with 2-enc + char (Figure 1a), we can
observe slightly larger but minor changes in the
averaged F1-scores. Thus, regardless of the exis-
tence of semantic tags, our experimental results in-
dicate that the model is not sensitive to the order
of character sequences in English.

E Additional Analysis

E.1 Score change by character-level
information per case

We look at the performance changes in individ-
ual cases. Figure 3 shows scatter diagrams of the
four languages. In these diagrams, we plot the
averaged F1-score changes of 15 runs by adding
(i.e., from NO CHAR to UNIGRAMS) and extend-
ing (i.e., from UNIGRAMS to BIGRAMS) character-
level information. We observe many cases whose
averaged F1-score increases with the addition and
extension of character-level information (plotted
in the first quadrant). However, these numbers
are lower than those in the second and fourth
quadrants, indicating that the improvement works
only by either adding or extending the informa-
tion. Moreover, we observed cases whose scores
decrease in both aspects, plotted in the third quad-
rant. These trends are observed for all languages,
even though the overall scores improved for all lan-
guages except English.

E.2 Why do our values deviate from van
Noord et al. (2020)?

The values reported in this study are lower than
those from the previous study van Noord et al.
(2020), especially in German. We follow nearly
all the setups reported in van Noord et al. (2020),
but the values are still low.

Van Noord et al. (2020) reports that they only
used the gold and silver data if gold (train) data is
available in a certain language. The German data
in PMB release 3.0.0 has the gold train data com-
prising 1,159 documents. Therefore, we experi-
ment with the model pre-trained on the merged set
of the gold and silver data and fine-tuned on the
gold data only. We reported an averaged value
of five runs in Table 7 with one from van Noord
et al. (2020). A large deviation between the two
F1-scores can be observed.
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Avg SE Min Max Avg values per pre-train

CORRECT 89.05 0.06 88.47 89.39 89.04, 88.95, 89.17
SHF-WORD 88.80 0.09 88.03 89.34 88.80, 88.75, 88.87
SHF-SENT 88.75 0.09 88.04 89.20 88.79, 88.53, 88.93
RND 88.65 0.09 88.01 89.19 88.74, 88.48, 88.74
UNI 88.76 0.09 88.04 89.25 88.62, 88.61, 89.05

(a) English

Avg SE Min Max Avg values per pre-train

CORRECT 76.07 0.12 75.21 77.02 76.24, 76.24, 75.74
SHF-WORD 75.68 0.13 74.76 76.75 75.69, 75.88, 75.46
SHF-SENT 75.07 0.13 73.90 76.09 74.89, 75.28, 75.03
RND 74.81 0.11 74.22 75.46 74.72, 74.83, 74.88
UNI 75.09 0.17 74.34 76.26 75.02, 75.25, 74.99

(b) German

Avg SE Min Max Avg values per pre-train

CORRECT 69.23 0.18 67.89 70.26 69.41, 69.33, 68.95
SHF-WORD 68.69 0.13 67.70 69.60 68.94, 68.68, 68.46
SHF-SENT 68.82 0.13 67.95 69.68 69.31, 68.59, 68.55
RND 67.47 0.14 66.52 68.34 67.65, 67.50, 67.26
UNI 65.69 0.30 63.90 67.47 65.68, 65.76, 65.64

(c) Dutch

Avg SE Min Max Avg values per pre-train

CORRECT 78.75 0.10 77.99 79.29 78.97, 78.53, 78.75
SHF-WORD 58.84 0.20 57.59 60.30 58.74, 58.34, 59.43
SHF-SENT 39.37 0.42 35.22 41.78 39.37, 38.08, 40.66
RND 39.95 0.46 35.08 42.26 39.83, 40.30, 39.73
UNI 26.66 1.30 18.23 34.16 28.06, 30.14, 21.77

(d) Italian

Table 5: The numerical values (%) reported in Figure 1. SE is the abbreviation of standard error.

Figure 2: F1-scores of the gold test set predicted by the 2-enc + char model without semantic tags in English.
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Avg SE Min Max

CORRECT 87.58 0.10 87.01 88.14
SHF-WORD 87.39 0.08 86.97 87.84
SHF-SENT 86.73 0.16 85.54 87.40
RND 86.61 0.17 85.48 87.34
UNI 85.15 0.70 78.25 87.34

Table 6: The numerical values (%) reported in Figure 2, the 2-enc + char model without semantic tags in English.
SE is the abbreviation of standard error.

(a) English (898 cases) (b) German (403 cases) (c) Dutch (583 cases) (d) Italian (547 cases)

Figure 3: Distribution of F1-score changes from NO CHAR to UNIGRAMS (x-axis) and from UNIGRAMS to BI-
GRAMS (y-axis) per case on the gold test set of the four languages. The numbers on the corners are the numbers
of cases in each quadrant. 1, 5, and 2 cases are out of bounds (> 40%) in German, Dutch, and Italian, respectively.

Average All values

Van Noord et al. (2020) 82.0 N/A
Our replication 68.52 68.54, 67.95, 69.38, 68.61, 68.10

Table 7: F1-scores (%) from van Noord et al. (2020) and our replication experiment in German. The models is
pre-trained on the unified set of the gold and silver train data and fine-tuned on the gold train data.
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Abstract

Paraphrase detection is useful in many natural
language understanding applications. Current
works typically formulate this problem as a
sentence pair binary classification task. How-
ever, this setup is not a good fit for many of
the intended applications of paraphrase models.
In particular, such applications often involve
finding the closest paraphrases of the target
sentence from a group of candidate sentences
where they exhibit different degrees of seman-
tic overlap with the target sentence. To apply
models to this paraphrase retrieval scenario, the
model must be sensitive to the degree to which
two sentences are paraphrases of one another.
However, many existing datasets ignore and
fail to test models in this setup. In response, we
propose adversarial paradigms to create evalu-
ation datasets, which could examine the sensi-
tivity to different degrees of semantic overlap.
Empirical results show that, while paraphrase
models and different sentence encoders appear
successful on standard evaluations, measuring
the degree of semantic overlap still remains a
big challenge for them.

1 Introduction

Detecting paraphrases is useful in many natural lan-
guage understanding applications, such as question
answering (Yin et al., 2015; Gan and Ng, 2019),
fact checking (Jiang et al., 2020), and text summari-
sation (Kryściński et al., 2018, 2019). Researchers
have constructed paraphrase identification bench-
marks, typically formulating the problem as a sen-
tence pair classification task (Dolan and Brockett,
2005; Lan et al., 2017; Iyer et al., 2017; Zhang
et al., 2019b).

Sentence pairs that have the same or largely
equivalent semantics are considered as paraphrases
of each other (Androutsopoulos and Malakasiotis,
2010; Bhagat and Hovy, 2013). For example:

a) More than half of the songs were purchased
as albums, Apple said.

b) Apple noted that half the songs were pur-
chased as part of albums.

Not only is it unclear what the criteria is for
determining when a sentence pair has sufficiently
similar semantics to be considered paraphrases, but
as Chen et al. (2020) point out, the standard para-
phrase classification task is not a good fit for many
of the intended applications of paraphrase models.
In particular, such applications are often retrieval
tasks that involve finding the closest paraphrases
of some target sentences within a set of documents,
where candidate sentences exhibit different degrees
of semantic overlap with the target sentence. To
apply models to a paraphrase retrieval scenario, a
paraphrase model must be sensitive to the degree
to which two sentences are paraphrases of one an-
other.

We use the term partial paraphrase to refer to
situations where a sentence pair has some overlap
in meaning, but this can range from nearly exact
paraphrases to pairs that share very little meaning.
An example of an intermediate case is given below:

a) More than half of the songs were purchased
as albums, Apple said yesterday in a meeting
with Sony.

b) Apple noted that half the songs were pur-
chased as part of albums.

The setup used for standard paraphrase classi-
fication can be adapted to the partial paraphrase
task, where the softmax confidence score is used as
an estimate of the degree to which two sentences
are paraphrases of one another. Indeed, this has
been used in ranking tasks across different domains
(MacAvaney et al., 2019; Ji et al., 2020; Sun and
Duh, 2020). However, while pre-trained language
models have shown good performance on the stan-
dard classification task (Devlin et al., 2019; Liu
et al., 2019), as we will show, these models are
often fooled by partial paraphrases where there is
significant, but far from complete, semantic over-
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lap.

Current paraphrase identification datasets do not
test models in a partial paraphrase ranking setup.
Though the semantic textual similarity (STS) tasks
(Agirre et al., 2012; Cer et al., 2017) exhibit simi-
larities to this setup as they also try to measure gra-
dations of meaning overlap, there are some signifi-
cant differences. Firstly, the ranking setup in STS
concerns comparing completely different sentence
pairs (e.g., (a, b) > (c, d)), while most paraphrase
applications aim to compare different sentences
with the same pivot sentence (e.g., (a, b) > (a, c)).
Secondly, as Wang et al. (2022) point out that the
definition of similarity in STS is rather vague and
various complicated relations between sentence
pairs all contribute to the similarity score. The
difference in the similarity score cannot guarantee
the different degree of semantic overlap.

Our aim, in this paper, is to rectify this defi-
ciency. We draw inspiration from previous adver-
sarial testing works utilising word swapping and
number replacement (Zhang et al., 2019b; Wang
et al., 2021) to produce negative examples. In this
work, we propose adversarial paradigms (multiple
word swap) to create evaluation datasets that con-
sist of high-quality partial paraphrase pairs with
graded semantic overlap. We aim to test whether
the paraphrase score produced by existing para-
phrase models and sentence encoders is a good
reflection of the degree of semantic overlap. In
contrast to their strong performance on standard
paraphrase classification tasks, our analysis reveals
that measuring the degree of semantic overlap still
remains a challenge.

Our main contributions are as follow. First, in
Section 3, we follow the standard fine-tuning strat-
egy to produce two paraphrase models and then
demonstrate their good performance on standard
evaluation tasks and insensitivity to partial para-
phrases. We then present (in Section 4) evaluation
datasets which consist of high-quality partial para-
phrase pairs with graded semantic overlap, con-
structed by multiple word swapping. We further
show (in Section 5) that the distinction between par-
tial paraphrase and exact paraphrase is a challenge
for paraphrase models, and that their paraphrase
scores are not a good reflection of the degree of se-
mantic overlap. Finally, our work demonstrates that
similarity scores produced by sentence encoders,
though being widely used as a measure of similarity
in meaning, are dominated by the degree of lexical

overlap, and are poor estimators of the degree to
which sentences are partial paraphrases.

2 Related Work

The definition of paraphrase has been long debated,
as have the characteristics of paraphrase pairs (An-
droutsopoulos and Malakasiotis, 2010; Bhagat and
Hovy, 2013; Rus et al., 2014; Liu et al., 2022). A
widely accepted definition is that two sentences
should exhibit the same or largely equivalent se-
mantics, which suggests a bi-directional entailment
relation. As Madnani and Dorr (2010) pointed out,
paraphrases may occur at different levels, such as
word-level, phrase-level, and sentence-level. Al-
though there has been some work that concerned
the identification of lexical and phrasal paraphrases
(Ganitkevitch et al., 2013; Pavlick et al., 2015),
most recent work on paraphrase identification has
been performed at the sentence level, and has in-
volved determining whether a given sentence pair is
a paraphrase or not in a classification setup (Dolan
and Brockett, 2005; Fernando and Stevenson, 2008;
Xu et al., 2014; Zhang et al., 2019b; Liu et al.,
2022).

However, paraphrase detection has been utilised
in other NLP tasks. In question answering, Dong
et al. (2017) utilised paraphrase detection to dis-
cover most probable paraphrases of a given ques-
tion from a group of potential paraphrases by com-
paring their paraphrase scores. Similarly, Wang
et al. (2020) integrated paraphrase detection in a
information retrieval system to select the best para-
phrased queries which are used to expand the orig-
inal query list. Accordingly, Chen et al. (2020)
argued that the standard binary classification setup
of paraphrase identification is ill-suited to many
real-world applications which involve paraphrase
retrieval. To apply paraphrase models to such a
retrieval scenario, the model must be sensitive to
the degree to which two sentences share semantic
content.

Though pre-trained language models show good
performance when fine-tuned on paraphrase iden-
tification datasets (Devlin et al., 2019; Liu et al.,
2019; Arase and Tsujii, 2021), a performance drop
is often observed when being tested for robust-
ness under different adversarial scenarios. Zhang
et al. (2019b) utilised word swapping and back-
translation to produce adversarial examples. Yang
et al. (2019) adopted the same approach to produce
adversarial pairs in a multilingual scenario. Shi
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and Huang (2020) modified shared words to pro-
duce both positive and negative pairs. Wang et al.
(2021) additionally proposed a robustness evalu-
ation platform which can perform different trans-
formations to sentence pairs, including word swap-
ping, template-based generation and number re-
placement. Nighojkar and Licato (2021) employed
paraphrase generators to produce sentence pairs
that are both lexically and syntactically disparate.
Such transformations can create partial paraphrases
in different types. However, these partial para-
phrases do not exhibit decreasing semantic overlap.
To measure the sensitivity of models to different
degrees of semantic overlap, we draw inspiration
from them and create a list of partial paraphrases
with decreasing semantic overlap for each para-
phrase pair.

3 Background and Preliminaries

The classification setup for the evaluation of para-
phrase identification involves identifying whether
the given sentence pair is a paraphrase or not. In
this section, we follow previous work and first fine-
tune BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) on widely used paraphrase datasets
to produce standard paraphrase models and check
whether their success on standard evaluation bench-
marks could transfer to the recognition of partial
paraphrases with different degrees of semantic over-
lap.

3.1 Datasets

In this paper, we mainly consider two commonly
used paraphrase datasets, PAWSWiki and PAWSQQP
(Zhang et al., 2019b). The Paraphrase Adver-
saries from Word Scrambling (PAWS) datasets
utilise word scrambling (swapping words that have
same part-of-speech or name entity tags) and back
translation to produce both positive and negative
examples for given sentences while maintaining
high lexical overlap. Though less often used than
datasets like Microsoft Research Paraphrase Cor-
pus (MRPC) (Dolan and Brockett, 2005) where a
large percentage of positive sentence pairs just have
partial overlap in meaning, PAWS datasets contain
high quality sentence pairs that are mostly exact
paraphrases. PAWS datasets do not have a specific
license and can be used freely for any purpose1.
In the following sections, we propose adversarial

1https://github.com/google-research-
datasets/paws/blob/master/LICENSE

evaluation datasets that are derived from the test
sets of these two datasets.

Datasets Train Dev Test

PAWSQQP 11,986 - 677

PAWSWiki 49,401 8,000 8,000

Table 1: Statistics of two PAWS datasets.

The statistics of these datasets are listed in Table
1. Below we give some brief descriptions:

• PAWSQQP: With the aim of assessing sensi-
tivity to word order and syntactic structure,
Zhang et al. (2019b) proposed a paraphrase
identification dataset that contains sentence
pairs of high lexical overlap. They are cre-
ated by applying back translation and word
scrambling to sentences taken from the Quora
Question Pairs (Wang et al., 2017).

• PAWSWiki: The same process is applied to
sentences obtained from Wikipedia articles
to construct paraphrase and non-paraphrase
pairs.

The construction process ensures positive sentence
pairs in PAWS datasets are mostly exact para-
phrases.

Model
PAWSWiki PAWSQQP
ACC F1 ACC F1

BERT 92.31 91.59 89.07 81.95
RoBERTa 94.10 93.44 92.91 87.76

Table 2: Classification results on PAWS datasets; we
report the F1 score of the positive class and the overall
accuracy.

3.2 Models
We evaluate two pre-trained language models,
BERT and RoBERTa2. They are widely used, and
have achieved good performance on paraphrase
identification tasks. Following previous work, we
first fine-tune them on the paraphrase datasets to
produce standard paraphrase models. As shown
in Zhang et al. (2019b), the best performance is
achieved by training on the combination of the
original QQP dataset (which has 384,348 training
sentence pairs), PAWSQQP and PAWSWiki. We fol-
low the same strategy, fine-tuning both BERT-base

2We use their huggingface implementations:
https://huggingface.co/bert-base-uncased (110 million
parameters) and https://huggingface.co/roberta-base (123
million parameters)
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Figure 1: Performance of BERT and RoBERTa on generation-based adversarial evaluation datasets in the classifica-
tion setup. X-axis: The number of generated words added to sentence A. Y-axis: The accuracy.

and RoBERTa-base on this combined training set3.
Also following Zhang et al. (2019b), we use the
QQP development set as our development set for
early stopping. Each model is fine-tuned for 3
epochs with batch size of 16. We use the Adam op-
timiser with learning rate of 2e-5 and a linear learn-
ing rate warm-up over 10% of the training data.
We fine-tune each model five times and choose
the best for later experiments according to their
performance on the development set. All of our
experiments are conducted on one RTX 3090 GPU
and each epoch takes around one hour.

We include the results on the standard evaluation
benchmarks in Table 2. We can see that both BERT
and RoBERTa have achieved high accuracy and F1
scores, which appears to demonstrate their ability
to identify paraphrases.

3.3 Partial Paraphrases

A typical example of partial paraphrase is where
one sentence contains all of the semantics of an-
other but also contains additional information (see
the example in the Introduction). We therefore
adopt a straightforward approach to produce an
initial adversarial test of partial paraphrase identifi-
cation.

Given a positive sentence pair (a, b) in PAWS
test sets, we take a as context and utilise the GPT24

generation model (Radford et al., 2019) to generate
additional tokens, giving a new sentence that we
denote â. To avoid disrupting the meaning of the

3We also tried training on individual datasets rather than
the combined one. The results show worse performance on
the standard classification evaluation and no different trend on
following ranking tasks.

4We choose GPT2 because it generates satisfactory results
and is free to access.

existing content, we further add “, and” to the end
of a. Compared to the original pair (a, b), the new
pair (â, b) has lower semantic overlap given the
additional information in â.

Here, we give an example of generated partial
paraphrase pairs:

a) He was born in New York City in East Broad-
way on October 23, 1806, and was raised in
Baltimore]], Maryland, where the family
moved]] to live in 1900 with]] two sons and
two daughters.]]

b) He was born on 23 October 1806 in New York,
East Broadway.

The bold part is the generated text, and the
coloured "]]" symbols indicate places where we
truncate the added content (every five generated
tokens). The idea is that the dataset contains a
range of examples that systematically vary in terms
of the degree of semantic overlap. We evaluate
previously fine-tuned paraphrase models on this
generation-based evaluation set (no further train-
ing) and investigate at what point they detect that
the given pair is no longer an exact paraphrase.

Experimental results are summarised in Figure 1,
where we report the overall accuracy. We observe
that when no extra words are added, these two mod-
els show near-perfect performance on recognising
the given positive pair as paraphrase of each other.
However, when we add 5 words to produce a par-
tial paraphrase pair as a negative example of a para-
phrase, performance drops dramatically, demon-
strating the lack of sensitivity of these models to
the distinction between an exact paraphrase and
a partial paraphrases. The accuracy gradually in-
creases as we generate more words to sentence
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Figure 2: Illustration of the multi-swap method in four steps. a) Tag words and phrases with part-of-speech (POS)
and named entities. b) produce candidate sets by grouping words and phrases with the same tag. c) Sample three
groups from the candidate sets that have two or more words/phrases. d) Swap position.

A. However, the increase only becomes substantial
when we append at least than 20 words. We can see
that good performance on the original test sets is
not translating to the task of distinguishing partial
paraphrases from exact paraphrases.

Though paraphrase models are can be fooled by
partial paraphrases, they do exhibit increased abil-
ity to recognise them as the difference in semantics
grows. The poor performance on close partial para-
phrases might be explained by the paraphrase score
decreasing as the degree of semantic overlap re-
duces, but the decrease not being large enough to
bring the score down below the binary classifica-
tion threshold, resulting in the wrong prediction.
To explore whether this is the case and whether the
paraphrase score could act as a reliable indicator
to the degree of semantic overlap, we now turn to
the evaluation of paraphrase models in a ranking
scenario, requiring candidates to be ranked based
on the amount of semantic overlap.

Problematically, however, sentences produced
by the generation-based method exhibit significant
differences in sentence length as well as the degree
of lexical overlap. These differences would be an
obvious clues in a ranking task5. In this regard, we
adopted a different approach to produce ranking-
based evaluation datasets which was to utilise word
swapping.

4 Partial Paraphrase Construction

To create partial paraphrases at decreasing degrees
of semantic overlap, while maintaining lexical over-
lap and sentence length, we draw inspiration from
Zhang et al. (2019b) and Wang et al. (2021) who
create negative examples by swapping words and
entities. We take positive sentence pairs from

5Our initial experiments show that sentence encoders can
achieve extremely high performance on ranking these sentence
pairs by capturing such clues.

PAWS test sets and create corresponding partial
paraphrases with graded semantic overlap by mak-
ing multiple word swaps. Since the semantics are
equivalent for positive sentence pairs, we always
make modifications to sentence B to produce par-
tial paraphrase variants and compare them with
the original sentence A. This can increase the task
difficulty as the lexical overlap will be high for
negative pairs. Models that produce high scores
based on high lexical overlap are likely to fail in
this scenario.

# original # after 3 swaps

PAWSWiki 3536 1382

PAWSQQP 191 63

Table 3: The number of examples before and after
performing 3 swaps. We take only positive examples
(3536/191) from original datasets and filter out sentence
pairs that do not meet our criteria as described in the
construction process. We end up with 1382/63 positive
examples and each now has 3 swap-based negative vari-
ants.

Figure 2 illustrates the multi-swap procedure.
Given a paraphrase pair (a, b), we first perform
part-of-speech tagging6 (POS) on b to obtain tags
for each word. We further detect named entities
like locations, person names, organisations, and
dates using a named entity tagger, and replace
POS tags with entity tags when there is overlap.
Words and phrases that have the same tag7 are then
grouped together. We deduplicate each group to
avoid swapping the position between two identical
words/phrases. Given that a swap requires at least

6We use Spacy large web-based model pipeline
(en_core_web_lg) for both POS and NER tagging.

7We do not distinguish different POS tags for verbs (e.g.,
VBZ, VBN, VBD) and nouns (e.g., NNP, NNPS, NN, NNS).
We also exclude “to be” verbs, as swapping them does not
guarantee changes in semantics.
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Source Sentence A Sentence B Paraphrase Degree

PAWSWiki

(no-swap) Bhagat Beni also said that the guru Arjan
Dev has obtained enlightenment only through the
Holy Word.

Bhagat Beni has also said that
Guru Arjan Dev attained enlight-
enment only through the Holy
Word.

4

(1-swap) Arjan Dev has also said that Guru Bhagat
Beni attained enlightenment only through the Holy
Word.

3

(2-swap) Arjan Dev has only said that Guru Bhagat
Beni attained enlightenment also through the Holy
Word.

2

(3-swap) Arjan Dev has only said that Guru Bhagat
Beni attained Word also through the Holy enlighten-
ment.

1

PAWSQQP

(no-swap) Was increasing funding to protect Beng-
hazi before the attack denied by Congress. If so,
who voted against it?

Was increased funding to protect
Benghazi before the attack de-
nied by Congress. If so, who
voted against it?

4

(1-swap) Was increased attack to protect Benghazi
before the funding denied by Congress. If so, who
voted against it?

3

(2-swap) Was increased attack to protect Congress
before the funding denied by Benghazi. If so, who
voted against it?

2

(3-swap) Was denied attack to protect Congress be-
fore the funding increased by Benghazi. If so, who
voted against it?

1

Table 4: Examples of swapped sentences taken from two PAWS datasets (We swap sentence B to produce swap-
based partial paraphrases). Different colours denote different swaps and each swap is performed based on previous
swaps to ensure the degrading semantic overlap. Sentence pair with paraphrase degree of 4 is exact paraphrase
and 3, 2, 1 are partial paraphrases with decreasing semantic overlap.

two words/phrases, we discard tag groups that have
less than two words/phrases. In order to produce
enough candidates for ranking, we filter out sen-
tences that have less than 3 tag groups. For each
sentence with at least three tag groups, we ran-
domly sample three groups, and from each group
we randomly sample two words/phrases. In the end,
we swap the position of sampled words/phrases
to produce swapped sentences. We perform each
swap based on previous swaps, with a maximum
of three swaps. In summary, given a positive sen-
tence pair (a, b), we apply our multi-swap strat-
egy on b, and produce a group of sentence pairs
[(a, b), (b̂1swap, b), (b̂2swap, b), (b̂3swap, b)], where
they exhibit decreasing semantic overlap.

The statistics of the resulting evaluation datasets
are given in Table 3. Examples taken from
the swap-based partial paraphrase datasets are
shown in Table 4. In the same group, sen-
tences with higher paraphrase degree are more
likely to be exact paraphrases. Our evaluation
setup is as follow: given a paraphrase scor-
ing function f , and a set of sentence pairs
{(a, b), (b̂1swap, b), (b̂2swap, b), (b̂3swap, b)}. We
expect f(a, b) > f(b̂1swap, b) > f(b̂2swap, b) >

f(b̂3swap, b).

5 Experiments

We compare previous fine-tuned paraphrase mod-
els (BERT and RoBERTa in Section 3) with
sentence encoders. Sentence encoders, such as
SBERT(Reimers and Gurevych, 2019) and Sim-
CSE (Gao et al., 2021), are widely used in various
ranking scenarios which aim to measure the simi-
larity in meaning between two sentences. They use
a contrastive learning objective, intended to derive
high-quality sentence representations by pulling
sentences with similar semantics closer together
and pushing dissimilar ones apart. Although they
have achieved relatively good performance on STS
tasks, it is unclear whether the similarity score they
produce can be used to measure the extent to which
sentence pairs are paraphrases.

In this experiment, we evaluate SimCSE8,
two variants of SimCSE, namely, SimCSE+PAS
(Peng et al., 2022) and SimCSE+BERTScore9

(Zhang et al., 2019a), and two SBERT models10

(Reimers and Gurevych, 2020) which are specif-
ically trained on paraphrase datasets. We denote

8https://github.com/princeton-nlp/SimCSE
9https://github.com/Tiiiger/bert_score

10https://github.com/UKPLab/sentence-transformers
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one as SBERTv1
11 and the other as SBERTv2

12.
For paraphrase models, we use its softmax con-

fidence of being positive as the paraphrase score
to rank sentence pairs. For sentence encoders, we
rank sentence pairs using their default strategy to
produce a paraphrase score. Specifically, SBERT
and SimCSE utilise the cosine similarity between
two sentences; SimCSE+PAS increases the inter-
action between two sentences by considering the
aggregated score over predicate-argument align-
ments; and SimCSE+BERTScore considers the
IDF-weighted F1 measure in terms of word match-
ing.

5.1 Evaluation

The ranking results are summarised in Table 5. We
report both the average R-Precision and the average
Spearman rank correlation between the predicted
ranking and the true ranking across all groups. R-
Precision measures the ability to retrieve best para-
phrases and Spearman rank correlation measures
the overall sensitivity to different degrees of seman-
tic overlap as it concerns relative position shifts in
the group. Similarly, we can turn this ranking task
into a classification problem by regarding sentence
pairs with paraphrase degree of 4 as positive and
sentence pairs that have lower degree as negative.
In this setup, we only evaluate paraphrase models.
The classification results are shown in Figure 3.

From Figure 3, we observe similar patterns as
in previous generation-based classification exper-
iments. Both BERT and RoBERTa show good
performance on recognising the given pair as para-
phrases when no-swap is applied. However, after
we perform one swap, the performance drops signif-
icantly, showing that these models fail to recognise
the distinction. Both models begin to recover from
this situation after two swaps13. This, again, in-
dicates that paraphrase models are often confused
by small semantic differences in the classification
setup.

In terms of the ranking results presented in Table
5, we can see that sentence encoders show limited
ability to distinguish the exact paraphrase from par-
tial paraphrases on PAWSWiki, which is evidenced
by the low R-Precision score. Although their over-

11sentence-transformers/paraphrase-MiniLM-L12-v2
12sentence-transformers/paraphrase-distilroberta-base-v2
13As we increase the number of swaps, models become

more confident in distinguishing whether the sentence pair
is a paraphrase or not. This trend also reflects the quality of
swap-based examples we create.

all performance is higher on PAWSQQP, we suspect
this is due to the high lexical overlap, which we
investigate in detail in Section 5.2. Compared to
sentence encoders, paraphrase models show gen-
erally better performance in terms of R-Precision
on both datasets. It is worth noting that, under
the classification setup, paraphrase models achieve
good accuracy on recognising non-swap positive
pairs (see the high accuracy of 0-swap in Figure 3).
However, when we mix the non-swap pair together
with other swapped partial paraphrases, both BERT
and RoBERTa are unable to achieve equivalent R-
Precision scores. This shows that paraphrase scores
produced for partial paraphrases are often higher
than those for exact paraphrases, demonstrating
that they are not a reliable indicator as to how close
two sentences are to being paraphrases. Since the
number of candidates to rank (only four sentence
pairs in each group) is small, the Spearman rank
correlation obtained by both models is insufficient
to demonstrate a strong positive correlation and im-
plies many position shifts in the predicted ranking.
Although the two versions of the SBERT model are
specifically trained on paraphrase datasets, they do
not exhibit better performance than SimCSE.

Model
PAWSWiki (swap) PAWSQQP (swap)
RPrec Spearman RPrec Spearman

BERT 77.57 73.42 69.84 78.10
SimCSE 41.97 57.68 71.43 83.81
SimCSE+PAS 48.99 69.71 63.93 81.64
SimCSE+BERTScore 42.33 71.43 66.67 88.89

RoBERTa 85.31 69.90 76.19 69.21
SimCSE 43.20 56.98 66.67 79.05
SimCSE+PAS 42.19 62.13 62.30 83.61
SimCSE+BERTScore 44.21 69.90 71.43 87.62

SBERTv1 35.60 47.97 74.60 81.90
SBERTv2 28.44 37.77 66.67 77.46

Table 5: The results on the swap-based ranking evalu-
ation. The backbone of sentence encoders in the first
block is BERT-base and RoBERTa-base in the second
block. We report the R-Precision and Spearman correla-
tion.

5.2 The Impact of Lexical Overlap

One observation we have from Table 5 is that all
sentence encoders have higher R-Precision and
Spearman correlation on PAWSQQP compared to
the performance on PAWSWiki. As shown in Ta-
ble 6, we can see that positive sentence pairs in
PAWSQQP have significantly higher lexical overlap.
Thus, we suspect that the higher lexical overlap
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Figure 3: Performance of BERT and RoBERTa on swap-based evaluation datasets in the classification setup. X-axis:
Number of swaps performed. Y-axis: The accuracy. For Swap-0, all sentence pairs are positive and the accuracy is
the percentage of sentence pairs classified as paraphrases. For Swap 1 to 3, sentence pairs are now all turned into
negatives and the accuracy is the percentage of sentence pairs correctly classified as non-paraphrases by the model
after we perform different word swaps.

Lexical Overlap
PAWSWiki (swap)* 83.46%
- after back-translation 75.79%
PAWSQQP (swap) 95.03%
- after back-translation 59.56%

Table 6: The lexical overlap of the positive sentence pair
(pair of paraphrase degree of 4). * denotes the randomly
sampled dataset. We calculate the lexical overlap in
terms of Jaccard Similarity with ngram=1.

makes sentence encoders produce higher scores
which enable them to “guess” the correct answer.

To verify the impact of lexical overlap, we apply
back-translation14 to the positive sentence A so
that the positive pair now has much lower lexical
overlap. Given the PAWSQQP (swapped) is of small
size (63 groups), we manually check the results of
back-translation and correct them if the translated
sentence A is no longer an exact paraphrase of
sentence B. PAWSWiki (swapped) has more then
1,300 groups of sentence pairs, so we randomly
sample 100 groups from it and apply the same
process. As shown in Table 6, the lexical overlap
has been significantly reduced after we apply back
translation.

We evaluate all models on the back-translated
datasets and the results are presented in Table 7.
After reducing lexical overlap for positive pairs,
we observe performance drops for all models. In
particular, both R-Precision and Spearman rank
correlation have decreased significantly across all

14We utilise the Marian machine translation model (Junczys-
Dowmunt et al., 2018) and use German as the pivot language.

Model
PAWSWiki (swap)
(100sample-bt)

PAWSQQP (swap)
(bt)

RPrec Spearman RPrec Spearman

BERT 67.00 71.00 65.08 75.56
SimCSE 31.00 48.40 31.75 54.60
SimCSE+PAS 41.00 61.20 33.33 59.68
SimCSE+BERTScore 31.00 61.60 30.16 58.73

RoBERTa 74.00 69.20 73.02 68.57
SimCSE 33.00 47.80 33.33 55.56
SimCSE+PAS 32.00 51.20 36.51 57.14
SimCSE+BERTScore 30.00 56.00 26.98 53.02

SBERTv1 26.00 38.20 28.57 53.97
SBERTv2 15.00 17.20 4.76 7.30

Table 7: The results on the swap-based ranking evalu-
ation (back-translated). We report the R-Precision and
Spearman correlation.

sentence encoders. This indicates that sentence en-
coders are largely affected by lexical overlap while
BERT and RoBERTa seem more robust to differ-
ent degrees of lexical overlap between two sen-
tences. Furthermore, we see that the performance
of both predicate-argument alignment (PAS) and
word matching (BERTScore) is only slightly bet-
ter than that of SimCSE in terms of the sensitivity
to semantic overlap. This demonstrates that the
changes in similarity scores they produce are not
good measurements as to how close two sentences
are to being paraphrases. Given the unsatisfactory
performance of paraphrase models and sentence
encoders, we stress that more efforts are necessary
to improve models’ sensitivity to different degrees
of semantic overlap, and it is important to consider
specific ranking objectives and the proximity be-

266



tween different sentence pairs.

6 Conclusion

In this paper, we explore whether paraphrase scores
produced by paraphrase models and sentence en-
coders are reliable indicators of the degree to which
two sentences share semantic content. Accordingly,
we propose an adversarial paradigms (multiple
word swap) to create evaluation datasets that con-
sist of high-quality partial paraphrases with graded
semantic overlap in a ranking setup. Our experi-
mental results show that the similarity score pro-
duced by sentence encoders is not a good indicator
of how close two sentences are to being exact para-
phrases, and is heavily affected by lexical overlap.
Whilst paraphrase models show generally better
performance, the confidence scores they produce
are still far from acting as a reliable indicator to dif-
ferent degrees of semantic overlap. Measuring the
degree of semantic overlap between two sentences
remains a significant challenge. Our future work
includes producing larger ranking datasets and ex-
tending this paradigm to other relevant datasets.

Limitations

The remaining limitations in our work are two-fold.
First, for specific paraphrase models, our experi-
ments are limited to consideration of BERT-base
and RoBERTa-base models. This choice is made
following their generality and good performance
on various NLP tasks, but larger language models
could also be considered. The second limitation of
this paper is that, under the swap-based strategy, the
sentence after three swaps sometimes are seman-
tically problematic though grammatically correct.
Despite having shown that paraphrase models have
improved ability to distinguish partial paraphrases
after two swaps, it would be better to use naturally
occurring sentences and reduce the clue of irregular
word or phrase usages.

Acknowledgement

We thank all anonymous reviewers for their insight-
ful comments. We would like to further thank
Bowen Wang for helpful discussions and proof-
reading.

References
Eneko Agirre, Daniel Cer, Mona Diab, and Aitor

Gonzalez-Agirre. 2012. Semeval-2012 task 6: A

pilot on semantic textual similarity. In * SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics–Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pages 385–
393.

Ion Androutsopoulos and Prodromos Malakasiotis.
2010. A survey of paraphrasing and textual entail-
ment methods. Journal of Artificial Intelligence Re-
search, 38:135–187.

Yuki Arase and Junichi Tsujii. 2021. Transfer fine-
tuning of bert with phrasal paraphrases. Computer
Speech & Language, 66:101164.

Rahul Bhagat and Eduard Hovy. 2013. What is a para-
phrase? Computational Linguistics, 39(3):463–472.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 1–14.

Hannah Chen, Yangfeng Ji, and David K Evans. 2020.
Pointwise paraphrase appraisal is potentially prob-
lematic. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
Student Research Workshop, pages 150–155.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella
Lapata. 2017. Learning to paraphrase for question an-
swering. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 875–886.

Samuel Fernando and Mark Stevenson. 2008. A seman-
tic similarity approach to paraphrase detection. In
Proceedings of the 11th annual research colloquium
of the UK special interest group for computational
linguistics, pages 45–52. Citeseer.

Wee Chung Gan and Hwee Tou Ng. 2019. Improv-
ing the robustness of question answering systems to
question paraphrasing. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 6065–6075.

267

https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002


Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase
database. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 758–764.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 6894–6910.

Shankar Iyer, Nikhil Dandekar, Kornél Csernai, et al.
2017. First quora dataset release: Question pairs.
data. quora. com.

Zongcheng Ji, Qiang Wei, and Hua Xu. 2020. Bert-
based ranking for biomedical entity normalization.
AMIA Summits on Translational Science Proceedings,
2020:269.

Shan Jiang, Simon Baumgartner, Abe Ittycheriah, and
Cong Yu. 2020. Factoring fact-checks: Structured
information extraction from fact-checking articles.
In Proceedings of The Web Conference 2020, pages
1592–1603.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116–121,
Melbourne, Australia. Association for Computational
Linguistics.
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Abstract

How does the word analogy task fit in the mod-
ern NLP landscape? Given the rarity of com-
parable multilingual benchmarks and the lack
of a consensual evaluation protocol for contex-
tual models, this remains an open question. In
this paper, we introduce MATS: a multilingual
analogy dataset, covering forty analogical rela-
tions in six languages, and evaluate human as
well as static and contextual embedding perfor-
mances on the task. We find that not all ana-
logical relations are equally straightforward for
humans, static models remain competitive with
contextual embeddings, and optimal settings
vary across languages and analogical relations.
Several key challenges remain, including creat-
ing benchmarks that align with human reason-
ing and understanding what drives differences
across methodologies.

https://github.com/ATILF-UMR7118/MATS

1 Introduction

Ever since the work of Mikolov et al. (2013b), anal-
ogy solving has been a staple of public outreach in
NLP: It has been featured both in science communi-
cation1 and in the classroom.2 This task consists in
finding a target word b2, given a cue word b1 it is
related to, and another pair of words a1 and b2 that
express the same relation. For example, we can ask
what is the word that relates to “king” in the same
manner that “woman” relates to “man”: This target
ought to be “queen”.

The introduction of pre-trained contextualized
embeddings (Peters et al., 2018) opened up a new
research area where to expand prior knowledge
about static models. This includes the analogy
task. Suggestions have been put forward as to how

1E.g., it is discussed by the Computerphile YouTube chan-
nel, cf. https://youtu.be/gQddtTdmG_8?t=662.

2To take an example, see the Winter 2017 NLP lectures at
Stanford, https://youtu.be/ASn7ExxLZws?t=3257.

to best adapt it: Ushio et al. (2021) propose to
use a prompt-based method, whereas Vulić et al.
(2020) and Lenci et al. (2022) try to derive static
embeddings from BERT to fall back on the algo-
rithm of Mikolov et al. (2013b). However, much
work remains to be done to properly contrast and
compare the performance of contextual and static
embedding models on the analogy task. Another
observation to be made is that reliable compar-
isons across languages are rare. On the one hand,
datasets for English—such as the GATS (Google
Analogy Test Set, Mikolov et al., 2013a) and BATS

(Balanced Analogy Test Set, Gladkova et al., 2016)
benchmarks—have been adapted or translated to
a wide variety of languages. On the other hand,
approaches specifically focusing on establishing
multilingual comparisons are, to our knowledge,
limited to Grave et al. (2018), Ulčar et al. (2020),
and Peng et al. (2022)—none of which considers
contextual embeddings.

How do embeddings—and in particular contex-
tual models—perform on the analogy task beyond
English? In the present paper, we argue that a
principled approach to comparing embeddings on
the analogy task across languages consists in cre-
ating resources designed to be directly compara-
ble. The most natural way of achieving this is by
relying on manual translations, so as to retain a
certain degree of control on the output quality and
to produce resources that are maximally compa-
rable. Given the weaknesses of GATS outlined by
Gladkova et al. (2016), the more reasonable start-
ing point for these translations would be the BATS

dataset. These considerations effectively rule out
the only similar dataset that we know of, by Ulčar
et al. (2020), where analogies accept only one valid
answer, as in GATS.

To that end, we introduce MATS, a Multilin-
gual Analogy Test Set for six languages: Dutch,
French, German, Italian, Mandarin, and Spanish,
derived from the original BATS dataset of Glad-
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kova et al., spanning across 40 analogical relations
equally partitioned between inflectional, deriva-
tional, lexicographic and encyclopedic. Using this
new benchmark, we observe that different adap-
tations of the analogy task to mBERT contextual
embeddings need not yield comparable results: Not
only do we observe different performances when
deriving static embeddings from contextual models
and when using prompts, we also see that the exact
wording of the prompt significantly impacts the
model’s behavior. We also share some anecdotal
evidence questioning the validity of approaches to
this task that assume there is a single gold answer—
trained linguists attempting to solve this task often
provide answers that do not match any of the ex-
pected targets, which further validates that single-
target analogy benchmarks are ill-suited.

2 Related Works

Analogy, and specifically the offset approach of
Mikolov et al. (2013b), has inspired the field at
large (e.g., Roller et al., 2014; Bonami and Paperno,
2018; Ethayarajh, 2019; Chen et al., 2022). How-
ever, this approach has been criticized for method-
ological and ethical reasons (Bolukbasi et al., 2016;
Linzen, 2016; Rogers et al., 2017; Schluter, 2018;
Garg et al., 2018; Adewumi et al., 2022).

Two groups of related analogy datasets are often
cited: those adapted from GATS (Google Analogy
Test Set, Mikolov et al., 2013a) and those derived
from BATS (Balanced Analogy Test Set, Gladkova
et al., 2016). The latter distinguishes itself from
the former on two major characteristics: First, it
is designed for a balanced assessment of perfor-
mances on the analogies and covers a larger col-
lection of analogical relations; second, it admits
multiple valid answers whenever relevant. These
differences aim to mitigate some of the flaws Glad-
kova et al. (2016) perceived in GATS: The emphasis
of this dataset on balance is intended to provide
a more accurate picture of a model’s capabilities
when it comes to word analogy solving, and the
inclusion of multiple answers aims to mitigate the
impact of spelling variation and dataset limitations.

Datasets similar to BATS exist in Japanese and
Icelandic (Karpinska et al., 2018; Friðriksdót-
tir et al., 2022), whereas GATS has been trans-
lated in Portuguese, Hindi, French, Polish, and
Spanish (Hartmann et al., 2017; Grave et al.,
2018; Cardellino, 2019). Other independently con-
structed datasets do exist (e.g., Venekoski and

Vankka, 2017; Svoboda and Brychcín, 2018)—
crucially, covering all languages of interest to this
study: in Chinese (Jin and Wu, 2012; Chen et al.,
2015; Li et al., 2018), Dutch (Garneau et al., 2021),
English (Turney 2008; Mikolov et al. 2013b, a.o.),
French (Grave et al., 2018), German (Köper et al.,
2015), Italian (Berardi et al., 2015), and Spanish
(Cardellino, 2019). On the other hand, these re-
sources were created by different research groups
and may contain items that are not easily compara-
ble or of lesser quality.3

Similar to our approach, Grave et al. (2018) and
Ulčar et al. (2020) both conduct multilingual com-
parisons of word embeddings on the analogy task,
whereas Peng et al. (2022) study how analogies
behave under cross-lingual mappings. All three
works rely on GATS-style benchmarks (where only
one valid target is admissible for each analogy rela-
tion); all are more limited in the scope of analogies
they cover than BATS-style datasets; none study
how contextual embeddings fit in this picture. This
last point is partly due to the initial conception of
the task for static models: Plenty of works discuss
why static models develop linear analogies (Arora
et al., 2016; Ethayarajh et al., 2019; Allen and
Hospedales, 2019; Fournier and Dunbar, 2021)—
similar evidence has yet to emerge for contextual
models. As such, some studies delineate its rele-
vance to static embeddings (e.g., Apidianaki, 2022),
but it has been adapted to contextual models (Vulić
et al., 2020; Ushio et al., 2021; Lenci et al., 2022).

3 The Multilingual Analogy Test Set

To study how analogy fares in a multilingual con-
text, we introduce a Multilingual Analogy Test Set
(MATS), adapted from BATS (Gladkova et al., 2016)
for Dutch, French, German, Italian, Mandarin, and
Spanish. This analogy benchmark is structured
in two tiers: Individual sub-categories instantiat-
ing specific analogical relations (e.g., country—
capital) are grouped into four general categories,
namely Inflection, Derivation, Encyclopedia, and
Lexicography. The former two correspond to mor-
phological relations, such as the relation between
two inflected forms of a word or the relation be-
tween a verb and the corresponding agent noun.
The latter two are more closely aligned to common-
sense reasoning and include relations such as syn-
onymy or the relation between the name of a coun-

3E.g., the French dataset of Grave et al. (2018) mixes gram-
matical and social gender in masculine–feminine analogies.
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try and that of its capital city. The original resource
by Gladkova et al. (2016) emphasizes balance by
ensuring that each of the four super-sections con-
tains exactly 10 sub-sections, and that each of the
10 sub-sections contains exactly 50 instances of
the same analogical relation; analogy quadruples
are created by exhaustively iterating across pairs
of instances. This totals to 98,000 distinct analogy
quadruplets to test models on, around five times
as many items as what is mentioned in Ulčar et al.
(2020), and mitigates concerns of class imbalance.

Direct translations from the original BATS

were taken as starting points before performing
language-specific adaptations (cf. infra); we refer
the reader to Gladkova et al. (2016) for supplemen-
tary details. In all languages, unidiomatic direct
translations and analogically invalid pairs were re-
moved. Multi-word expressions (MWE) were also
removed,4 before padding all categories except E03
to 50 pairs following the relation of each category.
An overview of the outcome with examples and
figures can be found in Table 1. We break down the
choices per language in the following paragraphs.

Dutch The encyclopedic section E03 was local-
ized using Dutch provincies and their capital cities.

French The inflectional section I03 was replaced
with gender inflection of adjectives since com-
paratives are periphrastic constructions (e.g., jolie
‘cute’, plus jolie ‘cuter’). The derivational section
D01 was replaced with denominal adjectives using
the suffix -el, as the formation of privatives using
suffixes is not a productive morphological opera-
tion. The encyclopedic section E03 was localized
using a random selection of 50 French départe-
ments and their capital cities, barring those that
would be tokenized as MWE.

German The encyclopedic section E03 was lo-
calized with German Länder and their capital cities.

Italian The inflectional section I03 was replaced
with gender inflection of adjectives, since Italian
comparatives are periphrastic constructions (e.g.,
bella ‘cute’, più bella ‘cuter’). The derivational
section D01 was replaced with noun diminutives
using the suffixes -ino, -ina, for the same reason as
in French. The encyclopedic section E03 was lo-
calized using Italian regioni and their capital cities.

4Note this is a departure from BATS. This is for practical
purposes, as we are also testing on static embeddings.

Mandarin Given the typological differences
with English, we removed the whole section con-
cerning inflectional morphology and completely
reshaped the one on derivational morphology. In
particular, given that derivation by means of af-
fixes is a very productive process (Packard, 2000),
we selected eight affixes, namely -度 ‘-ness/-ity’,
-化 ‘-ize’, -性 ‘-ness/-ity’, -学 ‘-ology’, -主义 ‘-
ism’, -儿 ‘prosodic suffix’, -机 ‘instrument’, 小-
‘diminutive prefix/small/young’, and created corre-
sponding categories. We set the focus of D09 on
agent formation from verbs, much like D08 in all
other languages, whereas for D10 we took inspira-
tion from Li et al. (2018) focusing on reduplication
of monosyllabic verbs having ‘a bit’ as semantic
nuance. In the lexicographic category, we exploited
elastic words (Guo, 1938; Duanmu, 2007) to build
L08. We filled it using the list of elastic words in
the Appendix of Dong (2015), focusing only on
free monomorphemic adjectives and their corre-
sponding long forms. The encyclopedic section
E03 was localized using Chinese省 and their cap-
ital cities. We incorporated the original E06 in
D08 and replaced it with a category on nouns and
their respective classifiers, disregarding the general
classifier个 that is not semantically informative.

Spanish The inflectional section I03 was re-
placed with gender inflection of adjectives since
Spanish comparatives are periphrastic construc-
tions (e.g., linda ‘cute’, más linda ‘cuter’). The
derivational section D01 was replaced with noun
diminutives using the suffixes -ito, -ita, for the
same reasons as in French and Italian. The ency-
clopedic section E03 was localized using Spanish
comunidades autónomas and their capital cities.

4 Setting Baseline Expectations

We first focus on establishing the difficulty of our
analogy benchmark, and how it compares to the
English BATS. We provide a human baseline and
static embedding scores on MATS.

Human Performance One aspect rarely ad-
dressed in analogy benchmarks is that of how con-
sensual and accurate they are. Yet, some analogy
relations are fundamentally debatable: For instance,
whether “tonne” is to “kilogram” as “flower” is
to “petal” depends on one’s exact definition of a
meronymic relation.5 As such, the assumptions or
intuitions of a given resource’s designer may or

5These pairs are both in the L06 subcategory of BATS.
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de es fr it nl zh

I01 Tag : Tage día : dias jour : jours dio : dèi rol : rollen ✗

I02 Rat : Räte voz : voces bail : baux base : basi vlo : vlooien ✗

I03 süß : süßer barato : barata chanceux : chanceuse colto : colta oud : ouder ✗

I04 rein : reinste feo : feísimo drôle : drôlissime (33) duro : durissimo rijk : rijkst ✗

I05 hören : hört crear : crea dire : dit godere : gode vraagen : vraagt ✗

I06 teilnehmen : teilnehmend creer : creyendo gérer : gérant gestire : gestendo leren : lerend ✗

I07 sehen : gesehen decir : dicho croire : cru perdere : perso hoor : gehoord ✗

I08 glaubend : glaubt girando : gira lisant : lit succedendo : succede gaand : gaat ✗

I09 fragend : gefragt uniendo : unido ratant : raté capendo : capito vragend : gevraagd ✗

I10 wird : geworden ejecuta : ejecutado suit : suivi sente : sentito volgt : gevolgd ✗

D01 Arm : armlos cabeza : cabecita culture : culturel stella : stellina ego : egoloos 强: 强度
D02 fähig : unfähig edito : inédito pair : impair certo : incerto zeker : onzeker 国际:国际化
D03 Kind : kindlich real : realmente fort : fortement ampio : ampiamente feest : feestelijk 重要:重要性
D04 mäßig : übermäßig poblado : sobrepoblado aigu : suraigu umano : sovrumano vol : overvol 语言: 语言学
D05 fest : Festigkeit fijo : fijeza fou : folie raro : rarità vast : vastheid 自由: 自由主义
D06 geben : wiedergeben mandar : remandar lire : relire spedire : rispedire bouwen : herbouwen 虫: 虫儿
D07 haften : haftbar evitar : evitable jeter : jetable vivere : vivibile eeten : eetbaar 打火: 打火机
D08 tun : Täter diseñar : diseñador tuer : tueur gestire : gestore boksen : bokser 孩子:小孩子
D09 reduzieren : Reduktion acusar : acusación priver : privation mutare : mutazione inspireren : inspiratie 开发:开发员
D10 erklären : Erklärung elevar : elevamiento licencier : licenciement pagare : pagamento verklaren : verklaring 想: 想想

L01 Kuh : Wirbeltier/... ganso : pájaro/... caille : vertébré/... ape : insetto/... coyote : carnivoor/... 猫头鹰: 鸟/...
L02 Foto : Bild/... sofá : mueble/... bureau : objet/... pompelmo : frutto/... jas : eenheid/... 架: 家具/...
L03 Boot : Post/... color : blanco/... mois : décembre/... canzone : inno/... tasse : gral/... 甜点: 蛋糕/...
L04 Bart : Haar agua : oxígeno/... océan : eau neve : acqua/... staal : ijzer/... 旗:纸/...
L05 Kalb : Vieh/... cantante : coro/... juré : jury pecora : gregge kal : vee/... 鹅:群
L06 Byte : Bit guitarra : cuerda/... film : épisode/... corpo : petto/... euro : cent 门: 铰链/...
L07 ängstlich : entsetzt/... amar : adorar/... poney : cheval triste : depresso/... aap : gorilla 湿: 浸泡/...
L08 Fahrrad : Rad madre : mamá marché : bazar roccia : sasso vader : papa 勇:勇敢
L09 heiß : frostig/... claro : oscuro sec : humide/... sano : pazzo/... jong : gaga/... 甜: 酸/...
L10 tot : lebendig sucio : limpio chute : montée dopo : prima west : oost 内:外

E01 Lima : Peru Bagdad : Irak Damas : Syrie Kiev : Ucraina Zagreb : Kroatië 安曼: 约旦
E02 Iran : Persisch Camboya : jemer Égypte : arabe Marocco : berbero/... Cuba : Spaans 伯利兹: 英语
E03 München : Bayern (13) Barcelona : Cataluña (11) Nîmes : Gard (50) Roma : Lazio (17) Maastricht : Limburg (10) 西安:陕西 (27)
E04 Marx : Deutsch Homero : griego Tolstoi : russe Pascal : francese Hegel : Duits 孟子:中国
E05 Dante : Dichter Depp : actor/... Lincoln : président Hawking : fisico/... Locke : filosoof 孔子:哲学家
E06 Ente : Küken cigüeña : cigoñino daim : faon ape : larva eend : eendje/... 筷子:双/...
E07 Kuh : muhen lobo : aúlla hyène : rire cane : abbaiare ezel : balken/... 猫: 喵/...
E08 Wal : Meer/... castor : río bovin : étable corvo : nido/... beer : kooi/... 狐狸: 洞穴
E09 Kirsch : rot/... peonía : roja/... sel : blanc tè : nero/... bloed : rood 蚂蚁:黑色/...
E10 Stier : Kuh niño : niña roi : reine leone : leonessa opa : oma 老公: 老婆

Tot 1,963 1,961 1,983 1,967 1,960 1,477

Table 1: MATS: examples per subcategory. All subcategories contain 50 pairs, except if specified in (parentheses).

may not match with that of the community in gen-
eral. Rare words may also factor in performances
and dialectal variation can entail differences in
spelling or vocabulary. Lastly, translation-based
resources like ours may contain ambiguous cues
and unknown cultural references.

So as to derive a human-level performance point
of reference, for each language, we ask two trained
linguists to manually solve 3 analogy items per
subcategory, as well as two non-linguists for En-
glish6 (cf. Appendix A). Annotators need not speak
the same dialect, nor the dialect of the translators.
While this may impact the reliability of the annota-
tions, we choose to do so for two reasons. Firstly,
the multiplicity of valid targets in the original BATS

dataset was intended as a means to mitigate exist-
ing variations in the language at hand. Secondly,
embeddings trained on large crawled corpora of

6Results on English throughout this paper correspond to
scores on Gladkova et al.’s BATS.

internet texts will often span multiple dialects, and
therefore factoring in linguistic variation provides
a more principled point of comparison.

Annotators are provided with three of the four
terms and ask them to propose a valid fourth term.
We then measure (i) their accuracy on the task (i.e.,
the proportion of analogy items that were solved
by the annotators with a valid fourth term in MATS)
and (ii) their agreement rate (i.e., the proportion of
analogy items where the two annotators produced
the same answer).

Results in Table 2 show three global trends: (i)
mistakes are made on almost all categories, (ii)
linguistic training does help, and (iii) annotators’
responses do not match 24%–46% of the time.
Though these agreement scores may seem low,
one ought to expect some variation across speakers
in their ability to solve analogies—in part due to
their familiarity with lexical semantics, in part due
to dialectal variations between annotators, and in
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Avg. accuracy Agreement
I D E L all I D E L all

en ℓ 1.00 0.97 0.72 0.63 0.83 1.00 0.87 0.57 0.23 0.67

¬ℓ 0.93 0.77 0.55 0.43 0.68 0.87 0.60 0.55 0.21 0.56

de 0.93 0.78 0.62 0.50 0.71 0.85 0.58 0.43 0.28 0.54

es 0.83 0.83 0.77 0.56 0.75 0.77 0.77 0.54 0.32 0.60

fr 0.88 0.97 0.70 0.48 0.76 0.83 0.93 0.52 0.30 0.65

it 0.97 0.93 0.75 0.57 0.80 0.93 0.86 0.81 0.42 0.76

nl 0.93 0.78 0.67 0.37 0.69 0.98 0.80 0.61 0.18 0.64

zh — 0.85 0.62 0.35 0.61 — 0.83 0.57 0.43 0.61

all 0.92 0.86 0.67 0.49 — 0.89 0.78 0.51 0.30 —

Table 2: Manual annotations of MATS/BATS samples. ℓ/¬ℓ: higher education in/not in linguistics.

part due to actual cases of linguistic ambiguity. In
particular, we remark that both E and L include
analogies that are less straightforward to solve for
a human as compared with I and D, and some sub-
categories leave room for different interpretations
due to their open-ended nature as described earlier.
This is reflected in the overall lower accuracy and
agreement scores for these two categories. In fact,
annotators that indicate having looked up some of
the analogy terms only report so for E and L. Cru-
cially, performances on L are systematically the
lowest, suggesting that this category is less in line
with human reasoning.7

Static Embeddings Performance We now turn
to static embeddings, which have been traditionally
the target of analogy benchmarks. We consider two
sets of available pre-trained static embeddings: the
fastText models of Grave et al. (2018),8 and the
CoNLL-2017 Shared Task word2vec models (Ze-
man et al., 2017);9 we set aside the CoNLL-2017
Chinese embeddings, as they correspond to tradi-
tional characters, whereas our resource is written
in simplified characters.

We compute results on MATS, using the offset

7It is also worth discussing the gap between English lin-
guists and other languages: Beyond the variance that one
expects given the very small sample size that was manually
annotated, our English linguist annotators both use similar
orthographic conventions as the original BATS resource; both
also report a more extensive use of online search tools in case
of doubts than annotators of other languages. Similar favor-
able conditions were never met for other languages. In short,
the lower performances we observe for our resources should
not be entirely imputed to them being translations.

8These cover 157 languages, including the seven of the
present study. Note that their Chinese model corresponds to a
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(a) fastText models from Grave et al. (2018).
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Figure 1: Static models performance (3CosAdd, Equa-
tion (1)).

method of Mikolov et al. (2013b), a.k.a. 3CosAdd:

b∗
2 = argmax

w
cos (w,b1 + a2 +−a1) (1)

This method consists in predicting as a target
b∗
2 the word w whose embedding w is the most

codirectional to the offset-based approximation
b1 + a2 − a1. The starting point of this approach
is the assumption that for any two pairs of words
instantiating the same semantic relation a1, a2 and
b1, b2, their corresponding embeddings should be
related by means of a stable offset. In other words,
we assume that there exists a vector x such that

mixture of traditional and simplified characters.
9Available at http://vectors.nlpl.eu/repository/.
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a1 + x = a2 and b1 + x = b2, or equivalently
a2 − a1 = b2 − b1, which we can reformulate to
solve for b2 as b2 = b1+a2−a1. This method can
therefore be seen as a direct assessment of whether
analogical relations are encoded as stable offsets
in the embedding space. In this work, we specifi-
cally rely on the vecto library implementation of
3CosAdd.10

Results in Figure 1 show that fastText models
perform better than CoNLL-2017 word2vec models,
confirming the known trend (e.g., Bojanowski et al.,
2017; Lenci et al., 2022). The noteworthy low per-
formances on the L category across the board can
be imputed to its lesser quality. In particular, fast-
Text models score much higher for I and D, the
two categories with morphological relations, likely
thanks to their learning of character n-gram repre-
sentations rather than word type representations—
which makes fastText models overall more in line
with manual annotations.

Beyond these general observations, language
also impacts the scores we observe. For instance,
the high scores observed for English word2vec on
the I category are never attested for word2vec mod-
els in other languages—which can be pinned on
the rather simplistic inflectional system in English.
Both Dutch models along with the CoNLL-2017
French model perform surprisingly poorly. In the
case of Dutch, this is likely due to training data lim-
itations: Zeman et al. (2017) report training Dutch
models on fewer than 3B words, whereas all other
languages were trained on over 5B words.

Discussion The experiments conducted in Sec-
tion 4 have helped us establish baseline expecta-
tions. Much of what we observe echoes previous
findings: The improvement of fastText models on
I and D analogy items was already documented
in Bojanowski et al. (2017), and Levy and Gold-
berg (2014) or Gladkova et al. (2016) already high-
lighted lower performances on E and L analogies.

What is novel beyond these replicated findings
is the observation that humans also struggle with E
and L analogies. This can account in part for the
lower performances observed for these categories.
This also suggests that more lenient benchmarks
like BATS, which allow multiple valid answers, are
preferable to stricter ones, such as GATS.

10https://vecto.space/

Sents Tokens Bytes Types

de 300M 4.472B 28.448B 1.042M
en 300M 6.698B 35.396B 0.502M
es 300M 8.294B 46.133B 0.702M
fr 300M 6.058B 33.114B 0.581M
it 300M 7.266B 41.666B 0.631M
nl 300M 4.269B 24.320B 0.678M
zh 300M 15.594B 92.836B 1.531M

Table 3: Oscar corpora statistics. The last column tallies
unique word types occurring at least 50 times.

5 Analogies and Contextual Embeddings

We now turn to benchmarking a contextual archi-
tecture, viz. uncased mBERT (Devlin et al., 2019).
By definition, such architecture computes contex-
tual representations of words: Unlike static em-
beddings, contextual embeddings vary depending
on the entire input sequence. The default use-case
intended for these models pertains to token-level
semantics—whereas analogy benchmarks evaluate
word-type-level semantics. One word may have dif-
ferent meanings depending on context—depending
on which context we use, results on the task may
vary drastically. This complicates the use of these
representations for the analogy task, by introduc-
ing the need of deriving some form of type-level
judgment from token-level representations.

Static Representations from mBERT One pos-
sible approach to testing a contextual model on
the analogy task consists in deriving word type
representations from mBERT, and proceeding as
one would with static embeddings. To determine
which word types we need vectors for, we con-
struct reference corpora of 300M sentences per
language sampled from Oscar (Ortiz Suárez et al.,
2019), and retrieve all word types with at least 50
occurrences.11 All corpora were case-folded and
tokenized using spaCy.12 For Mandarin, we nor-
malized all characters to their simplified form using
OpenCC.13 Corpora statistics are shown in Table 3.

We experiment with layer pooling and two dif-
ferent means of deriving static word-type vectors.
Singleton embeddings are derived by embedding

11This would correspond to a reasonable frequency filtering
with word2vec embeddings, and matches what we used in
supplementary experiments in Appendix C.

12https://spacy.io/
13https://pypi.org/project/OpenCC/
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(b) Context-sample embeddings.

Figure 2: Static mBERT: overall results (3CosAdd).

word types as if they were simple sentences com-
prised of a single word and control tokens ([CLS]
and [SEP]); we then sum across the whole sequence,
and average over the layer representations of inter-
est. For context-sample embeddings, we retrieve
the first 10 contexts of occurrence of every word
type14 to compute the average embedding of that
word type. In both cases, we draw representations
from layers 0–1 (input embeddings), 12–13 (output
vectors), 0–13 (all layers), 1–5, 5–9, and 9–13.

Overall accuracy results are displayed in Fig-
ure 2; results per category are available in Ap-
pendix B, Figure 7. Context-sample embeddings
almost systematically outperform or equal the sin-
gleton approach for all layer groups and languages.
Mandarin performs surprisingly well, and scores
for all languages on the L category are extremely
poor. With singleton embeddings, lower layers
tend to perform better, which matches with previ-
ous studies (Vulić et al., 2020; Lenci et al., 2022),
but performances for Mandarin are better when
considering the embedding layer, whereas all other
languages benefit most from pooling across the
first four Transformer layers. On the other hand,
European-language context-sample embeddings
yield their highest performances with middle or
top layers. We suspect that Mandarin has a very
regular segmentation for D items, whereas Latin-
alphabet languages may have different segmenta-
tions for otherwise regular suffixal construction,
and therefore require some computation in order to
properly reconstruct formal regularities. Scores per
category provided in Figure 7, Appendix B confirm
that much (almost all) of the performance attested

14We choose 10 contexts in order to strike a reasonable
balance between diversity of contexts and computational costs.
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Figure 3: mBERT prompt-based performance.

for Mandarin is indeed driven by the D category.

Prompt-based Approaches Contextualized em-
beddings can also be tested by converting the task
to a prompt format. We draw inspiration from the
methodology of Ushio et al. (2021), but frame our
analogies as an unmasking task. We fill a three-slot
template T that contains a mask with three given
analogy cues a1, b1, and a2, and perform unmask-
ing given the resulting sequence T (a1, b1, a2). We
measure a model’s zero-shot accuracy by consider-
ing whether the unmasked word-pieces match with
any of the listed valid targets’ word-pieces.

All relevant templates are listed in Table 4. All
templates were formulated by native speakers. In
the case of targets split across multiple word-pieces,
we include one mask token per word-piece; as such
prompt scores are stricto sensu upper bounds.

Given the relative novelty of prompt-based ap-
proaches, we explore whether results are reliable
across small changes of the prompts, such as the
presence of quotation marks around analogy terms.
Results in Figure 3 show that, besides English, per-
formances are often lower than what we observed
previously, and especially low on the I category.
Prompts only outperform static vectors on the L
category, which we established to be less reliable.
Using quotes alleviates this trend, with a more pro-
nounced effect on I and D. The higher English
BATS scores are likely due to the large proportion
of English training samples in mBERT.

We also test how behavior changes across seman-
tically equivalent templates, using four alternative
German templates, along with the effects of en-
quoting analogy terms. These templates are listed
in Table 5. Results are displayed in Figure 4; the
alternative template T4 corresponds to the default
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Unquoted Quoted

de a1 verhält sich zu b1 wie a2 zu [MASK]. “a1” verhält sich zu “b1” wie “a2” zu “[MASK]”.
es a1 es a b1 como a2 es a [MASK]. “a1” es a “b1” como “a2” es a “[MASK]”.
fr a1 est à b1 ce que a2 est à [MASK]. “a1” est à “b1” ce que “a2” est à “[MASK]”.
it a1 sta a b1 come a2 sta a [MASK]. “a1” sta a “b1” come “a2” sta a “[MASK]”.
nl a1 staat tot b1 zoals a2 staat tot [MASK]. “a1” staat tot “b1” zoals “a2” staat tot “[MASK]”.
zh a1与b1的关系就像a2与[MASK]的关系。 「a1」与「b1」的关系就像「a2」与「[MASK]」的关系。

Table 4: Templates for prompt-based approach.

Unquoted Quoted

T1 de a1 ist für b1 was a2 für [MASK] ist. “a1” ist für “b1” was “a2” für “[MASK]” ist.
T2 a1 ist so zu b1 wie a2 zu [MASK] ist. “a1” ist so zu “b1” wie “a2” zu “[MASK]” ist.
T3 a1 steht in Relation zu b1 so wie a2 zu [MASK]. “a1” steht in Relation zu “b1” so wie “a2” zu “[MASK]”.
T4 a1 verhält sich zu b1 wie a2 zu [MASK]. “a1” verhält sich zu “b1” wie “a2” zu “[MASK]”.

Table 5: Alternative German templates.
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Figure 4: Prompt-based performance of mBERT, using
alternative German templates.

T 2 T 3 T 4

T1 5.7 8.1 7

T2 8.5 9.7

T3 15.2

(a) Unquoted templates.

T 2 T 3 T 4

T1 31.2 35.9 25.7

T2 46.2 45.1

T3 45.4

(b) Quoted templates.

Figure 5: Prediction agreement (in %).

template for German in Figure 3. Quoted variants
always outperform their unquoted counterparts; the
model struggles most with the I and D categories.
Yet, templates contrast starkly: E.g., by using the
unquoted template T1 instead of T2, performance
on E more than doubles, but this does not carry
on with their quoted counterparts. In Figure 5, we
tabulate how often predictions for the same analogy
quadruple match across templates: Predictions of
the mBERT uncased model tend to differ more often
than they match, and this is much more pronounced
with unquoted templates. In all, this model is sen-
sitive to the exact wording of the prompt (cf. also
Webson and Pavlick, 2022).

Discussion To sum up some key observations, we
find mBERT ranks in between existing fastText and
word2vec pre-trained embeddings. Results on the L
category tend to be very low (except in the prompt-
based approach). Scores for mBERT are highly
dependent on methodology: Whether to include
quotation marks in a prompt, or which layers static
representations are derived from produce different
effects across languages and categories.

All of this suggests that how to test contextual
models like mBERT with analogies remains an open
question. We observed different patterns across
different languages and different methodologies.
Some trends do emerge: For instance, static em-
beddings derived from mBERT do not appear to
encode lexicographic and encyclopedic relations in
any meaningful way, and Mandarin static mBERT

embeddings are extremely apt at capturing deriva-
tional relationships, owing to their regular spelling.
Likewise, recall that mBERT is not trained uni-
formly on all languages: This is most likely the rea-
son why performance on English is higher. Prompt-
based approaches, on the other hand, appear to
capture E and L categories best, whereas I and D
analogies are often poorly handled. This is the op-
posite of what we observed with human annotators
in Section 4, which are more accurate on I and D
rather than E and L items. Also worrying is the
high volatility of the behavior: Prompt wording, or
minor differences such as the presence or absence
of quotes, can account for stark differences in the
response patterns of mBERT.

For every methodological choice we explored—
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which language and type of analogy to study,
whether to use embeddings or prompts, how to de-
rive the embeddings, or how to phrase the prompts—
we observe distinct and often conflicting results.
This is a direct consequence of the more com-
plex architecture used in mBERT: The more varied
means of probing and interacting with this model at
our disposal also entail that we get a more diverse
set of observations. As such, one can expect similar
remarks to hold for other tasks. Establishing rea-
sonable means of deciding which observations to
select is both a captivating area for further inquiry
and beyond the scope of this paper.

6 Conclusions

In this paper, we have presented a Multilingual
Analogy Test Set, a resource five times larger than
prior comparable datasets, with which we have
looked at the analogy task in a multilingual context
and studied how it fits in the modern NLP land-
scape. The dataset allows for a comparable multi-
lingual evaluation of embedding models across a
wide range of semantic analogy relations. Manual
evaluation showed that the quality of MATS data in
specific languages is comparable to the original En-
glish BATS. We saw that not all analogy types are
equally straightforward not only to computational
models but also to humans, and that behavior on
the task depends on the language, the embedding
model, and the methodology involved. This also
entails that static model behavior is not a reliable
indicator of what contextual models might yield.

We have been able to establish some trends
across most of the methodological approaches we
adopted here. In particular, from this work, we can
outline three major conclusions. First, that not all
categories are equally straightforward for humans
(Section 4); this also explains why lower perfor-
mances are attested on semantic analogies across
most of our experiments. Second, that static models
remain competitive with multilingual embedding
models such as mBERT (Sections 4 and 5)—which
replicates the conclusions of Lenci et al. (2022).
Third, that equally valid prompts can yield vastly
differing results (Section 5)—or more broadly, that
different methodologies for adapting the analogy
task to contextual embeddings can yield conflict-
ing results. These conclusions also entail some
practical guidelines for future work. In particular,
there is a need to factor in human uncertainty as to
what the correct target is; moreover, when adopting

a prompt-based approach, testing a diverse array
of prompts is necessary to properly establish how
volatile a model’s behavior is and how much vari-
ance in performance we should expect.

As such, a number of key challenges remain in
the field of analogy solving, such as devising bench-
marks that more closely match human intuitions
or providing an explanatory framework for the dis-
crepancies observed across prompts and method-
ologies. There are other aspects we have left open,
such as whether the analogy task is suitable for
lexical semantic evaluation (cf. Appendix C). We
look forward to conducting future work in these
directions, as well as expanding our observations
to other architectures and methodologies.
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A Manual Annotation Details

All annotators in Section 4 are volunteers and col-
leagues of the authors (or acquaintances, in the case
of the two non-linguist English annotators), and are
native speakers of the languages at hand. Provided
instructions are shown in Figure 6.

Each row is an incomplete analogy, please add your
guess for the missing fourth term in a new column.
For instance, given the three cues "king", "queen",
"man", the fourth term ought to be "woman", since king
is to queen as man is to woman.

You can do multiple guesses, please put the one you’re
most confident about in first.
For instance if you have a row where the three first
columns are:
squirrel, squirrels, platypus
then fill the fourth column with
platypuses/platypi/platypodes
if you think "platypuses" is the most likely fourth term,
but that "platypi" and "platypodes" are likely to be valid
answers.
All of your guesses should be single words.

You are allowed to google things up if it helps: we are
testing whether you can recover the relation, rather than
whether you’d win at Jeopardy!.

Figure 6: Instruction provided to annotators.

B Detailed Results for Static mBERT

We provide per-category results for singleton and
context-sample vectors on MATS in Figure 7. Key
insights from Section 5 also hold for individual cat-
egories: Context-sample embeddings outperform
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(a) Inflection, singleton embeddings.
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(b) Inflection, context-sample embeddings.
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(c) Derivation, singleton embeddings.
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(d) Derivation, context-sample embeddings.
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(e) Encyclopedia, singleton embeddings.
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(f) Encyclopedia, context-sample embeddings.
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(g) Lexicography, singleton embeddings.
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Figure 7: Static representations from mBERT: detailed results. All subplots share the same scale.

Param. Values Optimum on MATS
de es fr it nl zh

window {5, 10, 20} 20 20 20 5 20 20
neg. examples {5, 10, 20} 10 20 5 20 20 20
shrink {⊤,⊥} ⊥ ⊥ ⊥ ⊤ ⊥ ⊤
min freq. {5, 50} 5 50 50 50 50 50
epochs {1, 5} 5 5 5 5 5 5

Table 6: Hyperparameter search space.

singleton embeddings, and optimal layer groups
vary across languages and categories.

C Supplementary Experiment: Analogy
vs. Semantic Similarity

An aspect we have not broached in the main body
of this article is to what extent the analogy task
is suitable to assess the semantic quality of the
representations.

To answer this, we train 72 word2vec models

per language with varying hyperparameters (cf. Ta-
ble 6), on top of the static vectors derived from
mBERT in Section 4 as well as similar static embed-
dings from the cased variant of mBERT, for a total
of 24 mBERT-based static models per language.15

Models were trained with gensim (Řehůřek and
Sojka, 2010), using the reference corpus from Sec-
tion 5. We then compare MATS overall accuracy
scores to paired word cosine vs. human ratings
correlation scores on the WS353 translations from
Barzegar et al. (2018).

Results are displayed in Figure 8, and suggest
that our static and contextual models behave differ-
ently. In the case of the former, the two benchmarks
are not necessarily correlated (Table 7): While one
can argue a trend exists for Italian and German,
such a position is not supported for other languages.

15We ignore English to compare among translated bench-
marks only.
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Figure 8: Behavior on MATS vs. on WS353.

de es fr it nl zh

w
2v

cor. 0.42598 0.26613 0.29494 0.45498 -0.08502 0.15261
p-val. 0.00019 0.02385 0.01190 0.00006 0.47765 0.20061

B
E

R
T cor. 0.75217 0.78522 0.59913 0.64957 0.76174 0.29913

p-val. 0.00002 0.00001 0.00198 0.00059 0.00002 0.15562

Table 7: Spearman correlation, WS353 vs. MATS.

As for mBERT, correlations appear to be reliable for
all languages but Mandarin; note however that we
have fewer observations than for word2vec. Fur-
thermore, we notice little variation with word2vec,
as highlighted by the clusters we get in Figure 8a.

In all, the behavior of earlier static models on
lexical tasks such as similarity and analogy need
not match with that of modern contextual embed-
dings. This also transpired in our earlier exper-
iments: When comparing performances by cat-
egory, the patterns we observe across categories
seem quite specific to the architectures we test.

D Computational Costs

Throughout this paper, experiments involving
mBERT have been performed using a single V100
GPU. This includes computing static embeddings
and prompt-based scores. For the former, we ob-
served variation across languages—e.g., Mandarin
context-sample embeddings required over a day,
but Dutch only took 4 hours. For the latter, process-
ing one template took under 2 hours.

All other computations were run on clusters of
40 CPU cores. This includes training the word2vec
models used in Appendix C, as well as running
MATS and BATS evaluations for all static embed-
dings. Word2vec training scripts generally finished
in under 4 hours. Evaluation runtimes on MATS and
BATS depend on language, category, and vocabu-
lary size, and range from under an hour to under a
day per category (I, D, E, or L) and per model.

E Limitations

One limitation of our study is the inherent noisiness
of the translations. Despite the language-specific
adaptions, MATS is based on direct translations of
BATS which was designed for English, and as such
may not be entirely equivalent to a resource that has
been specifically designed for the target languages.
Gladkova et al. (2016) furthermore implemented
datapoint selection criteria (such as a frequency-
based filtering of target words) that we have not
replicated in this work. Another element of quality
control to address concerns the manual annotations
in Section 4: Due to material limitations, annota-
tions cover a very limited portion of the dataset and
were conducted remotely.

Additionally, we only tested a few models in
our study—word2vec and fastText for static em-
beddings and mBERT for contextual embeddings.
This may not be representative of the full range of
pre-trained language models, especially contextual
ones. A similar point holds for the grid-search eval-
uation conducted in Appendix C. There are some
word2vec hyperparameters we have not looked at
and that could impact performances on both tasks:
chief of which the dimension of the embeddings
and the training corpus. More generally, expanding
the number of models tested in future work could
provide a more comprehensive understanding of
the analogy task.

Another limitation is the lack of language diver-
sity in our study. With the exception of Mandarin,
all the languages we translated BATS into are Indo-
European languages belonging to two sub-families
(West Germanic or Romance languages).

Finally, the high computational power required
to train the numerous word2vec models with vary-
ing hyperparameters in Section C (cf. Appendix D)
both contributes to carbon emissions and limits the
replicability of this work.
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Abstract

Joint vision-language models have shown
great performance over a diverse set of
tasks. However, little is known about their
limitations, as the high dimensional space
learned by these models makes it difficult to
identify semantic errors. Recent work has
addressed this problem by designing highly
controlled probing task benchmarks. Our
paper introduces a more scalable solution
that relies on already annotated benchmarks.
Our method consists of extracting a large set
of diverse features from a vision-language
benchmark and measuring their correlation
with the output of the target model. We
confirm previous findings that CLIP behaves
like a bag of words model and performs better
with nouns and verbs; we also uncover novel
insights such as CLIP getting confused by
concrete words. Our framework is available at
https://github.com/MichiganNLP/
Scalable-VLM-Probing and can be
used with other multimodal models and
benchmarks.

1 Introduction

Recent years have witnessed an explosion of vision-
language models (Lu et al., 2019; Li et al., 2019;
Zhang et al., 2021; Radford et al., 2021; Singh
et al., 2022). These models have shown great per-
formance in a variety of tasks, such as image/video
classification and text-image/video retrieval (Rad-
ford et al., 2021; Luo et al., 2022), even without
leveraging task-specific or in-domain training. In
addition, these models have shown to be practi-
cal when leveraged as underlying models for text-
to-image generation such as DALL-E 2 (Ramesh
et al., 2022) and image captioning such as Clip-
Cap (Mokady et al., 2021).

Little is however known about the limita-
tions of these models. Recent work, such

*Equal contribution.

Image Caption:   Girl is standing in the grass.

Pos Neg

CLIP

Features of original word (girl), replacement 

word (dog) & words in common (stand, grass)

Neg score (N)Pos score (P)

Correlation

CLIP

P - N = score diff. (D)

FEMALE  P +0.022

ANIMAL   N  -0.005

PLANT     D +0.022

Feature Score

Figure 1: We propose a simple framework to analyze
CLIP performance on SVO-Probes data. We test CLIP
on the benchmark, extract a diverse set of semantic fea-
tures from the data, and measure the correlation between
each feature and the CLIP score (P , N , or D). Features
with positive correlation (e.g., Female, Plant) impact
positively the model performance, while features with
negative correlation (e.g., Animal) impact negatively the
model performance.

as Winoground (Thrush et al., 2022), SVO-
Probes (Hendricks and Nematzadeh, 2021), or
VALSE (Parcalabescu et al., 2022), have designed
benchmark probing tasks by annotating data to fol-
low specific properties (i.e., object color, location,
size, swapping word order, replacing words). This
line of research led to valuable insights into the
limitations of current state-of-the-art multi-modal
models such as CLIP (Radford et al., 2021) and
ViLBERT (Lu et al., 2019).

An important limitation of current work is the
reliance on time-consuming data annotation proce-
dures, making it unscalable and limited in scope.
As a complementary solution, we propose a method
to probe vision-language models by relying on ex-
isting data, without requiring extra annotations.
The method consists of extracting a large set of
candidate features from a vision-language bench-
mark and testing their correlation with respect to
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the output of the target models on the given bench-
mark.

By applying our method on CLIP (Radford et al.,
2021), a widely used state-of-the-art multi-modal
model, using the SVO-Probes (Hendricks and Ne-
matzadeh, 2021) benchmark, we confirm the find-
ings of Thrush et al. (2022) of CLIP behaving like
a bag of words model and that of Parcalabescu et al.
(2022) of CLIP performing better with nouns and
verbs. We also find that CLIP gets confused by
concrete words and that it surprisingly improves
in performance for more ambiguous words while
noting little change from the word frequencies. To
the best of our knowledge, we are the first to con-
duct an in-depth analysis of how language semantic
properties influence CLIP’s performance.

We summarize our contributions as follows.
First, we propose a scalable way of measuring the
limitations of vision-language models. Second,
we test our method using a state-of-the-art vision-
language model (CLIP) and a popular benchmark
(SVO-Probes), validate known challenges, and un-
cover new ones. Third, our work opens up avenues
for future models to focus on solving the newly
discovered challenges.

2 Related Work

Recently, an increasing number of benchmarks
have been created for the evaluation of vision-
language model abilities to perform various multi-
modal tasks.

Hendricks and Nematzadeh (2021) evaluate
state-of-the-art vision-language models by building
SVO-Probes, a probing benchmark focused on verb
understanding. They show that image–language
transformers fail to distinguish fine-grained differ-
ences between images and find that they are worse
at verb understanding compared to subjects or ob-
jects. In our work, we continue their proposed
future work direction by analyzing model perfor-
mance on fine-grained verb categories.

Other work focuses on testing more precise ca-
pabilities of vision-language models using other
probing techniques. In VALSE, Parcalabescu et al.
(2022) demonstrate that vision-language models
have difficulty in counting objects and in correctly
classifying spatial relations between objects. Salin
et al. (2022); Zhao et al. (2022) show that, although
state-of-the-art vision-language models can grasp
color, they do not fully understand more difficult
concepts such as object size and position in the

image.
In Winoground, Thrush et al. (2022) designed

adversarial examples that require differentiating
between a similar image and text, where the text
pairs only differ in their word order. Their results
show that state-of-the-art vision-language models
lack compositional reasoning abilities. Several
other works build benchmarks on probing vision-
language on compositional reasoning (Akula et al.,
2020; Ma et al., 2023; Liu et al., 2023; Park et al.,
2022; Yuksekgonul et al., 2023) find that they be-
have like a bag-of-words model – i.e., have poor
relational understanding and a severe lack of word
order sensitivity.

In contrast, our work focuses not on creating
new probing tasks for vision-language models, but
on using current benchmarks to learn additional,
more fine-grained features that can be discovered
using simple correlation methods. To the best of
our knowledge, we are the first to analyze the per-
formance of CLIP on a diverse set of semantic
features and use correlation methods to draw in-
sights about what concepts are challenging for the
model.

3 Methodology to Probe CLIP

Given a benchmark, we measure how a vision-
language model performs on a variety of semantic
concepts. Our aim is to quantify which concepts
are the most and the least challenging for the model.
Our setting is illustrated in Figure 1, and can be
described in three main steps.

First, we use CLIP (Radford et al., 2021)
to compute scores for instances from the SVO-
Probes (Hendricks and Nematzadeh, 2021) dataset
and obtain two corresponding alignment scores for
each sentence and its corresponding positive and
negative image. Next, we extract and process a
diverse set of semantic features from SVO-Probes.
Finally, we compute the correlation coefficients
between each feature and the CLIP score. The
features with the highest coefficients will repre-
sent concepts that CLIP performs well on, while
features with the lowest coefficients will represent
challenging concepts for CLIP.

3.1 Dataset

We choose the SVO-Probes (Hendricks and Ne-
matzadeh, 2021) dataset due to its design and
large scale size (421 verbs and over 48,000 image-
sentence pairs). SVO-Probes was designed for
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probing image-text models for their understand-
ing of subject, verb, object triplets. Each instance
from the dataset consists of a text caption, a positive
image that matches the caption, and a controlled
(adversarial) negative image that shares two out of
three aspects (subject, verb, and object) from the
sentence but does not match the other one, as shown
in Figure 1. These controlled examples enable one
to probe models for their understanding of verbs
as well as subjects and objects. The instances also
include information about the negative image, such
as a (hidden) associated negative caption which we
leverage in this paper.

We propose to use this dataset to evaluate the
CLIP (Radford et al., 2021) model. We choose
to test CLIP, as opposed to other language-vision
models, due to its widely-spread use and impres-
sive zero-shot performance on a variety of vision-
language tasks (e.g., text-to-image retrieval, im-
age question answering, human action segmenta-
tion, image-sentence alignment – Cafagna et al.
2021). Furthermore, Hendricks and Nematzadeh
(2021) test only ViLBERT-based (Lu et al., 2019)
models, which are known to perform worse than
CLIP (Cafagna et al., 2021).

3.2 Model Output

As depicted in Figure 1, we obtain three CLIP
scores for each pair of positive and negative im-
ages: a positive score (P ), computed between the
caption and the positive image; a negative score
(N ), computed between the caption and the nega-
tive image; and the difference between these scores
(D = P −N ).

Because the text and the positive image are
aligned, P represents an absolute alignment score.
In the case of the text and the negative image, even
though the negative image is similar in some ways
to the text (because of how SVO-Probes was de-
signed), they do not correspond to each other. Thus,
N represents an absolute misalignment score. D
represents a relative alignment score. Ideally, CLIP
should have a high P score and a low N score,
and a high difference between them (a high D).
We propose to pay special attention to D given
that CLIP is generally used in relative comparisons,
such as when using it for classification (choosing
the class text that maximizes the alignment score,
given an image) or when using it for retrieval (find-
ing the text/image that maximizes the alignment
score given an image/text).

3.3 Feature Extraction

For each given sentence and corresponding image
in the benchmark, we extract features from the
words marked in the SVO-Probes benchmark (i.e.,
subject, verb, and object).

If the corresponding image is positive, all the
extracted features are from words in common, i.e.,
that appear both in the image and the text. Oth-
erwise, if the corresponding image is negative, in
addition to words in common, we also extract fea-
tures from words present in the sentence and not
in the image (original word) and words present in
the image but not in the text (replacement word).
As an example, in Figure 1 the words in common
are “sit” and “grass”, the original word is “girl”
and the replacement word is “dogs”. The original
and replacement words represent what is different
between the image and the text, while the words in
common, as the name suggests, represent what is
common between the image and the text.

We extract the following semantic textual fea-
tures: Levin (1993) verb classes, LIWC psycholin-
guistic markers (Pennebaker et al., 2007, 2015),
General Inquirer (Stone et al., 1967) semantic
classes, WordNet hypernyms (Miller, 1995), word
presence, semantic similarity, ambiguity, frequency,
sentence length, and concreteness (Brysbaert et al.,
2014).

Levin verb classes. Levin (1993) groups verbs
according to their semantic content and also accord-
ing to their participation in argument alternations.

Levin’s semantic content-based taxonomy pro-
vides a classification of 3,024 verbs into 48 broad
classes and 192 fine-grained classes.1 A verb can
belong to one or more classes. Some examples of
verb classes are: (1) broad change of state (e.g.,
clean, divide, soak), manner of motion (e.g., climb,
drop, run) or social interaction (e.g., marry, meet,
hug); (2) fine-grained: “roll” verbs (e.g., bounce,
coil, drift), “run” verbs (e.g., amble, bolt, race) or

“hug” verbs (e.g., cover, encircle, touch)

LIWC psycholinguistic markers. Linguistic In-
quiry and Word Count (LIWC) (Pennebaker et al.,
2007, 2015) is a widely used word-counting soft-
ware that includes dictionaries of English words
related to human cognitive processes. Specifically,
we use the LIWC2015 dictionary, which contains
6,400 words and word stems. Each word or word

1https://websites.umich.edu/~jlawler/
levin.verbs
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stem defines one or more categories: e.g., the word
“mother” is assigned the categories: female, family,
social.

General Inquirer classes. General In-
quirer (Stone et al., 1967) is a resource for
automatic content analysis. More specifically, it
categorizes words into emotional and cognitive
states, as well as into diverse semantic categories
outlined in the Lasswell dictionary (Namenwirth
and Weber, 1987, pg. 46–53).

WordNet classes. WordNet (Miller, 1995) is a
large lexical database of English words that are
grouped into sets of cognitive synonyms, known
as synsets. The synsets are interlinked by seman-
tic and lexical relations. The most frequent rela-
tion among synsets is the super-subordinate rela-
tion, also called hyperonymy. It links more general
synsets to specific ones: e.g., “building” is a hyper-
nym of “house” and “school”. For each given word,
we collect all the hypernyms of the most common
word synset.

Word presence. For each given word, we use
a marker to indicate if the word is present or not
in the sentence. Note that studying the effect of
specific words does not imply that they have no
dependencies with other words. Their role may
change depending on the context; however, we
study them in aggregate.

Sentence length. We measure the length of each
sentence as the number of words in the sentence.

Semantic similarity. In the case of nega-
tive images, we compute the cosine similar-
ity score between the original words and the
corresponding replacement words. The word
representations are computed using Sentence-
Transformers (Reimers and Gurevych, 2019), with
the model all-MiniLM-L6-v2, which is based
on MiniLM (Wang et al., 2020).

Concreteness score. For measuring the concrete-
ness of words, we use a dataset of words with as-
sociated concreteness scores from Brysbaert et al.
(2014). Each word is labeled by a human anno-
tator with a value between 1 (very abstract) and
5 (very concrete). Abstract words (e.g., “beauty",
“sadness”) denote ideas, feelings, or other intangi-
ble concepts while concrete words (e.g., “table",
“write”) refer to objects and actions.

Ambiguity. We measure the ambiguity of a given
word by counting the number of synsets in Word-
Net (Miller, 1995).

Frequency. We measure the word frequency in a
subset (∼13M image captions) of LAION (Schuh-
mann et al., 2021), a dataset representative of
CLIP’s training data.

3.4 Feature Representation

The binary features, i.e., Levin, LIWC, General
Inquirer, WordNet classes, and word presence, are
represented as binary vectors, while the numerical
features i.e., sentence length, concreteness, similar-
ity, ambiguity, and frequency are standardized. All
the features are then concatenated together.

3.5 Feature Selection

We measure the degree of correlation between each
feature and the model performance. For each of
the binary features, we compute a two-sample two-
tailed t-test (Student, 1908) along with the model
output score. This test evaluates if the means of
the populations coming from each feature value
(true or false) are significantly different. If so, we
compute the difference of means as a reference
value. In the case of numerical features, we com-
pute the Pearson’s correlation coefficient (Benesty
et al., 2009) between each feature and the model
performance score.

Next, we employ a one-sample, two-tailed t-test
to determine if the coefficient is significantly differ-
ent from zero, i.e., if there is any correlation accord-
ing to this metric. We chose a p-value threshold of
0.05 (a confidence level of 95%) to filter out the
features.2

3.6 Experimental Details

We use an OpenAI pre-trained CLIP (Radford et al.,
2021) ViT-L/14 (Dosovitskiy et al., 2021) model.

4 Results

Our main observations and takeaways from this
evaluation are the following:

(1) CLIP behaves like a bag-of-words model.
As shown in Figure 2, the distributions of P and N
highly overlap. This is explained partly by the neg-
ative image being adversarial; it contains elements

2See the obtained scores and p-values in the web page from
this paper: https://github.com/MichiganNLP/
Scalable-VLM-Probing.
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Figure 2: Histogram plot of the distribution of CLIP
scores between the text with the positive image, and the
text with the negative image. A kernel density estima-
tion curve is included to aid this visualization.

in common with the text. This finding is coher-
ent with that of Thrush et al. (2022), that CLIP
performs like a bag-of-words model.

This finding is also supported by the fact that
many features from words in common contribute to
increasing both the positive (P ) and the negative
scores (N ): e.g., hypernym_food.n.02 increases
P by 0.042 and N by 0.050; LIWC “money” in-
creases P by 0.036, and N by 0.032. As described
in Section 3.5, we measure the importance of each
feature as the difference of means between the
CLIP scores when the feature is present and when
is not. We observed that many of the features for
the words in common appeared to influence simi-
larly both P and N , confirming this hypothesis.

(2) CLIP performs better with nouns than with
verbs. When computing the number of times
CLIP assigns a higher score to the similarity be-
tween the text and the positive image as compared
to the similarity between the text and the negative
image, the verbs obtain 81.45% accuracy while
the subjects get 86.87% and the objects 88.78%.
The number obtained for verbs is relatively close
to that of a similar setting experimented by the
VALSE benchmark (Parcalabescu et al., 2022), in
which they reported 75.6% accuracy (also con-
sidering that we could not determine which pre-
trained CLIP variant the authors evaluated). At the
same time, the noun (objects and subjects) replace-
ment numbers are consistent with those reported
by the same authors (88.8%), obtained from FOIL
it! (Shekhar et al., 2017).
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Figure 3: Linear regression plot of the average concrete-
ness for the words in the sentence that are common to
both images vs. the CLIP score. The shadowed areas
are 95%-confidence intervals for the expected value.

(3) CLIP gets confused by concrete words. Fig-
ure 3 shows both the positive and negative CLIP
scores improve the more concrete a word is (words
from the caption represented in both the positive
and the negative images). As seen in this figure,
however, the negative score increases faster. This
implies that, in an image classification or image-
to-text retrieval setting, CLIP will more likely con-
sider an incorrect text as correct if it has more
concrete words than the actual correct text.

(4) CLIP prefers average-length sentences. We
present in Figure 4 how the score is affected by
the caption sentence word length. CLIP presents
a low performance when the sentences are very
short (around 3 words long), improving when the
sentences are longer since the difference between
the positive and negative scores (D) gets larger
with the sentence length.

Figure 5 shows how the CLIP scores are dis-
tributed for the different number of words, showing
for example that there is a great overlap between
the similarity scores between texts of length 6 and
a negative image, and the similarity scores between
texts of length 3 and a positive image. This implies
CLIP is more likely to select the wrong text when
comparing an image with a short correct text and
one with long incorrect text.

(5) CLIP is affected by word frequency. Fig-
ure 6 studies the frequency effect on the score for
the words that represent concepts that appear in
both the positive and negative images. The more
frequent a word is, the higher the CLIP score. Still,
the difference in scores is barely affected.
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Figure 4: Line plot of the number of words in the caption
sentence vs. the CLIP score. The shadowed areas are
95%-confidence intervals for the expected value.
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Figure 5: Box plot for the number of words in the cap-
tion sentence vs. the CLIP score. Unlike Figure 4 that
shows the expected values, this plot shows the distribu-
tions.
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Figure 6: Linear regression plot of the average fre-
quency for the words in the sentence that are common
to both images vs. the CLIP score. The shadowed areas
are 95%-confidence intervals for the expected value.
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Figure 7: Linear regression plot of the average synset
count for the words in the sentence that are common to
both images vs. the CLIP score. The shadowed areas
are 95%-confidence intervals for the expected value.

(6) The score improves for more ambiguous
words. Surprisingly, there is a larger gap in the
score difference (D) when the words have more
meanings associated with them (for the words that
represent concepts in both the positive and negative
images), as shown in Figure 7. The positive score
seems to remain almost constant while the negative
score drops, widening the difference. The word
frequency seems not to be a confounding factor
based on (5).

(7) Similar situations confuse CLIP. Unsurpris-
ingly, the higher the similarity between the caption
and the negative image caption, the higher the neg-
ative CLIP score, as depicted by Figure 8.

We also studied the influence of the similarity
between the original word (from the caption) and
the replacement word (from the text associated
with the negative image) in Figure 9. The effect of
the word change seems to be smaller than that of
the whole sentence change.

(8) CLIP performs relatively better on nature-
related and personal care concepts and relatively
worse on furniture, transportation, herbivores,
sports, academia. As mentioned in Section 3.2,
score D measures the relative CLIP performance,
which is more relevant for retrieval models like
CLIP. Therefore, we measure the importance of
each feature with respect to D. Specifically, we
compute the mean differences of theD scores when
the binary feature is present and when is not. We
show the CLIP performance analysis on binary
features in Table 1. Following the example of
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Topic Feature Mean diff. Example Words

CLIP PERFORMS BETTER ON

Natural
Phenomenon

Hypernym physical_phenomenon.n.01 (original) 0.038 snow, fog, rain, mist
Hypernym physical_phenomenon.n.01 (replacement) 0.022 snow, rain, cloud, fog, mist

Waterfront
Infrastructure

Hypernym platform.n.01 (original) 0.038 pier, deck, podium
Hypernym horizontal_surface.n.01 (original) 0.032 pier, pavement, quay

Landscapes

Hypernym community.n.06 (original) 0.038 meadow, desert, grassland
Hypernym natural_elevation.n.01 (original) 0.035 dune, sandbar, reef
Hypernym geological_formation.n.01 (original) 0.027 beach, shore, cliff
Hypernym plant.n.02 (original) 0.025 grass, tree, flower
Hypernym natural_elevation.n.01 (replacement) 0.020 mountain, hill

Grooming

Presence of word “wash” (original) 0.035 wash
Levin “floss verbs” (original) 0.030 wash, brush, shave
Levin “wipe verbs”(original) 0.022 wear, sweep, trim, rub
Levin “dress verbs” (original) 0.027 exercise, bathe, dress

Domestic
Animals

Hypernym young.n.01 (original) 0.033 puppy, kitten, foal
Hypernym domestic_animal.n.01 (original) 0.032 puppy, retriever, pug
General Inquirer “animal” (replacement) 0.023 dog, animal, cat, goat
Hypernym canine.n.02 (replacement) 0.021 puppy, retriever, pug

CLIP PERFORMS WORSE ON

Furniture

Presence of word “sofa” (in common) -0.032 sofa
Hypernym bedroom_furniture.n.01 (in common) -0.026 bed, sofa
Hypernym furniture.n.01 (in common) -0.017 couch, bed, sofa, chair, bench
LIWC “home” (in common) -0.015 bed, window, sofa, room

Transportation

Presence of word “ride” (original) -0.027 ride
Hypernym vessel.n.02 (in common) -0.019 boat, ship, yacht
Levin “pedal” verbs (original) -0.018 ride, drive, fly, sail, cruise
Hypernym craft.n.02 (in common) -0.018 boat, balloon, ship, scooter, kayak

Herbivores Hypernym ungulate.n.01 (in common) -0.021 horse, cow, camel, goat, deer
Presence of word “horse” (in common) -0.019 horse

Sports
Hypernym happening.n.01 (in common) -0.021 wave, win, tap, slam
Hypernym contestant.n.01 (in common) -0.020 footballer, golfer, goalkeeper,

cricketer, tackle
Levin “admire” verbs (original) -0.017 stand, enjoy, admire, support

Academia
General Inquirer “academia” (in common) -0.020 student, classroom, library, teacher,

book, computer, conference
Presence of word “student” (in common) -0.020 student

Table 1: CLIP relative performance analysis on a subset of binary features: the top-5 easier topics are Natural
Phenomenon, Waterfront Infrastructure, Landscapes, Grooming and Domestic Animals, while the top-5 harder
topics are Furniture, Transportation, Herbivores, Sports and Academia.
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Figure 8: Linear regression plot of the similarity be-
tween the text caption and the negative image text cap-
tion vs. the CLIP score for the negative image. The
shadowed areas are 95%-confidence intervals for the
expected value. The unimodal distributions are also
shown.
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Figure 9: Linear regression plot of the similarity be-
tween the originally replaced word from the text caption
and new word from the negative image text caption vs.
the CLIP score for the negative image. The shadowed ar-
eas are 95%-confidence intervals for the expected value.
The unimodal distributions are also shown.

SEAL (Rajani et al., 2022), we use ChatGPT to
cluster the features under a broad topic automati-
cally.3

We find that CLIP performs relatively better on
topics related to nature: Natural Phenomenon, Wa-
terfront Infrastructure, Landscapes, Domestic Ani-
mals, and personal care: Grooming, and worse on
topics like Furniture, Transportation, Herbivores,
Sports and Academia.

5 Conclusion

In this work, we proposed a simple and effective
method to probe vision-language models. Our
method is scalable, as it does not require data anno-
tation and makes use of existing datasets. With our
method, we analyzed the performance of CLIP, a
popular state-of-the-art multi-modal model, on the
SVO-Probes benchmark. We confirmed the recent
findings of Thrush et al. (2022) of CLIP behaving
like a bag of words model and that of Parcalabescu
et al. (2022) of CLIP performing better with nouns
and verbs. We also uncovered novel findings, for in-
stance, that CLIP gets confused by concrete words,
surprisingly improves performance for more am-
biguous terms, or that the frequency of words does
not significantly change the behavior of CLIP.

We hope our work contributes to ongoing ef-
forts to discover the limitations of multi-modal
models and help build more robust and reli-
able systems. Our framework can be easily
used to analyze other benchmarks, features, and
multi-modal models, and it is publicly available
at https://github.com/MichiganNLP/
Scalable-VLM-Probing.

Limitations

SVO-Probes dataset is not balanced. For exam-
ple, “person”, “man”, and “woman” are consid-
erably more frequent than other words. Future
work can address this limitation by aggregating
data from multiple datasets and balancing it out.
At the same time, the target dataset should reflect
the phenomenon one wants to study. For example,
LAION (Schuhmann et al., 2021) could be em-
ployed to study how VLMs perform with everyday
human actions. Still, it may be too centered around
objects (as opposed to actions) and overly noisy –
future work can consider using subsets instead. A

3We use the following prompt: "Name a topic for the
following words: . . . "
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smaller yet cleaner alternative is Conceptual Cap-
tions (Sharma et al., 2018).

Another limitation is not considering the poly-
semy when using LIWC or Levin dictionaries. This
may lead to incorrect word categorization and in-
fluence the error analysis. Future work can mediate
this limitation by linking semantic dictionaries such
as Levin or LIWC with their WordNet synsets.
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Abstract

Existing work on controlled text generation
(CTG) assumes a control interface of categori-
cal attributes. In this work, we propose a natu-
ral language (NL) interface, where we craft a
PCFG to embed the control attributes into natu-
ral language commands, and propose variants
of existing CTG models that take commands as
input. In our experiments, we design tailored
setups to test the model’s generalization abili-
ties. We find our PCFG-based command gener-
ation approach is effective for handling unseen
commands compared to fix-set templates. Fur-
ther, our proposed NL models can effectively
generalize to unseen attributes (a new ability
enabled by the NL interface), as well as unseen
attribute combinations. Interestingly, in model
comparisons, the simple conditional generation
approach, enhanced with our proposed NL in-
terface, is shown to be a strong baseline in those
challenging settings.

1 Introduction

With the advancement of large-scale pretraining,
language models (LM) are now able to generate in-
creasingly more realistic text (Radford et al., 2019;
Brown et al., 2020; Rae et al., 2021; Hoffmann
et al., 2022; Smith et al., 2022; Thoppilan et al.,
2022). Therefore, how to control the generation of
LMs has become an important research topic. In
controlled text generation (CTG), a series of works
(Keskar et al., 2019; Dathathri et al., 2020; Krause
et al., 2021; Yang and Klein, 2021; Liu et al., 2021;
Yu et al., 2021; Li et al., 2022, inter alia) propose
model frameworks to generate text conditioned on
some desired (user-specified) attribute a. These
attributes, which depend on the datasets of interest,
could be topic, formality, sentiment, etc.

An important assumption behind this controlled
generation setting is that the attributes are chosen
from a fixed set (i.e., they are treated as categorical
random variables). Although this setting is con-
venient, it seriously limits the applications of the

Figure 1: We explore generation models that take natu-
ral language commands as input. For training, we use
PCFG to embed categorical control attributes into natu-
ral language commands.

CTG system: (1) Since the attribute set is fixed dur-
ing training, it would be impossible for the model
to generalize to unseen options if used as-is. (2)
This interface is not very human-friendly, because
it could be difficult for users to navigate through
the (possibly long) lists of options. Motivated by
these limitations, in this work we propose a natu-
ral language interface for CTG, illustrated in Fig-
ure 1. With this change of interface, the input to the
CTG model changes from one-hot vectors to natu-
ral language commands (for short, commands). To
efficiently train this system and enable it to general-
ize, we design a probabilistic context-free grammar
(PCFG) to embed categorical attributes into a di-
verse set of natural language commands.

Using natural language instruction has been ex-
plored in recent work (Sanh et al., 2021; Wei et al.,
2022; Mishra et al., 2022; Reif et al., 2022; Schick
and Schütze, 2021). Our work differs from theirs
in (1) We focus on the task of CTG as opposed to
the performance on cross-task generalization, and
design tailored scenarios for evaluation. (2) We in-
troduce PCFG for command generation, which has
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not been explored by previous work. We discuss
this relationship in more detail in Section 2.

The change of interface brings several immedi-
ate benefits: (1) Natural language inputs enable the
system to generalize to unseen attribute options (as
long as they can be expressed in natural language).
(2) Unlike fixed-set template sentences in previ-
ous works, the PCFG can generate diverse natural
language variation during training, which we will
show is crucial for generalization. (3) The input
process becomes more natural and interactive to a
human user, and it can be linked with, for example,
a speech recognition module.

With this new interface, we propose variants of
several existing CTG systems that take commands
as input, and design experiments to compare dif-
ferent CTG models under tailored scenarios. We
briefly summarize our main contributions below:

• We propose a PCFG-based natural language
interface for controlled text generation. The
natural language interface enables zero-shot
generalization on control attributes unseen
during training, a capability previously im-
possible due to the fixed-set assumption.

• We show that training with commands gener-
ated by a PCFG is an effective method for in-
creasing natural language variation over using
fixed-set templates, allowing natural language
CTG models to better generalize to commands
unseen during training.

• We test the proposed natural language CTG
models on settings where the models need to
generalize to unseen attributes and attribute
combinations. Surprisingly, the simple condi-
tional generation approach is shown to be a
strong baseline in these challenging setups.

2 Related Work

Controlled Text Generation In open-ended text
generation, a series of approaches have been pro-
posed to control the generation to satisfy certain
attributes (e.g. topic) (Keskar et al., 2019; Dathathri
et al., 2020; Krause et al., 2021; Yang and Klein,
2021; Liu et al., 2021, inter alia). Some of these
studies utilize a trained classifier to guide the gen-
erative model towards the desired attribute, while
others use a smaller LM to reweight LM logits.
Very recently, Li et al. (2022) focus on controlling
more complex attributes such as syntactic struc-
ture with a non-autoregressive LM. Another line

of work conducts CTG via prompt learning (Clive
et al., 2022; Yang et al., 2022). These work assume
a fixed set of control attributes.

Our NL interface is more related to Yu et al.
(2021), which uses an attribute alignment function
to embed attribute words into a hidden representa-
tion that guides LM generation. The attribute align-
ment function does not assume attribute tokens are
from a fixed set, so it is possible to do inference
on an attribute token not seen in training. Key-
word2Text (Pascual et al., 2021) shift the distribu-
tion over vocabulary toward words that are semanti-
cally similar to control keywords in a discriminator-
free manner, thus does not assume a fixed set of
keywords. Besides attribute control, lexically con-
strained decoding (Post and Vilar, 2018) has also
been used to enforce certain key phrases to be in-
cluded in the generation (Mao et al., 2020). Dif-
ferent from these work which uses keywords, we
utilize PCFG to construct fully-natural-language
sentences as commands.

Instruction Following A recent series of work
proposes to describe NLP tasks in natural language,
and use the task description as an instruction to
promote zero-shot generalization for LMs (Sanh
et al., 2021; Wei et al., 2022, inter alia). Such task
descriptions are manually created, detailed defi-
nitions of NLP tasks, which contain explanations
about input, output, emphasis, and possibly a small
number of demonstrative examples. InstructGPT
(Ouyang et al., 2022) uses an RL policy to improve
LM’s capability to follow user instructions.

Although our work resembles these works in the
form of natural language instructions, we note sev-
eral important differences. First, existing works
focus on general instruction following that is appli-
cable to a very broad range of tasks and evaluate on
generalization capabilities across tasks. We specifi-
cally consider the use of NL commands in the CTG
setting and compare variants of CTG models in
tailored test scenarios. Moreover, previous works
in natural language instruction employ a fixed num-
ber of templates for each task, whereas we craft a
PCFG that can generate a diverse set of command
sentences to serve as templates. We show the ef-
fectiveness of our PCFG over fixed-set templates
in subsequent experiments in Section 5.1. Finally,
prompting models with NL instructions fails for
moderately sized LMs without any modifications
Li and Liang (2021). Thus, it is non-trivial to adapt
NL instruction to smaller models.
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3 Framework

The goal of controlled text generation is to model
the conditional distribution P px|aq so that the gen-
erated text x satisfies the desired attributes a. a
could include multiple attributes (e.g., topic and
length), and we will use ai to denote the ith at-
tribute. In the standard categorical setting, the at-
tribute ai are from a fixed set of pre-defined op-
tions. We assume there are m attributes of interest
(m ď 2 in our experiments). In the next few sec-
tions, we describe the PCFG that we craft to embed
the categorical attributes, and our proposed NL
variants of several existing CTG systems.

3.1 Embedding Attributes into Commands

We embed categorical attributes into natural lan-
guage commands with a PCFG.1 We favor PCFG
due to its ability to generate diverse NL variations
expressing the same control semantics. For sim-
plicity, most of the probability weights are set to
uniform. In this section, we will describe it at the
high-level, and more details and the full set of rules
are provided in Appendix C. Table 1 is a concrete
example of how a command describing an AG news
article with a sports topic could be generated by
our PCFG. We clarify that while the PCFG is used
for training and testing in our work, the end user
will not need to use it, as the model can generalize
to unseen commands (Section 5.1).

Our command generation has three steps. First,
a template with m attribute slots is generated by
the PCFG. We design the PCFG to generate tem-
plates that “ask” the system to generate text with
some attributes and domains. We first sample
a top-level seed template from ROOT that deter-
mines high-level sentence structure (e.g., [PLS]
[HEAD-FORM] a [TEXT-FORM] [LABEL-SEG]), then
fill in sentence segments with PCFG rules (e.g.,
[HEAD-FORM] will be substituted by “generate”).
These sentence segments are neither domain nor
attribute specific and thus can be used regardless of
the attributes. In contrast to writing a set of fixed
templates, our PCFG has multiple levels of rule
and can greatly improve NL variation.

Next, we verbalize the domain media D, at-
tribute a, and attribute name A into natural lan-
guage by crafting PCFG rules that transform them
into words or phrases. Considering the fact that dif-
ferent words could have similar meanings in natural

1Note that our command generation process is not strictly
a PCFG, but it is very close.

1. PCFG-based template generation
(1) Generate top-level seed template from ROOT:
ñ [PLS] [HEAD-FORM] a [TEXT-FORM] [LABEL-SEG].
(2) Select PCFG rules to generate template:
[PLS] Ñ . . . Ñ please, [HEAD-FORM] Ñ . . . Ñ generate,
[TEXT-FORM] Ñ . . . Ñ D
[LABEL-SEG] Ñ . . . Ñ with a a A
ñ please generate a D with a a A.

2. Verbalize
ñ please generate a AG news report with a sports topic.

3. Postprocess
ñ Please generate an AG news report with a sports topic.

Table 1: Examples of PCFG command generation. ROOT
is the PCFG start symbol. Newly replaced segments are
highlighted in red. In step 1.(2), we omit intermediate
PCFG expansions to “Ñ . . . Ñ”.

language, these mappings could be one-to-many to
further improve NL variation. For instance, news
about “business” can also be described as “com-
merce”, and “very negative” is similar to “terrible”.

Finally, we conduct a postprocessing step to cor-
rect simple grammar errors, e.g., “a AG news arti-
cle” would be corrected as “an AG news article”.

In our preliminary attempts, we attempted to
train a conditional neural LM for command genera-
tion, instead of using a PCFG. Although the neural
model has better diversity, the stochastic nature of
sampling makes the attribute embedding inaccurate.
Besides, training such a neural LM would require
a large amount of (attribute, command) paired data.
Therefore we turn to a PCFG approach as it has
guaranteed accuracy, with decent diversity.

3.2 Models

In this section, we first review some existing CTG
models. For the new NL interface, we propose nat-
ural variants of the models which take commands
as input. All models are based on a pretrained
autoregressive LM, denoted by Pb.

3.2.1 PrefixLM
A direct method to model the conditional distribu-
tion P px|aq is to encode the attribute as a prefix and
finetune the base model to generate x conditioned
on the prefix. In the standard categorical attribute
setting, we randomly initialize an embedding vec-
tor for each attribute and feed the corresponding
embeddings as the prefix. Multiple attributes are
arranged in a pre-defined order.

PrefixLM-NL The NL variant of PrefixLM is
straightforward. We just use the command as the
prefix. No extra parameters need to be added.
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3.2.2 Future Discriminator Controlled
Generation (FUDGE)

FUDGE (Yang and Klein, 2021) decomposes the
conditional distribution using Bayes’ rule accord-
ing to Equation 1:

Pfudgepxi|x1:i´1, aq 9 Pbpxi|x1:i´1qPclspa|x1:iq.
(1)

It involves training a future discriminator to pre-
dict whether the generated prefix x1:i will lead
to a full generation that satisfies the attribute a.
Following FUDGE’s original formulation, we as-
sume different attributes are conditionally inde-
pendent and train a discriminator P pak|x1:iq for
each attribute ak. We then use their product as
the probability that all attributes are satisfied, i.e.,
P pa1, . . . , am|x1:iq “ ś

k P pak|x1:iq.
As we consider attributes with multiple options

(e.g., 4 topics or 5 sentiments), the FUDGE discrim-
inator for a single attribute is a multiclass classifica-
tion model that predicts the conditional distribution
P pa|x1:iq over all possible options of attribute a.

FUDGE-NL In order to enable FUDGE to han-
dle natural-language commands, we utilize a bi-
nary alignment discriminator to judge whether the
generated text aligns with the command. Given a
command c, let yc P t0, 1u be a binary variable
that denotes whether the prefix x1:i aligns with the
command. Control is achieved by generating from
the conditional distribution P pxi|x1:i´1, yc “ 1q
that the alignment property is satisfied. We modify
FUDGE’s decomposition as Equation 2:

Pfudge-nlpxi|x1:i´1, yc “ 1q
9 Pbpxi|x1:i´1qPclspyc “ 1|x1:iq. (2)

Pclspyc “ 1|x1:iq is modeled by a binary classi-
fier trained on a dataset of command and generation
prefix pairs tpc, x1:iqu. To create this data, for a
given example text x with attributes a, we first ap-
ply our PCFG to generate a true command cpos. We
then randomly flip one (or both) of the attribute in
a, and generate a false command cneg. By pairing
cpos and cneg with x, we obtain the positive/nega-
tive training data for the discriminator. In practice,
we concatenate the command and generation prefix
(separated by a special [SEP] token) and feed it as
input to the alignment discriminator.

FUDGE-Binary One major difference between
FUDGE and its NL variant is that the discriminator

is always binary for FUDGE-NL due to the align-
ment objective. This inspires us to propose a bi-
nary variant of the FUDGE model, FUDGE-Binary,
which operates with the categorical interface. Sim-
ilar to FUDGE-NL, we use a binary variable ya
to denote whether x1:i aligns with attribute a, and
modify the decomposition as:

Pfudge-binpxi|x1:i´1, ya “ 1q
9 Pbpxi|x1:i´1qPclspya “ 1|x1:iq. (3)

FUDGE-Binary’s discriminator will always
make a binary prediction even if there are more
than two options for a single attribute. Since at-
tributes are still from a fixed set, we use a single
classification model but attach a separate classifier
head for each option. During training, the classifi-
cation head Wa˚ that matches the correct attribute
a˚ receives a correct label y “ 1, and all other
classification heads tWaua‰a˚ receive label y “ 0.
At test time, we select the classification head Wa

base on the desired attribute a to predict the align-
ment probability P pya “ 1|x1:iq. Although this
variant is a simple modification from the original
FUDGE, empirically we find it to achieve stronger
performance in the categorical interface.

4 Experimental Setup

4.1 Datasets
We utilize two popular text classification datasets
for our experiments: AG News and Yelp Review.2

For each dataset, we consider two control attributes:
label and length. The label attribute is extracted
from the classification label, i.e., topic labels for
AG News and sentiment labels for Yelp Review.
There are 4 topics {world, sports, business, sci-
ence/tech} in AG News and 5 sentiment classes
ranging from most positive to most negative in Yelp
Review. The length attribute is created by dividing
the dataset to nlen length ranges so that number of
training examples in each length range is balanced.
We use nlen “ 3 for AG News and nlen “ 5 for
Yelp Review. We refer readers to Appendix A for
details about dataset preprocessing.

4.2 Evaluation Metrics
We measure the generation performance in three
aspects: control accuracy, quality, and diversity. In
our experiments, we find that different variants of
models mostly perform comparably on quality or

2Obtained from Hugging Face Datasets.
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diversity aspects. Therefore, we will mainly focus
our discussion on control accuracy.

Control Accuracy To evaluate the effectiveness
of the control, we consider three types of control ac-
curacy: LABEL ACCURACY refers to the accuracy
that the generation satisfies the classification label,
i.e., topic classification accuracy on AG News and
sentiment classification accuracy on Yelp. This
metric is computed by a RoBERTa classifier fine-
tuned on the corresponding classification dataset.
LENGTH ACCURACY refers to the accuracy that
the generation’s tokenized length lies within the
predefined length range. COMPOSITIONAL ACCU-
RACY is the accuracy that both label and length
attributes are satisfied.

Text Quality We consider two metrics to mea-
sure the quality of the generated text. GPT-NEO

PERPLEXITY (G-PPL): we finetune the GPT-Neo-
1.3B model3 on the corresponding datasets (with-
out the labels), and report the perplexity of the
generated text given by it. BLEU score: we ran-
domly sample 100 examples from the AG News
or Yelp test set as the reference, and compute the
4-gram BLEU score.

Diversity We measure diversity of the generated
text using 4-gram TEXT ENTROPY (Zhang et al.,
2018). That is, treat the generated token frequency
as a discrete distribution, and compute its entropy.

4.3 Model Instantiation

Here we describe the implementation of models
mentioned in Section 3.2. We use the Hugging
Face transformers library (Wolf et al., 2020) and
adapt from FUDGE’s released code.4

For all models, we produce generation by top-k
sampling with k “ 20 unless otherwise stated.

PrefixLM variants We finetune a GPT-2 (Rad-
ford et al., 2019) small model without any mod-
ification (except for adding necessary special to-
kens) for both PrefixLM and PrefixLM-NL. At test
time, we feed the desired attributes or command
sentences as the prefix and evaluate on the continu-
ation produced by the model.

FUDGE variants The backbone language model
Pb for FUDGE models is a GPT-2 small model
finetuned on the corresponding dataset, using the

3A publicly-available replication of GPT-3 obtained from
https://huggingface.co/EleutherAI/gpt-neo-1.3B.

4Our code and data will be released in the public version
of this manuscript.

same data available at discriminator training. That
is, under the zero-shot setting, we use the same
data configuration to finetune the backbone LM.

For FUDGE and FUDGE-Binary, we train two
discriminator for each of the label (topic or senti-
ment) and length attribute; FUDGE-NL use a single
alignment discriminator to handle commands.

Each discriminator for FUDGE and FUDGE-NL
is a GPT-2 small model followed by a single linear
classification layer (with different numbers of out-
put classes). The discriminator for FUDGE-Binary
is a GPT-2 small model followed by multiple linear
classification layers, with each one corresponding
to an option for the label or length attribute. Each
classification layer makes a binary prediction about
whether the generation prefix satisfies the particular
option of the attribute.

5 Experiments

We design experiments to test natural language
CTG models’ generalization capabilities, where the
models need to generalize to (1) unseen commands
(2) unseen attribute options (3) unseen combina-
tions of attribute options. Additionally, we compare
natural language CTG models with their categori-
cal counterparts under the standard full-data setting
to test whether the NL interface would degrade the
model’s performance.

5.1 Generalization to Unseen Commands

A key challenge introduced by the new interface is
the diversity of natural language: commands with
different surface forms can have the same underly-
ing semantic. Thus we design a set of experiments
to test natural language CTG models’ ability to
generalize to commands unseen during training.
Specifically, we compare the effectiveness of our
proposed PCFG with commands generated by fix-
set templates, as adopted in previous works (Sanh
et al., 2021; Wei et al., 2022; Mishra et al., 2022).

To create a setup similar to previous work, we
hand-crafted 20 diverse templates for each dataset.
This is already twice the number of templates used
in Wei et al. (2022) and comparable to the num-
ber of seed templates in our PCFG. We denote
models trained on this set of templates by “-T20”
suffix. We also explore a stronger version of fix-
set templates by doubling the number of templates,
totaling 40 templates for each dataset, denoted by
“-T40” suffix. We test the above models on 20
hand-crafted unseen templates that are different
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Control Accuracy Text Quality Diversity

DATASET METHOD LABEL Ò LENGTH Ò COMP. Ò G-PPL Ó BLEU Ò ENT. Ò

AG News

PrefixLM-NL-T20 .922 .522 .458 12.345 .865 11.412
PrefixLM-NL-T40 .923 .496 .424 11.981 .863 11.405
PrefixLM-NL-PCFG .933 .567 .505 12.350 .868 11.381

FUDGE-NL-T20 .936 .717 .603 11.677 .864 11.368
FUDGE-NL-T40 .938 .759 .664 11.678 .864 11.355
FUDGE-NL-PCFG .955 .936 .826 12.174 .863 11.369

Yelp Review

PrefixLM-NL-T20 .389 .612 .177 10.523 .943 11.916
PrefixLM-NL-T40 .398 .603 .216 10.309 .943 11.935
PrefixLM-NL-PCFG .443 .721 .250 10.251 .945 11.869

FUDGE-NL-T20 .364 .531 .148 9.567 .936 12.155
FUDGE-NL-T40 .538 .619 .249 9.986 .944 11.918
FUDGE-NL-PCFG .687 .864 .462 10.341 .941 11.836

Table 2: Results for experiment on PCFG effectiveness. Training NL CTG models with PCFG-generated commands
greatly improves controllability on unseen commands, compared to models trained on fixed-set templates.

from both the PCFG and fixed-set templates, and
compare results with our proposed PCFG-based
models, denoted by “-PCFG” suffix.

The results in Table 2, show that when condition-
ing on unseen commands, both the PrefixLM-NL
and FUDGE-NL models with PCFG have notably
better controllability compared to fixed-set tem-
plate models. The above experiments provide em-
pirical evidence that our PCFG can effectively
improve the model’s generalization ability on
natural language variation within commands.

5.2 Generalization to Unseen Attributes

CTG models with categorical attributes can only
control a fixed set of attribute options. It is impos-
sible for these models to control unseen attribute
options without re-training due to architecture con-
straints (e.g., FUDGE trains a classifier with a fixed
number of labels). In contrast, our proposed NL in-
terface naturally allows CTG models to generalize
to unseen options by embedding novel attributes
into an NL command using a verbalizer phrase un-
seen during training, as long as the novel attributes
could be described in natural language. In this
section, we conduct experiments to test our PCFG-
based natural language CTG models’ capabilities
to generalize control to unseen attribute options.

Experimental setup In this section, we control
a single attribute (topic) for ease of presentation.
Although it is possible to also experiment on the
length attribute, they are similar in nature. For an
attribute with n classes (e.g., 4 different topics), we
create n zero-shot data splits and delete examples
from one of the n classes (i.e. the zero-shot class)

completely during training. We test on both the
zero-shot and other seen classes separately and re-
port the average result over all n splits. We conduct
zero-shot experiments on the AG News dataset.

Adding extra data Since natural-language CTG
models do not assume the attribute is from a fixed
set of options, it is possible to train the model to
control attributes by using extra data with different
attribute options. This is another capability enabled
by our NL interface, previously unavailable due to
the fix-set assumption. We experiment training the
models on the zero-shot AG News split along with
similar datasets in the news domain, aiming to test
whether the model can learn from extra data and
generalize to a wider range of attribute options. We
utilize three extra news topic classification datasets:
News Popularity, News Category (Misra, 2022;
Misra and Grover, 2021), and the Inshorts News
dataset.5 Topics that overlap with AG News are
removed. We refer readers to Appendix A for more
details. For these datasets, we use the same PCFG
as AG News. When mixing multiple datasets dur-
ing training, we follow Raffel et al. (2020) and use
examples-proportional mixing to control the rela-
tive frequency of examples from each dataset. We
set the artificial limit of each extra dataset to the
size of the original AG News dataset.

The zero-shot results are shown in Table 3. Since
the categorical interface does not allow unseen cat-
egories, we introduce a no-control baseline by fine-
tuning the base LM with the same zero-shot data
and producing generations from it directly without
control. Both FUDGE-NL and PrefixLM-NL beat

5Obtained from Hugging Face Datasets and Kaggle.
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Control Text Quality Diversity

ACC. Ò G-PPL Ó BLEU Ò ENT. Ò
SETUP METHOD Z.S. Reg. Z.S. Reg. Z.S. Reg. Z.S. Reg.

No Control Baseline GPT-2-finetuned .009 .343 11.050 11.062 .866 .867 9.745 9.735

Zero-shot data

PrefixLM-NL .222 .967 14.797 11.556 .867 .860 9.736 9.726
FUDGE-NL .038 .927 21.604 11.497 .601 .863 9.359 9.748

PrefixLM-NL-unb .204 .913 12.980 11.387 .871 .862 9.738 9.737
FUDGE-NL-unb .203 .773 21.547 11.795 .623 .862 9.537 9.762

+Extra data

PrefixLM-NL .448 .960 17.559 12.521 .868 .860 9.772 9.759
FUDGE-NL .071 .935 22.727 11.430 .782 .863 9.536 9.741

PrefixLM-NL-unb .455 .928 14.611 11.716 .867 .861 9.734 9.752
FUDGE-NL-unb .416 .784 24.898 11.933 .769 .864 9.587 9.748

Table 3: Results for zero-shot setting. Z.S. (zero-shot) denote metrics computed with the zero-shot class, REG.
(regular) denote metrics computed with seen classes during training. The simple PrefixLM-NL approach outperforms
FUDGE-NL. Adding extra data doubles the zero-shot accuracy.

Compositional Accuracy Text Quality Diversity

DATASET METHOD TEST Ò ORIG. Ò DIFF. Ó G-PPL Ó BLEU Ò ENT. Ò
AG News PrefixLM-NL .593 .612 .019 11.793 .861 10.293

FUDGE-NL .548 .914 .366 57.295 .677 10.140

Yelp Review PrefixLM-NL .537 .547 .010 13.831 .944 10.892
FUDGE-NL .046 .640 .551 19.335 .779 9.725

Table 4: Results for compositional setting. TEST denote accuracy for unseen attribute combinations, ORIG. denote
accuracy in full-data setting, and DIFF. shows the difference. PrefixLM-NL suffers little performance loss when
generalizing to unseen attribute combinations, but FUDGE-NL’s performance substantially degrades.

this baseline.
We observe that the simple PrefixLM-NL ap-

proach outperforms FUDGE-NL by a large margin
in both zero-shot data and zero-shot + extra data
setting. Moreover, as measured by both perplexity
and BLEU, PrefixLM has higher generation quality
as well. While there is still a large gap between
the zero-shot and non-zero-shot label accuracy, the
extra data approach managed to double the zero-
shot accuracy in both NL models, showing the
generalization potential of the natural language
interface. Qualitatively (shown in Table 8 to Ta-
ble 11), we found that in cases where the output has
the wrong topic, there are still signs that the gen-
eration is guided by the command. For example,
when we zero-shot on the world topic, we obtain
text about sports with multiple country names.

Backbone unblock experiment Due to the na-
ture of the zero-shot experiment, we also block
examples of the zero-shot class from the finetun-
ing data of the backbone language model Pb. As
a comparison, we try finetuning Pb with full data,
while still blocking the zero-shot class from pre-
fix or classifier training, which mimics the setting

where only unlabeled data is available.
Results are shown in Table 3 as the “-unb” mod-

els. We observe a large performance boost for the
FUDGE-NL model. This shows that extra unsuper-
vised data is also helpful for control generalization.

5.3 Generalization to Unseen Attribute
Combinations

In this section, we design experiments to test
whether the models can generalize to unseen com-
binations of attributes to test their compositional
generalization abilities. We describe our setup for
AGNews below, which is similar to Yelp.

Following Lake and Baroni (2018), for each split,
we select one of the topic classes (e.g., sports) as
the non-compositional class, and for all training
samples with this class, we do not include length in
attributes or commands (i.e., the model never see
combinations of sports and any length attribute
in training). Note that the combinations of length
attributes and other topics classes are kept (e.g.,
the model still sees combinations of business and
short length). At test time, we set the topic to be
the non-compositional class and randomly sample
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Control Accuracy Text Quality Diversity

DATASET METHOD LABEL Ò LENGTH Ò COMP. Ò G-PPL Ó BLEU Ò ENT. Ò

AG News

PrefixLM .907 .559 .574 11.369 .862 11.325
PrefixLM-NL .933 .677 .612 12.126 .866 11.371

FUDGE .963 .962 .880 12.055 .862 11.286
FUDGE-Binary .980 .958 .918 12.617 .864 11.276
FUDGE-NL .965 .972 .914 12.197 .865 11.368

Yelp Review

PrefixLM .644 .949 .590 10.406 .942 11.800
PrefixLM-NL .637 .919 .547 10.361 .943 11.828

FUDGE .620 .794 .564 10.628 .940 11.217
FUDGE-Binary .871 .942 .805 10.402 .943 11.727
FUDGE-NL .775 .972 .640 10.410 .941 11.802

Table 5: Results for full-data setting. NL model performance is on par with their categorical counterparts.

the length attribute to control. We run experiments
across all n possible compositionality splits and
report the averaged result.

Results are shown in Table 4, with qualitative ex-
amples available in Table 12 to Table 15. We focus
on the accuracy gap between this compositional-
ity setting and the full-data setting. PrefixLM-NL
has little trouble generalizing to unseen attribute
combinations as indicated by the small gap. How-
ever, FUDGE-NL performed poorly on generaliz-
ing to unseen attribute combinations. Not only did
FUDGE-NL’s compositional accuracy drop by a
large margin, but it also produced low-quality text.

5.4 Full-data Setting

In the full-data setting, we train the models on all
data of the AG News or Yelp review dataset, with
the purpose to test whether the new NL interface
would degrade the model’s performance. This is
the regular setup for existing works on CTG except
that we aim to control two attributes simultaneously
instead of one. The results for the full-data setting
are shown in Table 5, with qualitative examples
available in Table 6 and Table 7 in the appendix.

Performance comparison between the NL and
categorical interface We notice that the gener-
ated text quality and diversity between different
models are similar in the full-data setting. While
PrefixLM-NL and its categorical variant PrefixLM
have similar control accuracy on both datasets,
FUDGE-NL consistently outperforms the original
FUDGE setup. In either case, the performance of
the NL variant is on par with its original model,
suggesting our NL interface does not degrade CTG
performance in the full-data setting. Somewhat
surprisingly, FUDGE-Binary outperforms FUDGE-
NL and the original FUDGE model, especially on

the Yelp dataset where the classification is more
difficult. The reason could be that the task of the bi-
nary classification is less noisy than the multiclass
classification, which leads to stronger control.

Performance across model families Across two
datasets, FUDGE-based models outperform Pre-
fixLM models, with the exception that FUDGE
does not beat (but is comparable to) PrefixLM on
Yelp. This is largely consistent with previous re-
sults that discriminator-based CTG approaches can
achieve higher controllability than conditional LMs
(Yang and Klein, 2021, inter alia). However, as we
show in the previous sections, its performance is
inferior in the settings requiring NL generalization.

6 Conclusion

In this work, we propose a natural language inter-
face for CTG, where we craft a PCFG to embed
categorical attributes into natural language com-
mands. We propose variants of existing CTG mod-
els that take commands as input. We design tai-
lored experiments to test the natural language CTG
model’s generalization capabilities. We show that
our PCFG-based command generation approach is
effective for handling unseen commands compared
to fix-set templates. Additionally, our proposed
NL models can effectively generalize to unseen
attributes, an ability newly enabled by the NL in-
terface. Finally, we find the simple PrefixLM ap-
proach shows robust generalization ability with the
NL interface and outperforms FUDGE-based mod-
els, demonstrating significant modeling challenges
and potentials with this new interface. We hope
our work could motivate further research into this
challenging interface for CTG.
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Limitations

In this section, we point out several limitations re-
stricted by the scope of our work. While the PCFG
we create has decent diversity and is guaranteed to
be accurate in embedding attributes, they are still
rule-based and could not cover all the variations in
natural language.

The natural language interface brings modelling
challenges. The CTG model is now required to
first extract salient information from the command
sentence, while in the original categorical interface
they are provided directly.

In this work, we have focused our experiments
on PrefixLM and FUDGE. While these approaches
are representative, there are still other relevant mod-
els we did not test. For instance, guiding the gen-
eration of an LM with a smaller LM (Liu et al.,
2021), or prompt-based CTG approaches such as
Yang et al. (2022). It would also be interesting
to test how other models perform under the NL
interface.

Finally, while we experiment with controlling
more than a single attribute in a single CTG model,
in principle a NL command could be more complex
and fine-grained. For example, it is possible to de-
scribe detailed semantic or syntactic constraints in
a command sentence, and we leave those to future
work.

Ethics Statement

We acknowledge controlled text generation is po-
tentially capable of generating harmful outputs
such as producing offensive languages or hate
speech. However, it is also shown in previous
work that controlled text generation techniques
can achieve text detoxification if used properly
(Dathathri et al., 2020; Krause et al., 2021). When
changing the control interface from a categorical
setting to natural language commands, we are giv-
ing the user a larger freedom of input. Thus, ex-
tra care should be taken when deploying natural-
language controlled text generation models to the
general public to avoid malicious user inputs.
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A Dataset Details

A.1 Main datasets

Yelp Review This is a dataset of user-written re-
views for Yelp. It is a text classification dataset
where the 5-sentiment labels are inferred from 1
to 5 stars given to the review. For each star, there
are 130,000 training examples and 10,000 testing
examples. In total, there are 650,000 training ex-
amples and 50,000 testing examples. We limit text
length to 200 after tokenization. After this prepro-
cessing step, there are 450,773 training and 34,620
testing examples, for a total of 485,393 examples.
We sample a validation set from the train set with
about the same size as the test set, and create a final
dataset with 415,901/34,872/34,620 train/val/test
examples.

The label attribute for Yelp Review is con-
structed from the 5 sentiment labels, which we
verbalize as {very negative, negative, neutral, pos-
itive, very positive}. For the length attribute,
we create 5 length classes {very short, short,
medium-length, long, very long} with cut-offs
43,72,104,144 so that number of training ex-
amples in each length class is balanced. The
dataset is obtained from https://huggingface.
co/datasets/yelp_review_full.

AG News This is a news topic classification
dataset with 4 topics {world, sports, business, sci-
ence/tech}. The news text used is the title and de-
scription. For each topic, there are 30,000 training
examples and 1,900 testing examples, for a total of
120,000 training and 7,600 testing examples. We
limit text length to 256 after tokenization. After this
pre-processing step, there are 119,955 training and
7,599 testing examples, for a total of 127,554 exam-
ples. We sample a validation set from the train set
with about 10% of the original train set size, and
create a final dataset with 107,959/11,996/7,599
train/val/test examples.

We use the topic labels as the label attribute,
while adding alternative names for the labels. For
the length attribute, we limit text length to 256.
Because the text length in AG News is concen-
trated in a narrow range, we create 3 length classes
{short, medium, long} with cut-offs 43 and 56 to
make the number of training examples in each
class balanced. The dataset is obtained from
https://huggingface.co/datasets/ag_news.

A.2 Extra data

News Category The News Category dataset con-
tains about 200K news headlines and short descrip-
tions between 2012 and 2018 obtained from Huff-
Post. The advantage of this dataset is that it has a
wide variety of topics, thus making the correspond-
ing template very diverse. The list of topics and
corresponding article counts is shown in Listing 1.
We remove topics that has overlap with AG News:
THE WORLDPOST, WORLDPOST, WORLD NEWS,
SPORTS, BUSINESS, SCIENCE, TECH. The dataset
is obtained from https://huggingface.co/
datasets/Fraser/news-category-dataset.

News Popularity The News Popularity in Multi-
ple Social Media Platforms dataset is a dataset of
social media sharing data of news articles about
economy, microsoft, obama, and palestine.
We use the concatenation of the headline and
short_description fields as the news text.
The size of this dataset is around 93K. The
dataset is obtained from https://huggingface.
co/datasets/newspop.

Inshort News The Inshort News dataset is a
dataset of news with topics sports, politics,
entertainment, world, automobile, and
science. We remove the topics that has overlap
with AG News: sports, world, science. The
filtered dataset contains about 5K examples. The
dataset is obtained from https://www.kaggle.
com/datasets/kishanyadav/inshort-news.

B Experiment Details

B.1 Training

On AG News, we use an Adam optimizer with a
learning rate 0.00005 and train 10 epochs to train
the PrefixLM models as well as FUDGE discrimi-
nators. On Yelp Review, we use an Adam optimizer
with a learning rate of 0.0001 and train 5 epochs.
We conduct all experiments on a single NVIDIA
Tesla V100 GPU with 32GB memory. The train-
ing time of each model depends on the particular
setup, but is within 24 hours for all models. The
number of trainable parameters for the PrefixLM,
PrefixLM-NL, and FUDGE-NL model is approxi-
mately 120M.

The number of trainable parameters for FUDGE
and FUDGE-Binary is approximately 120M for
each of label or length attribute model, and approx-
imately 240M in total.
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Listing 1: News Category
dataset topics with corre-
sponding number of ex-
amples.
POLITICS: 32739
WELLNESS: 17827
ENTERTAINMENT: 16058
TRAVEL: 9887
STYLE & BEAUTY: 9649
PARENTING: 8677
HEALTHY LIVING: 6694

QUEER VOICES: 6314
FOOD & DRINK: 6226
BUSINESS: 5937
COMEDY: 5175
SPORTS: 4884
BLACK VOICES: 4528
HOME & LIVING: 4195
PARENTS: 3955
THE WORLDPOST: 3664
WEDDINGS: 3651
WOMEN: 3490
IMPACT: 3459

DIVORCE: 3426
CRIME: 3405
MEDIA: 2815
WEIRD NEWS: 2670
GREEN: 2622
WORLDPOST: 2579
RELIGION: 2556
STYLE: 2254
SCIENCE: 2178
WORLD NEWS: 2177
TASTE: 2096
TECH: 2082

MONEY: 1707
ARTS: 1509
FIFTY: 1401
GOOD NEWS: 1398
ARTS & CULTURE: 1339
ENVIRONMENT: 1323
COLLEGE: 1144
LATINO VOICES: 1129
CULTURE & ARTS: 1030
EDUCATION: 1004

The FUDGE models have an extra backbone
language model that is kept frozen during discrimi-
nator training. The size of this backbone language
model is approximately 120M. Backbones are first
fine-tuned on corresponding classification datasets
with a learning rate of 0.0001 for 5 epochs.

B.2 Hyperparameter choice under different
settings

We find that the experimental results are not partic-
ularly sensitive to training hyperparameters such
as learning rate and batch size. At testing, the
FUDGE conditioning strength hyperparameter λ
does have a notable effect on control accuracy. We
report results with λ that gives the highest control
accuracy while maintaining text quality. For the
FUDGE model family (FUDGE, FUDGE-Binary,
FUDGE-NL), we set λ “ 14 on the full-data and
low-resource experiments, and λ “ 6 on zero-shot
experiments. On compositionality experiments, we
set λ “ 6 for AG News and λ “ 4 for Yelp Review.
We set a smaller λ for zero-shot and compositional-
ity settings because a larger λ in these cases leads
to a significant increase in repetition. Following
FUDGE’s original setup, we consider only the top
200 possible output tokens when modifying the
LM logits for computational efficiency.

C Command PCFG Details

The full template for the AG News and Yelp Review
datasets are available in Listing 2 and Listing 3. We
briefly explain important elements of the custom
PCFG syntax below:

• We first randomly sample a template in the
<templates> section. These are templates
with attribute slots which will be filled later.
Besides attribute slots, there are other non-
terminals in the template that corresponds to
sentence segments. Rules for these elements
are written in the <variables> sections.

• Rules in the <variables> sections are com-
pressed PCFG where rules with the same LHS
are grouped together in a single line. They
constitute the verbalization of domain names,
attribute names, as well as a variety of sen-
tence segments to increase the diversity of the
PCFG.

• To verbalize the label attribute, the <label>
section contains the mapping from categorical
class indices to verbalized class names. Since
the mapping could be one-to-many, different
verbalizations of the same attribute class is
separated by a comma.

• To verbalize the length attribute, the <length>
section contains length cut-off values with the
corresponding verbalized length level names,
having similar syntax with the <label> sec-
tion. An example with tokenized length l will
be treated as the longest length level such that
the corresponding cut-off does not exceed l.

D Qualitative Examples

We show qualitative examples for different experi-
mental settings in Table 6 to Table 15.
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Listing 2: PCFG template for AG News
<variables>
[TEXT-CLASS] AG news, AG news
[TEXT-FORM] [TEXT-CLASS], [TEXT-CLASS], [TEXT-CLASS] article, piece of [TEXT-CLASS], [TEXT-CLASS]

report, [TEXT-CLASS] item, AG newspaper article
[HEAD-FORM] give me, generate, tell me about, show, show me, fetch me, output, I need, I want,

need, I request, write
[TOPIC-NOUN] topic, topic, theme, focus
[TOPIC-NOUNED] topic, topic, themed, focused, related
[TOPIC-PREP] about, related to, concerning, regarding, pertinent to
[TOPIC-UPDATEWORD] updated, informed
[TOPIC-SEG] [TOPIC-PREP] [TOPIC], [TOPIC-PREP] [TOPIC], that is [TOPIC-PREP] [TOPIC], that is [

TOPIC-PREP] [TOPIC], that can keep me [TOPIC-UPDATEWORD] with [TOPIC]
[TOPIC-BESEG] [TOPIC-PREP] [TOPIC], [TOPIC-PREP] [TOPIC], [TOPIC-PREP] [TOPIC], can keep me [TOPIC-

UPDATEWORD] with [TOPIC]
[PLS] please, ,
[COMMA-PLS] / please, , # use '/' as comma (escaped)
[BEFORE-BE] let it, make sure to, I want it to

<length>
43 short, concise, very short, pretty short, extremely short, extra short
56 medium-length, normal-length
256 long, lengthy, very long, pretty long, extremely long, extra long

<label> [TOPIC]
0 the world, the world, the globe, international matters
1 sports, sports, sporting events
2 business, business, commerce
3 science, science, technology, technology, tech

<templates>
# label and length
[HEAD-FORM] a [LENGTH] [TEXT-FORM] [TOPIC-SEG] [COMMA-PLS] .
[PLS] [HEAD-FORM] a [TEXT-FORM] . [BEFORE-BE] be [LENGTH] and [TOPIC-BESEG] .
[PLS] [HEAD-FORM] a [TEXT-FORM] [TOPIC-SEG], and I need it to be [LENGTH] .
[HEAD-FORM] a [TEXT-FORM] [TOPIC-SEG] , and [BEFORE-BE] be [LENGTH] [COMMA-PLS] .
[HEAD-FORM] a [TEXT-FORM] . I want the [TOPIC-NOUN] to be [TOPIC], and length to be [LENGTH] .
[HEAD-FORM] a [TEXT-FORM] . I want the length to be [LENGTH], and [TOPIC-NOUN] to be [TOPIC] .
[HEAD-FORM] a [TEXT-FORM] . [BEFORE-BE] be not only [LENGTH] but also have a [TOPIC-NOUN] on [TOPIC]

.
# label only
[HEAD-FORM] a [TOPIC] [TOPIC-NOUNED] [TEXT-FORM] [COMMA-PLS] .
[PLS] [HEAD-FORM] a [TOPIC] [TOPIC-NOUNED] [TEXT-FORM] .
[HEAD-FORM] a [TEXT-FORM] [TOPIC-SEG] [COMMA-PLS] .
[PLS] [HEAD-FORM] a [TEXT-FORM] [TOPIC-SEG] .
[PLS] [HEAD-FORM] a [TEXT-FORM] . Let it have a [TOPIC] [TOPIC-NOUN] .
[HEAD-FORM] a [TEXT-FORM] . Let it have a [TOPIC] [TOPIC-NOUN] [COMMA-PLS] .
[HEAD-FORM] a [TEXT-FORM] . I want the [TOPIC-NOUN] to be [TOPIC] .
# length only
[HEAD-FORM] a [LENGTH] [TEXT-FORM] [COMMA-PLS] .
[PLS] [HEAD-FORM] a [TEXT-FORM] . [BEFORE-BE] be [LENGTH] .
[PLS] [HEAD-FORM] a [TEXT-FORM] , and I need it to be [LENGTH] .
[HEAD-FORM] a [TEXT-FORM] , and [BEFORE-BE] be [LENGTH] [COMMA-PLS] .
[PLS] [HEAD-FORM] a [TEXT-FORM] , and [BEFORE-BE] be [LENGTH] .
[HEAD-FORM] a [TEXT-FORM]. I want the length to be [LENGTH] .
[HEAD-FORM] a [TEXT-FORM]. I want the length to be [LENGTH] [COMMA-PLS] .

308



Listing 3: PCFG template for Yelp Review
<variables>
[TEXT-CLASS] yelp review, yelp review, yelp comment
[TEXT-FORM] [TEXT-CLASS], [TEXT-CLASS], [TEXT-CLASS] article, [TEXT-CLASS] passage, [TEXT-CLASS]

paragraph, [TEXT-CLASS] piece, piece of [TEXT-CLASS], yelp review chapter, [TEXT-CLASS] item
[HEAD-FORM] give me, generate, tell me about, show, show me, fetch me, output, I need, I want,

need, I request, write
[SENT-NOUN] tone, sentiment, attitude, mood
[SENT-PREP] with, with, with, that has, / which has, of
[SENT-SEG] [SENT-PREP] a [SENT] [SENT-NOUN]
[PLS] please, ,
[COMMA-PLS] / please, , # use '/' as comma (escaped)
[BEFORE-BE] let it, make sure to, I want it to

<length>
43 very short, pretty short, extremely short, extra short
72 short, concise
104 medium-length, normal-length
144 long, lengthy
200 very long, pretty long, extremely long, extra long

<label> [SENT]
0 very negative, terrible, very bad, extremely negative
1 negative, bad
2 neutral, unopinionated
3 positive, good, promising
4 very positive, very good, excellent, splendid, extremely positive

<templates>
# label and length
[HEAD-FORM] a [LENGTH] [TEXT-FORM] [SENT-SEG] [COMMA-PLS] .
[PLS] [HEAD-FORM] a [TEXT-FORM] . [BEFORE-BE] be [LENGTH] and having a [SENT] [SENT-NOUN] .
[PLS] [HEAD-FORM] a [TEXT-FORM] [SENT-SEG], and I need it to be [LENGTH] .
[HEAD-FORM] a [TEXT-FORM] [SENT-SEG] , and [BEFORE-BE] be [LENGTH] [COMMA-PLS] .
[HEAD-FORM] a [TEXT-FORM] . I want the [SENT-NOUN] to be [SENT], and length to be [LENGTH] .
[HEAD-FORM] a [TEXT-FORM] . I want the length to be [LENGTH], and [SENT-NOUN] to be [SENT] .
[HEAD-FORM] a [TEXT-FORM] . [BEFORE-BE] be not only [LENGTH] but also have a [SENT] [SENT-NOUN] .
# label only
[HEAD-FORM] a [SENT] [SENT-NOUN] [TEXT-FORM] [COMMA-PLS] .
[PLS] [HEAD-FORM] a [SENT] [SENT-NOUN] [TEXT-FORM] .
[HEAD-FORM] a [TEXT-FORM] [SENT-SEG] [COMMA-PLS] .
[PLS] [HEAD-FORM] a [TEXT-FORM] [SENT-SEG] .
[PLS] [HEAD-FORM] a [TEXT-FORM] . Let it have a [SENT] [SENT-NOUN] .
[HEAD-FORM] a [TEXT-FORM] . Let it have a [SENT] [SENT-NOUN] [COMMA-PLS] .
[HEAD-FORM] a [TEXT-FORM] . I want the [SENT-NOUN] to be [SENT] .
# length only
[HEAD-FORM] a [LENGTH] [TEXT-FORM] [COMMA-PLS] .
[PLS] [HEAD-FORM] a [TEXT-FORM] . [BEFORE-BE] be [LENGTH] .
[PLS] [HEAD-FORM] a [TEXT-FORM] , and I need it to be [LENGTH] .
[HEAD-FORM] a [TEXT-FORM] , and [BEFORE-BE] be [LENGTH] [COMMA-PLS] .
[PLS] [HEAD-FORM] a [TEXT-FORM] , and [BEFORE-BE] be [LENGTH] .
[HEAD-FORM] a [TEXT-FORM]. I want the length to be [LENGTH] .
[HEAD-FORM] a [TEXT-FORM]. I want the length to be [LENGTH] [COMMA-PLS] .
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PrefixLM-NL: Show me an AG news. I want the length
to be concise, and topic to be the world. Two Indone-
sian women hostages released The two Indonesian women
hostages have been released, two days before their sched-
uled arrival in the US under the terms of a new US policy
in Southeast Asia.

FUDGE-NL: Generate an AG news article. Make sure
to be not only pretty long but also have a focus on
sporting events. No. 18 Utah Defeats Oregon, 71-60 (AP)
AP - Cedric Benson scored 29 points, Jeri Dean added 15
and 18 points, and No. 18 Utah defeated Oregon 71-60
on Saturday night in an exhibition game that featured a
balanced offense and a balanced defense.

PrefixLM: [WORLD][SHORT] Two Indonesian women
hostages released Indonesia #39;s Foreign Ministry said
Wednesday two female Indonesian women hostages were
released Tuesday at dawn from an Al-Arabiya TV station,
a day after it broadcast a videotape of their captivity.

FUDGE: [TECH][LONG] Macromedia #39;s #39;Blog
#39; to Make New Web Sites Macromedia is setting out to
make Web site-hosting Web sites, starting with blog, a key
part of its strategy for making new sites more relevant and
useful.

FUDGE-Binary: [BUSINESS][MEDIUM-LEN] Update
2: Oil Prices Drop Below $52 a Barrel Despite Hurri-
cane Oil futures prices dropped below $52 on Friday, even
though Hurricane Ivan, which was projected to hit the Gulf
Coast late last week, was nonetheless expected to remain a
drag on global oil supplies

Table 6: AG News generation in full-data setting. All
models can provide sensible generations with descent
quality.

PrefixLM-NL: Show me a yelp review passage. I want
the length to be pretty short, and tone to be very nega-
tive. This place is a total joke. I called to place an order for
delivery tonight and received a message with no answer.

FUDGE-NL: Generate a yelp review passage. Let it be
long and having an extremely positive attitude. OMG I
don’t know where i got my hair cut. We started with the
salon manager. I have to say I am a little disappointed on
this. The place is nice, staff nice and the haircut was good.
My stylist was very knowledgable. She did an excellent job
with the color and cut. I was so impressed. I am going back
here for my next cut. The staff is nice and very helpful. I
will give it one more try before I leave. The price was very
reasonable for it being in such a nice shopping center. I
was surprised at the quality.

PrefixLM: [NEUTRAL][MEDIUM-LEN] Great for a
quick meal but not really great. They do have a very good
salad bar and the pizza is pretty good as well. If they had
more seating and less of those annoying flies, I might have
given them 4 stars. I am looking forward to trying more of
their pizzas but they need more seating. I think I’ll still go
back, but not on a regular basis.

FUDGE: [NEGATIVE][SHORT] Disorganized and unor-
ganized. No water in the shower and no soap dispenser in
the bathroom. Very noisy when you come in during lunch
hour. Very disappointed and will not go back.

FUDGE-Binary: [POSITIVE][SHORT] Great location!
The pizza’s are huge and the crust was thin. We had the
sausage, pepperoni and sausage pizza and sausage was
delicious. If you’re looking for a good pie to eat late night,
this is definitely the spot.

Table 7: Yelp Review generation in full-data setting.
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Show me an AG news that is about business. China
Stocks Set to Open Lower (AP) AP - China’s consumer
and investment markets are set to open relatively slackened
this week due in part to lower oil prices, but stocks were
slightly higher Monday #151; despite falling in recent
weeks on the strength of the dollar and other key economic
indicators.

Give me an AG news item that can keep me updated
with international matters, please. China #39;s econ-
omy booming, but challenges persist China #39;s econ-
omy is booming and it is struggling to meet growing eco-
nomic challenges, but it faces tough foreign competition
quot;from within its own ranks quot;, China #39;s top
official said Sunday.

Show a sports related AG news report. Update 1: Tennis:
Masters Cup Semi Draws Three Aussies Aussies were
forced to face three Australian players they will face in
next month #39;s semi-finals, a spokesman said Tuesday.

Show an AG newspaper article. I want the topic to be
technology. Google #39;s initial public offering The initial
public offering of the Internet search engine is expected
to be much higher than Google Inc #39;s initial public
offering.

Table 8: Zero-shot generation of the PrefixLM-NL
model. Zero-shot class generation is shown. Interest-
ingly, the model seems to be generating overlapping
topics between zero-shot and non-zero-shot classes, e.g.,
the generated business news talks about China’s stock
market, which the model probably learned from the
world topic that is not blocked.

Give me a technology topic AG news. Microsoft to
launch Xbox One console in India Microsoft is set to an-
nounce an Xbox One console in India on December 1.
According to ET Now, the company will announce the
launch on December 10. Microsoft announced the console
on December 8. Its rival PlayStation 4 is also coming soon.

Show me an AG news item. Let it have a world topic,
please. India plans to launch second space station A sec-
ond crew to the International Space Station will start ser-
vice next year as India completes a five-year mission to the
moon and comes within one day of meeting the Interna-
tional Space Station crew.

Give me a sporting events themed AG news, please.
Tennis: Oleg Tsunoda, Serena Williams Open in London
(Reuters) Reuters - Two days before the third consecutive
U.S. Open, tennis’s biggest event, Nov. 8, will be staged
on a hilltop overlooking London’s

I request a commerce related AG news, please. U.S.
Pounds Oil, Prices Surge in Asia (AP) AP - The United
States pounds oil as the world’s largest petroleum con-
sumer enters a pivotal year in growth, pushing prices for
gasoline and heating oil to new lows in Asia and boosting
the U.S. energy industry.

Table 9: Zero-shot generation of the PrefixLM-NL
model trained with extra data. Zero-shot class gener-
ation is shown. In the tech generation, the Microsoft
topic is from one of the extra datasets.

Write an AG news item. I want the topic to be the globe.
Sports industry executives to be legal firms CEO’s offices
on businesses, companies, companies not business clients,
companies executives, business travelers.

Give me a sporting events related AG news. Fierce Fight-
ing Roars Past a Home on the Wild Atlantic OAST LON-
DON - A series of strong Atlantic storms ripped through
a British home on Tuesday, unleashing heavy rains, fierce
winds and ferocious waves that washed away scores

Please generate a piece of AG news that is regarding
commerce. Oracle Wins Contingency Bid For PeopleSoft
(AP) AP - Oracle Corp.’s Oracle Corp. has won its contract
for PeopleSoft Inc.’s business software division, Oracle
Corp. said Friday.

Show an AG newspaper article. Let it have a technol-
ogy theme, please. UN envoy urges Sudan resolution
Sudanese authorities in Africa’s top government urged Su-
dan to adopt a UN resolution on humanitarian crises in
Africa in an effort to end fighting in the war-torn country.

Table 10: Zero-shot generation of the FUDGE-NL
model. Zero-shot class generation is shown. In many
cases the model ignores the command, and goes on to
generate text related to seen topics.

Please generate a piece of AG news that is regarding
the world. Paisley, Sharman hold India to 4 wickets for
second innings (AFP) AFP - Shane Warne’s unbeaten 141
against South Africa at the WACA was bowled out in the
second and final innings as Australia held India to four
wickets for a total of 141.

Generate an AG news. Let it have a sports theme. Beltre
Leads Red Sox Past Yankees 7-4 (AP) AP - Mark Buehrle
pitched seven shutout innings of two-hit ball, and Boston
clinched its eighth straight AL East crown, 7-4 over the
New York Yankees on Saturday.

Give me a commerce related AG news. Yahoo! Earnings
Fall in First Quarter Yahoo! Inc.’s (YHOO.O: Quote, Pro-
file, Research) quarterly earnings fell sharply, as the world
#39;s largest Internet advertising and search company re-
ported narrower

Please show me an AG news. Let it have a technology
focus. Tech giants IBM profits rise tech giants IBM and
Hewlett-Packard reported big gains yesterday as their tech-
nology businesses grew more profitable in August. Shares
of Hewlett-Packard jumped as much as 2.

Table 11: Zero-shot generation of the FUDGE-NL
model trained with extra data. Zero-shot class gener-
ation is shown. Signs of the model being influenced
by the command is evident from time to time, e.g., the
world topic generation, although is actually sports-topic,
contains many country names.
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Generate an AG news. Make sure to be long and about
international matters. US Forces Storm School in Mosul,
40 Dead MOSUL, Iraq (Reuters) - U.S. tanks, aircraft and
artillery rumbled through a Mosul rebel-held school on
Saturday, 40 days after a suicide car bomb blast killed at
least 39 people outside a police academy in a town near
Baghdad.

Need an AG news. I want it to be extra short and
can keep me updated with sports. Soccer: England win
draw at Moldova England won their opening game against
Moldova after defeating Poland 1-0 in a friendly draw at
Frno, the Football Association said Thursday.

I want an AG news report. I want it to be extremely
short and can keep me informed with business. Oil
Prices Surge to Record Highs on Ivan Crushing $52 Oil
prices jumped to multi-week highs yesterday on fears that
Hurricane Ivan would hit the Southeast US Gulf Coast
early next week.

Give me an extra long AG news article related to science.
Microsoft to Release Longhorn as Open Beta Microsoft
announced it would release Longhorn in 2006, with fea-
tures such as a new file system, new system management,
and support for 64-bit extensions in addition to standard
64-bit capabilities.

Table 12: Compositional generation of the PrefixLM-
NL model on AG News. Non-compositional class gener-
ation is shown. The model generate fluent, on topic text
without much performance degradation from full-data
setup.

Generate an AG news article. I want the focus to be
international matters, and length to be pretty short.
Italy arrests Italian businessman Italy yesterday arrested a
businessman and a German national working for a major
French and British industrial group and two others for
connections to a major European political party scandal in
Italy two years ago.

Give me a piece of AG news. I want the focus to be
sporting events, and length to be long. NFL Wrap: Brees,
Brees Lead the Giants to the Playoffs Jamal Lewis ran
for 147 yards and two touchdowns Saturday night to lead
the Giants to playoff berth games Sunday at Philadelphia
and Sunday at Atlanta and clinch Sunday #39;s NFC title
&lt;b&gt;...&lt;/b&gt;

Need an AG news article. Make sure to be not
only medium-length but also have a focus on com-
merce. Oil prices rebound sharply from record highs
&lt;b&gt...&lt;/b&gt VIYUYYashko men took no charge
as they trawl past what lookto evidence indicate Since ar-
riving earlier earlier early today many children wandered
past makeshift shelters and makeshift stalls. At least two
dozen workers - many of them women - entered the bat-
tered warehouse, but as...

Generate an AG news article. I want the focus to be
technology, and length to be pretty short. Computer
security chief steps down Computer security chief William
Donaldson steps down today, the government said today.
Mr Donaldson was leaving his department in his final days
of the career.

Table 13: Compositional generation of the FUDGE-NL
model on AG News. Non-compositional class genera-
tion is shown. The text quality is notably lower than
both PrefixLM’s compositional generations (Table 12)
as well as FUDGE-NL’s generation in full-data setting
(Table 6).
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Write an extremely short yelp review passage of a very
negative tone. This place is a joke!!!!!! I called to place
an order for delivery tonight and they quoted me $50! And
the food wasn’t even good at all!!!

Write an extremely short yelp review passage of a nega-
tive tone. This place is a total joke. I wish I had just gone
to another place before coming here. The food was ok
(but not really worth wasting $40 on a meal) The service
suck!!!

Generate a yelp review. Let it be concise and having
an unopinionated attitude. Not bad, not great (except
for the wait for service and for the food being cold). How-
ever, the place is really small and is always crowded. The
food is good (although a bit pricey) and the ambiance is
relaxing. But again not great.\nThe servers are nice and
accommodating.

I need a yelp review item. I want the length to be extra
short, and tone to be promising Very happy with this
hotel! Good deals, clean room and great service. The staff
was very helpful. Will stay here again.

I need a yelp review passage. I want the mood to be very
good, and length to be very long I am a HUGE fan of this
place! This is the type of place that I go to when I’m in the
area! The food is fantastic! I have always had great service
here. I usually go at dinner time on weekends but have
yet to be disappointed. I love their wings! They are not
your average wings. They come covered with a wonderful
sauce and just a hint of garlic! They are always hot. I am a
big guy though, so I tend to eat wings on the go. \n\nTheir
pizza is amazing as well. I love that you can order a large
size with no toppings, which is very convenient for me. I
also love their ranch dressing, which is amazing as well.
\n\nI always look forward to coming back to this place for
some wings!

Table 14: Compositional generation of the PrefixLM-
NL model on Yelp Review. Non-compositional class
generation is shown. Similar to scenario in AG News
(Table 12), the model can generalize to unseen attributes
combinations without much performance degradations.

Show a yelp review. Let it be not only lengthy but also
have an extremely negative tone. Love this place. Great
coffee and delicious sandwiches, wraps, and salads. The
service is wonderful and everyone is helpful and friendly.

Write a yelp comment that has a bad sentiment, and
make sure to be short. I really wanted to love this place.
I love the concept. The food. Unfortunately, I was not
impressed.

I need a yelp review paragraph. Make sure to be not
only short but also have a neutral attitude. It was ok.
Great tasting bread with your sandwiches and cookies on
your cookie crust to make it look like a fancy bakery with
your cookies.... No wow... Really!?!?!?..... Never ever ever
ever ever when ever I have been. Kind it kinda of defeats
thinking about this at all. Service goes off without any
notice.

I request a yelp review piece. I want the length to be
extra long, and tone to be positive. So much for the good
reviews. My sister-in-law was going to give this place
a try, but it seems a little overrated.\n\nI came for lunch
with her, and ordered a half salad, soup, and sandwich
combo. My salad came with the soup, but only half of
it was actually soup! The soup was alright, but it came
with a small piece of lettuce on top. The sandwich was
decent.\n\nThe sandwich was nothing spectacular. I’ve had
better for half the price!

I want a piece of yelp comment that has a very good
mood, and make sure to be pretty long. Always a great
place. Food & service always great & prices are reasonable
especially for the quality & quantity they give you. Food
comes out hot. My kids eat there every time & are always
happy with their meals. Prices have always been very
reasonable for the quality & quantity they give you. Owner
is the man, & he is the reason I come back to this place, &
I hope he is getting his act together soon! Give it a try &
please try them out for yourself!! You will leave happy &
full!! :) Thanks Chef! Keep hustling for quality & quality
food! Happy eating! Thanks Chef :) :)) :) Enjoy! :-) :) See
ya! :) ;) :) :) :) :) :) :) ;) ;)

Table 15: Compositional generation of the FUDGE-
NL model on Yelp Review. Non-compositional class
generation is shown. Text quality is notably low, with
the model generates repetitive phrases or emoji from
time to time.
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Abstract

Large language models (LLMs) have demon-
strated solid zero-shot reasoning capabilities,
which is reflected in their performance on the
current test tasks. This calls for a more chal-
lenging benchmark requiring highly advanced
reasoning ability to be solved. In this paper,
we introduce such a benchmark, consisting of
191 long-form (1200 words on average) mys-
tery narratives constructed as detective puzzles.
Puzzles are sourced from the "5 Minute Mys-
tery" platform and include a multiple-choice
question for evaluation. Only 47% of humans
solve a puzzle successfully on average, while
the best human solvers achieve over 80% suc-
cess rate. We show that GPT-3 models barely
outperform random on this benchmark (with
28% accuracy) while state-of-the-art GPT-4
solves only 38% of puzzles. This indicates
that there is still a significant gap in the deep
reasoning abilities of LLMs and humans and
highlights the need for further research in this
area. Our work introduces a challenging bench-
mark for future studies on reasoning in lan-
guage models and contributes to a better under-
standing of the limits of LLMs’ abilities.1

1 Introduction

Large language models (LLMs) have gained signifi-
cant attention in recent years due to their impressive
performance on a wide range of natural language
processing tasks, including reasoning tasks (Srivas-
tava et al., 2022; Wei et al., 2022). This calls for
new, genuinely challenging benchmarks requiring
LLMs to possess truly advanced reasoning capabil-
ities to be solved.

Abductive reasoning is a type of inference aim-
ing at finding the minimal and most justified ex-
planation for the set of phenomena or observa-
tions. Previous benchmarks on this topic, such
as Mostafazadeh et al. (2016), consisted of short

1https://github.com/TartuNLP/
true-detective

and straightforward common-sense observations
and were solved by GPT models (Radford and
Narasimhan, 2018). However, the canonical exam-
ple of abductive reasoning, a demanding process of
a detective finding the best solution to a complex
crime based on the clues and observations, was not
explored as a foundation for the LLM benchmark
in the literature.

Motivated by the need for a new reasoning
benchmark and inspired by the complexities and
particularities of a detective enterprise, we present
a novel abductive reasoning benchmark consist-
ing of 191 detective puzzles/mysteries. Mysteries
are sourced from the "5 Minute Mystery" platform,
where professional and aspiring authors wrote them.
A puzzle is structured as a >1000 words story with
4-5 answer options. Over the last 15 years, puzzles
were attempted by humans around 2000 times each
with an average solve rate of 47% (only the first try
for each human for each puzzle counts). However,
top human solvers (top 10) achieve a success rate
of over 80% solving more than 154 of 192 puzzles
correctly.

Moreover, additional modifications such as
chain-of-thought (CoT) prompting Wei et al.
(2022); Kojima et al. (2022) that are meant to in-
voke emergent reasoning abilities in LLMs do not
help for GPT-3.

In this study, we also assess the performance
of the current state-of-the-art GPT-3 and GPT-4
models on our newly proposed dataset. We show
that these models, even equipped with the Chain of
Thought prompts (Wei et al., 2022; Kojima et al.,
2022), are getting an accuracy rate of only 28%,
barely better than random guessing (GPT-3.5), or
scoring 38% (GPT-4), which is halfway between
random guessing and average human baseline, and
far behind top human solvers with their 80% solve
rate. These results reveal a significant gap in the
reasoning abilities of GPT models and humans.

In our ablation study, we also supply models
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with golden CoTs. Golden CoTs are narratives that
represent the reasoning behind the correct answer
for each story (written by the mystery authors).
When we attach golden CoTs to the input prompt,
the best-performing GPT-3.5 model only achieves a
solve rate of 63%. This indicates LLMs’ difficulty
making even trivial inferences from the complex
long-form story. GPT-4 models, however, get as
good as the best human solvers when presented
with our chain of thoughts (even though humans
do not have access to the golden CoTs).

Our contributions in this paper are twofold: (1)
a new challenging benchmark for evaluating LLMs
for advanced abductive reasoning; (2) a showcase
of GPT-3.5 and GPT-4 models failing to perform
reasonably.

2 Related Work

Mostafazadeh et al. (2016) introduced the ROCSto-
ries benchmark: narrative cloze test, which requires
choosing the correct ending of the four-sentence
story. Bhagavatula et al. (2020) expand on this
dataset, requiring finding plausible explanations
for narrative gaps instead of focusing on the se-
quence of events. Our benchmark contains stories
of around 70 sentences that require solving the de-
tective mystery (as opposed to simply figuring out
commonsense story continuation), which is a much
harder inference.

Natural language inference (NLI) is another re-
lated domain, but NLI tasks usually include much
simpler and smaller inferences (Bowman et al.,
2015; Williams et al., 2018). Zellers et al. (2018)
introduced the SWAG dataset that offers a large-
scale natural language inference challenge where
grounded knowledge is required to make an in-
ference. This shares some commonality with our
dataset, as some mysteries might require a share
of grounded knowledge about the real world. Un-
like Zellers et al. (2018), we only offer a test set,
but our stories are broader and more involved. On
the other hand, Grimm and Cimiano (2021) in-
troduced a question-answering benchmark that re-
quires deeper text understanding based on the foot-
ball match commentaries. Their questions range
from counting the number of goals to identifying
the game-winner. While answers to many of these
questions are not explicitly provided in the foot-
ball commentary, our mysteries require solving the
whole case specifically designed to be challenging
even for humans.

Lastly, Wei et al. (2022) find that while eliciting
"Chain of Thought" reasoning helps with stronger
models, it can hurt when solving harder tasks with
smaller models. We observe this behavior when
comparing GPT-3.5 and GPT-4 on our benchmark.

3 Benchmark

3.1 5 Minute Mystery Platform
The data for this AI research was obtained from
the "5 Minute Mystery"2 online platform. This
website is an online platform that has functioned
for over ten years and allows users to submit and
solve mysteries of varying difficulty (see Appendix
A for an example mystery).

Based on the website author guidelines, the mys-
teries on the website collection are intended for
readers at the sixth to eighth-grade reading level
and have a recommended length of around 1200
words. To facilitate comprehension and challenge
the reader, each mystery includes around four sus-
pects and one guilty suspect. Of the 191 mysteries,
the overwhelming majority ask the reader to iden-
tify the guilty suspect, with only occasional ones
asking for the geographic location or the missing
person. The aim is for the reader to demonstrate
their abductive reasoning abilities by solving the
mystery and identifying the correct solution (e.g.,
the murderer). Typically, one character in the story
is faced with the key puzzle, and at the end of the
mystery, they exclaim something like: "I figured
out who is guilty!" At this point, the reader must
choose the correct answer from a list of options.

In addition, mystery writers provided an expla-
nation for the answer: a full solution (golden CoT)
that elicits reasoning that leads to the correct an-
swer. The reasoning is presented on behalf of one
of the story characters (the one who says, "I know
who did it" at the end of the story).

The website also has a unique scoring system
that rewards users for correctly solving myster-
ies, encouraging participation and engagement. In
addition to providing entertainment, the website
can also be used in an educational setting to help
students develop their comprehension and critical
thinking skills.

3.2 Benchmark Dataset
The mysteries in this study were obtained from the
"5 Minute Mystery" (5MM) platform. We have
included links to the original mysteries and to the

2https://www.5minutemystery.com/
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Figure 1: Distribution of the number of attempts for
each mystery. The red dot indicates that almost 2000
people attempted mysteries on average. This suggests
that our dataset provides a robust estimate of human per-
formance and is representative of human performance
on the mysteries.
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Figure 2: Average human solve rate for each mystery
in the dataset. The performance for most puzzles is
around 40-60%. The red dot indicates the average solve
rate. This figure reveals that the majority of puzzles
are challenging for human solvers, providing a good
benchmark for evaluating the performance of AI models
on these types of tasks.

author pages in the study, and we want to empha-
size that all copyrights remain with the original
authors and the 5MM team. See the authors list in
the Appendix B section.

Dataset size and the number of answers. The
dataset used in this study consists of 191 puzzles,
including 160 puzzles with four answer options, 30
puzzles with five answer options, and one puzzle
with three answer options.

Attempts. The "5 Minute Mystery" platform has
been in operation for approximately 14 years and
has attracted thousands of users, with over 20,000
registered by 2013. These users have made numer-
ous attempts at each mystery, but only their first
attempt is counted towards the platform’s statis-
tics. As shown in Figure 1, the average number
of attempts per mystery is 1984, with only a few
puzzles being significantly more or less popular.

With such a large sample size, the resulting hu-
man performance estimate is highly robust and re-
liable as a benchmark.

Human Solve Rate. In the 5MM platform, hu-
man solvers have achieved moderate success. The
average solve rate is 47%, significantly higher than
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Figure 3: Number of words in each mystery in the
dataset. Mysteries range from 600 to around 2000 words
with most of them being around 1204 words (red dot).
This suggests that not only does the task require draw-
ing highly nontrivial conclusions from the text but also
doing so over relatively large texts.
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Figure 4: Number of words in the solution explanations
for each mystery. The red dot indicates the average num-
ber of words per explanation. This figure reveals that the
average solution length is 265 words, and the longest so-
lutions are around 600 words. Solutions (golden CoTs)
are useful for a setup testing the ability of LLMs to do a
trivial final answer inference over the given CoT.

random guessing (around 24%), indicating that the
tasks are challenging even for humans. The top
ten human solvers have an average solve rate of
80-90%, per platform statistics. Figure 2 shows
that most mysteries are solved between 40% and
60% of the time, with some being solved up to
70% of the time and others close to random guess-
ing. While the mysteries were designed to vary in
difficulty, it is possible that the best explanation
provided by humans may not always align with
the author’s intended solution for the hardest ones.
However, we continue to include these mysteries in
our dataset to investigate whether language models
can better infer the author’s intent in these cases.

Mystery word count. Figure 3 shows the dis-
tribution of the number of words in each mystery
in the dataset. On average, mysteries have 1204
words, with some being as long as 2000 words.
This suggests that the puzzles used in the study not
only require advanced reasoning skills to solve but
also require finding relevant clues from a relatively
long body of text that can incriminate or exonerate
suspects. This further complicates the task.

Golden CoTs. Each mystery in the dataset in-
cludes a full-text solution that provides an expla-
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nation of how one of the story characters came up
with the correct answers. The average length of
these solutions is 265 words, as shown in Figure 4.
The solution lengths do not vary significantly, with
the longest solution being around 600 words.

These solutions can be considered as ground-
truth Chains-of-Thought (cite paper here), which
provide insight into the author’s reasoning for each
puzzle. This information is valuable for a few rea-
sons. First, it can be used as part of few-shot learn-
ing examples (again, cite). Second, as we demon-
strate in Section 4, we can use these Chains-of-
Thought to simplify the abductive reasoning task
and evaluate whether language models can perform
inference when the solution is strongly hinted at.

4 Evaluation

4.1 Models
The models used in this study are the InstructGPT-
3.5 models GPT-3.5 (FeedME), GPT-3.5 (PPO)
(OpenAI, 2022), and GPT-4 (OpenAI, 2023). They
are causal language models based on the Trans-
former architecture (Vaswani et al., 2017) featuring
supposedly around 175B parameters for GPT-3.5s.

GPT-3.5 (FeedME): a model was trained us-
ing the FeedME method, a supervised fine-tuning
method based on human-written instructions and
model samples (Ouyang et al., 2022; OpenAI,
2022).

GPT-3.5 (PPO): is a more performant update
over GPT-3.5 (FeedME) model. Apart from in-
struction tuning, it was also calibrated with RLHF,
a reinforcement learning method that uses reward
models trained from human comparisons (Stiennon
et al., 2020; OpenAI, 2022).

GPT-4: state-of-the-art commercial model from
OpenAI. Achieves human parity on multiple ex-
tremely challenging tasks (OpenAI, 2023).

4.2 Methods
In this study, we tested GPTs in a zero-shot manner
in three scenarios. This subsection outlines them.

Vanilla: This method involves the task descrip-
tion, mystery body, and an immediate request for
the final answer (Brown et al., 2020).

CoT: This method asks LLMs to generate a
Chain-of-Thought first (Wei et al., 2022; Kojima
et al., 2022) and only then requests the final an-
swer. Chain-of-thought, if reasonable, allows the

model to approach complex problems gradually
and unlocks strong reasoning abilities at a particu-
lar model scale (Wei et al., 2022).

Golden CoT: This method involves generating
answers to instruction-based questions by using
a set of ground-truth Chain-of-Though solutions
included as part of the prompt. This significantly
simplifies the task for the model as it does not need
to come up with CoT, so we can test how much
of the performance depends on the CoT and how
much on the final abductive reasoning step.

4.3 Prompt Templates
Figure 5 shows the task instruction that we give
to the InstructGPT models at the beginning of the
prompt.

Figure 5: Task instruction that we use as a prompt prefix.

Then we always add the mystery name, list of
suspects, and mystery content (body) to the prompt.

When we want to invoke Chain-of-Though rea-
soning, we also append the following:
Full answer:
Let’s think step by step.

When we want to provide a golden Chain-of-
thought, we append the following prompt:
Solution:
{solution}

Finally, we always ask for the final answer with
Final answer:

4.4 Results and Discussion
The evaluation results shown in Table 1 indicate
that the performance of both davinci models under
both Vanilla and CoT prompting scenarios is close
to random. In our analysis, we also found that there
is no correlation between the length of the mystery
or human solve rate and the GPT’s correctness.

Our Golden CoT ablation study (Table 1) demon-
strates that even with relevant explanatory CoT,
GPT-3.5s can only solve 63% of puzzles correctly,
suggesting that difficulty lies not only in generating
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Method Solve rate
Random guess 0.24
Human average 0.47
Human top 0.8-0.9
Vanilla

GPT-3.5 (FeedME) 0.28
GPT-3.5 (PPO) 0.26
GPT-4 0.27

CoT
GPT-3.5 (FeedME) 0.26
GPT-3.5 (PPO) 0.29
GPT-4 0.38

Golden CoT*
GPT-3.5 (FeedME) 0.46
GPT-3.5 (PPO) 0.63
GPT-4 0.83

Table 1: Performance of GPT-3.5 (FeedME), GPT-3.5
(PPO), and GPT-4 under different prompting scenarios
against the human baseline. Both vanilla task formation
(Instruction and immediate answer request) and "step-
by-step" chain-of-thought approaches perform almost
equivalent to random guess. Even in unfair comparison,
GPTs cannot match/outperform top human solvers when
provided with golden chains of thought.

the correct theory for the crime but also in making
final inferences when all information is available.
On the other hand, GPT-4 does not help such a
problem with 83%.

CoT performance of GPT-3.5 models show small
to no gains in performance compared to Vanilla. As
indicated in Wei et al. (2022), a similar decrement
(between GPT-3 and smaller models) was observed
in models that weren’t sufficiently powerful for the
task suggesting that the GPT-3.5 models might also
not be strong enough to generate CoT chains that
would benefit the task. On the other hand, CoT
GPT-4 performs better, although still underachiev-
ing compared to the average human solve rate.

The complexity of the long-form multi-character
narrative and the level of reasoning required to
solve the detective puzzle makes our benchmark
especially difficult and sets it apart.

Finally, we explore the complexity of the cases
that GPT-4 (CoT) found easier or harder to manage.
In our study, we did not observe a direct correlation
between the length of a mystery and the level of
difficulty it presented. However, when considering
the level of concurrence between human decisions
and those made by GPT-4, Figure 6 demonstrates
a considerable degree of agreement. Specifically,
the cases perceived as challenging or straightfor-
ward by the GPT-4 were often viewed similarly by
human subjects.

Figure 6: Red line indicates case difficulty for humans,
green points indicate cases where GPT-4 (CoT) solved
the case successfully, and black points are for cases
where GPT-4 failed. Black points are crowded on the
right and green points are crowded on the left which
correlates with hard and easy cases (as per humans)
respectively. Therefore, GPT-4 and humans find similar
cases easy/difficult.

5 Conclusion

We presented a new benchmark in the form of de-
tective puzzles to evaluate the abductive reasoning
capabilities of Large Language Models. Results
from state-of-the-art GPT-3.5 models across three
prompting strategies showed poor performance
close to random. GPT-4 managed to show com-
parably solid performance (when prompted with
CoT), but even this model is behind the average hu-
man solve rate on our benchmark. When provided
with golden CoTs, which significantly simplifies
the task, GPT-4 shows good performance, while
GPT-3 is still unable to do a final inference well
enough. Overall, our benchmark offers insights
into LLMs’ limitations and provides a difficult chal-
lenge for future research on abductive reasoning in
large LMs.

6 Limitations

Our evaluation focused solely on the performance
of leading-edge GPT models details and weights of
which are not publicly available. However, there is
potential value in extending this study to incorpo-
rate other models like PaLM (Chowdhery et al.) or
LLaMA (Touvron et al.), which we have earmarked
for future research.

Also, as the performance for average humans
is only 47% it is possible that some mysteries are
ill-defined or unreasonably complicated. Among
the top 10 human solvers, the solve rate is also only
around 80-90%, and GPT-4 only solves 83% of
tasks when provided with ground truth CoTs which
drastically simplifies the task.
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A Example: The Easter Egg Mystery

This appendix provides the most attempted mystery
under 700 words as an example. Copyright belongs
to the mystery author.

Metadata

• Mystery Name: The Easter Egg Mystery

• Author: Tom Fowler3

• Solve Rate: 60.8%

• Attempts: 1871

• Answer options: (a) Anna; (b) Cole; (c) Justin;
(d) Lizzie; (e) Rachel.

Mystery Body Karen Sheldon had loved Easter
egg hunts ever since she was a little girl. That
is why she eagerly volunteered to assist with this
year’s Hunt for the children at her church.

This year, the Children’s Day Out mothers de-
cided to do something different. Because there
were so many children of all ages in the congrega-
tion, they split the hunt up into age groups. Karen’s
job was to oversee several of the 6-10 year olds.

3https://www.5minutemystery.com/
author/tfowler

Within her group were five children she knew
well. They were Rachel Smithson, whose mother
Karla had volunteered to help a very grateful Karen,
Justin Bates, a classmate of Rachel’s, Karen’s
daughter Lizzie, Lizzie’s best friend Anna Laugh-
lin and Cole Bryant, who was also the Sheldon’s
next door neighbor.

The Easter egg hunt was on Saturday morning,
the day before Easter Sunday. It was held in the
large field in back of the church. Karen and Karla
were grateful that today was sunny and warm al-
though it was a bit windy. Karen was excited as
the children prepared for the hunt, which was to
begin at 10:00 am and last for one hour. Just be-
fore the start whistle blew, Karen told the children,
“I have placed a golden Easter egg in our hunting
area. There is an extra bag of candy for the child
who finds it.” Only Karla and she knew that the
golden egg was placed in back of the largest tree in
the field, an old oak in the far corner to the left of
where she and the children now stood and an area
dedicated to the 6-10 year old age group.

During the hunt, Karen and Karla visited while
they watched the egg hunt. During the hunt, Karen
noticed that Cole stayed focused on the evergreen
shrubbery in the middle of the field, finding several
eggs there, much to his delight.

Karen was amused when Rachel ran to her
mother and told her, “I have found a lot of eggs.
I’m heading back to the rock pile. I bet I will find
the golden egg there!” The rock pile was to the
right of the evergreen shrubbery.

In the middle of the hunt, Karen excused herself
to go inside the church to get a drink of water and
sit for a few minutes. When she returned, Karla
told her, “I had to run over and warn Lizzie to be
careful of the dead branches on the big oak tree.
One of them fell last week, hitting one of the older
kids.”

As the hunt began to wind down, Karla walked
out to speak with a very agitated Anna. After re-
turning to Karen, she told her, “Anna is upset be-
cause she has found only a few eggs. I told her to
keep looking; there are still a few minutes to go.”
Karen noticed that Anna stayed close to Karla for
the remainder of the hunt.

As the whistle blew to end the hunt, Karen
walked to the center of the field to wave Justin
back in. He was in the far right corner of the field,
where he had been for the entire hunt. There was a
sand pit in that area and Justin found several eggs
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there.
As the kids headed back to the start area, Karen

once again excused herself to go inside. The wind
had blown a speck of dust in her eye when waving
Justin down and it was very painful. When she
returned from rinsing her eyes, Karla and the five
children were smiling at her. She asked, “What’s
up?”

Karla answered, “One of our kids found the
golden egg. We want you to guess which one.”

Karen smiled in return, saying, “So that’s it!”
Thinking for a moment, she said, “I only have one
question. When I was inside the first time, did any
of the children move from one side of the field to
another?”

Karla answered, “No.”
Karen tousled Justin’s hair and said, “Good.

Then I know who has the golden egg!”

A.1 Golden CoT and Answer

Golden CoT. "Good naturedly, Karla exclaimed,
“How do you know?” Smiling at Anna, she an-
swered, “It’s not too hard to figure out. Let me
explain.” The eyes of all of the children and Karla
were upon her as she continued, “I placed the
golden egg behind the big oak tree.” Smiling next
at Cole, she said, “Cole spent the entire hour in
the shrubbery, in the middle of the field, far away
from the oak tree.” She patted Rachel’s shoulder
and said; “Rachel did all of her hunting in the rock
pile, even farther away from the oak tree.” Looking
back at Anna, Karen said, “I know you don’t have
the golden egg, sweetie. You were upset that you
had so few eggs with only a few minutes left in
the hunt and stayed close to Karla until the whistle
blew.” Patting her hand, she added, “I’m sure you
will do better next year.” Turning to Justin, Karen
said, “You were farther away from the oak than any-
one. You spent the whole hour far out in the sand
pit. I even had to come get you because you could
not hear the whistle.” All eyes turned toward Lizzie.
Her mother said, “So, you must have the egg. Karla
told me she had to warn you of the dead branches
on the oak. You were the only one near it.” Pausing,
she added, “I hope everyone believes that I did not
tell you where I put that egg! Karla jumped in, “Of
course we do not think that!” All of the kids echoed
their support. Lizzie broke the silence. She said, “I
didn’t know about the egg until Mother told every-
one else before the hunt.” Walking over to her side,
Lizzie looked at Anna and offered her the golden

egg, saying, “I would like for you to have this.”
Tearfully, Anna thanked her friend, saying, “This is
the best Easter egg hunt ever!” Karen was so proud
of Lizzie that she heartily agreed with Anna."

Answer: (d) Lizzie
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Abstract

Sequence-to-sequence paraphrase generation
models often struggle with the generation of
diverse paraphrases. This deficiency constrains
the viability of leveraging paraphrase genera-
tion in different Natural Language Processing
tasks. We propose a translation-based guided
paraphrase generation model that learns useful
features for promoting surface form variation in
generated paraphrases from cross-lingual paral-
lel data. Our proposed method leverages mul-
tilingual neural machine translation pretrain-
ing to learn zero-shot paraphrasing. Further-
more, we incorporate dedicated prefix tokens
into the training of the machine translation mod-
els to promote variation. The prefix tokens
are designed to affect various linguistic fea-
tures related to surface form realizations, and
can be applied during inference to guide the
decoding process towards a desired solution.
We assess the proposed guided model on para-
phrase generation in three languages, English,
Finnish, and Swedish, and provide analysis on
the feasibility of the prefix tokens to guided
paraphrasing. Our analysis suggests that the
attributes represented by the prefix tokens are
useful in promoting variation, by pushing the
paraphrases generated by the guided model to
diverge from the input sentence while preserv-
ing semantics conveyed by the sentence well.

1 Introduction

Paraphrasing is a way of conveying some given
meaning using different wording. Automatic para-
phrase generation aims to produce sequences that
carry similar semantics to some arbitrary input sen-
tence but are realized in different surface forms.
Table 1 presents examples of paraphrases. Ap-
proaches for natural language generation incorpo-
rating diverse paraphrasing can be highly influen-
tial for many natural language processing (NLP)
tasks where it is important to recognize sequences
that share contextual meaning regardless of their
surface form realizations. Such tasks include, but

are not limited to, question answering (Dong et al.,
2017), machine translation (Callison-Burch et al.,
2006; Mehdizadeh Seraj et al., 2015), summariza-
tion (Nema et al., 2017), and simplification (Nisioi
et al., 2017). Models that reliably represent simi-
lar meanings regardless of their surface forms can
also be highly useful for instance in style transfer
(Krishna et al., 2020), conversational applications
(Dopierre et al., 2021), and tracking how informa-
tion changes across multiple domains (Wright et al.,
2022). However, for generated paraphrases to be
useful in various NLP tasks, their realizations must
deviate enough from the original sequences while
preserving the semantics of the original sequence
well. Sequence-to-sequence-based paraphrasing is
prone to generating sequences whose surface forms
highly resemble the original sentence by producing
trivial rewrites of the input sentence (Kumar et al.,
2019). This impediment constrains their practical
viability to the aforementioned tasks.

To increase variation, we propose the training
of a guided multilingual neural machine transla-
tion (NMT) system that can be applied to diverse
zero-shot paraphrase generation by leveraging ded-
icated prefix tokens designed to enhance variation.
We train our multilingual translation system in En-
glish, Finnish, and Swedish, and apply it to guided
zero-shot paraphrasing in the three languages. The
model does not see parallel monolingual sentence
pairs during training, but we guide it to produce
monolingual paraphrases during inference.

During training, our proposed model learns the
semantics of a set of dedicated prefix tokens that
are designed to capture certain attributes of lan-
guage, and can be used for promoting diversity
in generated text during inference. The attributes
we consider are length, lexical variation, word or-
der, and negation. When generating paraphrases,
we can thus guide the model to produce sentences
that vary in the given attributes by assigning corre-
sponding values to the prefix tokens. Apart from a
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Original Paraphrase
They are excellent dancers. They dance extremely well.
The dinner will be served in the dining area. The dining area is where the dinner will be served.
He enjoys playing the guitar. Playing the guitar brings him joy.

Table 1: Examples illustrating paraphrasing.

few language-specific rules for recognizing explicit
negation, our control tokens are language-agnostic.

By evaluating the applicability of multilingual
NMT pretraining with prefix tokens to paraphras-
ing, we analyze whether the dedicated prefix tokens
increase variation in sequence-to-sequence-based
paraphrasing. We asses the generated sequences
with respect to the references using BLEU (Pa-
pineni et al., 2002), and analyze the ranking of
generated correct references using Mean Recipro-
cal Rank. Additionally, we analyze how faithful
the model is to the given instructions during de-
coding by comparing the accuracy of the guided
model outputs to the prefix tokens. We also ap-
ply the models to a novel test suite (Vahtola et al.,
2022), designed for analyzing how language mod-
els represent negation. Our analysis suggests that
the paraphrases generated by the proposed model
are more diverse compared to the baseline model,
especially when selecting hypotheses from n-best
lists with smaller n-sizes, and preserve semantics
of the original sentence well.

The main advantage of our approach is that we
train our system on parallel cross-lingual transla-
tion pairs rather than monolingual paraphrase data.
Translation examples are available for a far larger
number of languages and in larger quantities than
monolingual paraphrases. As a result, our approach
can be extended to a considerably larger number
of languages than models that depend on exist-
ing paraphrase data. Furthermore, our model is
not tied to diversity in the monolingual paraphrase
examples in obtaining variation in the generated
sequences. As we use cross-lingual training exam-
ples, the model can learn characteristics that might
not be prominent in the existing paraphrase data
sets. For instance, large language models do not
reliably represent negation (Ettinger, 2020), which
can be a result of not having a sufficient number of
such examples in the training data. We show that
the proposed model can learn the semantics of a set
of dedicated guiding tokens, for instance a token
for negation from sentence pairs where an explicit
negation occurs, and that these tokens can then be

used to guide the decoder to produce sentences
with desired characteristics.

Finally, we show that, especially when selecting
hypotheses from smaller n-best lists, the guided
paraphrase generation model goes beyond varia-
tion that can be achieved by filtering beam search
(Kumar et al., 2019), as the prefix tokens provide
more control for variation.

2 Previous Research

Previous research has studied paraphrase gener-
ation inspired by NMT systems. Prakash et al.
(2016) use a deep LSTM network for paraphrase
generation using monolingual parallel training data.
Sjöblom et al. (2020) train encoder-decoder-based
paraphrase generation systems for six languages,
likewise using paraphrastic sentence pairs.

As an alternative to paraphrase data, cross-
lingual parallel data has been used for finding
paraphrases (Bannard and Callison-Burch, 2005;
Callison-Burch, 2008; Ganitkevitch et al., 2013;
inter alia). Mallinson et al. (2017) generate para-
phrases via bilingual pivoting using a NMT system.
Similarly, models based on NMT have been used in
generating synthetic paraphrase pairs for learning
paraphrastic sentence embeddings (Wieting et al.,
2017; Wieting and Gimpel, 2018).

Additionally, multilingual NMT systems have
been applied for paraphrase generation leveraging
both parallel and monolingual data (Tiedemann
and Scherrer, 2019), and assessing generalization
to zero-shot paraphrasing while also promoting
variation in the generated sequences by penalizing
matching tokens in the source and output sentences
(Thompson and Post, 2020). Zero-shot paraphras-
ing using large multilingual language models has
also been explored (Guo et al., 2019).

Exploiting various linguistic features to control
the decoding process of sequence-to-sequence mod-
els has been studied in different NLP tasks and
granularities. Auxiliary control tokens have been
used for controlling the language of the output in
multilingual NMT (Johnson et al., 2017). Schioppa
et al. (2021) use various features for controlling
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output translations from a NMT system. In addi-
tion to prefix-based control tokens, they use vector-
based interventions that guide the decoding pro-
cess to certain directions. The complexity of the
generated translations have been controlled by uti-
lizing reading level tags, and by partitioning data
based on reading or grade levels (Marchisio et al.,
2019; Agrawal and Carpuat, 2019). Takeno et al.
(2017) and Lakew et al. (2019) control length of
the translated sequences with control tokens. Addi-
tionally, control tokens have been used with NMT
systems for instance in domain adaptation (Kobus
et al., 2017; Takeno et al., 2017), formality transfer
(Sennrich et al., 2016; Niu et al., 2018), and voice
control (Yamagishi et al., 2016).

Outside of machine translation, control tokens
have been used successfully for instance in sen-
tence simplification (Martin et al., 2020). Addition-
ally, control tokens have been applied to sentences
mined from the internet to obtain synthetic simplifi-
cation data (Martin et al., 2022). In paraphrase gen-
eration, additional linguistic information obtained
from the training data has been used for example
in syntactic guiding (Iyyer et al., 2018; Huang and
Chang, 2021; Sun et al., 2021).

Our approach to promoting variation is inspired
by Schioppa et al. (2021) and Martin et al. (2022).
We leverage existing translation corpora to learn
controlled zero-shot paraphrasing using dedicated
prefix tokens whose semantics the model learns
directly from the training data. Our control tokens
are designed to affect various properties of natural
language. However, unlike Schioppa et al. (2021),
we do not assess our model on machine transla-
tion, but take one step further, and evaluate it in
zero-shot paraphrasing. We do not only attempt
at increasing variation in lexical choices or diver-
gence in syntactic realizations, for instance, but
aim to affect both concurrently.

3 Guiding Attributes

To guide the decoding process, we need a method
for signaling which decisions the decoder should
take. Here, we use a prefix token-based approach,
where we extract certain features from the source-
target pairs in the training data, and concatenate the
extracted information to the source side in the form
of prefix tokens. We let the model learn to represent
the semantics of each prefix token from the infor-
mation incorporated in the translation pairs. Conse-
quently, we can guide the decoding process of the

proposed paraphrase model by applying these pre-
fix tokens in monolingual transformation triggered
by a target language token.

To promote variation in the generated para-
phrases, we use the following attributes to control
for various properties of natural language: length,
lexical variation, word order, and negation.

3.1 Length
Inspired by automatic text simplification, we in-
clude a length-controlling token into our experi-
ments. We represent the length attribute as a ra-
tio between the lengths of source and target sen-
tences after SentencePiece tokenization (Kudo and
Richardson, 2018). We use pretrained Sentence-
Piece models with a vocabulary size of 32 000 from
the Opus-MT project (Tiedemann and Thottingal,
2020). If the sentences in a translation pair have ex-
actly the same length after segmentation, the length
ratio between the sentences is 100% (indicating that
the target sequence should consist of 100% of the
segments of the source sequence). Similarly, if the
number of tokens in the target sentence is half of
the number of tokens in the source, the length ratio
is 50%. We round the length values to the nearest
10 to limit the number of features the model has to
learn for controlling length.

3.2 Lexical Variation
Lexical variation could easily be measured in the
monolingual case. However, we base our para-
phrase generation model on multilingual machine
translation and, therefore, need to apply a different
mechanism to promote variation in lexical choices.
We choose to base this prefix token on tf-idf. In
previous research, tf-idf values have been used to
measure lexical complexity of a sentence (Huang
et al., 2021), but in our approach we apply them to
promote lexical variation.

When calculating the tf-idf values, we treat each
target sentence as a document, and calculate tf-idf
over all the sentences in a given language pair. We
consider the highest value in the resulting vector
as a rough proxy of the lexical complexity of the
sentence.

We automatically assign the obtained values into
quartiles. Intuitively, sentences assigned into the
first quartile should consist of simpler and more fre-
quent tokens, whereas sentences in the subsequent
quartiles should include less frequent, and increas-
ingly difficult tokens. We hypothesize that control-
ling for tf-idf quartiles will promote divergence in
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terms of lexical variation in sentence-to-sentence
paraphrasing. Additionally, it could provide a sim-
plifying effect if applied to simplification tasks.

3.3 Word Order

As an attribute of word order, we use the mono-
tonicity of word alignments as proposed by
Schioppa et al. (2021). Here, monotonicity refers
to the degree of preservation of word order in the
source compared to the target sentence. First, we
apply fast_align (Dyer et al., 2013) to en-
code sentence pair alignment in the “Pharaoh” for-
mat, where the ith token of the input sentence is
paired with the jth token of the output sentence, and
the alignments are indicated by the corresponding
word indices (e.g., 0-0 1-1 2-2 for a bijective align-
ment of two sentences with three tokens, or 0-2 1-1
2-0 for reversed word order). Next, we apply the
following calculation from Schioppa et al. (2021):

δ(s) =
1

#{(i, j)}
∑

(i,j)

∣∣∣∣
i

n
− j

m

∣∣∣∣+ 0.1 (1)

where #{(i, j)} stands for the cardinality of the
alignments.

We assign the obtained monotonicity values δ(s)
for each sentence pair automatically into quar-
tiles, similarly as with the lexical variation to-
kens. We hypothesize that during inference, keep-
ing other prefix token features constant, controlling
for monotonicity promotes variation in word or-
der in relation to the input sentence by guiding the
model for either more monotone or more varied
choices of word order.

3.4 Negation

Previous research has suggested that language mod-
els do not reliably represent negation (Ettinger,
2020; Hartmann et al., 2021). Therefore, we in-
clude a prefix token for controlling polarity of a
generated sentence. By applying polarity change,
we focus on one specific case of paraphrase for-
mulation, namely, antonym substitution (Bhagat
and Hovy, 2013). In this paradigm, some word
in a sentence is substituted to a word that carries
the opposite meaning to the original word, that is,
its antonym. Concurrently, to maintain the orig-
inal meaning, a negation is either inserted to or
deleted from a corresponding position in the se-
quence. As an example, the sentence My brother is
asleep could be paraphrased as My brother is not

awake, by using antonym substitution as defined in
Bhagat and Hovy (2013).

As a control token for polarity change, we use
Boolean values to indicate whether an explicit nega-
tion occurs in the target sentence. We use hand-
written rules to automatically recognize negation
in each target sentence. These rules are designed to
only grasp explicit negation (e.g., not) as opposed
to alternative ways of conveying opposite mean-
ings, such as negative prefixes (e.g., un-, im-, dis-,
il-, ir-, and in- in English). Our hypothesis is that
by explicitly expressing the presence of a negation
token in a target sentence, the prefix token can be
used for controlling polarity of a paraphrase.

4 Experiments

We train two multilingual NMT models for En-
glish, Finnish and Swedish from scratch: a base-
line model without prefix tokens apart from the
target language token, and our proposed model
with prefix tokens. Both models are based on the
Transformer architecture (Vaswani et al., 2017),
and trained using OpenNMT (Klein et al., 2017)
with standard hyperparameters for training a Trans-
former. We gather training data from OpenSub-
titles (Lison and Tiedemann, 2016) using Opus-
Tools (Aulamo et al., 2020), by filtering for one-to-
one aligned sentences with a time stamp overlap
threshold of 0.85.1 The obtained training set con-
sists of approximately 17 million sentence pairs in
three language pairs (en-fi, en-sv, fi-sv). We extract
10 000 sentence pairs from each direction to serve
as validation data for tuning the translation models.
We train the models for all cross-lingual directions
on two GPUs for one million steps or until early
stopping criteria is met.

We evaluate the models on true paraphrase pairs
extracted from the Opusparcus test sets (Creutz,
2018). The sizes of the filtered English, Finnish and
Swedish test sets are 723, 669, and 732 sentence
pairs, respectively. Opusparcus is a sentential para-
phrase corpus that consists of paraphrastic bi-texts
in six languages, English, Finnish, and Swedish
included. The data is collected from the OpenSub-
titles corpus, and therefore matches the domain
of the training data. Consequently, the translation
models may have seen some of the sentences in-
cluded in the test sets during training, either on
the encoder or the decoder side, but not as parallel

1Time-overlap ratio based on the time information given
for each pair of aligned subtitle lines in the corpus.
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Figure 1: Obtained BLEU scores calculated on the
Opusparcus test sets for the guided and the baseline
models for sentences selected from different n-best lists.
The x-axis denotes the size of the n-best list where the
best hypothesis is selected from. The y-axis denotes the
obtained BLEU scores. The horizontal line indicates
the obtained accuracy of the 1-best translation from the
guided model.

monolingual pairs.

5 Results

5.1 Automatic Evaluation

We assess the alignment of the generated para-
phrases to their reference sentence based on BLEU,
and further analyze the quality of the systems in

terms of Mean Reciprocal Rank.

5.1.1 BLEU
We evaluate our model by testing how well it can
generate a paraphrase of a source sentence that
closely aligns to the desired target sentence. To
quantify this, we use BLEU, which is an estab-
lished metric in machine translation, for comparing
a produced translation to a given reference. As the
test examples are designed to exhibit surface form
variation (Creutz, 2018), increase in BLEU implies
increased variation in sentences generated by the
models.

During inference, the guided model requires pre-
fix tokens to perform guided paraphrase genera-
tion. We calculate the true guiding values for the
prefix tokens from the test set examples, and in-
put them together with the source sentence to the
guided model. For calculating the test set prefix
tokens, we first train fast_align parameters for
each language using the first 500 000 paraphrase
pairs from the corresponding Opusparcus training
sets, and use these alignment parameters for cal-
culating the word order features. For the lexical
variation attribute, we use the tf-idf weights learnt
from the training data to assign the lexical variation
values of each target sentence. Consequently, the
guided model can leverage this information about
the ground truth reference during decoding. The
baseline model, however, has no information about
the reference sentence during decoding. As such,
this evaluation setup would result in an unfair com-
parison of the models. Therefore, we use beam
search with a beam size of 250 to generate n-best
hypotheses from both models. From the n-best
lists, we choose the hypothesis that most accurately
matches the desired prefix tokens. Now, also the
baseline model has a fair chance of producing a
sentence the matches the desired guiding values, if
such a hypothesis is available in the n-best list.2

Figure 1 presents BLEU scores of the models for
n-best lists ranging in size from 1 to 150. The re-
sults indicate that our proposed guided paraphrase

2When determining which hypothesis is the best match for
the desired guiding values, we treat the prefix token values
as vectors. The negation tokens are mapped from Boolean
values into their binary feature representation {0, 1} and the
other prefix tokens are normalized in the range [0, 1] using
min-max normalization. We calculate the cosine similarity of
the ground truth prefix token values and all the hypotheses’
prefix token values, and choose the one that maximizes cosine
similarity. If multiple hypotheses maximize the similarity
(e.g., multiple hypotheses have cosine similarity of 1.0), we
choose the hypothesis with the highest translation score.
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generation model greatly benefits from the infor-
mation provided by the prefix tokens. Considering
only the 1-best hypotheses for each language, the
guided paraphrase generation model obtains sig-
nificantly higher BLEU scores than the baseline
model (18.6 vs. 8.9, 19.7 vs. 7.8, and 21.6 vs. 8.6
for English, Finnish and Swedish, respectively). In-
creasing the pool of hypotheses to 5-best increases
BLEU scores of both models.

The steep increase of BLEU scores between 1-
best and 5-best, which is obtained by the guided
model, may seem surprising at first. Why does the
1-best translation not match the guidance values
the best? We hypothesize that this is caused by
the model balancing between what it considers the
best translation and the decisions it is supposed to
be making based on the prefix tokens. In practice,
the model might find a solution that it considers a
better translation, even if it means partly ignoring
the guiding tokens. Consequently, increasing n-
best size results in the model selecting a sentence
that better matches the guiding tokens, which in
turn increases the obtained BLEU score. However,
on average, the guided model does not benefit from
n-best sizes larger than 15. At this point, the model
has found a solution that maximizes the similarity
to the ground truth prefix tokens for each input
sentence.

The baseline models benefit greatly from filter-
ing from a larger collection of hypotheses. Albeit
beginning from a very low BLEU score in all lan-
guages, the results for Finnish and Swedish sur-
pass the ones obtained by the guided model when
selecting from a sufficiently large set of hypothe-
ses (approximately 60-best hypotheses for Finnish,
and 110-best hypotheses for Swedish). In terms of
the guided model, the prefix tokens constrain the
options where the model can choose from during
decoding, since it also needs to consider the given
instructions. As a result, the output sequences are
close to the desired outputs in terms of the prefix
tokens to begin with. In case of multiple hypothe-
ses that maximize the similarity to the reference
prefix tokens, we choose the first such occurrence
in the n-best list. This is not always the one that
maximizes alignment to the reference translation.

5.1.2 Mean Reciprocal Rank

Mean Reciprocal Rank (MRR) calculates the av-
erage of the reciprocals of the first generated se-
quence that exactly matches the reference:

Figure 2: Obtained Mean Reciprocal Rank of the base-
line and guided models calculated from the 250-best
lists. The x-axis denotes the system, and the y-axis
indicates the obtained MRR score.

MRR =
1

N

N∑

i=1

1

ranki
, (2)

where N is the number of paraphrased sentences,
and ranki refers to the position in the n-best list of
the first sentence that matches the reference.3

The score indicates how consistently the models
retrieve and rank the correct references high in
the generated n-best lists. Figure 2 presents the
MRR scores of the models. The guided models
consistently rank the generated sentence that
matches the reference higher compared to the
baseline models, whereas the baseline model
struggles in ranking matching sentences high in
the n-best list. We believe that the low ranking
performance of the baseline model is mainly
caused by the decoding algorithm. Beam search is
known to produce bland outputs (Holtzman et al.,
2020), and when applied in paraphrasing, this
realizes in copies or trivial rewrites of the input
sentence. In fact, the 1-best outputs of the baseline
model exactly match the source sentence in 71%
of the cases in English, whereas the guided model
ranks a copy of the source as the best paraphrase
only in 12% of the cases (46% vs. 10%, and 60%
vs. 10% in Finnish and Swedish, respectively). If
the reference sentence is produced by the baseline
model, it is ranked lower in the n-best list, since
the model prefers repetitions of the input. When
decoding is restricted with the guiding tokens, the
decoder works with a notion of assumed diversity,
resulting in outputs that may be closer to the

3The rank is defined as 0 if none of the proposed target
sentences in the n-best list match the desired reference.
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Input I haven’t been contacted by anybody.
Baseline Guided
I haven’t been contacted by anyone. Nobody has contacted me yet.
I haven’t been contacted by anybody. I have not been contacted.
I have not been contacted by anyone. No one has contacted me.
I haven’t been approached by anyone. I was contacted by nobody.
I’ve never been contacted by anyone. Nobody’s contacted me.

Table 2: Top-5 generated sequences from the baseline and the guided model for the input sentence: I haven’t been
contacted by anybody. The gold reference is highlighted in cursive.

Language Negation Length Lexical Variation Word Order
English 99.72 99.31 87.00 55.46
Finnish 100.0 98.51 79.07 63.86
Swedish 100.0 98.09 88.93 58.20

Table 3: Prefix token accuracy [%] calculated from the observed realizations of the guided models’ 1-best hypotheses
with respect to the ground truth reference prefix tokens.

reference to begin with. An example illustrating
this phenomenon is provided in Table 2. Finally,
even when the baseline model generates sentences
that better match the reference, as indicated by
increase in BLEU with large n-best sizes, it does
not generate exact matches of the references, or
fails to rank them high in the n-best list.

To conclude, we observe two opposite factors work-
ing in favor of the models: On the one hand, the
use of explicit prefix tokens in the guided mod-
els produces high BLEU values instantly, even for
very small-sized n-best lists. This makes it possible
to use smaller beam sizes, which leads to faster
inference. On the other hand, the absence of ex-
plicit guiding tokens in the baseline models seems
to constrain the decoding process less, which may
eventually result in translations that match the ref-
erences better, if we can afford large n-best lists.
However, that requires larger beam sizes and heav-
ier computation. Additionally, the favorable trend
for the baseline model is observed only for Finnish
and Swedish.

5.2 Faithfulness to the Control Tokens

Automatic evaluation suggests that the guided para-
phrase generation model obtains more variation and
increases the quality of the generated paraphrases
compared to the baseline model, especially when
paraphrase hypotheses are selected from smaller
n-best lists. To analyze how faithful the model is to
the given prefix tokens, we calculate the accuracy
of each prefix token of the generated sequences
with respect to the ground truth prefix tokens. Ta-
ble 3 presents the results.

The model seems to learn the semantics of two
tokens, negation and length, especially well, but
somewhat struggles with the features designed for
promoting variation in lexical choices and in word
order. The word order attribute seems particularly
difficult to the model. This weakness can be a
consequence of two aspects. First, when assign-
ing the feature values for the word order feature,
we binned the sentences into four (nearly) equally
sized buckets automatically. Hence, sentences ap-
pointed in adjacent buckets may only have minor
differences. This, in turn, makes recognizing differ-
ences between the adjacent quantiles unnecessarily
difficult for the model, and the model can not gen-
eralize to this information. Secondly, the sentences
in the Opusparcus test sets are rather short, which
restricts the possibilities for finding solutions that
incorporate variation in word order.

In addition to analyzing how accurately the
model learns to follow the given prefix tokens, we
assess whether the prefix tokens affect the output
as expected by focusing on each prefix token sep-
arately. We generate hypotheses from the guided
model using a beam size of 5 and only consider
the top-1 hypothesis. Now, we do not rely on the
prefix token values calculated from the reference
sentences. Instead, we manually tune the values of
the prefix tokens to obtain diverse paraphrases with
the desired surface form variation. Controlling for
different attributes demonstrates how changing the
prefix token values affect the generated sequences.
We present examples of English paraphrases with
the given prefix token values in Tables 4–7. Ex-
amples for Finnish and Swedish paraphrasing are
provided in the Appendix A.
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Negation Length Lexical Variation Word Order Input Output
True 100 1 4 Time’s short. Not much time left.
True 100 1 2 He must remain here. He cannot leave here.
True 100 1 2 Has this ever happened to

you?
This has never happened to
you?

False 100 3 4 Don’t be silly. Stop fooling around here.
False 100 1 4 I didn’t have much choice. I had little choice, though.
False 100 3 4 I’m not feeling very well. I’m feeling a little poorly.

Table 4: Generated sentences from the guided model using different prefix token values for controlling negation
in the output. The prefix token for negation indicates whether there should be an explicit negation in the output
sequence or not.

Input Can I ask a simple question?
Negation Length Lexical Variation Word Order Output

False 50 1 3 A question?
False 80 1 3 Can I ask you?
False 100 1 3 Can I ask you a question?
False 120 1 3 Can I ask you a very easy question?
False 150 1 3 Do you mind if I ask you a simple question?

Table 5: Generated sentences from the guided model using different prefix token values for guiding for the length of
the output. The prefix token value denotes the ratio between the tokenized input and output sequences.

Negation Table 4 provides examples of how the
negation token affects the generated outputs. To fur-
ther analyze the prefix token that controls negation,
we use a recent test suite for analyzing vector-based
representations of antonymy and negation (Vahtola
et al., 2022). The data consists of approximately
3000 test examples where an input sentence, for
instance I’m guilty, is paired with three hypotheti-
cal paraphrases: I’m innocent, I’m not guilty, and
I’m not innocent. The first two hypotheses seman-
tically oppose the input sentence, whereas the last
hypothesis carries the closest meaning to the input
sentence. Using this test suite, we analyze how
our proposed model learns the semantics of the
negation token.

In practice, we use the translation probabilities
to find which of the three hypotheses each model
would translate the input sentence to, and calcu-
late the accuracy of the model over the test set
based on the preferred output. The baseline model
obtains an accuracy of 30%, which is lower than
acquired by random choice (33%). The guided
model obtains a higher accuracy, 41%, suggesting
that explicit information about negation assists the
model in generating better representations of nega-
tion. However, the model does not seem to reliably
learn the interplay of negation and antonymy in
sentence semantics. Regardless, examples given
in Table 4 show that the guided model learns, at
least to some extent, to reformulate sentences with

polarity change while maintaining meaning close
to the original.

Length Table 5 provides examples of how the
length guiding feature effects the generated output.
Keeping other prefix tokens constant, but guiding
for five different values for length (50, 80, 100,
120, and 150), the model does follow the given
instructions faithfully, further validating the results
obtained with accuracy on the different guiding
tokens.

Lexical Variation Table 6 provides examples of
the effect of changing the lexical variation value
while keeping other prefix tokens constant. Increas-
ing the value for lexical variation does not only
promote for varied lexical choices, but can also
push for potentially less frequent word types (e.g.,

’bout and wanna) for sequences guided with larger
values (3 and 4).

Word Order Learning the semantics related to
the attribute guiding for variation in word order is
difficult for the model, as indicated by the obtained
accuracies on the prefix token (Table 3). Similarly,
the examples in Table 7 demonstrate that the pre-
fix token does not work exactly as expected, as
sentences with word order values 1 and 2 are iden-
tical. However, when pushing for more variation in
word order with larger values, the model generates
sequences with syntactic alteration. The results
suggest that as such the prefix token may not be
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Input Would you like a drink?
Negation Length Lexical Variation Word Order Output

False 120 1 4 Can I get you a drink?
False 120 2 4 May I offer you a drink?
False 120 3 4 How ’bout a drink?
False 120 4 4 Wanna have a drink ’?

Table 6: Generated sentences from the guided model using different prefix token values for promoting lexical
variation in the output sequences. Sentences in bucket 1 should only include frequent tokens, and subsequent
buckets should contain sentences where also less frequent and potentially difficult tokens are present.

Input There’s really nothing you can do.
Negation Length Lexical Variation Word Order Output

True 80 1 1 There is nothing you can do.
True 80 1 2 There is nothing you can do.
True 80 1 3 There really is nothing to do.
True 80 1 4 You really can’t do anything.

Table 7: Generated sentences from the guided model using different prefix token values for guiding output sequence’s
word order in relation to the input sentence. The sentences with lower values should preserve the word order of the
input well, whereas sentences with larger values should deviate more from the input sentence in terms of word order.

optimized perfectly, but with careful redesigning
of the attribute, it could provide a method of pro-
moting variation in word order.

6 Conclusions

We propose a paraphrase generation model that
is based on multilingual NMT, leveraging cross-
lingual parallel examples as diverse paraphrase
data. We apply dedicated diversity-promoting pre-
fix tokens to the training of the model in order
to obtain a paraphrase model designed for guided
zero-shot paraphrasing, and compare the model to
a baseline paraphrase generation model based on
multilingual NMT without prefix guiding. Com-
pared to the baseline model, the results suggest that
the proposed guided paraphrase generation model
benefits significantly from the guiding information,
and produces paraphrases that deviate more from
the original sentence but maintain the meaning of
the original sentence well, especially with lower
n-sizes of n-best decoding. The analysis also sug-
gests that there is still room for improvement, and
especially the prefix tokens promoting lexical and
word order variation are not perfectly optimized.

In future work, we would like to further improve
the aforementioned prefix tokens by either opti-
mizing the bucketing based on the observed val-
ues better, or by modeling the variation promoting
attributes directly within a paraphrase generation
model. We would also like to evaluate the applica-

bility of dedicated guiding attributes with different
data sets or transfer tasks, such as simplification.
The method could also be expanded to a larger
number of languages by fine-tuning existing multi-
lingual NMT models for guided paraphrasing. Fi-
nally, we plan to explore modular architectures for
diverse paraphrasing.
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A Appendix. Finnish and Swedish
Examples

Tables 8–11 present examples of paraphrasing in
Finnish, and tables 12–15 in Swedish. Similarly as
for English, we use the guided model with a beam
size of 5 and only select the top-1 hypothesis.
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Negation Length Lexical Variation Word Order Input Output
True 190 4 4 Huono idea. Ei kuulosta hyvältä idealta.
True 130 2 3 Taidan viihtyä täällä. Eiköhän tämä ole mukava

paikka.
False 120 1 4 En ole turvassa täällä. Tämä paikka on minulle vaar-

allinen.
False 60 1 1 Ei hän ole vainaa. Hän on elossa.

Table 8: Generated sentences from the guided model for Finnish paraphrasing using different prefix token values
for controlling negation in the output. The prefix token for negation indicates whether there should be an explicit
negation in the output sequence or not.

Input Minusta se näyttää hienolta.
Negation Length Lexical Variation Word Order Output

False 50 3 4 Upealta.
False 80 3 4 Näyttääpä hienolta.
False 100 3 4 Se näyttää minusta hienolta.
False 120 3 4 Näyttääpä se hienolta minusta.
False 150 3 4 Se näyttää hienolta, jos minulta kysytään.

Table 9: Generated sentences from the guided model using different prefix token values for guiding for the length of
the output. The prefix token value denotes the ratio between the tokenized input and output sequences.

Input Taidan viihtyä täällä.
Negation Length Lexical Variation Word Order Output

False 130 1 4 Minusta tuntuu, että pidän tästä.
False 130 2 4 Luulen, että viihdyn täällä.
False 130 3 4 Viihdyn täällä mainiosti.
False 130 4 4 Viihdyn täällä mainiosti.

Table 10: Generated sentences from the guided model using different prefix token values for promoting lexical
variation in the output sequences. Sentences in bucket 1 should only include frequent tokens, and subsequent
buckets should contain sentences where also less frequent and potentially difficult tokens are present.
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Input Uskoakseni olet kuullut hänestä.
Negation Length Lexical Variation Word Order Output

False 100 1 1 Uskon, että olet kuullut hänestä.
False 100 1 2 Uskon, että olet kuullut hänestä.
False 100 1 3 Uskon, että olet kuullut hänestä.
False 100 1 4 Olet tainnut kuulla hänestä jo.

Table 11: Generated sentences from the guided model for Finnish paraphrasing using different prefix token values
for guiding output sequence’s word order in relation to the input sentence. The sentences with lower values should
preserve the word order of the input well, whereas sentences with larger values should deviate more from the input
sentence in terms of word order.

Negation Length Lexical Variation Word Order Input Output
False 70 2 2 Det är inte över än. Det pågår fortfarande.
False 80 2 3 Faktiskt inte så bra. Faktiskt ganska dåligt.
True 120 3 4 Det här är allt vi kan göra. Vi kan inte göra nåt annat än

det här.
True 100 1 2 Det är nåt helt annat. Det är inte samma sak.

Table 12: Generated sentences from the guided model for Swedish paraphrasing using different prefix token values
for controlling negation in the output. The prefix token for negation indicates whether there should be an explicit
negation in the output sequence or not.

Input Det är min bröllopsdag.
Negation Length Lexical Variation Word Order Output

False 50 2 4 Mitt bröllop
False 80 2 4 Jag gifter mig.
False 100 2 4 Det är mitt bröllop.
False 120 2 4 Det är mitt bröllop idag.
False 150 2 4 Det är mitt bröllop i dag.

Table 13: Generated sentences from the guided model using different prefix token values for guiding for the length
of the output. The prefix token value denotes the ratio between the tokenized input and output sequences.

Input Det kommer att gå jättebra.
Negation Length Lexical Variation Word Order Output

False 80 1 1 Det kommer gå bra.
False 80 2 1 Det kommer gå jättebra.
False 80 3 1 Det kommer gå smidigt.
False 80 4 1 Det blir skit bra.

Table 14: Generated sentences from the guided model using different prefix token values for promoting lexical
variation in the output sequences. Sentences in bucket 1 should only include frequent tokens, and subsequent
buckets should contain sentences where also less frequent and potentially difficult tokens are present.

Input Det har jag redan sagt.
Negation Length Lexical Variation Word Order Output

False 110 2 1 Det har jag redan talat om.
False 110 2 2 Det har jag redan talat om.
False 110 2 3 Det har jag ju redan berättat.
False 110 2 4 Jag har redan talat om det.

Table 15: Generated sentences from the guided model for Swedish paraphrasing using different prefix token values
for guiding output sequence’s word order in relation to the input sentence. The sentences with lower values should
preserve the word order of the input well, whereas sentences with larger values should deviate more from the input
sentence in terms of word order.

337



Proceedings of the The 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023), pages 338–352
July 13-14, 2023 ©2023 Association for Computational Linguistics

A Tale of Two Laws of Semantic Change:
Predicting Synonym Changes with Distributional Semantic Models

Bastien Liétard and Mikaela Keller and Pascal Denis
Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 - CRIStAL, F-59000 Lille, France

first_name.last_name@inria.fr

Abstract

Lexical Semantic Change is the study of how
the meaning of words evolves through time.
Another related question is whether and how
lexical relations over pairs of words, such as
synonymy, change over time. There are cur-
rently two competing, apparently opposite hy-
potheses in the historical linguistic literature
regarding how synonymous words evolve: the
Law of Differentiation (LD) argues that syn-
onyms tend to take on different meanings over
time, whereas the Law of Parallel Change
(LPC) claims that synonyms tend to undergo
the same semantic change and therefore remain
synonyms. So far, there has been little research
using distributional models to assess to what ex-
tent these laws apply on historical corpora. In
this work, we take a first step toward detecting
whether LD or LPC operates for given word
pairs. After recasting the problem into a more
tractable task, we combine two linguistic re-
sources to propose the first complete evaluation
framework on this problem and provide empiri-
cal evidence in favor of a dominance of LD. We
then propose various computational approaches
to the problem using Distributional Semantic
Models and grounded in recent literature on
Lexical Semantic Change detection. Our best
approaches achieve a balanced accuracy above
0.6 on our dataset. We discuss challenges still
faced by these approaches, such as polysemy
or the potential confusion between synonymy
and hypernymy.

1 Introduction

Recent years have seen a surge to model lexical
semantic change (LSC) with computational ap-
proaches based on Distributional Semantic Mod-
els (DSMs) (Tahmasebi et al., 2021). While most
research in this area has concentrated on develop-
ing approaches for automatically detecting LSC
for individual words, as in the dedicated SemEval
2020 shared task (Schlechtweg et al., 2020), there
has also been some work on validating or even

proposing laws of semantic changes through new
DSM-based approaches (Dubossarsky et al., 2015;
Hamilton et al., 2016; Dubossarsky et al., 2017).
Ultimately, this line of work is very promising as
it can provide direct contributions to the field of
historical linguistics.

In this paper, we consider two laws of semantic
change that are very prominent in historical lin-
guistics, but that have to date given rise to very
little computational modeling studies. Specifically,
the Law of Differentiation (LD), originally due to
Bréal (1897, chapter 2), posits that synonymous
words tend to take on different meanings over time;
or one of them will simply disappear.1 The same
idea is also discussed in more recent work, such
as Clark (1993). As an example, the verbs spread
and broadcast used to be synonyms (especially in
farming), but now the latter is only used in the
sense of transmit, by means of radio, television
or internet. The verbs plead and beseech are syn-
onyms, but beseech is no longer used nowadays
compared to plead. By contrast, the Law of Par-
allel Change (LPC),2 inspired from the work of
Stern (1921), claims that two synonyms tend to
undergo the same semantic change and therefore
remain synonyms. As an illustration, Stern (1921,
chapter 3 and 4) describes the change of swiftly
and its synonyms from the sense of rapidly to the
stronger sense of immediately. Lehrer (1985) also
observes a parallel change affecting animal terms
which acquire a metaphorical sense.

These two laws are interesting under several as-
pects. Firstly, these laws go beyond the problem of
detecting semantic change in individual words, as
they concern the question of whether a lexical rela-
tionship between words, in this case synonymy, is
preserved or not through time. Secondly, these laws
make very strong, seemingly opposite, predictions

1To cite Bréal (1897): “[S]ynonyms do not exist for long:
either they differ, or one of the two terms disappears.”

2Name coined by Xu and Kemp (2015).
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on how synonyms evolve: either their meanings di-
verge (under LD) or they remain close (under LPC).
It is likely that both of these laws might be at work,
but they possibly apply to different word classes,
correspond to different linguistic or extra-linguistic
factors, or operate at different time scales. A large-
scale study, fueled by computational methods over
large quantities of texts, would be amenable to sta-
tistical analyses addressing these questions. In this
work, we focus on predicting the persistence (or
disappearance) of synonymy through time, as a first
step toward more complete analyses.

Prima facie, DSMs appear to provide a natural
resource for constructing a computational approach
for assessing the importance of these laws, as they
inherently –through the distributional hypothesis–
capture a notion of semantic proximity, which
can be used as a proxy for synonymy. Follow-
ing this idea, Xu and Kemp (2015) propose the
first DSM-based method for predicting how syn-
onymous word pairs of English evolve over time
(specifically, from 1890 to 1990). This research
decisively concludes that there is "evidence against
the Law of Differentiation and in favor of the Law
of Parallel Change" for adjectives, nouns and verbs
alike (i.e., the three considered POS). However,
this pioneering work suffers from some limitations
that cast some doubts on this conclusion. First
off, the predictions made by their approach are not
checked against a ground truth, thus lacks a proper
evaluation. Second, the approach is strongly biased
against LD, as only pairs in which both words have
changed are considered, excluding pairs in which
differentiation may occur (e.g. in spread/broadcast,
only the latter word changed in meaning).

This paper addresses these shortcomings by in-
troducing a more rigorous evaluation framework
for testing these two laws and evaluating compu-
tational approaches. We build a dataset of English
synonyms that was obtained by combining lexical
resources for two time stamps (1890 and 1990) that
records, for a given list of synonym pairs at time
1890, whether these pairs are still synonymous or
not in 1990. The analysis of this dataset reveals
that, contra Xu and Kemp (2015) and though using
the same initial synonym set, synonymous words
show a strong tendency to differentiate in meaning
over time. With some variation across POS, we
found that between 55 and 80% of synonyms in
1890 are no longer synonyms in 1990.

Moreover, we propose several new computa-

tional approaches3, grounded in more recent DSMs,
for automatically predicting whether synonymous
words diverge or remain close in meaning over
time, which we recast as a binary classification
problem. Inspired by Xu & Kemp (2015), our first
approach is unsupervised and tracks pairwise syn-
chronic distances over time, computed over SGNS-
based vector representations. Our second approach
is supervised and integrates additional variables
into a logistic regression model. This latter model
achieves a balanced accuracy above 0.6 over the
proposed dataset.

2 Related Work

Data-driven methods to detect LSC have gained
popularity in the recent years (Tahmasebi et al.,
2021), using increasingly powerful and expressive
word representations, ranging from the simple co-
occurrence word vectors (Sagi et al., 2012) to static
word embeddings (Schlechtweg et al., 2019) and
transformer-based contextualized word represen-
tations (Kutuzov et al., 2022; Fourrier and Mon-
tariol, 2022). This line of research lead to the de-
velopment of shared tasks (Zamora-Reina et al.,
2022; Schlechtweg et al., 2020; Rodina and Kutu-
zov, 2020). Most often, these tasks concern the
evolution of individual words, in effect focusing on
absolute semantic change (of words individually).
In this paper, we take a different stand, considering
the problem of relative change in meaning among
pairs of words, specifically focusing on synonym
pairs.

Previous work on word pairs are rare in the
current LSC research landscape. A first excep-
tion is (Turney and Mohammad, 2019), who also
study the evolution of synonyms. They propose
a dataset to track how usage frequency of words
evolve over time within a sets of synonyms, as well
as a new task: namely, to predict whether the dom-
inant (most frequent) word of a synonyms set will
change or not. This task is actually complementary
to the one we address in this work. While Tur-
ney and Mohammad (2019) assume the stability
of most synonym pairs between 1800 and 2000,
and rather investigate the dynamic inside sets of
synonymous words across time, we question this
alleged stability and attempt to track whether these
words remain synonymous at all in this time period.

3The code used to run experiments in this pa-
per can be found at https://github.com/blietard/
synonyms-semchange
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Another distinctive motivation of our work is
in the empirical, large-scale evaluation of two pro-
posed laws of semantic change, originating from
historical linguistics. Previous work investigating
laws of semantic change with DSMs include Du-
bossarsky et al. (2015) and Hamilton et al. (2016),
who measured semantic change of words between
1800 and 2000 and attempted to draw statistical
laws of semantic change from their observations.
Later, Dubossarsky et al. (2017) contrasted these
observations and showed that even if these effects
may be real, it may be to a lesser extent.

The closest work to the current research is the
study of Xu and Kemp (2015), as they already fo-
cus on the two laws of Differentiation (LD) and
Parallel Change (LPC). Their main motivation was
to automatically measure, using DSMs, which of
the two laws was predominant between 1890 and
1999. To study which of the two laws actually oper-
ates, they focus on word pairs that (i) are synonyms
in the 1890s and (ii) where both words changed sig-
nificantly in meaning between 1890 and the 1990s.
First, they represent words as probability distri-
butions of direct contexts, using normalized co-
occurrence count vectors. Then, they measure the
(synchronic) semantic proximity of words by com-
puting the Jensen-Shannon Divergence between
the corresponding distributions. Semantic change
in a word is quantified by comparing its semantic
space neighborhoods in the 1890s and in the 1990s.
Finally, for every selected synonymous pair, they
pick a control word pair that has a smaller diver-
gence in the 1890s than the associated synonyms.
At a later time in the 1990s, if the divergence for
the synonyms is larger than that for the control pair,
they decide these synonyms have undergone LD,
otherwise they predict LPC. Ultimately, they found
that most pairs (around 60%) have undergone LPC,
which would be the dominant law.

The pioneering work of Xu and Kemp (2015)
faces a number of shortcomings. First, their re-
striction to synonymous pairs in which both words
changed mechanically excludes certain cases of
LD (i.e., where one one word has changed), thus
introducing an artificial bias against LD. Moreover,
they often select near-synonyms as controls (e.g.
instructive and interesting) because they constrain
control pairs to be closer in divergence in the 1890s
than the associated synonym pairs. Furthermore,
and more importantly, Xu and Kemp (2015) did
not compare their predictions to any ground-truth

and there is no evaluation of the reliability of their
method. Finally, their choice of word representa-
tions is not among the State-of-the-Art for static
methods.

In this paper, we consider all synonymous pairs,
thus avoiding the bias against LD. We propose
different approaches that we compare to Xu and
Kemp (2015)’s control pairs, and we provide results
obtained with more recent distributional semantic
models. Most importantly, we propose a complete
evaluation framework to benchmark the different
methods, something missing in this prior work.

3 Problem Statement

Our overarching goal is to develop new compu-
tational approaches that are able to automatically
predict which pairs of synonymous words under-
went LD or LPC. These predictions could be used
as a first step towards providing a more refined and
statistically meaningful analysis of the two laws.
An important milestone towards developing such
an approach is to compare it to some ground truth.
Otherwise, there is no way to assess whether statis-
tics obtained for LD or LPC are indeed reliable, a
problem faced by Xu and Kemp (2015).

Unfortunately, there is no existing large-scale
resource that records instances of LD/LPC, beyond
a handful of examples found in research papers
and textbooks in historical linguistics. What exists
however are historical lists of synonyms, which
we can compare to obtain some form of ground
truth. This forces us to consider a slightly differ-
ent methodological framework, focusing on a more
constrained prediction task, namely to detect pairs
of synonyms at time T1 that have remained syn-
onymous or that are no longer synonymous at time
T2(> T1).

3.1 Formalization

Let us denoteW (T ) the set of words (or vocabulary)
for a given language (say English) at time T . As
language evolves through time, vocabularies at two
times T1 and T2 need not have the exact same
extensions: e.g., a word w in W (T1) might not
be in W (T2) (i.e., w has disappeared). Making a
simplistic, idealized assumption, let C be a mostly
atemporal and exhaustive discrete set of concepts,
and denote M (T )

w ⊂ C the meaning of word w at
time T . The definition of M (T )

w as a set allows
homonymy and/or polysemy to be accounted for.

Given these notations, we have that u ∈ W (T )

340



and v ∈ W (T ) are synonyms at a time T if
M

(T )
u ∩M (T )

v ̸= ∅. We understand that the study
of LD / LPC implies to track (i) the change of
M

(T )
u and M (T )

v over time, (ii) the evolution of
M

(T )
u ∩M (T )

v and (iii) the very persistence of both
words in vocabularies W (T ) between T1 and T2.
Discussion about formalizing LD and LPC under
those conditions can be found in appendix A.1.

3.2 Task Formulation: Tracking Synonyms
Change

The presented formulation, though very idealized,
should make it clear that the development of a com-
putational system that attempts to directly predict
LD and LPC, and even the construction of an eval-
uation benchmark for evaluating such a system, are
very challenging tasks. First, the initial synonym
set selection presupposes, not only that one has
access to a list of synonyms at T1 and T2, but
also that one can reliably predict LSC in one of
the two words from T1 to T2; unfortunately, LSC
is still an open problem for current NLP models.
Second, one typically does not have meaning inven-
tories or automatic systems (e.g. WSD systems) for
mapping words to their meanings at different time
stamps. Finally, even tracking the disappearance
of words through time is not trivial, as it ideally
requires full dictionaries at different time stamps.

Given these limitations, we suggest to narrow
down our target problem to the task of predicting,
for a given pair of synonymous words (u, v) at T1,
whether (u, v) are still synonymous or not at T2.
Stated a little more formally, we are concerned with
the following binary classification problem:

f :S(T1) → {"Syn", "Diff"}

(u, v) 7→ f((u, v)) =

{
"Syn" if (u, v) ∈ S(T2)

"Diff" otherwise

where S(T ) is a set of synonymous word pairs
at time T , "Syn" indicates that words (u, v) that
were synonymous at T1 remain synonymous at T2,
while "Diff" signals that they are no longer synony-
mous at T2. This simpler problem leads to a more
operational evaluation procedure, which does not
require access to M (T ∗)

u and M (T ∗)
v , but only to

lists of synonyms S(T1) and S(T2). See Section 4
for presentation of such procedure. It should be
clear that predicting which synonym pairs remain
("Syn") or cease to be synymoms ("Diff"), will
provide some information about LPC and LD, al-
though the mapping between the two problems is

not one-to-one. Even if “Diff” covers pretty well
LD, a pair that is still synonymous at T2 could
either be a case of LPC (their shared meaning
changed the same way for both words) or a pair
of words that simply have not changed in mean-
ing at all (or at least that their shared meaning is
unchanged).

Now turning to designing a computational sys-
tem that detects "Syn" vs. "Diff", a natural question
that emerges is whether current DSMs, commonly
used for detecting LSC in individual words, are
able to capture synonym changes. More specif-
ically, our main hypothesis will be that one can
reliably track the evolution of synonymous pairs
through their word vector representations at T1
and T2. This approach will be instantiated into
different unsupervised and supervised models in
Section 5.

4 Evaluation Dataset

This section presents a dataset designed to track the
evolution of English synonymous word pairs be-
tween two time stamps T1 and T2, with T2 > T1.
Specifically, the two time periods considered are
the 1890’s decade (T1) and the 1990’s decade (T2).
For extracting synonymous pairs in the 1890’s
(noted S(T1)), we use Fernald’s English Synonyms
and Antonyms (Fernald, 1896) as Xu and Kemp
(2015) did. Pairs were selected based on a set
of specific target words (see appendix A.7). As
shown in Table 1, we obtain 1, 507 adjective pairs,
2, 689 noun pairs and 1, 489 verb pairs. To assess
whether these word pairs are still synonyms in the
1990’s, we use WordNet (Fellbaum and Princeton,
2010), as this lexical database was originally con-
structed in 1990’s. Thus, WordNet provides us
with S(T2). Specifically, we considered that a pair
of words/lemmas (u, v) ∈ S(T1) are still synony-
mous if they point to at least one common synset
in WordNet.

The construction of this dataset relies on two cru-
cial hypotheses, which seem reasonable to make.
First, both lexical resources rely on the same defi-
nition of synonymy. Second, S(T2) meets some ex-
haustivity criterion, in the sense that (u, v) ∈ S(T1)

not appearing in S(T2) should indicate that u and
v are no longer synonymous at T2, and not be due
to a lack of coverage of the resource (i.e., a false
negative). WordNet is assumed to be exhaustive
enough, as we checked that every word involved in
at least one synonymous pair has its own entry in
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Synonyms pairs ADJ NN VERB All

Synonyms at T1 1507 2689 1489 5685

& synonyms at T2 202 347 311 860
& synonyms at T2(%) 13.4 12.9 20.9 15.1

& hypernyms at T2 0 858 398 1256
& hypernyms at T2(%) 0.0 31.9 26.7 22.1

& hyp. at T2 (1) (%) 0.0 23.2 22.5 16.9
& hyp. at T2 (2) (%) 0.0 6.9 3.5 4.1
& hyp. at T2 (3) (%) 0.0 1.4 0.5 0.8

Table 1: Numbers of synonymous pairs extracted from
Fernald (1896) (T1) displayed by POS, and numbers
of those that are also considered as synonyms or hyper-
nyms/hyponyms in WordNet (T2) For hypernyms, we
detail the proportions of hypernym/hyponym pairs that
are separated by 1, 2 or 3 nodes in the WordNet graph.

WordNet’s database.
Table 1 provides some detailed statistics on the

evolution of synynomous pairs between decades
1890’s and 1990’s, overall and for different parts
of speech. A first observation on these datasets is
that the proportion of pairs that are still synonyms
at T2 (“Syn”) is globally 15.1%. This implies that
most synonymous pairs underwent differentiation.
While it does not provide information about how
change happened between T1 and T2 for the re-
maining 84.9%, it’s a clue that the Law of Differen-
tiation should be a dominant phenomenon among
synonyms.

We exploit the structure of the WordNet database
to analyze the different cases of “Diff ”. Word-
Net includes lexical relations of hyper-/hypo-nymy
(e.g., seat/bench) as well as holo-/mero-nymy (e.g.,
bike/wheel) and antonymy (e.g., small/large) de-
fined over synsets4. Note that the hyper-/hypo-
nymy relation does not exist in WordNet among
adjectives. Among nouns and verbs, we observe
that around 30% of pairs that were synonyms at
T1 are in an hyper-/hypo-nymy relation at T2 and
two third of them are direct hypernyms in WordNet
(their synsets are direct parent/child) indicating the
preservation of a very close semantic link. For a
further depiction of the dataset in terms of distance
in WordNet’s graph, see Figure 3 in appendix A.4.

One cannot entirely exclude that S(T1) includes
some hyper-/hypo-nyms as synonyms. However,
even if we extend the notion of synonymy at T2
to include these cases, we would have only around
45% of all pairs still considered synonyms among

4As we did for synonyms, we assume that two words w1

and w2 are instances of one of these relations R if R holds for
one of their corresponding synset pair.

nouns and verbs. This indicates that "Diff" largely
remains the most common phenomenon with an
estimated proportion between 55% and 80%. This
finding contradicts the experimental results re-
ported by Xu and Kemp (2015) with their com-
putational approach (only 40% of differentiation).

In lack of additional indication that some of these
hyper-/hypo-nym cases at T2 are indeed synonyms,
or that they may also have been hyper-/hypo-nym at
T1, we decided to still consider them as instances
of “Diff”. Another argument for this decision is
precisely that there are well-known reported cases
of lexical semantic changes in which the meaning
of a particular word in effect "widens" to denote
a larger subset (i.e., becomes an hypernym): this
is the case of dog in English that used to denote a
specific breed of dogs (Traugott and Dasher, 2001).

5 Approaches

This section presents two classes of computational
approaches, unsupervised and supervised, for pre-
dicting whether pairs of synonyms at T1 remain
synonyms ("Syn") or cease to be so ("Diff") at a
later time T2. Common to all of these approaches
is that they are based on two time-aware DSMs,
one for each time stamp.

5.1 Time-aware DSMs

Inspired by work on LSC, we rely on separate
DSMs for each time stamp T1 and T2, respectively
yielding vector spaces V (T1) and V (T2) encoding
the (possibly changing) word meanings at T1 and
T2. Thus, for each synonym pair (u, v), we have
two pairs of vectors : (u(T1),v(T1)) ∈ V (T1) ×
V (T1) and (u(T2),v(T2)) ∈ V (T2) × V (T2).

Specifically, we use pre-computed SGNS
(Mikolov et al., 2013) from Hamilton et al. (2016)
trained on the English part of the GoogleBooks
Ngrams dataset5 for every decade between 1800
and 2000 and extract V (T1) (1890) and V (T2)

(1990). For any word w ∈ W and any time pe-
riod T , w(T ) ∈ V (T ) is a single 300 dimensional
vector. We ensure synonymy is accurately reflected
by checking that synonym pairs have a smaller co-
sine distance than non-synonymous pairs for both
time periods, as in Figure 4 of appendix A.5.

Traditional DSM-based approaches for detect-
ing LSC are based on self-similarities over time
for a given word. For instance, for a given time

5https://storage.googleapis.com/books/ngrams/
books/datasetsv3.html

342

https://storage.googleapis.com/books/ngrams/books/datasetsv3.html
https://storage.googleapis.com/books/ngrams/books/datasetsv3.html


interval (T1, T2), they compute for each word
w an individual Diachronic Distance, noted here
DD(T1,T2)(w). Cosine distance is often used (re-
call in appendix A.2).

There is no obvious distance for comparing pairs
of word vectors, but one can instead rely on com-
paring the pairwise word vector distance at each
time stamp T ; we call this Synchronic Distance (de-
noted SD). The two types of distances for two time
stamps T1 and T2 are described in Figure 1. Our
unsupervised method, proposed in Sec. 5.2 directly
exploit the idea of tracking different types of SD
through time, while Sec. 5.3 presents a supervised
approach that combines both SD and DD.

T1 T2

•
v

•
v

•
u

•
u

DD(T1,T2)(u)

SD(T1)(u, v)

DD(T1,T2)(v)

SD(T2)(u, v)

Figure 1: Pairs of word embeddings at 2 time periods
and associated diachronic and synchronic distances.

5.2 Unsupervised Methods

While we don’t have access toM (T )
u andM (T )

v , we
can represent the meaning of u and v using DSM
and compare them at a given time to estimate how
close they are in meaning. Indeed, if M (T )

u ∩M (T )
v

changes, this should be reflected in difference of
the use contexts of u and those of v, and so reflected
in the distance between u(T ) and v(T ). Let

SD(T ) :W (T ) ×W (T ) → R+

be a measure of synchronic distance between vec-
tors representing two words. By construction of
V (T ), SD(T )(u, v) is smaller for words (u, v) that
appear in similar contexts than for unrelated words.
We assume that there exists a value δT such that

∀(u, v) ∈ S(T ), SD(T )(u, v) ≤ δT .

This entails that for a given pair (u, v):

SD(T )(u, v) > δT ⇒ (u, v) are not synonyms.

In this setting, one can compare the synchronic
distances within V (T1) and with V (T2) and decide
if the pair differentiated or stayed synonymous.

Let (u, v) be a pair of synonyms at T1, as such
we have that SD(T1)(u, v) ≤ δT1. If (u, v) are not
synonyms at time T2 then SD(T2)(u, v) > δT2.

Combining these two inequalities, we would say
that a pair of synonyms at T1 has differentiated at
T2 if:

SD(T2)(u, v)− SD(T1)(u, v)︸ ︷︷ ︸
= ∆(u, v)

> δT2 − δT1.

Ideally one could imagine that the distance thresh-
old δT at which, words cease to be synonyms
should be independent of the time period T . Em-
pirically however, because word embeddings are
not necessarily build with an enforced scale, there
might be a dilation or shrinking in the overall syn-
chronic distances between T1 and T2. Let us as-
sume that

δT2 = δT1 + τ, τ ∈ R.

Our decision rule could then be rewritten as:

f(u, v) =

{
“Diff” if ∆(u, v) ≥ τ
“Syns” otherwise.

(1)

This approach is shortly denoted “∆” in section
6. It diverges from the prior work of Xu and Kemp
(2015) that chooses to rely on control pairs instead
of a threshold. For the sake of comparison, we
implemented their method presented as “XK con-
trols”. It is not the full protocol presented by Xu
and Kemp (2015), as (i) the experimental setting is
not identical, they filtered out some synonym pairs
and we didn’t (ii) we use SGNS word represen-
tations and cosine distance instead of normalized
co-occurrence counts and Jensen-Shannon Diver-
gence. Schlechtweg et al. (2019) provided a longer
comparison between word representations.

We propose a statistically-grounded criterion to
set the value for the threshold τ . Since the meaning
of most words is expected to remain stable6, we
argue that most pairwise distances should remain
stable as well. We can then estimate the dilation
between the representations in the two time peri-
ods by the average gap between the synchronic
distances of words.

τ =
1

|W |2
∑

(w1,w2)∈W×W

∆(w1, w2) (2)

6Intuitively, someone in 2023 can still understand writings
published in the 1890s in their original text, like books from
Charles Dickens or Arthur Conan Doyle.
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In practice, we experiment with two different
types of synchronic distances between words. The
first is the cosine distance (see A.2). That is:

SD(T )(u, v) = cos-dist(u(T ),v(T )).

We shortly denote it “SD(cd)”. Another measure
of semantic proximity is based on the shared word
neighborhood between the two vectors u and v:

SD(T )(u, v) = jaccard-dist(N (T )
k (u) ,N (T )

k (v)),

withN (T )
k (w) being the set of the k-nearest neigh-

bors of the point representing w in the vector space
at time T , and jaccard-dist being the Jaccard dis-
tance (see appendix A.2). This measure is ranged
between 0 and 1, and we denote it “SD(nk)”.

5.3 Supervised Methods
Approaches described so far use the labels in the
dataset ("Syn" and "Diff") only for evaluation pur-
poses. But one can also use part of the available
data to learn a supervised classifier to predicts these
labels. Concretely, for most of these models, we
trained Logistic Regression (LR) models7

Synchronic Distances Combination In our un-
supervised approach, we compute SD(T1) and
SD(T2) and their difference, denoted ∆. This quan-
tity is then compared to a fixed threshold τ . We
propose to investigate two supervised approaches
stemming from this: (i) simply tune τ and (ii) use
a LR model to learn the optimal weighting in the
linear combination of the two distances. This latter
model is called “LR SD”.

Accounting for Individual Change Most works
about computational approaches to LSC focus on
detecting the change of a single word (Tahmasebi
et al., 2021), using a diachronic distance, which we
noted DD(T1,T2)(w), across time periods T1 and
T2 for individual words w.

In addition to synchronic distances, we input
diachronic distances as features for a LR model.
The resulting classifier (LR SD+DD) uses the 4
distances represented in Figure 1 as variables: self-
similarities across time periods (DDs), and a dis-
tance measure within pairs for each of both time
stamps (SDs). Similarly to synchronic distances
defined in Sec. 5.2, we try two definitions of DD.
First, we compare sets of neighbors at T1 and T2:

DD(w) = jaccard-dist(N (T1)
k (w) ,N (T2)

k (w)).

7Implemented with the scikit-learn library for Python8.

We also compute the cosine distance between
w(T1) and w(T2) after aligning the vector space
V (T2) to V (T1) using Orthogonal Procrustes
(Hamilton et al., 2016; Schlechtweg et al., 2019,
2020). Denoting w

(T2)
align the vector w(T2) after

alignement with Orthogonal Procrustes, we have:

DD(w) = cos-dist(w(T1),w
(T2)
align).

Using Distances and Frequencies A final step
of this process is to add word frequencies for both
words at both time periods, as there exist links be-
tween usage frequency and semantic change Zipf
(1945). We could observe whether adding explicit
frequency information helps retrieving discrimi-
natory clues that could be missed by using only
distributional representations.

Word frequencies were estimated from the Cor-
pus of Historical American English (COHA) list,9

which has the advantage to be genre-balanced. As
variables for both words and both periods to feed
our model, we try to add either raw occurrences
counts (indicated by “+FR”), either grouped fre-
quency counts (“+FG”). The procedure to create
such groups is described in appendix A.6.

All Features For the sake of comparison to pre-
vious models, we evaluate LR models that take as
input an implementation of each of these features
(SD + DD + frequency); and an even larger model
(called “LR multi.”) that reunites all described
implementations of SD, DD and frequencies.

Non-linear Models As a further step increasing
the model’s complexity, we try to combine this
full set of available variables in a non-linear fash-
ion. We compare previous models to polynomial
features (degree 2) preprocessing10 and a SVM
classifier with a Gaussian kernel.

6 Experiments

6.1 Experimental Settings

Target Words Selection We use a unique vocab-
ulary W composed of 6, 453 adjectives, 16, 135
nouns and 10, 073 verbs. The process to select
words is described in appendix A.7.

9https://www.ngrams.info/download_coha.asp
10We also try degrees higher than 2, finding no consistent

improvement.
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Dataset ADJ NN VERB ALL ALL
Evaluation metric Balanced Accuracy F1(Syn) F1(Diff) %(D)

All (Syn) .50 .50 .50 .50 .48 0 0
All (Diff ) .50 .50 .50 .50 0 .81 100

LR F .51 .56 .59 .55 .35 .74 75

XK controls .52 .49 .51 .50 .33 .67 65
∆ (cd) .50 .49 .51 .50 .27 .73 75
∆ (nk) .48 .49 .49 .50 .32 .67 66

∆ (tuned τ ) .51 .52 .52 .51 .27 .74 79
LR SD .60 .62 .59 .60 .48 .69 56

LR SD + DD .61 .62 .60 .60 .48 .69 56
LR SD + F .61 .64 .63 .62 .51 .71 57

LR SD + DD + F .62 .64 .63 .62 .50 .70 57
LR multi .62 .64 .65 .62 .51 .71 57

LR multi. poly. degree (2) .56 .63 .62 .62 .50 .70 60
SVM (gaussian) .60 .64 .65 .62 .50 .74 63

Table 2: Performances of the different approaches. Results are averaged over 20 random splits.

Dataset Splits For every POS tag, we have a set
of word pairs that are synonymous at T1. We call
ALL the dataset that comprises all pairs indistinctly
of their POS. These datasets (ADJ,NN,VERB or
ALL) are individually shuffled and 33% of their
samples (pairs) are set aside for testing. For each
dataset, a model is trained on the 66% remaining
pairs and evaluated on the test part. Presented re-
sults are averaged over 20 random train/test splits.

Hyperparameters We train models with com-
binations of the different definitions of distances
and frequency variables. Choice of synchronic dis-
tances was between SD(cd) and SD(nk) with k in
{5, 10, 15, 20, 40, 100}. For DD, we tried neigh-
borhoods with fixed size 100, like Xu and Kemp
(2015), and Orthogonal Procrustes with cosine dis-
tances. For frequency, the choice is between raw
counts and groups. The selected models are de-
tailed in Appendix A.9. The ideal value for the
SVM’s regularization parameter is found using 5-
fold cross-validation over the training set.

Evaluation Metrics We use two standard eval-
uation metrics: F1 score and Balanced Accuracy
(BA). F1 scores were computed for both classes,
denoting it “F1(Syn)” for Syns and “F1(Diff)” for
Diff. BA is defined as the average of recalls for both
classes, and provide a notion of accuracy robust to
class imbalance. We also display the percentage of
predicted Diff (“%D”).

Baselines The first two baselines are constant out-
put classifiers, always predicting "Syn" or "Diff "
respectively. They are expected to have a balanced
accuracy of 50%, as they would be fully accurate
for one class and always wrong for the other. The
third baseline (LR Frequency) is a Logistic Regres-
sion model trained only with frequency variables,
without any knowledge on the semantic aspect of
the pair (neither SD or DD).

6.2 Results

Performances over the test parts of the different
datasets are displayed Table 2.

The first observation is that, in line with the
dataset’s proportions, all models predict a majority
of “Diff”, even unsupervised ones (including our
reimplementation of Xu & Kemp’s control pair se-
lection method). While our task does not directly
address the question of the opposition between LD
and LPC, this is an empirical clue in favor of LD,
contradicting Xu and Kemp (2015). However, pre-
dicting the right amount of “Diff” does not guar-
antee the quality of predictions. Indeed, obtained
balanced accuracies range between 0.49 and 0.65.

Considering our unsupervised methods and the
∆ (tuned τ ), we find no real improvement over
baselines. In particular, they fail to outperform the
frequency-based baseline model which performs
surprisingly well. On the other hand, Logistic Re-
gression and SVM models substantially improve
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Figure 2: Proportions of predictions of the models w.r.t.
the actual distance d in WordNet of noun pairs. Pairs
with d = 0 are synonymous pairs in WordNet.

over the baselines, Xu & Kemp’s control pairs and
all ∆-based methods. Interestingly, LR SD outper-
forms ∆-based methods despite the fact that they
rely on the same components.

The gap between baselines and models is larger
for nouns and lesser for verbs. Despite these POS-
specific differences, best models are consistently
the ones using both SD and frequencies, while DD
brings little to no improvement. This can be ex-
pected as individual changes of words seem less
important on the problem of Syn/Diff. However,
this factor could be used in future work to distin-
guish pairs of synonyms (among the Syn class) that
did not change and pairs that went under LPC.

We observe that there is a substantial difference
in F1 scores between the two classes, F1(Syn) be-
ing lower than F1(Diff) across all models. More-
over, models with higher F1(Syn) are often found
to be the ones with higher balanced accuracy, even
when F1(Diff) is lower. This is likely linked to
the fact that the datasets are highly imbalanced as
presented in Table 1: the ground truth proportion
of Syn never exceeds 21%. We also remark that
Xu and Kemp (2015) decision rule based on con-
trol pairs also predicts a majority of Diff, contrarily
to the results they showed. It may be because the
protocol is not fully identical.

6.3 Confounding Factors

Using WordNet, we discuss two aspects that may
be sources of errors when detecting a change in
synonymy: polysemy and hypernymy. We study
predictions of our best performing LR model on
the noun dataset.

Polysemy WordNet provides us with different
set of synonyms for every entry, corresponding to
different senses or usages, and therefore we can
measure the polysemy of a word at T2. We found
that pairs misclassified as "Syn" tend to be those
whose second term has fewer senses (6 senses on
average as compared with well classified "Diff"
which have 8 senses on average). Indeed, as we
use static embeddings and no Word Sense Disam-
biguation (WSD) method, our model is subject to
the complexity brought by polysemy. In a recent
shared task about Lexical Semantic Change mea-
sures, best performing models are the one using
WSD methods (Zamora-Reina et al., 2022). This
finding highlights the importance of handling poly-
semy as a potential confounding factor.

Distances in WordNet In Figure 2 we display
the percentage of prediction with respect to shortest
distance between the two words of noun pairs in
WordNet’s graph. The distance d is the minimum
number of nodes separating the two words.

We remark that, as expected, the model predicts
more and more Diff as d increases. What is more in-
teresting is that for d = 1 (direct hypernymy), there
is still an important proportions of predicted Syn.
This highlights that our model has difficulties to
handle hypernymy and confuses it with synonymy.

7 Conclusion

In this work, we considered two contradicting laws
about the semantic change of synonyms. We dis-
cussed the necessary adaptations of the problem
statement for this particular type of LSC and elab-
orated a framework to evaluate models for this
new classification problem. The use of linguis-
tic resources from two different time periods al-
lowed us to improve model analysis with respect
to prior work on the matter. Then we proposed un-
supervised and supervised approaches relying on
measures of semantic change extracted or inspired
by existing literature on LSC, and also leveraged
the usefulness of explicit word usage frequency
information. We compared these approaches in
our evaluation framework, finding that distances in
vector spaces from different time periods should
not be considered equally. We also observed that
explicit frequency information actually help dis-
tributional methods to capture the change of syn-
onymy. Finally we discussed challenges that DSM
approaches still face and opened a discussion about
the interplay between hypernymy and synonymy.
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Limitations

As mentioned already, the problem Syn/Diff does
not reflect the initial question of LD/LPC. In partic-
ular, the Syn class of pairs that remained synonyms
contains pairs that underwent LPC and pairs which
shared meaning remained unchanged. The latter
does not play a role in the LD/LPC dichotomy
and should be discarded for deeper study of the
two apparently opposite laws. Also, we restrain
the study to some target words that are chosen to
occur at both time periods, thus preventing us to
fully measure the importance of LD. Indeed, re-
call that Bréal’s Law of Differentiation predicts
that some synonyms may disappear in the process.
Thus, our Diff class could be considered incom-
plete. However, including such disappeared words
would prevent the use of time-aware DSMs.

Section 3 presented synonymy as a symmetrical
relation between words. However, a thesaurus like
Fernald (1896) displays asymmetrical synonymy:
for an entry u we have a set of synonyms v1, v2, ...
from which we extract pairs (u, v). We observe that
v itself is rarely an entry of the thesaurus, and when
it does, u may not appear in the list of synonyms
of v. This is contradictory to WordNet’s definition
of synonymy that consider this relationship to be
symmetrical. However, up to our knowledge, there
is no lexical database (like WordNet) being also
historical and that could help us ensure the notion
of synonymy at both time periods is strictly the
same. In the absence of such a resource, we leave
potential disagreements in definition between the
two linguistic resources to future investigations.

In section 4, we discussed that hyper/hypo-nymy
could be misleading. We made the assumption
that Fernald (1896) and Wordnet (Fellbaum and
Princeton, 2010) used similar-enough notions of
synonymy such that our labels Syn/Diff are rele-
vant. However, thesaurus like Fernald (1896) are
created as a tool for writers and authors to avoid
redundancy, thus including wide lists of synonyms
that include hypernyms (instead of repeating the
bench, you could say the seat). In section 6.3 we
showed that direct hypernymy is misleading for our
model. Yet, we still miss guidelines/insights about
the possibility to include some cases of hypernymy
among synonyms at T2. Another approach would
be to remove hypernyms from the source material
at T1, which implies to automatically detect them
or manually review thousands of pairs.

There are remaining factors that presented ap-

proaches do not take in account and that one could
think relevant. In particular, further work could
investigate the influence of pressure of words on a
concept, for instance many words sharing (at least
partially) a similar meaning. However, this would
require access to list of senses for each word at
time T1, which we do not have in Fernald (1896).
To this extent, contextualized language models fine-
tuned for the different time periods could be help-
ful.

Finally, because we used pre-computed SGNS
embeddings on historical data binned in decade, we
have no guarantee that this is the optimal setting
for studying Lexical Semantic Change. Maybe
different kind of changes could be observed using
larger or smaller time periods, and conducting the
study over a larger or a smaller time span instead
of just a century.
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A Appendix

A.1 Formalizing LD and LPC
In this work, we reduced the problem from finding
pairs in which LD or LPC operates to a binary
classification problem between pairs that remained
synonymous and those who did not. To understand
the need for a reduction, let us introduce some
notation and definitions.

First, let us denote by W (T ) the set of words (or
vocabulary) for a given language (say English) at
time T . As language evolves through time, vocab-
ularies at two times T1 and T2 (with T2 > T1)
need not have the exact same extensions: e.g., a
wordw inW (T1) might not be inW (T2) (i.e.,w has
disappeared) or vice versa (i.e., w is a new word).
Assuming a simple, idealized denotational seman-
tics, we will further define C(T ) as the set of dis-
crete concepts available at time T ,11 andM (T )

w ⊂ C
the meaning of word w at time T . It is defined as
a set to model cases of homonymy and/or poly-
semy. From these definitions, we can now define
synonymy at time T between words u ∈W (T ) and
v ∈ W (T ) as M (T )

u ∩M (T )
v ̸= ∅; that is, u and

v do share a common meaning. Furthermore, we
can define the semantic change from T1 to T2 in
a word w as follows: M (T1)

w ̸= M
(T2)
w ; that is, w

has different sets of meanings at T1 and T2.
11We take C(T ) to be mostly stable over time, but new

concepts might of course appear or disappear (e.g., due to
techonological or cultural evolution).
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Equipped with these definitions, we are now
ready to formalize the two laws LD and LPC, start-
ing with what their common scope.

First, both laws concern synonyms: they are re-
stricted to a set of synonyms at some initial time T1,
defined by S(T1) = {(u, v) : M

(T1)
u ∩M (T1)

v ̸=
∅}.

Second, both LD and LPC assume some individ-
ual semantic change, from T1 to T2 (with T2 >
T1), in at least one of two synonymous words: that
is, M (T1)

u ̸=M
(T2)
u or (logical) M (T1)

v ̸=M
(T2)
v .

Given these preconditions, the application of LD
implies that either:

• one of the two words has disappeared:
u ∈W (T1) ∧ u ̸∈W (T2)

or (exclusive) v ∈W (T1) ∧ v ̸∈W (T2),

• u and v are no longer synonymous at T2:
M

(T1)
u ∩M (T1)

v = ∅.

By contrast, LPC implies that words u and v
remain synonymous from T1 to T2. While this
could be simply stated as: M (T2)

u ∩M (T2)
v ̸= ∅,

we feel that this misses an important aspect of the
law, namely that M (T1)

u and M (T1)
v should evolve

in the same way:

• either by acquiring (a) new shared sense(s):
(M

(T2)
u −M (T1)

u ) ∩ (M
(T2)
v −M (T1)

v ) ̸= ∅,

• or inversely by losing the same sense(s):
(M

(T1)
u −M (T2)

u ) ∩ (M
(T1)
v −M (T2)

v ) ̸= ∅.

A.2 Useful definitions
Recall the definition of cosine distance between
two vectors x and y:

cos-dist(x,y) = 1− ⟨x,y⟩∥x∥∥y∥ . (3)

We also recall the definition of Jaccard distance
between two sets A and B:

jaccard-dist(A,B) = 1− |A ∩B||A ∪B| . (4)

A.3 Xu & Kemp’s control pairs
In Table 3 we display samples of word pairs se-
lected as control pairs following Xu and Kemp
(2015)’s procedure. As we can observe, for ev-
ery Part-Of-Speech, a significant number of these
pairs are themselves synonymous. After manu-
ally reviewing a hundred pairs for each POS tag,

we estimate that the proportion of synonyms in
the selected control pairs is between 20 and 40%.
Synonym pairs shouldn’t be used to control other
synonym pairs, which may explain why our repro-
duction of Xu and Kemp (2015) decision rule does
not perform well according to Table 2.

A.4 Distances in WordNet

In Figure 3 are displayed the distributions of dis-
tances in WordNet. The distance in WordNet be-
tween two words (u, v) is the number of nodes of
the shortest path between a synset of u and a synset
of v.

Figure 3: Distribution of shortest distances in WordNet
between pairs of words that were synonymous at T = O.
inf means that there is no path between the two words
in WN. A distance of 0 means that they are actually
synonyms, while a distance of 1 implies there is direct
hypernymy.

A.5 Synonymy in our DSMs

In Figure 4 are displayed the distributions of cosine
distance between word pairs at both periods. In
blue are synonyms at this time (from Fernald (1896)
at T1, and from WordNet at T2). In black are all
possible word pairs. We observe that synonymy
is indeed captured by our DSM as synonyms are
significantly closer in cosine distance than other
word pairs.

A.6 Frequency groups

The procedure to create a fixed number M of fre-
quency group is the following. At a time T , the list
of target words is sorted by increasing frequency,
we label as group ‘0’ the first 50% of the list. In the
remaining 50%, The first half is labeled as group
‘1’, and so on until group M − 2 is created. The
still unlabeled words are labeled group M − 1, for
a total of M groups. Group labels are therefore
positively correlated with occurrences counts.
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POS Control pairs

ADJ
brownish/red, kindly/mild, teeming/agricultural, likeliest/meaningless,

various/heterogeneous, barbarous/cruel, abandoned/unsuccessful, trojan/escaping,
subjective/relative, reliable/readable.

NN
diphtheria/typhus, muskets/pistol, surgery/appendicitis, beech/apples,

accountants/prints, commodity/substances, cups/pots, wife/grandmother,
fool/fisherman, obstacles/multiplication.

VERB
moan/groan, divide/span, needed/secured, flowed/flooded,

stall/owned, told/asked, mentioned/described, cooperate/accord,
copy/filed, increased/diminished.

Table 3: Random samples of size 10 among selected control pairs. In italic are control pairs which are considered
synonyms according to the definition in Section 3.1.

Figure 4: Distribution (as density histograms) of cosine
distances between word pairs at time period T1 (decade
1890s) and T2 (decade 1990s). In blue are represented
pairs of synonyms, and in black are represented all pairs
of target words, without any particular constraint.

A.7 Target words selection

Among words represented in the embeddings pro-
vided by Hamilton et al. (2016), we keep only
words following these three requirements. The first
is to be POS-tagged as an adjective, a noun and/or
as a verb in the COHA. For a given POS-tag among
these three, the second requirement is to appear at
least 3 times in every decade between 1890 and
1999. Lastly, we require words to be composed of
3 letters or more. If a word appears with multiple
POS-tags in the COHA and fulfills the minimum
frequency requirement with each of these tags, the
same embedding is used as its representation, as
Hamilton et al. (2016)’s training data aggregated
POS-tags.

A.8 Unsupervised models

In Figure 5, we observe that the quantity ∆ does
not reflect a clear separation between Syn pairs and
Diff pairs. This explains why the unsupervised
methods proposed in Sec. 5.2 fail to significantly
outperform baselines.

Figure 5: Histograms of the value of divergence ∆ of
synonymous pairs, depending whether they differenti-
ated (orange) or stayed synonyms (blue).

In Figure 6 we show the influence of k in SD
(neighbors) for the unsupervised ∆ method. We
see that while there is close to no change in balance
accuracy, F1 scores for both classes are more and
more unbalanced as k increases, indicating a more
unfair model for high values of k. This is explained
by the fact that the unsupervised model predicts
more Diff (dominant class) with higher k.
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Figure 6: Unsupervised method, neighborhood-based
SD, for ALL (mixed POS).

A.9 Components of selected models

Depending on the POS tag, the implementation
strategies of SD, DD and frequency variables were
different. Recall that these strategies were chosen
given the average performances over 20 random
train/test splits.

On adjectives, neighborhood based DD as well
as raw frequency counts was found to be better
than alternatives. For SD, cosine distance provides
slightly higher performances than neighborhood-
based measures, except when tuning the threshold
for ∆: in this case, SD(nk) with k = 15 was best.
Generally, for every method implying a neighbor-
dhood based SD (∆(nk), LR multi., as well as the
two non-linear models), a small/mid ranged k was
preferable (between 10 and 20).

For nouns, SD(cosine distance) was also the best
choice except for ∆ with tuned threshold: here,
SD(nk) was preferred. Overall, the best range for
the value of k for neighbors-based SD was smaller
(5 to 15). Frequency groups worked better than
raw frequencies, while there was no difference in
performance between the two definitions of DD.

Yet, for verbs, SD(nk) with k = 40 actually out-
performs cosine distance (except for unsupervised
∆), and DD using Orthogonal Procrustes alignment
and cosine distance (Hamilton et al., 2016) was ac-
tually better than the definition relying on compar-
isons local neighborhoods. Both types of frequency
variables (raw counts and groups) worked equally
well.

Finally, on the ALL dataset reuniting pairs ac-
cross POS tags, raw frequencies provide better re-
sults than groups. Cosine distance is better than
neighborhoods for synchronic distances, and both
techniques of diachronic distances performed simi-

larly. For models forced to use SD(nk) in addition
to SD(cd), the choice of k did not really change the
results.

A.10 Predictive variables in our model
In this supplementary section, we conduct a study
about the role of some predictive variables in our
best-performing Logistic Regression model, as po-
tential sources of errors. The studied model uses
SD with cosine-distance, both implementations of
DD and raw frequency counts.

Pred. y = Syn y = Diff
Syn Diff TS FD TD FS

SD(TT1) .64 .83 .62 .84 .83 .64
DD(u) .46 .46 .45 .47 .46 .47
DD(v) .50 .54 .48 .54 .54 .50
FG

(T2)
u 2.3 2.2 2.4 2.1 2.2 2.2

FG
(T2)
v 1.9 1.4 2.1 1.5 1.4 1.8

Table 4: Average values of some variables for data
subset based on the prediction of our best-performing
LR model. TS,FS,TD,FD stand for True/False Syn/Diff.
FG

(T )
w stands for Frequency Groups of word w at time

T . Significant difference within a pair of columns are
in bold.

For a selected number of variables, we look for
significant differences between well-classified pairs
and pairs with wrong prediction, in both classes
separately. For a given variable, we estimate if a
difference is significant between the well-classified
and the misclassified samples of this class using a
t-test for Gaussian distributed variables, or a Mann-
Whitney U test for other variables. A difference is
significant if the p-value of the test is below 5%.
Results are reported in table 4.

We observe significant differences of SD in pairs
that are predicted as Syn and those predicted as Diff
by our model, the first having a smaller SD at T1
than the latter. Because our model relies mostly
on these SD to separate both classes, we wrongly
classify Syn pairs whose SD(TT1) is close to that of
Diff, and conversely Diff pairs whose SD(TT1) is
close to that of Syn are misclassified. This indicates
that our model still misses some subtleties that are
now reflected by SD.

A similar non-separability of the distribution of
"Syns" and "Diff" appears on DD and Frequency
variable for the second word pair of the pair. While
it seems logical for our model to behave so regard-
ing to the definition of LD, it is a clue that our input
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variables reflect noisy information that is confus-
ing to the model. In the same idea, Kutuzov et al.
(2022) remarked that recent LSC detection models
tend to raise False Positive, drawing attention to
the limit of current models for LSC.
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Abstract
Prior work has shown that coupling sequen-
tial latent variable models with semantic on-
tological knowledge can improve the repre-
sentational capabilities of event modeling ap-
proaches. In this work, we present a novel,
doubly hierarchical, semi-supervised event
modeling framework that provides structural
hierarchy while also accounting for ontolog-
ical hierarchy. Our approach consists of
multiple layers of structured latent variables,
where each successive layer compresses and
abstracts the previous layers. We guide this
compression through the injection of struc-
tured ontological knowledge that is defined
at the type level of events: importantly, our
model allows for partial injection of seman-
tic knowledge and it does not depend on ob-
serving instances at any particular level of
the semantic ontology. Across two different
datasets and four different evaluation metrics,
we demonstrate that our approach is able to
out-perform the previous state-of-the-art ap-
proaches by up to 8.5%, demonstrating the
benefits of structured and semantic hierarchi-
cal knowledge for event modeling.

1 Introduction

Intuitively, there is a hierarchical nature to complex
events: e.g., on Fig. 1, there are two events, one
involves going to the hospital and another one is
getting treatment. Even if important portions may
differ, but these two situations have one abstract
concept in common: Cure (of a disease). Clearly,
there is a connection among the events reported
in a situation and they all contribute to a bigger
goal (“Cure” in this case). The main purpose of
our work is to exploit this nature of connection
to improve event modeling. However, much like
linguistic structure, this event structure is generally
not directly observed, making it difficult to learn
event models that reflect this hierarchical nature.

For high-level inspiration, we look to past ap-
proaches in syntactic modeling (Collins, 1997;

Medical_InterventionMedical_Condition

Cure

Semantic
Knowledge

Bill went to hospital Doctors started treatment

Figure 1: Complex events can be hierarchical. The pur-
ple boxes represent the events themselves (as would
be reported in a news story). Blue dashed boxes
are annotated semantic frames & the orange dashed
box is the more abstract, general frame connecting
the “Medical_Condition” and “Medical_Intervention”
events. Events and frames are sequentially connected.

Klein and Manning, 2003; Petrov et al., 2006): we
can approach hierarchical event modeling through
structured learning, or through richer (semantic)
data. A structural approach accounts for the hi-
erarchy as part of the model itself, such as with
hierarchical random variables (Cheung et al., 2013;
Ferraro and Van Durme, 2016; Weber et al., 2018;
Huang and Ji, 2020; Gao et al., 2022). Richer se-
mantic data provides hierarchical knowledge, such
as event inheritance or composition, as part of the
data made available to the model and learning algo-
rithm (Botschen et al., 2017; Edwards and Ji, 2022;
Zhang et al., 2020).

In this work, we provide an approach that ad-
dresses both of these notions of hierarchical event
modeling jointly. Fundamentally, our model is
an encoder-decoder based hierarchical model com-
prised of two layers of semi-supervised latent vari-
able sequence. The first layer encodes the events
to semantic frames and the next layer compresses
down the semantic frames to a more abstract con-
cept. We call these the base and compression layers,
respectively. The base layer operates over the event
sequence (the gray boxes in Fig. 1); when available,
our base layer also considers auxiliary semantic in-
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formation, such as automatically extracted seman-
tic frames (the blue dashed boxes in Fig. 1). Mean-
while, the compression layer compresses down the
semantic frames to a more abstract concept (orange
dashed box in Fig. 1) using an existing structued
semantic resource (in our paper, FrameNet). Our
work can be thought of as extending previous work
in semi-supervised event modeling (Rezaee and
Ferraro, 2021) to account for both structural and
semantic hierarchy.

Joining both the structural and semantic ap-
proaches together poses a number of challenges.
First, getting reliable, wide-coverage semantic
event annotations can be a challenge. Development
of semantic annotation resources is time consum-
ing and expensive (Baker et al., 1998; O’Gorman
et al., 2016).1 Part of our solution should leverage
existing semantic annotation resources.

Second, although event extraction capabilities
have steadily improved, enabling automatically pro-
duced annotations to be used directly (Padia et al.,
2018; Huang and Huang, 2021), these tools still
produce error-laden annotation, especially on out-
of-domain text. While rich latent variable methods
have been previously developed, adapting them to
make use of noisy event extractions can be a chal-
lenge. Our learning approach must still be able
to handle imperfect extractions. Recent work has
shown how neural sequence approaches can do
so (Rezaee and Ferraro, 2021), but there remains a
question of how to generalize this. Part of our solu-
tion should allow for hierarchical semi-supervision.

We present a hierarchical latent variable encoder-
decoder approach to address these challenges. We
ground our work in the FrameNet semantic frame
ontology (Baker et al., 1998), from which we ex-
tract possible abstract frames from sequences of
inferred (latent) frames. This lets us leverage ex-
isting semantic resources. We develop a semi-
supervised, hierarchical method capable of han-
dling noisy event extractions. Our approach en-
ables learning how to represent more abstract frame
representations. Our contributions are:

• We provide a novel, hierarchical, semi-
supervised event learning model.

• We show how to use an existing rich seman-
tic frame resource (FrameNet) to provide both

1While prompt-based label semantics (Hsu et al., 2022;
Huang et al., 2022) are recent successful ways of enabling
lower resource learning, these generally are tied to specific
tasks and may be limited by what exemplars are given.

observable event frames and less observable ab-
stract frames in a neural latent variable model.

• Our model can use FrameNet to give a more
informed signal by leveraging compression of
events when predicting what event comes next,
what sequence of events follows an initial event,
and missing/unreported events.

• With pre-training only, our model can gener-
ate event embeddings that better reflect seman-
tic relatedness than previous works, evincing a
zero-shot capability.

• We perform comprehensive ablations to show
the importance of different factors of our model.

Our code is available at https://github.com/

dipta007/SHEM.

2 Related Works

Our work draws on event modeling, latent gener-
ative modeling, lexical and semantic knowledge
ontologies, and hierarchical modeling.

2.1 Event Modeling
There have been several efforts to understand
events and their relationships with broader seman-
tic notions. Previous research has explored the use
of hierarchical models based on autoencoders for
script generation, such as the work of Weber et al.
(2018). In contrast to their work, instead of a chain-
like hierarchy, we have used a multi-layer hierarchy
to compress the events to abstract processes. Addi-
tionally, our approach allows for semi-supervised
training, if such labels are available. Our work has
shown that using semi-supervision helps the model
to generalize better on both layers. In a related
study, Rezaee and Ferraro (2021) used the Gumbel-
Softmax technique and partially observed frames to
model event sequences and generate contextualized
event frames. While their approach is capable of
generalizing each event in a sequence, the number
of predicted frames in the sequence is equivalent to
the number of events. Thus, unlike our approach,
it was not designed to compress or generalize the
overall event sequence.

Bisk et al. (2019) demonstrated the effectiveness
of event modeling for generating a concrete con-
cept from an abstract one, using the example of
cooking. Several studies in recent years have uti-
lized event modeling to predict event types (Chen
et al., 2020; Pepe et al., 2022; Huang and Ji, 2020).
These studies focus on identifying the action and
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Figure 2: An overview of Semantically-informed Hierarchical Event Modeling (SHEM). The orange dashed boxes
are observed frames & the blue dashed boxed are masked frames. Top right: a frame is sampled with the injection of
observed frames. Bottom right: semantic knowledge graph is shown for 4 nodes with only “Inheritance” relations.

object involved in an event, where the action repre-
sents the activity being performed and the object is
the entity affected by the action.

2.2 Latent Generative Modeling
Latent generative modeling is a widely-used
method for representing data x through the use
of high-level, hidden representations f . Specifi-
cally, we express the joint probability p(x, f) as
p(x, f) = p(x|f)p(f). Especially when f is not
fully observed, this factorization can productively
be thought as a soft grouping or clustering of the
data in x. This equation will serve as the founda-
tion for our approach.

Maximizing log-likelihood is known to be com-
putationally challenging in this context. Kingma
et al. (2014) later used a variational autoencoder
(Kingma and Welling, 2013, VAE) in a semi-
supervised manner to learn latent variables, divid-
ing the dataset into observed and unobserved labels.
In our case, instances are partially observed (rather
than fully observed or not). Huang and Ji (2020)
used a VAE both to prevent overfitting on seen
event types and to enable prediction of novel types.

2.3 Lexical and Semantic Resources
Multiple resources, such as PropBank (Gildea
and Jurafsky, 2002), OntoNotes (Hovy et al.,
2006), AMR (Banarescu et al., 2013), Verb-
Net (Schuler, 2005), and FrameNet (Baker et al.,
1998), provide annotations related to event se-
mantics. Many consider predicate-argument se-
mantics, such as defining who is performing (or

experiencing) an event, and various ways that
event may occur. FrameNet provides detailed
predicate-argument characterizations and multi-
faceted relations linking different frames together,
such as frame subtyping (e.g., inheritance), tem-
poral/causal (e.g., precedes, causative), and com-
positionality (e.g., uses, subframe). Consider the
AGRICULTURE frame from Fig. 2: FrameNet de-
fines an inheritance relation between it and a AT-
TEMPT_OBTAIN_FOOD_SCENARIO, which can be
thought of as a container grouping together frames
all related to a broader scenario of attempting to
obtain food, such as HUNTING_SCENARIO. A sce-
nario container frame provides a notion of compo-
sitionality, defining potential correlations or alter-
natives among frames. Due to these rich semantics,
we focus on FrameNet in this paper as an exemplar.

Prior research has shown the utility of FrameNet
in predicting the relationship between predi-
cates (Aharon et al., 2010; Ferraro et al., 2017);
frame-directed claim verification (Padia et al.,
2018); and text summarization (Guan et al., 2021;
Han et al., 2016; Chowanda et al., 2017). Un-
fortunately, while document-level frames have
been of long-standing interest within targeted do-
mains (Sundheim, 1992, 1996; Ebner et al., 2020;
Du et al., 2021), development of task agnostic
document-level frames has been limited. E.g.,
while FrameNet defines these compositional-like
scenario frames, annotation coverage is limited: In
the FrameNet 1.7 data used to train frame parsers,
out of nearly 29,000 fulltext annotations, there are
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only 28 annotated “scenario” frames.

3 Method

Our core aim is to provide a hierarchical
event model that incorporates both structural
and semantic hierarchy. We call our model
SHEM (Semantically-informed Hierarchical Event
Modeling). An overview is in Fig. 2, where an
observed event sequence (green xi) is latently mod-
eled as multiple sequences of semantic frames (fi
and hj), augmented by a semantic resource.

We examine the strengths and limitations of
structural and semantic hierarchy. Our experiments
explore the effect of compressing the number of
frames on ability to predict what happens next in
an event sequence, and, given an initial seed event,
how an event sequence is likely to unfold. We
also extend our work to show how our model can
produce better intrinsic event representations.

3.1 Model Setup

Our model is a sequence-to-sequence hierarchi-
cal model (§3.3). It is comprised of two layers (a
base and a compression layer) of an encoder & de-
coder (§3.2). During training (§3.4), we provide
the model partially observed semantic frames in
the base layer in order to guide it in encoding event
sequences into latent variables. In the compression
layer, we use ontologically-defined frame relations
to extract semantically similar frames from the pre-
dicted frame of the first layer. These semantically
similar frames guide the compression layer of the
model to infer appropriate abstract frames.

3.2 Input and Output

The input to our model is event sequences.
Each sequence is defined by M event tuples
(x1, x2, ...xM ). For comparability (Weber et al.,
2018; Rezaee and Ferraro, 2021), we represented
each event as a tuple xm of four lexical words:
a predicate, a subject, an object, and an optional
event modifier. We assume an event tuple can be
associated with a more general semantic frame. For
example, in Fig. 2, the first event (“work farmers
in field”) can be linked to the FrameNet AGRI-
CULTURE frame. We assume that each event can
be linked but do not require this. Some frames
might be masked, subject to a fixable observation
probability. This allows us to test how our model
behaves when semantic data may be missing or in-
correct (due to, e.g., an extraction error); in Fig. 2,

this can be seen for the event “track animals in for-
est” event, where a potential corresponding frame—
“Hunting_Scenario”—is masked. This results in
a corresponding sequence of (partially) observed
frames (f∗1 , f

∗
2 , ...f

∗
M ). The base layer uses these

event tuples (xi) to softly predict the frames (fi)
and then reconstruct the input sequence based upon
those inferences. To capture additional semantic
knowledge, both in traning and testing, we query
FrameNet to extract more abstract frames (hi) for
the predicted frames from the base layer, such as
“Attempt_obtain_food_scenario.” The compression
layer uses that abstract frame hi with the original
event frames fi to softly group the events; for addi-
tional training signal, the compression layer is also
trained to reconstruct the original event sequence.

Encoder The base layer embeds each token in the
input event sequence, while, by default, the com-
pression layer embeds each predicted frame from
the base layer. An attention module is used to find
the important parts of event sequences during pre-
diction of frames. As our experiments validate,
the encoder can be flexible, e.g., a bi-GRU or a
Transformer-based large language model.

Decoder This is a standard auto-regressive model
that generates tokens of an event sequence from left
to right. Unless otherwise specified, the predicted
frame embeddings are given as input to the decoder.
See App. A.1 for additional details.

3.3 Hierarchical Model

We use two layers of an encoder-decoder: (i) a base
layer (fis in Fig. 2) and (ii) a compression layer
(hjs in Fig. 2). The base layer is responsible for
encoding the input event sequence into a sequence
of semantic frames, while the compression layer
is responsible for re-encoding the base layer’s se-
mantic frames into more abstract representations.
In Fig. 2, the base layer must infer “Agriculture” &
“Hunting_Scenario” from the input and observed
frames; the compression layer must associate those
frames with “Attempt_obtain_food_scenario.” Our
model is extendable to an arbitrary number of com-
pression layers. Experiments with multiple com-
pression layers showed that a single compression
layer was sufficient for strong performance.

Given our encoder-decoder setup, inferring
frame values means sampling a discrete random
variable within a neural network. This must be
done at both the base and compression layers. To
do so, we sample frames from an ancestral Gumbel-
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Softmax distribution (Jang et al., 2016; Rezaee and
Ferraro, 2021): each sampled frame fi depends on
the previously sampled frame fi−1 and an attention
weighted embedding of that layer’s encoder rep-
resentation. Due to space, we refer the reader to
Rezaee and Ferraro (2021).

Base Layer The base layer encodes the event se-
quences in the same number of latent variables
with the guidance of the observed frames. On the
base layer, partially observed frames are fed to the
model. These frames depend on the observation
probability; e.g., 40% observed frames mean that
60% of the event frames will be masked, and the
remaining 40% would be observable by the model
as guidance. This masking, which we formalize
as part of our experiments, reflects the fact that we
may not always have access to sufficient semantic
knowledge. To guide the base layer, a one-hot en-
coding of the observed frames is “injected” (added
to the Gumbel-Softmax parameters), as done by
Rezaee and Ferraro (2021). The number of frames
is the same as the number of event sequences, so
one frame for each node is passed.

Compression Layer Rezaee and Ferraro (2021)
showed that providing some frame injection guid-
ance helps learning. The compression layer aims
to provide guidance to the modeling through fewer,
more abstract semantic frames. However, while
this is possible for the base layer, where we as-
sume every event tuple could have a frame, we do
not assume this for the compression layer. This in
part is reflective of the lack of annotated training
samples for some of these more abstract frames
(see §2.3), limited beyond-sentence frame extrac-
tion tools, and our own motivation to not require
beyond-sentence annotation or extraction tools.

To provide guidance, but prevent reliance on
potentially missing auxiliary semantic knowledge,
we extract the inferred frames from the base
layer with the external frame ontology (rather
than whatever frames may have been provided to
the model). For each inferred frame fi, we ex-
tract possible abstract frames using the FrameNet
relations defined for it. E.g., since there is a
frame relation between AGRICULTURE and AT-
TEMPT_OBTAIN_FOOD_SCENARIO, if fi is AGRI-
CULTURE, ATTEMPT_OBTAIN_FOOD_SCENARIO

may be an abstract frame. In the case of multiple ab-
stract frames, one single frame is chosen randomly.
A special frame token (not in FrameNet) is passed
if no related frames can be extracted. Each com-

pression node hj has an attention module, attending
over the base layer’s inferred frames f1, . . . , fM ,
helping capture ontological hierarchy.

While the compression layer can serve as an
event model in its own right (due its own decoder),
its primary purposes are to help capture the on-
tological hierarchy and provide feedback to the
base layer. It does this directly (predict the ex-
tracted abstract frames, given the base layer’s in-
ferred frames as input), and via its decoder.

Guidance for Abstract Frames To guide the com-
pression layer to learn more abstract frames and
help the base layer generalize, we injected the
FrameNet-defined parents of the frames predicted
from the base layer. E.g., if the base layer predic-
tion is “Temporary_Stay” and a related frame is
“Visiting,” we inject both to the compression layer.
In contrast to existing work relying on single sam-
ples, early experiments showed that averaging two
Gumbel-Softmax samples yielded better results.

3.4 Training

During training, input is passed to the base layer
with partially observed frames depending on the
observation probability. The first layer encoder
encodes the input sequence with the guidance of
the partially observed frames to generate a latent
variable representation (fi). This predicted latent
variable (fi) is then passed through the decoder
to regenerate text. The predicted frames from the
first layer and their parent frames are passed to the
second layer encoder; it then encodes it to fewer
numbers of latent variables, (hj) which is used in
the decoder. Loss is computed at both layers.

We employ a linear combination of three dif-
ferent loss functions: the reconstruction loss, the
KL divergence loss, and a frame classification loss.
The reconstruction loss is used to generate the in-
put event sequence based on the inferred latent
variables from each layer. The KL divergence loss
calculates the KL divergence between the prior
and variational distributions for each layer. Finally,
the frame classification loss guides the base layer
to accurately classify the observed frames. See
App. A.3 for a full formulation of our loss.

4 Experimental Setup

We describe the dataset, then baselines (§4.1), we
used for our core experiments. We explored the ef-
fectiveness of latent parent frames (§5.1) and frame
relations (§5.2). We show how our model accounts
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for missing events (§5.3). To further show the effec-
tiveness of our model, we show how to extend our
approach to provide effective representations for
event similarity tasks (§5.4). We provide supple-
mentary results and experiments in the appendix.

Dataset We used a part of the Concretely An-
notated Wikipedia dataset (Ferraro et al., 2014),
which is a version of English Wikipedia that pro-
vides automatically produced FrameNet semantic
frame parses to enable easier subsequent examina-
tion of semantic frames. This has existing splits
of training (457k), validation (16k), and test (21k)
event sequences, where each training sequence has
at least one extracted frame. For comparability
with past approaches, we truncated documents to
the first 5 events. We used a vocabulary size of 40k
for event sequences (predicates and arguments) and
the 500 most common semantic frames, which is
consistent with prior work and has more than 99%
coverage of automatically extracted frame types.

4.1 Implementation and Baselines

We use five latent variables in the base layer and
three in the compression layer; these values were
determined in early dev experiments. We represent
the probability of observing an event’s frame on the
base layer with an observation probability ε. With
ε likelihood, an event’s frame will be observed, and
with (1 − ε) probability, an event’s frame will be
masked. This is meant to emulate how sufficiently
accurate, extractable semantic knowledge may not
always be available. This ε was fixed prior to train-
ing each model. Frames are only observed dur-
ing training, and never during evaluation. More
implementation details, including specific hyper-
parameter values and architectural decisions, are
in App. A.2. We present extensive ablation ex-
periments in App. C. These experiments provide
further insight into our modeling decisions.

Baselines Most of our experiments (§ 5.1 to 5.3)
compare our model with the existing methods:
First, HAQAE (Weber et al., 2018), which em-
ploys a single layer, chain-based method for hi-
erarchical modeling. It is designed purely as an
unsupervised approach, and so we cannot provide
frame guidance to it. We retrained this model on
our event sequences. Second, SSDVAE (Rezaee
and Ferraro, 2021): this is most similar to ours
and effectively just the base layer. For fairness,
we use the same hidden state size and pre-trained
embeddings across our models and baselines.

Model ε Perplexity (↓) INC Score (↑)
HAQAE - 21.38 ± 0.25 24.88 ± 1.35
SSDVAE

0.9
19.84 ± 0.52 35.56 ± 1.70

ours: inf. frame 19.39 ± 0.3 41.35 ± 4.25
SSDVAE

0.7
21.19 ± 0.76 39.08 ± 1.55

ours: inf. frame 20.26 ± 1.36 35.86 ± 3.43
SSDVAE

0.5
31.11 ± 0.85 40.18 ± 0.90

ours: inf. frame 22.16 ± 1.62 37.3 ± 3.33
SSDVAE

0.4
33.12 ± 0.54 47.88 ± 3.59

ours: inf. frame 24.02 ± 1.28 43.25 ± 4.97
SSDVAE

0.2
33.31 ± 0.63 44.38 ± 2.10

ours: inf. frame 30.15 ± 2.73 49.53 ± 1.56

Table 1: Perplexity (lower is better) and Wikipedia In-
verse Narrative Cloze Score (higher is better) for test
data. Per observation probability (ε), the best is in italic
form. The best overall is bold form. See §5.1.

5 Result and Discussion

We compute standard event modeling metrics: per-
plexity, to measure how well the model can predict
the next event, and inverse narrative cloze (INC)
score (Weber et al., 2018). In INC, a single seed
event is given, and the model must select what
the next five events are to follow it. The model
is given six choices (giving random performance
accuracy of 16.7%). Both have been used by our
baselines and allow us to assess the effectiveness
of our model. We average results over four runs
with different seeds, unless otherwise specified.

5.1 Is Frame Inheritance Sufficient?

We first investigate whether frame inheritance is
sufficient for learning our hierarchical model. We
report the inferred frame variant previously de-
scribed: the base layer first infers the latent frames;
then we extract the parents of those inferred frames;
and we then inject both these parent frames and
base layer predicted frames in the compression
layer. The compression layer is dependent on the in-
ferred frames, rather than lexical signal. Results are
in Table 1 (supplemental results in Tables 6 and 7 in
the appendix). We also experimented with a lexical
variant, where the input to the compression layer
is an embedding of the original input event tuple
rather than the inferred frames. Due to space con-
straints, these detailed comparisons are in App. B.1.
The compression layer alone has suboptimal perfor-
mance on both lexical and inferred frame models,
but the signal from compression layer helped the
base layer to achieve better performance. Both
SSDVAE and HAQAE (no compression layer) did
worse for all observation probabilities. This shows
the inferred frames and semantic relations from the
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base layer are important for hierarchical modeling.2

Our model’s base layer perplexity consistently
outperformed the other models. Additionally, we
see that our approach is better able to handle lower
supervision than SSDVAE: as the observation prob-
ability decreases (fewer observed semantic frames),
perplexity increases drastically for SSDVAE. In
contrast, if we look at the “ours: inf. frames” per-
plexity, we see that any performance degradation in
our model is less severe, and that in all cases our ap-
proach still outperforms the previous SOTA results.
This shows the effectiveness of the compression
layer in guiding the base layer reconstruction, even
with limited semantic observation.

Looking at INC, with either a lot (ε = 0.9)
or a little (ε = 0.2) of semantic observations,
our approach outperforms the existing approaches,
demonstrating the ability to model longer event se-
quences. The best overall INC performance occurs
with our hierarchical model with a low amount
of supervision. This is a good result, as it sug-
gests our model can make use of limited semantic
extractions and still provide effective long-range
modeling. When some, but not necessarily most, of
the frames may be observed, the non-hierarchical
SSDVAE approach provides strong performance.
This suggests that while frame inheritance (e.g.,
IS-A type relations) can be helpful for certain ele-
ments of hierarchical event modeling, it is not suf-
ficient. However, as we will see in the next section,
more considered use of semantic relations defined
in FrameNet can drastically boost our model’s per-
formance, surpassing SSDVAE.

5.2 Relations Beyond Inheritance
We have shown that inheritance relations are help-
ful but not sufficient. As FrameNet reflects other
relations, like causation, (temporal) ordering, and
multiple forms of containment/composition, we
explore whether six different frame relations signif-
icantly affect the predictive abilities of our model.

We also consider two special cases: first,
whether different types of relations are comple-
mentary by grouping these select relations.3 We
refer to this as grouping in Table 2. Second,
whether the compositional “scenario” frames in

2In particular, Fig. 4 in the appendix shows how the com-
pression layer can demonstrate its own generative capabilities,
in addition to providing supervisory signal to the base layer.

3We aggregate frames connected via the Inheritance, Us-
ing, Precedes, Causative_of, Inchoative_of, and Subframe
relations. We selected these given their direct connections to
well-studied relationships across event semantics.

Model Frame Relation ε
Next Event Event Sequence Pred.

Pred. (Perplexity) (Wiki INC Accuracy)
HAQAE - - 21.38 ± 0.25 24.88 ± 1.35
SSDVAE - 0.9 19.84 ± 0.52 35.56 ± 1.70

ours

Inheritance

0.9

19.39 ± 0.53 41.35 ± 4.25
Using 19.39 ± 0.51 43.23 ± 2.51

Precedes 19.57 ± 0.58 41.43 ± 3.02
Causative_of 19.42 ± 0.57 41.38 ± 2.23
Inchoative_of 19.28 ± 0.32 41.35 ± 3.47

Perspective_on 19.76 ± 0.97 40.53 ± 2.04
Subframe 18.91 ± 0.15 40.35 ± 2.91
grouping 19.44 ± 0.5 40.76 ± 2.86

scenario-only 18.81 ± 0.5 42.29 ± 2.86
SSDVAE - 0.2 33.31 ± 0.63 44.38 ± 2.10

ours

Inheritance

0.2

30.15 ± 2.73 49.53 ± 1.56
Using 31.37 ± 2.08 49.72 ± 1.73

Precedes 32.62 ± 1.65 47.92 ± 2.25
Causative_of 31.82 ± 3 49.85 ± 0.84
Inchoative_of 32.65 ± 1.4 48.03 ± 3.35

Perspective_on 33.2 ± 1.47 47.85 ± 3.53
Subframe 32.78 ± 2.09 47.88 ± 3.31
grouping 28.17 ± 2.26 48.88 ± 1.37

scenario-only 32.01 ± 0.7 48.1 ± 2.22

Table 2: Using frame relations beyond inheritance for
the compression layer can lead to drastic improvements
in both perplexity (lower is better) and Wikipedia In-
verse Narrative Cloze Score (higher is better). See §5.2.
For detailed result with all the layers, please refer to ap-
pendix (Apps. B.2 to B.4).

FrameNet provide a strong signal (scenario-only
in Table 2). In FrameNet, frames that introduce
a broader, abstract concept rather than an isolated
one can be labeled as a “scenario” frame: e.g.,
COMMERCE_SCENARIO consists of buying, sell-
ing, business, having an agreement, and so on. For
this, we only extracted an abstract frame for the
compression layer if it was labeled as a “scenario.”

We trained separate models (with three random
seeds) for each frame relation to explore the effect
of individual frame relations on the result. We fo-
cus on higher (ε = 0.9) and lower (ε = 0.2) frame
observation cases. Table 2 shows our main results,
with detailed results in the appendix (Apps. B.2
to B.4). Lower observation (ε = 0.2) is consis-
tently better than the previous state-of-the-art on
the base and overall versions. For ε = 0.9, base
layer performance is generally improved. This reaf-
firms our previous results that even with limited
semantic guidance, the compression layer provides
valuable feedback to the base layer.

The results for the two special relations in Ta-
ble 2 (grouping and scenario-only) are consistent
with our previous results—our approach outper-
forms the state-of-the-art result. Neither grouping
nor the scenario-only variant provides large ad-
ditional benefit beyond the individual frames in
that group. Given this and the small variation in
base layer performance depending on what frame
relations we use, these results suggest that the ex-
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Model ε
Perplexity (Masked Test Data)

Base Alone Compression Alone Base+Compr.
SSDVAE

0.9
152.44 ± 3.45 - -

grp 61.1 ± 1.83 94.76 ± 1.96 76.08 ± 0.76
scn 63.48 ± 4.43 80.94 ± 7.44 71.6 ± 4.12

SSDVAE
0.7

163.08 ± 4.52 - -
grp 63.5 ± 3.49 86.23 ± 0.7 73.98 ± 2.04
scn 60.06 ± 1.68 78.36 ± 4.52 68.58 ± 2.3

SSDVAE
0.5

182.63 ± 6.11 - -
grp 79.74 ± 1.79 83.81 ± 0.96 81.75 ± 1.13
scn 76.01 ± 5.56 78.7 ± 1.63 77.33 ± 3.65

SSDVAE
0.4

201.55 ± 4.1 - -
grp 84.17 ± 4.45 81.49 ± 0.14 82.8 ± 2.13
scn 73.77 ± 7.87 80 ± 1.89 76.77 ± 4.89

SSDVAE
0.2

212.93 ± 2.54 - -
grp 89.73 ± 4.67 77.32 ± 0.72 83.28 ± 2.38
scn 83.86 ± 2.74 81.2 ± 1.17 82.52 ± 1.93

Table 3: Perplexity (lower is better) for the grouped and
scenario-based models in the scenario-masked evalua-
tion. For each ε, the best score is italicized. Best over-
all is bold. These results indicate how our approach can
make use of related frames to better model sequences
involving missing events. See §5.3.

istence of broader assocations that these relations
enable are very helpful. This would suggest that
semantically-aware event modeling could benefit
from broader semantic resource coverage, with fu-
ture work examining how best to encode the seman-
tics of any particular relation.

5.3 Predicting Missing Events

Previously, we have looked at how using the ob-
servation probability can help us mask frames and
semi-supervised learning. In this experiment, we
examine the robustness of our model with respect
to missing events in an input sequence along with
the frame masking depending on observation prob-
ability. We first identify sequences (in our training,
dev, and test data) where two events have different
frames fi and fj that are contained within the same
scenario frame. We train normally, but to evaluate,
we remove an event ej associated with a scenario-
connected frame fj from the input. Given this
impoverished input, we require the model to gener-
ate the full, unmodified sequence. By construction,
the missing event is not a randomly missing event:
it is, according to the semantic ontology, semanti-
cally related to another event in that sequence. To
compare our model with SSDVAE, we have trained
SSDVAE with the same data and evaluated with
the same masked input and full event regeneration.

Given their strong performance, we examine the
grouped and scenario-based models. Results, av-
eraged across three seeds, are in Table 3: grp is
the model with a group of FrameNet relations, scn
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Figure 3: Relative perplexity improvement of the
scenario-based model vs. the grouped model; higher
is better. The scenario model improves across observa-
tion levels when important events are missing.

is the model with scenario sub-frames and SSD-
VAE is the SSDVAE model with different evalu-
ation. To show the consistent benefits of our ap-
proach, we report results computed just from the
base decoder, just from the compression decoder,
and from a score combined from both the base
and compression decoders. When an important
event is masked, the scenario-based model nearly
always outperforms the grouped model across ob-
servation levels. Our model can leverage training
time scenario-related frame associations to better
predict a missing event. Also, for all observation
probabilities, both of our model’s (grp & scn) in-
dividual and combined layer outperform SSDVAE.
We suspect this is because SSDVAE does not have
a hierarchical abstraction mechanism, so when one
event is not present, the related frame is also miss-
ing. This shows the capability of the hierarchical
structure of our model to understand and encapsu-
late the abstract meaning of an event sequence.

It is not surprising that the base layer, with
more feedback during training and greater repre-
sentational capacity, is a better language model
than the compression layer on its own. Still,
the compression layer provides active benefits:
we summarize the relative improvement of the
scenario-based model over the grouped model
in Fig. 3. We compute this from just the base
layer, or from both the base and compression lay-
ers. A positive number means that the scenario-
based model was better able to (re)generate a full
event sequence compared to the grouped model.
Except for very high observation probability on
the base layer, the scenario-based model con-
sistently outperformed the grouped one when
semantically-relevant events were missing. The
grouped model, which covers multiple frame rela-
tions, can better model sequences when events are
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not missing. While this may seem intuitive, notice
how using the compression layer is able to reverse
this pattern and let the scenario-based model out-
perform the grouped one, highlighting the benefit
that the compression layer can bring.

5.4 Improved Event Similarity

We have shown that both structural and semantic hi-
erarchy can be beneficial when predicting the next
event in a sequence, “rolling out” a longer sequence
from an initial seed, and accounting for semanti-
cally missing events. In our final experiment, we
use the latent frame representation to improve the
overall event representation. We evaluate on three
similarity datasets, comparing to the state-of-the-
art (Gao et al., 2022). In two of the datasets, there
are two event pairs and the task is to determine
which pair is more similar (measured by accuracy);
the third involves scalar human assessment scores
for how related two events are (Spearman correla-
tion). Data are only for evaluation, and all training
is done as “pre-training.” As such, our experiments
demonstrate the ability to capture semantic infor-
mation in our latent variable representation, and to
perform in an evaluation-only (zero-shot) predic-
tion of semantically-related events.

Gao et al. (2022) presents SWCC, a
simultaneous, weakly supervised, contrastive
learning and clustering framework for event
representation learning. They combine a clustering
loss with the popular contrastive learning approach
of InfoNCE (Oord et al., 2018). Every “query”
point x (an event tuple) has positive (similar)
instances z1, ..., zR, and negative (dissimilar)
instances zR+1, ..., zS . Using a temperature-
annealed similarity function on model-computed
embeddings, e.g., cosine similarity on embeddings
from a LLM, a probability distribution is computed
over the positive and negatives (conditioned on
the query). Average cross-entropy is optimized to
predict the positive vs. negative instances.

This contrastive loss nicely augments our
model’s existing training objective from §3.4. We
pre-train our hierarchical model on the same par-
tially observable frame-annotated data from §4, us-
ing that model to extract a representation for an
event, and computing the cosine similarity between
two representations. We form a representation by
concatenating the decoder’s final token embedding
and the latent frames from the compression layer.
To prevent frame representations overfitting to the

Model
Hard Similarity (Accuracy %) Transitive Score

SimilarityOriginal Extended
SWCC (16) 78.91 ± 1.31 69.2 ± 0.93 0.82 ± 0
SWCC (256) 81.09 ± 0.43 72.55 ± 1.53 0.82 ± 0

Ours 83.26 ± 2.29 78.63 ± 2.95 0.77 ± 0.04

Table 4: Evaluation on Similarity Tasks. SWCC (256)
are Gao et al.’s reported results, using a batch size of
256. Given the importance that batch size can have
with contrastive learning, we ran Gao et al.’s model
with a batch size 16 (the same batch size of our model).
We report this as SWCC (16). See §5.4.

Training Variant
Hard Similarity (Accuracy %) Transitive Score

SimilarityOriginal Extended

Ours (16)
Contrastive + LM 83.26 ± 2.29 78.63 ± 2.95 0.77 ± 0.04
Contrastive only 67.18 ± 1.79 72.75 ± 2.06 0.72 ± 0.02

LM only 67.83 ± 14.39 62.15 ± 16.52 0.56 ± 0.04

SWCC (16)
Contrastive + MLM 78.91 ± 1.31 69.2 ± 0.93 0.82 ± 0

Contrastive only 78.48 ± 0.83 67.33 ± 0.19 0.78 ± 0.05
MLM only 25.87 ± 1.31 16.78 ± 0.7 0.55 ± 0.04

Table 5: Ablation study of our model and SWCC.

predicates, rather than arguments, we applied a
predicate-specific dropout of 70% on the encoder.
Our hierarchical model provides a straightforward
way to adopt contrastive loss; this hierarchical na-
ture is not explicit in SSDVAE or HAQUE. Adapt-
ing these approaches to the contrastive learning
setup is beyond the scope of our work.

Our results are in Table 4. We have run SWCC
with a batch size of 16, which is the same as ours.
Our model surpasses SWCC on two of the tasks,
showing it is not only capable of event language
modeling but also capable of generating better
event representations. We have also run an ablation
study on SWCC and our model; the results are on
Table 5. The results show that neither contrastive
nor LM/MLM loss are as strong as both together.
We see that the LM component in our approach is
important to overall performance.

6 Conclusion

We have presented a hierarchical event model that
accounts for both structural and ontological hier-
archy across an event sequence. We use automat-
ically extracted semantic frames to guide the first
level of concept, and then use FrameNet relations
to guide abstraction and generalization. We showed
improvements across multiple tasks and evaluation
measures within event modeling. We showed im-
provements in next event prediction, longer range
event prediction, missing event regeneration, and
event similarity. We believe that future work can
use this abstraction concept for summarization,
topic modeling, or other downstream tasks.
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7 Limitations

Our approach enables modeling observed event se-
quences through the lens of a structured semantic
ontology. Though our models have shown superior
performance to leverage event frames, they still suf-
fer from the bottleneck of the information passed
to the compression layer. Additionally, while these
resources do exist, their coverage is not universal,
and have historically been developed for English.
Our experiments reflect this.

While the observance of frames is not, strictly
speaking, a requirement of our model, our experi-
ments focused on those cases when such an ontol-
ogy is available during training.

Throughout our experiments, we use pretrained
models/embeddings. We do not attempt to control
or mitigate any biases these may exhibit or propa-
gate.

Our work does not involve human subjects re-
search, data annotation, or representation/analysis
of potentially sensitive characteristics. As such,
while we believe the direct potential risks of our ap-
proach are minimal we acknowledge that the joint
use of pretrained models and structured semantic
ontologies could result in undesired or biased se-
mantic associations.
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A Additional Model and Implementation
Details

A.1 Model Details

For our input data, events are separated by a
<TUP> token, and in case of missing values

in an event frame, is replaced with a special
<NOFRAME> token.

As mentioned in the main paper, like any auto-
regressive model, previously generated decoder
output and previous input texts are given as in-
put to the decoder. An attention module is used
to find the important words from the given latent
embeddings predicted by encoder. Each layer tries
to reconstruct the input text, and loss was gener-
ated individually for each layer, which then accu-
mulated and back-propagated through the whole
model, updating the model parameters.

A.2 Implementation Details

The values of γ1 and γ2 are set to 0.1 by experi-
menting on the validation set. 2 Gumbel-softmax
samples are used to average the encoder. We use
the Adam (Kingma and Ba, 2014) optimizer with
a learning rate of 0.001. A batch size of 64 has
been used with a gradient accumulation of 8. Early
stopping has been used with patience of 10 on the
validation perplexity score.

For comparability, our core event modeling re-
sults use recurrent encoders and decoders. We use
pretrained Glove-300 embeddings to represent each
lexical item in an event tuple. An embedding size
of 500 has been used for frame embeddings. Two
layers of bidirectional GRU have been used for the
encoder, and two layers of uni-directional GRU
have been used for the decoder. Both are used with
512 hidden sizes. Gradient clipping of 5.0 has been
used to prevent gradient exploding. 0.5 has been
used as the Gumbel-softmax temperature.

Similarly, our experiments involving event simi-
larity (§5.4) use BART (Lewis et al., 2019) as our
encoder and decoder module.

Across our experiments, we have used NVIDIA
RTX 2080Ti or NVIDIA RTX 6000 for training.
It takes around 16 hours to train with our current
batch size on our dataset.

A.3 Loss Formulation

In constructing our training loss function, we take
inspiration from the methodology outlined in the
study conducted by (Rezaee and Ferraro, 2021).
However, our model differs in that it incorporates
two hidden layers, as opposed to the single latent
layer utilized in the aforementioned study. Each
layer we calculate the loss for both layers indi-
vidually. This is done by allowing each layer j,
to reconstruct the input text using its own latent
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variables, Lrj . To prevent overfitting, we incor-
porate KL terms in our loss function denoted as
LKLj . Additionally, for the base layer we include a
classification term, designated as Lc.

L = α1 ∗ Lr1 + α2 ∗ Lr2︸ ︷︷ ︸
Text Reconstruction

+ β1 ∗ LKL1 + β2 ∗ LKL2︸ ︷︷ ︸
Regularization

+ γ ∗ Lc.︸ ︷︷ ︸
Observed Frame Classification

(1)

The reconstruction and KL losses depend on
the random variables inferred at each level: for the
base level (j = 1), the losses depends on the frames
sampled at the base level f1, . . . , fn, while the com-
pression losses (j = 2) depend on h1, . . . , hM ).
Our latent variable model learns a variational distri-
bution q, from which it can infer appropriate values
for fi and hj . With this, we compute

Lr1 = Eq(f1,...,fN )[log p(x|f1, . . . , fN )] (2)

Lr2 = Eq(h1,...,hM )[log p(x|h1, . . . , hM )] (3)

LKL1 = Eq(f1,...,fN )[log p(f1, . . . , fN )] (4)

LKL2 = Eq(h1,...,hM )[log p(h1, . . . , hM )] (5)

Lc = −
N∑

i=1:f∗
i is obs.

log q(f∗i |fi−1). (6)

In Lc, note that f∗i represents the correct value of
the ith frame. The reconstruction and frame classi-
fication losses can be computed via a cross-entropy
loss (per output token for the reconstruction losses,
and per predicted frame in the frame classification
loss).

B Additional Results

B.1 Is Frame Inheritance Sufficient?

The detailed results for the experiment described
in §5.1 are reported in Table 6 (Perplexity Score)
and Table 7 (INC).

Detailed per-layer perplexity is reported in Ta-
ble 6, augmenting the results in Table 1. Our
model’s base layer perplexity consistently outper-
formed the other models. However, the perplexity
of the compression layer was higher. This sug-
gests that while incorporating hierarchical layers or
knowledge may not be sufficient for generating the
event sequence, it provides useful, less-than-full
supervised feedback to the base layer.

Model ε
Perplexity (Test Data)

Base Compression Total
HAQAE - - - 21.38 ± 0.25
SSDVAE

0.9
- - 19.84 ± 0.52

ours: inf. frame 19.39 ± 0.3 26.52 ± 0.55 22.68 ± 0.41
ours: lexical 19.12 ± 0.53 31.43 ± 1.1 24.51 ± 0.39

SSDVAE
0.7

- - 21.19 ± 0.76
ours: inf. frame 20.26 ± 1.36 27.45 ± 0.5 23.57 ± 0.84

ours: lexical 21.52 ± 1.48 35.19 ± 0.95 27.5 ± 0.93
SSDVAE

0.5
- - 31.11 ± 0.85

ours: inf. frame 22.16 ± 1.62 32.59 ± 2.86 26.62 ± 2.13
ours: lexical 25.02 ± 1.31 39.44 ± 0.44 31.41 ± 0.77

SSDVAE
0.4

- - 33.12 ± 0.54
ours: inf. frame 24.02 ± 1.28 32.82 ± 1.44 28.07 ± 1.24

ours: lexical 27.06 ± 0.94 40.46 ± 2.74 33.05 ± 0.56
SSDVAE

0.2
- - 33.31 ± 0.63

ours: inf. frame 30.15 ± 2.73 34.81 ± 2.81 32.84 ± 1.84
ours: lexical 33.6 ± 1.84 44.64 ± 1.44 38.72 ± 1.59

Table 6: Per-word perplexity for test data (lower is bet-
ter). For each observation probability (ε), the best per-
plexity is in italic form. The best of all of them is bold
form. See App. B.1

For INC, we look to the lexical variant, where
our model’s base layer outperforms the previous
result with having the best of all the observation
probabilities. However, the results for the compres-
sion layer underperformed the inferred variant, in-
dicating that incorporating lexical signals may have
a negative impact on the performance of the genera-
tion model. Overall, this suggests that the inferred
frames and ontological relations from the base
layer are important for hierarchical modeling.

We have reported an average change in the INC
score of the base layer over the combined layer
on Fig. 4. The gray and orange bars represent the
two variants: inferred frames and lexical signal,
respectively. Each bar is the average of the score
change from the combined layer to the base layer
(combined layer score – base layer score). Here, a
negative score means that the base layer is better
than the combined one. This figure shows if the use
of compression layer has a positive impact on the
INC score or not. First, for the inferred frames, the
addition of a compression layer has improved the
INC score by an effective margin on the base layer.
This shows that the semantic frames have helped
the model’s base layer to understand the process
better. On the other hand, for the lexical signal, the
combined layer has a better INC score. This shows
that having the lexical signal on the compression
layer has a better and equal effect on both layers.
In conclusion, the addition of a compression layer
improves the model’s capability of understanding
event sequences and generalizing.
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Figure 4: Average Change in INC score from combined
layer to base layer, where a negative score means the
base layer was better than the combined one and vice
versa. The gray and orange bars indicate whether the
input to the compression layer is inferred frames or lex-
ical signal, respectively. In all cases, inferred frames
has a better effect on base layer and lexical signal has
improved combined layer’s performance.

B.2 The Effect of Individual Frame Relations

The detailed results for the experiment described
in §5.2 are reported on Table 8 (Perplexity Score)
and Table 9 (Wikipedia Inverse Narrative Score).

B.3 Are scenario subframes better than other
frame properties?

The detailed results for the experiment reported in
Table 2 are shown in Table 10 (Perplexity Score)
and Table 11 (INC).

B.4 The Effect of Grouping Frame
Properties

The previous section showed that performance of
our model can be further improved by using tar-
geted frame relations. Here, we investigate whether
grouping of different frame relations could have a
more significant impact on generalization.

Using §5.2, we identified six frame-relations as
the most important ones: Inheritance, Using, Pre-
cedes, Causative_of, Inchoative_of, and Subframe.
We used this group of frame relations to extract
the parent frames from the predicted frames of the
base layer. With their parent frames, these frames
were passed to the compression layer to learn to
associate the semantically similar frames.

Looking at the perplexity results (Table 12) of
this experiment, we can see that the base layer out-
performs both baselines across observation lavels.
Additionally, while we see the intuitive result that
higher levels of frame observation during training

Model ε
Wikipedia INC (Test Data)

Base Compression Total
HAQAE - - - 24.88 ± 1.35
SSDVAE

0.9
- - 35.56 ± 1.70

ours: inf. frame 41.35 ± 4.25 27.25 ± 1.02 40.11 ± 1.88
ours: lexical 41.35 ± 3.19 35.41 ± 2.56 42.83 ± 1.47

SSDVAE
0.7

- - 39.08 ± 1.55
ours: inf. frame 35.86 ± 3.43 26.31 ± 2.92 34.26 ± 3.43

ours: lexical 35.61 ± 4.72 32.68 ± 6.12 37.01 ± 6.59
SSDVAE

0.5
- - 40.18 ± 0.90

ours: inf. frame 37.3 ± 3.33 23.61 ± 1.34 35.13 ± 3.01
ours: lexical 37.8 ± 3 37.11 ± 3.14 39.85 ± 3.01

SSDVAE
0.4

- - 47.88 ± 3.59
ours: inf. frame 43.25 ± 4.97 23.65 ± 1.34 40.46 ± 4.71

ours: lexical 39.2 ± 1.23 34.79 ± 4.75 40.06 ± 2
SSDVAE

0.2
- - 44.38 ± 2.10

ours: inf. frame 49.53 ± 1.56 25.15 ± 4.34 46.65 ± 1.55
ours: lexical 46.53 ± 2.84 37.55 ± 2.8 46.41 ± 3.71

Table 7: Wikipedia Inverse Narrative Cloze Score for
test data (higher is better). For each observation proba-
bility (ε), the best score is in italic form. The best of all
of them is bold form. See App. B.1

Model Frame Relation ε
Perplexity (Test Data)

Base Compression Total
HAQAE - - - - 21.38 ± 0.25
SSDVAE -

0.9

- - 19.84 ± 0.52

ours

Using 19.39 ± 0.51 25.34 ± 0.22 22.16 ± 0.37
Precedes 19.57 ± 0.58 25.83 ± 0.25 22.48 ± 0.25
Metaphor 19.62 ± 0.75 25.21 ± 0.49 22.24 ± 0.63
See_also 19.55 ± 0.72 25.71 ± 0.39 22.42 ± 0.54

Causative_of 19.42 ± 0.57 25.75 ± 0.46 22.36 ± 0.53
Inchoative_of 19.28 ± 0.32 26.01 ± 0.85 22.39 ± 0.52

Perspective_on 19.76 ± 0.97 25.64 ± 0.57 22.5 ± 0.75
Subframe 18.91 ± 0.15 26.03 ± 0.42 22.19 ± 0.27

ReFraming_Mapping 19.56 ± 0.94 26.63 ± 1.81 22.81 ± 0.62
SSDVAE -

0.2

- - 33.31 ± 0.63

ours

Using 31.37 ± 2.08 38.55 ± 5.72 34.72 ± 3.23
Precedes 32.62 ± 1.65 45.33 ± 0.74 38.45 ± 1.25
Metaphor 32.92 ± 2.08 42.07 ± 5.83 37.18 ± 3.5
See_also 31.83 ± 2.78 41.78 ± 5.55 36.44 ± 3.79

Causative_of 31.82 ± 3 40.01 ± 6.23 35.67 ± 4.41
Inchoative_of 32.65 ± 1.4 42.42 ± 3.55 37.21 ± 2.21

Perspective_on 33.2 ± 1.47 44.18 ± 1.26 38.28 ± 0.34
Subframe 32.78 ± 2.09 45.25 ± 0.7 38.51 ± 1.52

ReFraming_Mapping 31.34 ± 2.76 36.57 ± 2.9 34.06 ± 3.15

Table 8: Per-word perplexity for test data (lower is bet-
ter). For each observation probability (ε), the best per-
plexity is in italic form. The best of all of them is bold
form. See App. B.2

improves perplexity, we see the largest relative im-
provments for ε = 0.5 and ε = 0.4. This suggests
that our hierarchical model is able to effectively
leverage the semantic ontology, even when 40% of
events do not have observed frames.

We see broadly similar patterns for inverse nar-
rative cloze, with our approach outperforming both
baselines. First, our performance is highest with
the lowest observation level. Second, aside from
when 90% of the events have observed frames, as
ε decreases, so does our model’s variance, while
the previous state-of-the-art’s increases. Taken to-
gether, these results suggest that our model is bet-
ter able to use the provided semantic ontology and
make better longer range predictions, even with lim-
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Model Frame Relation ε
Wikipedia INC (Test Data)

- Base Compression Total
HAQAE - - - - 24.88 ± 1.35
SSDVAE -

0.9

- - 35.56 ± 1.70

ours

Using 43.23 ± 2.51 26.68 ± 0.63 40.92 ± 1.85
Precedes 41.43 ± 3.02 26.38 ± 1.51 40.03 ± 1.66
Metaphor 41.92 ± 3.93 24.22 ± 1.53 38.8 ± 2.17
See_also 42.67 ± 1.49 27.08 ± 0.24 41.13 ± 0.81

Causative_of 41.38 ± 2.23 26.3 ± 1.05 40.47 ± 1.79
Inchoative_of 41.35 ± 3.47 26.67 ± 1.33 40 ± 2.34

Perspective_on 40.53 ± 2.04 26.38 ± 0.67 39.55 ± 1.75
Subframe 40.35 ± 2.91 25.7 ± 0.48 38.42 ± 2.32

ReFraming_Mapping 43.8 ± 4.02 26.7 ± 1.21 42.15 ± 3.19
SSDVAE -

0.2

- - 44.38 ± 2.10

ours

Using 49.72 ± 1.73 21.77 ± 1.1 45.93 ± 1.62
Precedes 47.92 ± 2.25 20.67 ± 0.29 42.72 ± 1.58
Metaphor 47.25 ± 3.81 21.12 ± 0.95 42.77 ± 3.27
See_also 47.77 ± 3.61 21.2 ± 1.15 43.72 ± 2.78

Causative_of 49.85 ± 0.84 21.5 ± 2.41 45.45 ± 2.03
Inchoative_of 48.03 ± 3.35 21 ± 0.74 43.95 ± 2.61

Perspective_on 47.85 ± 3.53 20.42 ± 0.3 43.08 ± 3.12
Subframe 47.88 ± 3.31 20.33 ± 0.52 42.38 ± 1.86

ReFraming_Mapping 49.05 ± 1.54 22.23 ± 0.58 45.45 ± 0.44

Table 9: Wikipedia Inverse Narrative Cloze Score for
test data (higher is better). For each observation proba-
bility (ε), the best score is in italic form. The best of all
of them is bold form. See App. B.2

Model ε
Perplexity (Test Data)

Base Compression Total
HAQAE - - - 21.38 ± 0.25
SSDVAE

0.9
- - 19.84 ± 0.52

scenario-only 18.81 ± 0.36 25.61 ± 1.23 21.94 ± 0.5
SSDVAE

0.7
- - 21.19 ± 0.76

scenario-only 18.75 ± 0.3 26.82 ± 0.47 22.42 ± 0.21
SSDVAE

0.5
- - 31.11 ± 0.85

scenario-only 23.79 ± 1.29 31.43 ± 7.44 28.7 ± 2.04
SSDVAE

0.4
- - 33.12 ± 0.54

scenario-only 25.54 ± 2.34 36.87 ± 6.01 30.63 ± 3.52
SSDVAE

0.2
- - 33.31 ± 0.63

scenario-only 32.01 ± 0.7 45.28 ± 0.7 38.07 ± 0.55

Table 10: Per-word perplexity for test data (lower is
better). For each observation probability (ε), the best
perplexity is in italic form. The best of all of them is
bold form. See App. B.3

ited observations. Together with the perplexity im-
provements, these results reaffirm our assumption
that the compression layer gives a subtle but strong
signal that improves generative performance.

C Ablation Study

C.1 Impact of parameter sharing of encoder
and decoder

To find out the importance of multiple encoders
and decoders on two layers, we have used shared
parameters on both of them and see the effect on the
result. The result for this experiment (oursencdec)
is reported on Table 14. We can see a substantial
drop in the result, especially on the INC score for
low perplexity scores (0.5, 0.4, 0.2).

Model ε
Wikipedia INC (Test Data)

Base Compression Total
HAQAE - - - 24.88 ± 1.35
SSDVAE

0.9
- - 35.56 ± 1.70

scenario-only 42.29 ± 1.79 25.38 ± 1.84 39.86 ± 1.82
SSDVAE

0.7
- - 39.08 ± 1.55

scenario-only 38.79 ± 4.11 26.83 ± 7.32 32.91 ± 7.29
SSDVAE

0.5
- - 40.18 ± 0.90

scenario-only 37.59 ± 5.61 22.06 ± 1.01 35.59 ± 4.71
SSDVAE

0.4
- - 47.88 ± 3.59

scenario-only 40.91 ± 2.19 22.15 ± 1.37 37.99 ± 1.86
SSDVAE

0.2
- - 44.38 ± 2.10

scenario-only 48.1 ± 2.22 20.54 ± 0.1 43.3 ± 2.33

Table 11: Wikipedia Inverse Narrative Cloze Score for
test data (higher is better). For each observation proba-
bility (ε), the best score is in italic form. The best of all
of them is bold form. See App. B.3

Model ε
Perplexity (Test Data)

Base Compression Total
HAQAE - - - 21.38 ± 0.25
SSDVAE

0.9
- - 19.84 ± 0.52

grouping 19.44 ± 0.5 31.36 ± 0.85 24.69 ± 0.64
SSDVAE

0.7
- - 21.19 ± 0.76

grouping 20.13 ± 1.45 29.7 ± 0.51 24.43 ± 0.84
SSDVAE

0.5
- - 31.11 ± 0.85

grouping 21.52 ± 0.72 31.62 ± 0.51 26.08 ± 0.39
SSDVAE

0.4
- - 33.12 ± 0.54

grouping 23.42 ± 0.59 30.16 ± 4.2 27.45 ± 0.66
SSDVAE

0.2
- - 33.31 ± 0.63

grouping 28.17 ± 2.26 34.17 ± 0.98 31 ± 1.31

Table 12: Per-word perplexity for test data (lower is
better). For each observation probability (ε), the best
perplexity is in italic form. The best of all of them is
bold form. See App. B.4

C.2 Impact of parameter sharing of frame
embedding

To determine the importance of multiple frame em-
bedding weights for each layer, we have used one
shared frame embedding layer across both layers.
We compute results across three seeds. The result
for this experiment (oursframe) is reported on Ta-
ble 14. Similar to the encoder-decoder, we can see
a substantial decrease in the INC score.

C.3 Impact of summation or concatenation
of both layer encoding

To illustrate if both layer encodings altogether can
improve the result, we have done two experiments,
one with the summation of both layers encodings
(ourssum) and another with only concatenation of
both layer encodings (ourscat). Both experiments’
results are reported on Table 14. Both of the models
have a large drop on INC, which demonstrates the
importance of the performance of the individual
encoding.
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Model ε
Wikipedia INC (Test Data)

Base Compression Total
HAQAE - - - 24.88 ± 1.35
SSDVAE

0.9
- - 35.56 ± 1.70

grouping 40.76 ± 2.86 28.23 ± 1.04 39.4 ± 1.59
SSDVAE

0.7
- - 39.08 ± 1.55

grouping 38.09 ± 5.6 26.55 ± 0.51 37.83 ± 5.08
SSDVAE

0.5
- - 40.18 ± 0.90

grouping 39.5 ± 3.45 25.61 ± 0.96 37.86 ± 2.56
SSDVAE

0.4
- - 47.88 ± 3.59

grouping 43.83 ± 1.75 24.79 ± 0.43 42.16 ± 1.43
SSDVAE

0.2
- - 44.38 ± 2.10

grouping 48.88 ± 1.37 26.64 ± 0.98 46.81 ± 1.67

Table 13: Wikipedia Inverse Narrative Cloze Score for
test data (higher is better). For each observation proba-
bility (ε), the best score is in italic form. The best of all
of them is bold form. See App. B.4
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Model ε
Perplexity (Test Data) Wikipedia INC (Test Data)

Base Compression Total Base Compression Total
HAQAE - - - 21.39 ± 0.25 - - 24.88 ± 1.35
SSDVAE

0.9

- - 19.84 ± 0.52 - - 35.56 ± 1.70
oursencdec 26.25 ± 0.12 26.59 ± 0.13 26.42 ± 0.12 38.35 ± 1.66 38.42 ± 1.53 38.28 ± 1.65
oursframe 20.94 ± 0.86 37.01 ± 1.55 27.83 ± 0.85 41.82 ± 2.44 28.37 ± 4.09 39.97 ± 1.16
ourssum 18.63 ± 0.24 32.02 ± 4.46 24.38 ± 1.59 40.88 ± 0.25 36.15 ± 11.71 42.65 ± 5.02
ourscat 19.34 ± 1.04 31.25 ± 2.07 24.54 ± 0.23 44.05 ± 0.61 25.43 ± 4.73 37.53 ± 4.54

SSDVAE

0.7

- - 21.19 ± 0.76 - - 39.08 ± 1.55
oursencdec 27.15 ± 0.64 27.61 ± 0.64 27.38 ± 0.64 40.68 ± 1.78 40.37 ± 1.27 40.52 ± 1.43
oursframe 20.77 ± 0.2 38.75 ± 1.18 28.37 ± 0.33 41.38 ± 3.48 33.22 ± 4.4 41.71 ± 2.75
ourssum 19.51 ± 0.5 30.37 ± 3.29 24.33 ± 1.61 41.68 ± 1.25 31.77 ± 10.34 40.92 ± 5.04
ourscat 20.17 ± 0.42 30.04 ± 2.89 24.59 ± 1.09 43.42 ± 1.53 28.15 ± 5.53 39.63 ± 3.45

SSDVAE

0.5

- - 31.11 ± 0.85 - - 40.18 ± 0.90
oursencdec 26.54 ± 1.68 28.79 ± 1.55 27.65 ± 1.61 37.02 ± 5.75 37.03 ± 5.7 36.9 ± 5.9
oursframe 19.55 ± 0.89 37.84 ± 1.72 27.19 ± 0.98 45.48 ± 3.63 27.9 ± 1.68 40.7 ± 3.55
ourssum 19.15 ± 0.38 30.58 ± 1.28 24.19 ± 0.57 41.03 ± 1.32 43.37 ± 2.03 46.83 ± 1.55
ourscat 19.59 ± 0.22 30.39 ± 1.49 24.4 ± 0.6 41.45 ± 2.05 26.12 ± 4 38.57 ± 5.59

SSDVAE

0.4

- - 33.12 ± 0.54 - - 47.88 ± 3.59
oursencdec 25.56 ± 0.53 28.03 ± 0.47 26.77 ± 0.5 36.52 ± 3.06 36.23 ± 2.85 36.57 ± 2.97
oursframe 19.6 ± 1.16 38.03 ± 0.74 27.29 ± 0.58 38.13 ± 2.55 26.78 ± 3.21 37.18 ± 0.73
ourssum 18.79 ± 0.98 32.09 ± 1.27 24.56 ± 1.04 43.33 ± 0.88 37.47 ± 14.06 45.82 ± 4.8
ourscat 18.74 ± 0.83 32.1 ± 2.14 24.52 ± 1.14 42.28 ± 3.73 32.37 ± 9.64 43.2 ± 2.66

SSDVAE

0.2

- - 33.31 ± 0.63 - - 44.38 ± 2.10
oursencdec 25.62 ± 0.31 30.85 ± 0.17 28.12 ± 0.1 38.1 ± 3.1 38.32 ± 3.37 38.27 ± 3.22
oursframe 18.63 ± 0.75 38.68 ± 0.36 26.84 ± 0.65 41.45 ± 2.33 29.62 ± 0.98 40.43 ± 2.95
ourssum 17.1 ± 0.21 29.19 ± 3.06 22.33 ± 1.31 39.25 ± 4.42 31.65 ± 11.88 40.45 ± 7.24
ourscat 17.21 ± 0.65 29.6 ± 2.78 22.56 ± 1.18 38.55 ± 0.41 20.45 ± 9.19 29.77 ± 9.34

Table 14: Wikipedia Inverse Narrative Cloze Score for test data (higher is better). For each observation probability
(ε), the best score is in italic form. The best of all of them is bold form. See App. C.1, App. C.2, App. C.3
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Abstract

The representation space of pretrained Lan-
guage Models (LMs) encodes rich information
about words and their relationships (e.g., sim-
ilarity, hypernymy, polysemy) as well as ab-
stract semantic notions (e.g., intensity). In this
paper, we demonstrate that lexical stylistic no-
tions such as complexity, formality, and figu-
rativeness, can also be identified in this space.
We show that it is possible to derive a vector
representation for each of these stylistic notions
from only a small number of seed pairs. Using
these vectors, we can characterize new texts
in terms of these dimensions by performing
simple calculations in the corresponding em-
bedding space. We conduct experiments on
five datasets and find that static embeddings en-
code these features more accurately at the level
of words and phrases, whereas contextualized
LMs perform better on sentences. The lower
performance of contextualized representations
at the word level is partially attributable to the
anisotropy of their vector space, which can be
corrected to some extent using techniques like
standardization.1

1 Introduction

The style of a text is often reflected in its gram-
matical and discourse properties, but also in local
word choices made by the author. The choice of
one from a set of synonyms or paraphrases with
different connotations can define the style of a text
in terms of complexity (e.g., help vs. assist), for-
mality (e.g., dad vs. father), figurativeness (e.g.,
fall vs. plummet), and so on (Edmonds and Hirst,
2002). These lexical stylistic features can be useful
in various scenarios, such as analyzing the style of
authors or texts of different genres, and determining
the appropriate word usage in language learning
applications.

1Our code and data are publicly available at https://
github.com/veronica320/Lexical-Stylistic
-Features.

C
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Y

doctor→ medical practitioner
laws→ legislative texts

high blood pressure→ hypertension
very common→ prevalent
a lot→ significant quantity
be bad→ impact negatively

help→ assist

F
O

R
M

A
L

IT
Y

my gosh→ jesus
breathing→ respiratory

yeah→ yes
ten years→ decade

first of all→ foremost
a whole bunch→ full

my dad→ father
F

IG
U

R
A

T
IV

E
N

E
S

S bright→ radiant
heavy→ burdened

unsympathetic→ cold-hearted
fall→ plummet

a lot of→ a sea of
quick→ lightning
hard→ ironclad

Table 1: Seed pairs for constructing vector represen-
tations of complexity (simple → complex), formality
(casual→ formal), and figurativeness (literal→ figura-
tive).

Previous approaches to formality detection relied
on word length, frequency, as well as on the pres-
ence of specific prefixes and suffixes (e.g., intra-,
-ation) (Brooke et al., 2010). Such features have
also been used for complexity detection, often com-
bined with information regarding the number of
word senses and synonyms (Shardlow, 2013; Kriz
et al., 2018). Recent studies have shown that the
representation space of pretrained LMs encodes a
wealth of lexical semantic information, including
similarity, polysemy, and hypernymy (Garí Soler
and Apidianaki, 2021a; Pimentel et al., 2020; Et-
tinger, 2020; Ravichander et al., 2020; Vulić et al.,
2020, i.a.). In particular, abstract semantic notions
such as intensity (e.g., pretty→ beautiful→ gor-
geous) can be extracted using a lightweight ap-
proach based on simple calculations in the vector
space (Garí Soler and Apidianaki, 2020, 2021b).

In this paper, we explore whether lexical stylistic
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features can also be identified in the vector space
built by pretrained LMs. To do this, we extend the
method of Garí Soler and Apidianaki (2020) to ad-
dress complexity, formality, and figurativeness. We
first construct a vector representation for each of
these features using a small number of seed pairs
shown in Table 1. We then use these vectors to
characterize new texts according to these stylistic
dimensions, by applying simple calculations in the
vector space. We evaluate our method using a bi-
nary classification task: given a pair of texts that
are semantically similar but stylistically different
in terms of some target feature (e.g., formality), the
task is to determine which text exhibits the feature
more strongly (e.g., is more formal). Note that
the goal of our study is not to achieve high perfor-
mance on the task itself, but rather to probe for how
well these stylistic features are encoded in different
types of pretrained representations.

We experiment with various static and contex-
tualized embeddings on five datasets, containing
words and phrases (doctor vs. medical practi-
tioner), or sentences (Those recommendations were
unsolicited and undesirable. vs. that’s the stupi-
dest suggestion EVER.). Our results show that both
types of representations can capture these stylistic
features reasonably well, although static embed-
dings perform better at the word and phrase level,
and contextualized LMs at the sentence level. We
hypothesize that the sub-optimal performance of
contextualized LMs on short texts might be par-
tially due to the high anisotropy of their embedding
space. Anisotropic word representations occupy a
narrow cone instead of being uniformly distributed
in the vector space, resulting in highly positive cor-
relations even for unrelated words, thus negatively
impacting the quality of the similarity estimates
that can be drawn from the space (Ethayarajh, 2019;
Gao et al., 2019; Cai et al., 2021; Rajaee and Pile-
hvar, 2021). We verify this hypothesis by imple-
menting different anisotropy correction strategies
(Timkey and van Schijndel, 2021) and discuss the
observed improvements in contextualized represen-
tations’ performance on short texts.

Overall, our findings contribute to the big picture
of probing literature, showing that stylistic features
like complexity, formality, and figurativeness can
be decoded from the embedding space of pretrained
representations using simple calculations, without
any supervision. Our lightweight method can be
easily integrated into downstream applications like

authorship attribution and style transfer.

2 Related work

There has been an extensive body of literature on
probing techniques aimed at identifying the linguis-
tic and world knowledge encoded in LM represen-
tations. For example, given a Machine Translation
model, does it implicitly capture the syntax struc-
ture of the source text? Existing work addresses
such questions with methods like auxiliary classi-
fiers (a.k.a. probing/diagnostic classifiers) (Veld-
hoen et al., 2016; Adi et al., 2017; Conneau et al.,
2018), information-theoretic probing (Voita and
Titov, 2020; Lovering et al., 2020), behavioral tests
(Ebrahimi et al., 2018; Wallace et al., 2019; Petroni
et al., 2019), geometric probing (Chang et al., 2022;
Wartena, 2022; Kozlowski et al., 2019), visualiza-
tion of model-internal structures (Raganato and
Tiedemann, 2018), and so on. Using these meth-
ods, researchers have found that pretrained LMs
do encode various types of knowledge, including
syntactic (Linzen et al., 2016; Hewitt and Man-
ning, 2019), semantic (Ettinger et al., 2016; Adi
et al., 2017; Yanaka et al., 2020), pragmatic (Jeretic
et al., 2020; Schuster et al., 2020), as well as factual
and commonsense knowledge (Petroni et al., 2019;
Thukral et al., 2021).

Our work is along the line of probing for lexi-
cal semantics with simple geometry-based meth-
ods (Vulić et al., 2020; Garí Soler and Apidianaki,
2021a), which uncovers the target knowledge en-
coded in the semantic space of LM representations
with simple geometric computations (Vulić et al.,
2020; Garí Soler and Apidianaki, 2021a). Com-
pared to the most widely used auxiliary classifier
method, geometric probing does not rely on any
external model. Thus, it requires no annotated train-
ing data and avoids the potential issue of the ex-
ternal model itself learning the target knowledge
(Hewitt and Liang, 2019).

Directly related to our work, Garí Soler and
Apidianaki (2020) proposed a method to detect the
intensity of scalar adjectives, where an “intensity”
dimension is identified in the vector space built by
the BERT model. The method draws inspiration
from word analogies in gender bias work, where
a gender subspace is identified in the embedding
space by calculating the main direction spanned by
the differences between vectors of gendered word
pairs (e.g.,

−→
he -
−→
she, −−→man - −−−−−→woman) (Bolukbasi

et al., 2016; Dev and Phillips, 2019). Similarly,
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Figure 1: Complexity vector generation.

Garí Soler and Apidianaki (2020) view intensity as
a direction in the embedding space which is calcu-
lated by subtracting the vector of a low-intensity
adjective from that of a high-intensity adjective on
the same scale (e.g., −−−−−−→awesome -

−−→
good,

−−−−−→
horrible -−→

bad). Intuitively, this subtraction cancels out the
adjectives’ common denotation and retains their
variance in intensity, which is represented by the
resulting difference vector (

−−−→
dV ec). This vector can

then be used to determine the intensity of new ad-
jectives by simply taking the cosine similarity of
their vector to

−−−→
dV ec. We extend this method to

other lexical stylistic notions, and address words of
different part-of-speech (POS) and longer texts.

3 Method

We adopt the definitions for the three stylistic fea-
tures of interest (complexity, formality, and figura-
tiveness) proposed by previous work. Simple lan-
guage is “used to talk to children or non-native En-
glish speakers”, whereas more complex language
is “used by academics or domain experts” (Pavlick
and Nenkova, 2015). Formal language is defined
as “the way one talks to a superior”, whereas ca-
sual language is “used with friends” (Pavlick and
Nenkova, 2015). Figurative language is defined
by Stowe et al. (2022) as utterances “in which the
intended meaning differs from the literal compo-
sitional meaning”, while literal language exhibits
no such difference. Unlike the previous two fea-
tures, figurativeness is often a contextual instead
of lexical feature (e.g., the word adhere is used in
a metaphorical sense in the expression “adhere to
the rules” and in its literal sense in “adhere to the
wall”).2 We explore the usability of our method
for studying figurativeness by using a small seed

2In the literature, figurativeness is generally studied at the
level of utterances (Stowe et al., 2022; Piccirilli and Schulte
Im Walde, 2022; Chakrabarty et al., 2022). Some studies
also look at the semantic properties of words and phrases as
indicators for metaphor identification (Birke and Sarkar, 2006;
Tsvetkov et al., 2013; Gutiérrez et al., 2016).

set of synonyms and paraphrases that have literal
and figurative connotations (e.g., unsympathetic→
cold-hearted) independent of their context. These
pairs are only used for constructing our figurative-
ness vector representation, while our evaluation is
performed on a dataset containing full sentences
(see Section 4 for details).

Our method involves two steps: (a) feature vec-
tor generation, where we construct a vector rep-
resentation for each feature; and (b) feature value
prediction, where we predict how strongly a new
piece of text exhibits some target feature using the
constructed feature vector. We illustrate the two
steps below.

Feature vector generation. We collect a small
number of seed pairs to illustrate each notion,
shown in Table 1.3 The seed pairs consist of rough
paraphrases that differ in the stylistic aspect of in-
terest. Consider complexity as an example. Given
a pair of “simple → complex” texts, we subtract
the vector of the simple from that of the complex
one (e.g.,

−−−−−−−−−−−−−−−→
medical practitioner -

−−−−→
doctor). After

performing this subtraction for each pair in the
seed set, we then average the resulting difference
vectors to obtain a vector representing complexity
which we call

−−−−−→
dcomplex. This procedure is illus-

trated in Figure 1. Similarly, for formality, we
subtract the vector of the informal paraphrase from
that of its formal counterpart (e.g.,

−−−−−−−−→
respiratory

-
−−−−−−→
breathing), and for figurativeness, we subtract

the vector of the literal expression from that with
figurative meaning (e.g.,

−−−−→
bright -

−−−−−→
radiant). By

averaging the difference vectors for all pairs in the
corresponding seed set, we obtain vectors represent-
ing formality (

−−−−→
dformal) and figurativeness (

−−→
dfig).

We extend the method of Garí Soler and Apidianaki
(2020), which was only applied to scalar adjectives,
to words of other POS and to longer text (phrases
and sentences). Finally, we compare the vectors
that are built using representations from different
monolingual and multilingual models.

Feature value prediction. Given a new piece of
text (word, phrase, or sentence), we compute the
cosine similarity between its vector representation
and
−−−−−→
dcomplex,

−−−−→
dformal and

−−→
dfig. The more similar

the vector of the new text is to one of these feature
3This is based on the finding from Garí Soler and Apidi-

anaki (2020) that using only a few or even a single pair(s) is
almost as competitive as using an entire corpus in the case of
intensity ranking.
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Feature Short-text
(word/phrase)

Long-text
(sentence)

Complexity SimplePPDB SimpleWikipedia
Formality StylePPDB GYAFC
Figurativeness – IMPLI

Table 2: Datasets used for each feature.

vectors, the more complex, formal, or figurative the
text is considered to be.

4 Experimental Setup

Evaluation task and metrics. We evaluate the rep-
resentation of the target features in a binary classi-
fication task: given a pair of texts (words, phrases,
or sentences) t0 and t1 that are semantically sim-
ilar but stylistically different in terms of some
feature F (e.g., figurativeness), the task is to de-
cide which text exhibits the feature more strongly
(e.g., is more figurative). For example, given two
sentences “You must adhere to the rules.” (t0) and
“You must obey the rules.” (t1), the ground truth is
that t0 is more figurative. We use accuracy as our
evaluation metric.

Seed pairs. For each feature, we use seven seed
pairs for vector generation, as shown in Table 1.
The seeds for complexity are examples from the pa-
per describing SimplePPDB (Pavlick and Callison-
Burch, 2016), and the seeds for formality are from
the paper on lexical style properties of paraphrases
(Pavlick and Nenkova, 2015). For figurativeness,
we manually compile a set of seven seed pairs.

Datasets. The datasets used in our feature value
prediction experiments (described in Table 2) con-
tain pairs of words or phrases (short text), and pairs
of sentences (long text). Note that this distinction is
not based on the number of tokens, but on whether
the text is a complete sentence. For complexity,
we use SimplePPDB (Pavlick and Callison-Burch,
2016) and SimpleWikipedia (Kauchak, 2013); for
formality, Style-annotated PPDB (StylePPDB for
short) (Pavlick and Nenkova, 2015) and GYAFC
(Rao and Tetreault, 2018). For figurativeness, since
there is no dataset of word and/or phrase pairs,
we only use the IMPLI (Idiomatic and Metaphoric
Paired Language Inference) dataset (Stowe et al.,
2022) that contains sentences.

For each dataset, we select the optimal configura-
tion (see the Configuration paragraph below) using
the validation set, and report its performance on the
test set. To make the label distribution balanced,

Figure 2: Distribution of token frequency in the evalua-
tion datasets.

we randomly shuffle the order of the two pieces
of text in each pair and re-assign the gold label
accordingly. This ensures that a majority baseline
only performs around chance. Figure 2 shows the
distribution of token frequency in each dataset.4

Baselines. We compare our method to two simple
baselines. The majority baseline always predicts
the majority label in the dataset. The frequency
baseline consults the frequency counts of each to-
ken in the Google N-gram corpus (Brants, 2006)
and considers more frequent tokens to be simpler,
more casual, and more literal. Frequency has been
a strong baseline for complexity and formality in
previous work, given that rare words tend to be
more complex than frequently used words (Brooke
et al., 2010).

Configuration. We experiment with two parame-
ters in the configuration: LM and layer. Note that
the purpose of experimenting with different config-
urations is not to solve the task, but rather to obtain
a comprehensive picture of which embeddings best
represent the target features.

• Language Models: We experiment with both
static and contextualized representations. For
static embeddings, we consider GloVe (Pen-
nington et al., 2014) and fastText (Bojanowski
et al., 2017). For contextualized LMs, we con-
sider encoder-only monolingual and multilin-
gual Transformer models of different sizes
(base and large), including BERT (Devlin
et al., 2019), mBERT (multilingual BERT)
(Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and XLM-RoBERTa (Conneau et al.,
2020).5

4See Appendix A for more details including dataset statis-
tics, pre-processing method, dataset splits, and examples.

5See Appendix B for implementation details.
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Pooling Model Complexity Formality Figurativeness
short long short long long

majority 55.1 50.6 51.2 51.8 51.4

Mean

frequency 83.2 51.0 61.0 41.4 49.7

static
84.8
glove

60.0
glove

76.8
glove

82.8
glove

54.3
glove

contextualized (single layer)
86.2
roberta-large (4)

76.5
mbert-base (1)

68.7
bert-base (1)

82.4
roberta-large (12)

72.9
bert-large (14)

contextualized (layer agg)
84.4
mbert-base (10)

76.0
mbert-base (11)

67.6
bert-large (1)

86.7
roberta-large (23)

67.2
bert-large (19)

Max

frequency 80.7 46.4 57.2 42.5 47.9

static
89.4
glove

58.0
glove

76.0
glove

63.4
glove

56.0
fasttext

contextualized (single layer)
87.7
roberta-large (4)

69.4
roberta-base (12)

71.7
mbert-base (0)

73.6
mbert-base (1)

64.8
bert-large (11)

contextualized (layeragg)
86.2
roberta-large (19)

67.6
roberta-large (4)

71.7
mbert-base (0)

71.7
roberta-large (24)

63.9
bert-large (14)

Table 3: Accuracy scores obtained on each test set using different types of embeddings and pooling methods. We
report the performance of the models and layers (in parentheses) that best predicted the feature on the corresponding
validation set. For contextualized representations, we report results using a single layer or layer aggregation (“layer
agg”). The highest performance obtained with each pooling method (Mean/Max) is in boldface.

Pooling Stats Complexity Formality Figurativeness
short long short long long

Mean
2 beats 1 (%) 63.0 78.0 92.9 72.4 54.3
acc gain 2.6 4.1 4.3 5.3 0.1

Max
2 beats 1 (%) 66.1 72.4 95.3 64.6 44.9
acc gain 3.0 3.0 4.4 3.2 -0.5

Average
2 beats 1 (%) 64.6 75.2 94.1 68.5 49.6
acc gain 2.8 3.5 4.3 4.3 -0.2

Table 4: Comparison between single layer and layer
aggregation settings. “2 beats 1 (%)” refers to the per-
centage of cases where layer aggregation performance
is at least as high as the single layer performance, under
the same configuration (LM & layer). “Acc gain” stands
for the average accuracy gain of layer aggregation over
single layer across all configurations. Positive accuracy
gains are highlighted in green, negative ones in pink.

• Layer (l): For contextualized LMs, another
configuration choice is which layer to ob-
tain the representation from. We explore the
knowledge encoded in different layers in the
range of 0-12 for base models and 0-24 for
large ones, including the embedding layer.

Pooling strategies. In order to obtain a score for a
feature of interest (complexity, formality, or figura-
tiveness) for text segments that contain more than
one token (i.e., phrases and sentences), we consider
two pooling strategies over the scores calculated
for individual tokens:6

• mean: We compute the cosine similarity be-
tween

−−−−−→
dfeature and each word vector, and take

the average of the similarity scores as the fea-
ture value for the text.

6See Appendix B for details on tokenization and multi-
word expression handling.

• max: We compute the cosine similarity be-
tween

−−−−−→
dfeature and each word vector, and take

the maximum of the similarity scores as the
feature value for the text.

The intuition behind max pooling is that the ma-
jority of words in a phrase or sentence would not
be too extreme (i.e., too complex or too formal).
By looking at the most complex or formal word
in the text, we can get an idea of how extreme it
might be in that dimension. Naturally, we expect
this approach to perform less well than mean pool-
ing for figurativeness, where idiomaticity is most
often inferred by looking at the context of use and
the word combinations within a sentence.

5 Results and Discussion

Table 3 presents the results of our evaluation. Due
to space constraints, each row in the table only
shows the optimal performance obtained across all
configurations (LM and layers) for static and con-
textualized models.7 For contextualized LMs in
particular, following Vulić et al. (2020), we sepa-
rately show the optimal performance under two set-
tings: single layer, where only the representation
from a single layer l is used; and layer aggrega-
tion (“layeragg” for short), where we average the
representations from all layers from the 0th to a
specific layer l (included).

We observe that our method outperforms the
majority and frequency baselines with both static
and contextualized LMs. Furthermore, mean

7See Appendix C.1 for detailed accuracy scores for each
model.
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(a) Complexity (short) (b) Formality (short)

(c) Complexity (long) (d) Formality (long) (e) Figurativeness (long)

Figure 3: Performance change across layers of different LMs (under the layer aggregation setting).

pooling generally works better than max pool-
ing, although there is still room for improve-
ment. Taking a closer look at the optimal
configuration for each feature, for complexity,
roberta-large and mbert-base are the
dominant best-performing models, yet there are
no consistently dominant layers; for formality,
bert-base and mbert-base perform the best
on short texts and surprisingly with the initial lay-
ers (0 or 1), while roberta-large is the best
model for long texts with middle or final layers; for
figurativeness, bert-large is consistently the
best model across all settings.

Interestingly, contextualized LMs far outperform
static embeddings on long text sin almost all cases,
yet on short texts, static embeddings perform on
par or sometimes even better than contextualized
LMs. This is the case, for example, with formality
“short” (with both pooling strategies) and with com-
plexity “short” (with max pooling). This finding
sounds counter-intuitive, given the generally higher
performance of contextualized models in various
NLP tasks. In our probing setting, we suspect that
this might be due to two factors. First, the input
in short-text datasets consists of isolated, rather
than contextualized, instances of words. This is not
natural input for a contextualized LM. Second, pre-
vious work has demonstrated that the word-level
similarity estimates obtained from the vector space
of contextualized LMs might be distorted due to
the anisotropy of the space (Ethayarajh, 2019; Ra-

jaee and Pilehvar, 2021). Concretely, anisotropic
word representations occupy a narrow cone instead
of being uniformly distributed in the vector space,
resulting in excessively positive correlations even
for unrelated word instances. This has a negative
impact on the informativeness of measures such
as the cosine and the Euclidean distance, often
used for estimating representation similarity (Apid-
ianaki, 2023). These measures are dominated by
a small subset of “rogue dimensions” which drive
anisotropy and the drop in representational quality
in later layers of the models (Timkey and van Schi-
jndel, 2021). In Section 6, we investigate more
closely the impact of anisotropy on our results
through a series of experiments involving differ-
ent anisotropy reduction methods.

Finally, comparing the single layer and layer
aggregation settings, their respective optimal con-
figurations result in mostly similar performance
across datasets, as shown in Table 3. In order to
better understand their difference across all pos-
sible LM and layer configurations, we present in
Table 4 two types of averaged statistics: the per-
centage of configurations where the layer aggrega-
tion performance is equal or higher than the single
layer performance, as well as the average gain in
terms of accuracy. We observe that layer aggre-
gation improves the performance for complexity
and formality (across 64.6% to 94.1% of the con-
figurations and by an accuracy gain of 2.8 to 4.3),
but makes almost no difference for figurativeness.
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(a) Complexity (b) Formality (c) Figurativeness

Figure 4: Optimal performance over different bins of text length (under the layer aggregation setting).

Together with the results from Table 3, this sug-
gests that although layer aggregation does not help
with the best configuration, it is beneficial to most
configurations on average.

In the next two subsections, we analyze the in-
fluence of two more factors on our method: layer
depth and text length. For conciseness, we only
report the results for the layer aggregation setting.
Results for the single layer setting are given in Ap-
pendix C.

5.1 How well do different layers represent the
target features?

We explore the representation of the three stylistic
features inside contextualized LMs by specifically
monitoring the change in accuracy observed across
layers. The results are shown in Figure 3. The solid
curves show results obtained using mean pooling,
while the dashed ones correspond to max pooling.

We observe that information about complexity
(3a and 3c) is more clearly and consistently en-
coded after layer 4 of the models, independent of
their size (base or large). Across all layers, mean
and max pooling exhibit mostly similar behavior
for short texts, while mean pooling is clearly bet-
ter for longer texts. The pattern for figurative-
ness is similar (3e), though with slightly more
fluctuations. For formality, we see a different
trend. As shown in Figure 3b, this feature is en-
coded more clearly in the early layers of the mod-
els for short texts. For longer texts, we see di-
verging patterns across layers of different models
(3d). In particular, roberta-large encodes
formality better than other tested models while
its multilingual versions (xlm-roberta-base
and xlm-roberta-large) give much lower re-
sults.

5.2 How does text length influence our
method?

We analyze the performance change with regard to
text length, represented by the average number of
tokens in the two texts in a pair. For each feature,
we merge examples from the short-text and long-
text datasets (if available) and take the predictions
from the best-performing contextualized configura-
tion from Table 3. Based on the number of tokens,
we group all examples into several bins (unigram,
bigram, 3-4, 5-9, 10-14, 15-19, >20) and compute
the average accuracy in each bin. Figure 4 shows
the results.

Interestingly, we observe different patterns for
the three features. For complexity, accuracy scores
for shorter texts (0.86 to 0.9) are generally higher
than those for long texts (0.73 to 0.77). The drop
from 3-4 tokens to 5-9 tokens is particularly clear.
For formality, on the contrary, longer texts (0.84
to 0.93) tend to be easier than short ones (0.71 to
0.72). For figurativeness, we do not have results
for short texts since no such datasets are available.
Within full sentences, we observe that our method
works better for shorter sentences (with <5 tokens)
than for longer ones (with >=5 tokens) by an accu-
racy difference of 0.13 to 0.25. One caveat is that
these differences are not only influenced by text
length, but also by the intrinsic data distribution
in different datasets. For example, the domain of
the source texts in SimplePPDB (news, legal docu-
ments, and movie subtitles) is different from that
in SimpleWikipedia (encyclopedia articles). Thus,
the accuracy differences could be a result of both
factors — text length and text domain.

6 Anisotropy Reduction Experiments

As explained in the previous section, the anisotropy
of contextualized LMs’ representation space de-
grades the quality of the similarity estimates that
can be drawn from it (Ethayarajh, 2019). To see if
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Pooling Model Complexity Formality Figurativeness
short long short long long

Mean

static 84.8 60.0 76.8 82.8 54.3
contextualized (singlelayer) 86.2 76.5 68.7 82.4 72.9
contextualized (singlelayer+abtt) 80.3 69.3 76.6 76.7 70.9
contextualized (singlelayer+standardization) 90.4 73.9 74.1 80.6 68.3
contextualized (singlelayer+rank) 85.6 76.0 70.8 81.7 71.8
contextualized (layeragg) 84.4 76.0 67.6 86.7 67.2
contextualized (layeragg+abtt) 81.7 68.5 76.6 63.0 72.6
contextualized (layeragg+standardization) 90.4 73.6 75.2 79.9 67.6
contextualized (layeragg+rank) 83.7 75.7 68.1 82.1 67.0

Max

static 89.4 58.0 76.0 63.4 56.0
contextualized (singlelayer) 87.7 69.4 71.7 73.6 64.8
contextualized (singlelayer+abtt) 80.6 64.9 78.2 80.8 66.7
contextualized (singlelayer+standardization) 90.5 63.8 80.9 81.7 60.4
contextualized (singlelayer+rank) 87.1 69.6 70.3 76.0 66.5
contextualized (layeragg) 86.2 67.6 71.7 71.7 63.9
contextualized (layeragg+abtt) 81.9 63.9 78.2 72.5 71.1
contextualized (layeragg+standardization) 90.5 63.7 80.9 80.6 61.9
contextualized (layeragg+rank) 86.1 69.3 71.7 71.5 67.4

Table 5: Performance of three anisotropy reduction methods (all-but-the-top/standardization/rank-based). The
highest performance within each pooling method (Mean/Max) is in boldface.

this has an impact on our method, we apply three
post-processing anisotropy reduction methods dis-
cussed by Timkey and van Schijndel (2021), which
can be used to correct for rogue dimensions and
reveal underlying representational quality.

We apply each of these methods to our feature
vector construction and feature value prediction
processes. Given that our stylistic characterization
of new text relies on similarity measurement, we
expect that a space that allows us to draw higher-
quality similarity estimates would better represent
these stylistic features and would also improve fea-
ture value prediction. The three methods used in
our experiments are:

All-but-the-top (abtt). The method was ini-
tially proposed for static embeddings by Mu and
Viswanath (2018). The main idea is to subtract
the common mean vector and eliminate the top
few principal components (PCs) (we use the top
d

100 , where d represents the dimensionality of the
vector space, following their suggestion). These
subtracted vectors should capture the variance of
the rogue dimensions in the model and make the
space more isotropic. In Timkey and van Schijn-
del (2021), the mean vector and PCs are computed
from vector representations for an entire corpus.
Since our method is unsupervised, we do not as-
sume access to any large corpus and instead com-
pute them based only on the seed pairs (i.e., 14
words and phrases for each feature). Thus, our
method still remains lightweight and computation-
ally efficient. It is, however, important to note that

this is a local correction (rather than a global one)
since we are just using a small number of words
and phrases, as in Rajaee and Pilehvar (2021).

Formally, given a set of seed texts of size |S|
(here |S| = 14) containing token representations
x ∈ Rd, we compute the mean vector µ ∈ Rd

µ =
1

|S| ·
∑

x∈S
x (1)

as well as the PCs

u1, ..., ud = PCA({x− µ, x ∈ S}). (2)

Then, the new representation xabtt for an unseen
word vector x is the result of eliminating the mean
vector and the top k PCs (here k = d

100 ):

xabtt = x− µ−
k∑

i=1

(
u⊤i x

)
ui. (3)

Standardization. Based on a similar observation
as abtt (a non-zero common mean vector and a few
dominant directions), another way for adjustment
is to subtract the mean vector and divide each di-
mension by its standard deviation (std), such that
each dimension has µi = 0 and σi = 1. Similarly
to abtt, we compute the mean vector and standard
deviation using only the seed pairs for each feature.

Formally, we compute the same mean vector µ
as in Equation 1, as well as the standard deviation
in each dimension σ ∈ Rd

σ =

√
1

|S| ·
∑

x∈S
(x− µ)2 (4)
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The new representation xstandard for an unseen
word vector x becomes

xstandard =
x− µ
σ

. (5)

Rank-based. This method treats a word vector
as d observations from an |S|-variate distribution
and uses correlation metrics as a measure of sim-
ilarity, instead of cosine similarity (Zhelezniak
et al., 2019). Specifically, Spearman’s ρ, a non-
parametric correlation measure, only considers the
ranks of embeddings rather than their values. Thus,
it will not be dominated by the rogue dimensions
of contextualized LMs. Unlike the previous two
methods, this method does not require any com-
putation over the seed pair texts. Formally, given
a word vector x, the new representation xrank is
simply

xrank = rank(x). (6)

Table 5 shows the effect of applying the three
anisotropy reduction strategies under the single
layer and layer aggregation settings. Overall, after
anisotropy reduction, contextualized LMs outper-
form static embeddings in all cases except formality
“short”, confirming our initial hypothesis. Never-
theless, there is no universally optimal strategy,
although standardization works best most of the
time. Comparing the two pooling strategies, we
find that anisotropy correction helps more often
with max pooling than with mean pooling.

It is important to reemphasize that our anisotropy
correction approach is local, since it only consid-
ers a small set of words and phrases for calculat-
ing the mean vector, standard deviation, and PCs.
This might be the reason for the relatively small
observed effect of these correction procedures in
our experiments. In future work, we plan to ex-
periment with a larger corpus, and consequently
use a larger part of the vector space for calculat-
ing the mean/std/PC vectors, in order to investigate
the impact of the quantity of data on the induced
similarity estimates.

7 Conclusion

We have shown that the embedding space of pre-
trained LMs encodes abstract stylistic notions such
as formality, complexity, and figurativeness. Using
a geometry-based method, we construct a vector
representation for each of these features, which

can be used to characterize new texts. We find
that these notions are present in the space of both
static and contextualized representations, and that
static embeddings are better at capturing the style
of short texts (words and phrases) whereas contex-
tual embeddings at longer texts (sentences). By
correcting the anisotropy of contextualized LMs’
representation space, we show that it is possible to
close the performance gap from static embeddings
on short texts.

Our unsupervised and lightweight method is ex-
pected to be applicable for stylistic analysis in
other languages and for other stylistic notions, such
as concreteness, sentiment, and political stance,
which we plan to address in future work. Further-
more, we plan to experiment with anisotropy cor-
rection methods on a larger corpus, and to adapt
the method for style prediction on longer text (e.g.,
whole documents). The stylistic measurements
obtained using this method can be useful in the cre-
ation of lexical style lexicons as well as in down-
stream applications, for authorship attribution and
style transfer.

Limitations

We acknowledge the following limitations of our
work: (a) The scope of our experiments is limited
to the English language currently. Our method is
only evaluated on the level of words, phrases, and
sentences, but not at the document level. (b) The
effect of anisotropy reduction strategies is shown to
be rather mixed. Further investigation is required
to determine under what conditions these strategies
can prove beneficial in the specific context of stylis-
tic feature extraction. (c) Our work addresses only
lexical-level stylistic features and not more global
aspects of writing style, such as the diversity of
word choice and the utilization of unique syntactic
structures. Whether this method can be extended
to capture the comprehensive nuances of writing
style is an interesting direction for future work.

Ethical Considerations

In this paper, our method is only tested in intrinsic
evaluation settings where existing publicly avail-
able datasets have been used. It is not integrated
into any downstream application, although this type
of stylistic analysis could be potentially useful in
different settings.
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A Dataset Details

All evaluation datasets we use contain semantically
similar but stylistically different words, phrases, or
sentences.

A.1 Data Description and Source
Complexity

• SimplePPDB (Pavlick and Callison-Burch,
2016): It contains 4.5M pairs of words and
short phrases, where one is simpler and the
other is more complex. It is constructed
based on a subset of the Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013). There are
both automatically generated and manually
annotated pairs.8 URL: http://www.se
as.upenn.edu/~nlp/resources/s
imple-ppdb.tgz.

• SimpleWikipedia (Kauchak, 2013): It con-
tains 167K pairs of simple/complex sen-
tences generated by aligning Simple English
Wikipedia and English Wikipedia. We are
using Version 2.0 of the dataset (updated
from Wikipedia pages downloaded in May
2011), the “Sentence-aligned” subset. URL:
https://cs.pomona.edu/~dkaucha
k/simplification/data.v2/sente
nce-aligned.v2.tar.gz.

Formality

• StylePPDB (Pavlick and Nenkova, 2015): It
contains 4.9K pairs of casual/formal words or
short phrases from PPDB, both automatically
generated and manually annotated. URL: ht
tps://cs.brown.edu/people/epav
lick/data.html#style-pp-bibte
x.

• GYAFC (Rao and Tetreault, 2018): It contains
a total of 110K informal/formal sentence pairs,
created using the Yahoo Answers corpus. 9.
URL: https://github.com/raosu
dha89/GYAFC-corpus.

Figurativeness

• IMPLI (Stowe et al., 2022): It consists
of 25.8K literal/figurative sentence pairs,

8For all datasets, we only use a subset of all pairs based on
quality filtering, which is described in Appendix A.2.

9https://webscope.sandbox.yahoo.com/c
atalog.php?datatype=l&did=11
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spanning idioms and metaphors, both semi-
supervised and human-annotated. URL: ht
tps://github.com/UKPLab/acl202
2-impli.

A.2 Preprocessing Method
To reduce noise and construct splits, we preprocess
the datasets as follows:

• SimplePPDB: There are both automatically
and manually labeled subsets. We only take
the manually labeled examples with≥ 80% of
annotators agreeing with the final label. There
are only training and validation sets in the
original dataset. Since our method requires no
training, we take the original training set as
our validation set, and the original validation
set as our test set.

• SimpleWikipedia: Since our method focuses
on complexity in terms of lexical choice but
not grammatical structure, we filter out pairs
where the two sentences share the exact same
set of tokens, or all tokens in a sentence ap-
pear in the other sentence. As there are no
official splits, we randomly split the filtered
dataset into train/validation/test sets of ratio
8:1:1 (since the dataset is huge).

• StylePPDB: The filtering method is the same
as that used for SimplePPDB. There are no
official splits either, so we randomly split the
filtered dataset into a validation set and a test
set of the same size (since the dataset is small).

• GYAFC: We take the Entertainment & Music
subset, using pairs from the files formal and
informal.ref0. Since the official splits
only have training and test sets, we take only
the test set and re-split it into a new validation
set and test set of the same size.

• IMPLI: We take the manual_e subsets (man-
ually created, entailing) for both idioms and
metaphors, combine them and re-split the ex-
amples into a validation set and test set of the
same size.

Finally, we randomly re-assign the label of every
example for class balance.

A.3 Statistics and Examples
Table 6 shows the dataset statistics and example
inputs and outputs after our preprocessing. Table 5
shows the POS distribution statistics.

Figure 5: Distribution of token POS in evaluation
datasets.

B Implementation Details

B.1 Tokenization
Given a piece of text, we tokenize it with the SpaCy
tokenzier10 into words. Then, using the method de-
scribed in 3, we obtain a score for the feature of
interest for each word token (if using static embed-
dings) or subword tokens (if using contextualized
embeddings with WordPiece tokenization). In the
latter case, we additionally obtain an aggregated
feature score for each word from the scores of its
subword tokens using a pooling strategy described
in Section 4. Finally, we obtain an overall feature
score for the entire piece of text from the scores of
all its words using the same pooling strategy.

B.2 Representations
We use the following static embeddings: for
GloVe, we use GloVe.6B.300d11, consisting
of 400K word vectors trained on Wikipedia
2014 and Gigaword 5; and for fastText, we
use wiki-news-300d-1M-subword12, con-
sisting of 1 million word vectors trained with sub-
word infomation on Wikipedia 2017, UMBC web-
base corpus and statmt.org news dataset. Out-of-
Vocabulary (OOV) tokens are represented with the
all-zero vector.

For contexutalized LMs, we use
the following pretrained model check-
points from HuggingFace Transformers13:
bert-base-uncased (110M parameters),

10https://spacy.io/api/tokenizer
11https://nlp.stanford.edu/projects/gl

ove/
12https://fasttext.cc/docs/en/english-v

ectors.html
13https://github.com/huggingface/trans

formers
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Feature Dataset # Val # Test Example

Complexity

SimplePPDB
(short)

814 1,108
Text 0: toys
Text 1: playthings
Answer: 1 (more complex)

SimpleWikipedia
(long)

9,978 9,978

Text 0: Endemic types or species are especially likely
to develop on biologically isolated areas such as islands
because of their geographical isolation.
Text 1: Endemic types are most likely to develop on islands
because they are isolated.
Answer: 0 (more complex)

Formality

StylePPDB
(short)

367 367
Text 0: are allowed to
Text 1: can
Answer: 0 (more formal)

GYAFC
(long)

541 541
Text 0: I am impatiently waiting to ask my husband.
Text 1: Can’t wait to ask my husband!!
Answer: 0 (more formal)

Figurativeness
IMPLI
(long)

243 243
Text 0: You must adhere to the rules.
Text 1: You must obey the rules.
Answer: 0 (more figurative)

Table 6: Datasets used for evaluation. “# Val” and “# Test” stand for the number of examples in the validation set
and the test set respectively. Differences between pairs are underlined.

bert-large-uncased (336M parameters),
bert-base-multilingual-uncased
(110M parameters), roberta-base (125M
parameters), roberta-large (335M parame-
ters), xlm-roberta-base ( 125M parameters),
xlm-roberta-large ( 335M parameters).

B.3 Experiments
We perform grid search on hyperparameters includ-
ing the LM and the layer (0-12 for base models,
and 0-24 for large models) using the validation set
and report the performance of the optimal configu-
ration on the test set. The optimal hyperparameters
can be found in Appendix C.1.

All evaluation experiments are run on a single
NVIDIA GeForce RTX 2080 Ti GPU node. Each
experiment takes approximately 2-20 minutes de-
pending on the size of the dataset.

C Extended Results

In this section, we present additional results that
cannot fit into Section 3 due to space limit.

C.1 Performance of Different LMs
Table 7 and Table 8 show the detailed performance
of specific LMs under the single-layer and the layer
aggregation settings, respectively. From the results,
we find that there is no consistent winner among all
LMs. In terms of layers, on StylePPDB (formality
short), the initial layers (0, 1, 2) are dominantly the
best-performing ones across all settings. On the
other datasets, there is no clear pattern in terms of
which layers perform the best.

C.2 Performance Across Layers Under
Single-layer Setting

Regarding the performance change across layers,
in addition to the plots shown in Section 5.1 under
the layer aggregation setting, here we present the
results under the single-layer setting in Figure 6.
Compared to layer aggregation, the results here
are noticeably more chaotic, exhibiting no clear
general trends.

C.3 Performance by Text Length Under
Single-layer Setting

Similarly, we also present the performance change
by text length under the single-layer setting in Fig-
ure 7, complementing the results under the layer
aggregation setting in Section 5.2. The trends are
mostly similar between the two settings.

C.4 Effect of Anisotropy Reduction
Table 9 shows the effect of using the 3 different
anisotropy reduction strategies, across all LM and
layer configurations. All-but-the-top only works
for figurativeness; rank-based only works for for-
mality (long); and standardization works slightly
more generally, for complexity (short), formality
(short), and formality (long). Nevertheless, overall
there is no strategy that works universally under
every condition.
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(a) Complexity (short) (b) Formality (short)

(c) Complexity (long) (d) Formality (long) (e) Figurativeness (long)

Figure 6: Performance change across layers of different LMs (under the single-layer setting).

(a) Complexity (b) Formality (c) Figurativeness

Figure 7: Optimal performance over different bins of text length (under the single-layer setting).
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Pooling Model Complexity Formality Figurativeness
short long short long long

majority 55.1 50.6 51.2 51.8 51.4

Mean

frequency 83.2 51.0 61.0 41.4 49.7
fasttext.wiki 73.1 58.4 61.6 45.1 52.7
glove.6B.300d 84.8 60.0 76.8 82.8 54.3
bert-base-uncased 82.0 (10) 72.2 (6) 68.7 (1) 63.2 (7) 66.5 (10)
bert-large-uncased 82.3 (14) 73.0 (5) 68.1 (1) 67.7 (3) 72.9 (14)
bert-base-multilingual-uncased 83.8 (1) 76.5 (4) 65.1 (0) 72.1 (5) 61.5 (4)
roberta-base 85.2 (4) 75.5 (12) 63.5 (0) 76.7 (12) 64.1 (3)
roberta-large 86.2 (4) 75.3 (4) 64.3 (1) 82.4 (12) 63.9 (4)
xlm-roberta-base 74.8 (4) 69.6 (6) 58.9 (0) 56.4 (6) 66.3 (6)
xlm-roberta-large 85.8 (11) 73.7 (6) 62.4 (0) 67.7 (3) 60.6 (23)

Max

frequency 80.7 46.4 57.2 42.5 47.9
fasttext.wiki 82.0 54.3 74.9 47.7 56.0
glove.6B.300d 89.4 58.0 76.0 63.4 55.8
bert-base-uncased 83.7 (10) 69.1 (12) 70.8 (1) 70.8 (8) 64.6 (11)
bert-large-uncased 83.0 (6) 67.6 (24) 68.9 (1) 64.1 (1) 64.8 (11)
bert-base-multilingual-uncased 85.6 (1) 65.7 (3) 71.7 (0) 73.6 (1) 60.8 (8)
roberta-base 85.9 (4) 69.4 (12) 64.6 (0) 70.1 (11) 62.8 (5)
roberta-large 87.7 (4) 68.9 (24) 65.1 (0) 72.1 (21) 63.2 (6)
xlm-roberta-base 77.3 (1) 64.3 (11) 61.6 (0) 70.2 (5) 55.1 (11)
xlm-roberta-large 87.0 (11) 67.1 (6) 63.8 (0) 61.4 (24) 55.8 (3)

Table 7: Accuracy of different models under the single-layer setting. The optimal layer number for each contextual-
ized LM is in brackets. The highest performance within each pooling method is in boldface.

Pooling Model Complexity Formality Figurativeness
short long short long long

majority 55.1 50.6 51.2 51.8 51.4

Mean

frequency 83.2 51.0 61.0 41.4 49.7
fasttext.wiki 73.1 58.4 61.6 45.1 52.7
glove.6B.300d 84.8 60.0 76.8 82.8 54.3
bert-base-uncased 79.0 (12) 73.1 (10) 67.3 (2) 58.0 (9) 61.5 (11)
bert-large-uncased 80.1 (16) 74.8 (24) 67.6 (1) 64.7 (6) 67.2 (19)
bert-base-multilingual-uncased 84.4 (10) 76.0 (11) 65.1 (0) 71.5 (5) 61.9 (2)
roberta-base 78.4 (11) 75.2 (12) 63.5 (0) 69.9 (12) 63.0 (12)
roberta-large 83.3 (19) 75.3 (11) 65.4 (2) 86.7 (23) 60.2 (14)
xlm-roberta-base 76.2 (3) 69.5 (4) 58.9 (0) 50.3 (10) 59.7 (9)
xlm-roberta-large 79.6 (13) 74.1 (13) 64.6 (1) 58.6 (4) 56.2 (0)

Max

frequency 80.7 46.4 57.2 42.5 47.9
fasttext.wiki 82.0 54.3 74.9 47.7 56.0
glove.6B.300d 89.4 58.0 76.0 63.4 55.8
bert-base-uncased 81.3 (12) 66.3 (2) 70.8 (2) 62.3 (0) 58.9 (12)
bert-large-uncased 81.8 (16) 66.9 (6) 68.4 (0) 65.4 (3) 63.9 (14)
bert-base-multilingual-uncased 86.0 (7) 65.3 (12) 71.7 (0) 69.5 (2) 59.1 (12)
roberta-base 80.8 (11) 66.6 (1) 64.6 (0) 56.6 (0) 60.0 (10)
roberta-large 86.2 (19) 67.6 (4) 66.2 (2) 71.7 (24) 62.4 (23)
xlm-roberta-base 78.4 (2) 59.9 (12) 61.6 (0) 68.2 (5) 52.3 (7)
xlm-roberta-large 82.4 (13) 65.3 (11) 65.4 (1) 52.9 (4) 53.2 (10)

Table 8: Accuracy of different models under the layer aggregation setting. The optimal layer number for each
contextualized LM is in brackets. The highest performance within each pooling method is in boldface.
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Pooling Stats Complexity Formality Figurativeness
short long short long long

Mean
2 beats 1 (%) 25.2 21.3 44.9 40.2 74.0
acc gain -5.9 -5.0 -0.2 -8.2 4.3

Max
2 beats 1 (%) 18.9 28.3 48.0 44.1 59.1
acc gain -7.4 -2.2 0.0 -0.3 1.7

Average
2 beats 1 (%) 22.0 24.8 46.5 42.1 66.5
acc gain -6.7 -3.6 -0.1 -4.2 3.0

(a) All-but-the-top (single-layer)

Pooling Stats Complexity Formality Figurativeness
short long short long long

Mean
2 beats 1 (%) 27.6 6.3 46.5 26.8 75.6
acc gain -4.6 -8.1 -0.2 -14.7 5.6

Max
2 beats 1 (%) 16.5 15.0 47.2 38.6 65.4
acc gain -6.8 -5.3 -0.1 -4.0 3.1

Average
2 beats 1 (%) 22.0 10.6 46.9 32.7 70.5
acc gain -5.7 -6.7 -0.1 -9.4 4.3

(b) All-but-the-top (layer aggregation)

Pooling Stats Complexity Formality Figurativeness
short long short long long

Mean
2 beats 1 (%) 66.9 18.1 79.5 69.3 50.4
acc gain 3.9 -3.6 5.5 9.3 -0.7

Max
2 beats 1 (%) 50.4 17.3 80.3 67.7 38.6
acc gain 1.6 -4.8 5.1 12.1 -2.1

Average
2 beats 1 (%) 58.7 17.7 79.9 68.5 44.5
acc gain 2.7 -4.2 5.3 10.7 -1.4

(c) Standardization (single-layer)

Pooling Stats Complexity Formality Figurativeness
short long short long long

Mean
2 beats 1 (%) 86.6 15.0 93.7 60.6 72.4
acc gain 6.8 -3.2 7.2 2.5 2.5

Max
2 beats 1 (%) 69.3 9.4 84.3 63.8 40.9
acc gain 4.0 -6.1 5.7 7.6 -0.8

Average
2 beats 1 (%) 78.0 12.2 89.0 62.2 56.7
acc gain 5.4 -4.7 6.5 5.0 0.8

(d) Standardization (layer aggregation)

Pooling Stats Complexity Formality Figurativeness
short long short long long

Mean
2 beats 1 (%) 48.8 29.1 46.5 46.5 48.8
acc gain 0.1 -1.1 -0.4 1.0 -0.3

Max
2 beats 1 (%) 47.2 38.6 46.5 63.8 52.0
acc gain -0.3 -0.8 -0.3 3.3 0.4

Average
2 beats 1 (%) 48.0 33.9 46.5 55.1 50.4
acc gain -0.1 -1.0 -0.4 2.1 0.1

(e) Rank-based (single-layer)

Pooling Stats Complexity Formality Figurativeness
short long short long long

Mean
2 beats 1 (%) 54.3 32.3 33.1 36.2 54.3
acc gain -0.2 -1.8 -0.9 0.5 -0.2

Max
2 beats 1 (%) 54.3 48.0 43.3 71.7 62.2
acc gain -0.4 0.3 -0.5 3.2 0.8

Average
2 beats 1 (%) 54.3 40.2 38.2 53.9 58.3
acc gain -0.3 -0.8 -0.7 1.9 0.3

(f) Rank-based (layer aggregation)

Table 9: Effect of three different anisotropy reduction strategies: all-but-the-top, standardization, and rank-based (3
rows). Each strategy is evaluated under single-layer and layer aggregation settings (2 columns). In each table, “2
beats 1 (%)” refers to the percentage of cases where the performance with the anisotropy reduction strategy is at
least as high as the performance without it, under the same configuration (LM & layer). “Acc gain” stands for the
average accuracy gain of applying the anisotropy reduction strategy across all configurations. Positive accuracy
gains are highlighted in green, negative ones in pink.
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Abstract

The task of entity state tracking aims to auto-
matically analyze procedural texts – texts that
describe a step-by-step process (e.g. a baking
recipe). Specifically, the goal is to track vari-
ous states of the entities participating in a given
process. Some of the challenges for this NLP
task include annotated data scarcity and anno-
tators’ reliance on commonsense knowledge
to annotate implicit state information. Zhang
et al. (2021) successfully incorporated com-
monsense entity-centric knowledge from Con-
ceptNet into their BERT-based neurosymbolic
architecture. Since English mostly encodes
state change information in verbs, we attempted
to test whether injecting semantic knowledge of
events (retrieved from the state-of-the-art Verb-
Net parser) into a neural model can also im-
prove the performance on this task. To achieve
this, we adapt the methodology introduced by
Zhang et al. (2021) for incorporating symbolic
entity information from ConceptNet to the in-
corporation of VerbNet event semantics. We
evaluate the performance of our model on the
ProPara dataset (Mishra et al., 2018). In ad-
dition, we introduce LEXIS, our purely sym-
bolic model for entity state tracking that uses a
simple set of case statements, and is informed
mostly by linguistic knowledge retrieved from
various computational lexical resources. Our
approach is inherently domain-agnostic, and
our model is explainable and achieves state-of-
the-art results on the Recipes dataset (Bosselut
et al., 2017).

1 Introduction

Language understanding in humans requires at
least the knowledge of the semantics of events
and entities. One needs to know the sequences of
subevents that together make up a ‘throwing’ event,
as well as the causal and temporal relationships
between the subevents that distinguish a ‘throw-
ing’ event from a ‘pouring’ event, or a ‘running’
event. Furthermore, reasoning about entities that

are participating in these events requires a deep
understanding of the properties of an entity. It is
the distinction between such entity properties that
enables us, for example, to distinguish between
‘throwing a ball’ vs. ‘throwing a Molotov cock-
tail’. In contrast to humans, many high-performing
NLP models do not depend on explicit knowledge
of events and entities to process natural language;
rather, they rely on the surface forms and patterns
of word co-occurances in colossal amounts of lan-
guage data to learn the mechanics of language as
well as the interpretation of linguistic forms. Since
human knowledge and reasoning capabilities bene-
fit from knowledge of events and entities, we sug-
gest that a neural model may also benefit from such
explicit symbolic knowledge. This requires suc-
cessful incorporation of such symbolic knowledge
into a subsymbolic system.

Explicit semantic knowledge, such as entity
knowledge extracted from ontologies, has often
been used in the field of natural language ground-
ing, where the connection between natural lan-
guage and the physical world is sought (Bisk et al.,
2020). There are yet other NLP tasks that are likely
to benefit from explicit semantic knowledge as well,
such as tasks focusing on machine comprehension
of how things work (e.g. how plants make food),
or how a certain physical result is achieved (e.g.
how to make pizza using some ingredients). The
NLP task that focuses on the machine reading com-
prehension of texts describing processes is called
Procedural Text Understanding (Huang et al., 2021;
Tandon et al., 2019; Mishra et al., 2019). One of
the subtasks in this field is Entity State Tracking
(Mishra et al., 2018; Bosselut et al., 2017; Faghihi
and Kordjamshidi, 2021; Amini et al., 2020; Gupta
and Durrett, 2019), formally defined as: Given a
paragraph P that describes a process, and an en-
tity e that is one of the participants in that process,
did the state of e change during the process? If
so, what was the type of change that occurred to e
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(usually to be chosen among a desired set of types
of state change)? When did the change happen (i.e.
at which time step during the process)? And finally,
what was the locus of change (i.e. the location of e
before and after the change) (Mishra et al., 2018)?

There are two main challenges in solving this
problem. First, the size of annotated data for this
task is usually small since achieving reasonable
inter-annotator agreement for the task is hard, mak-
ing it expensive and time-consuming. Second,
when facing implicit information, annotators fre-
quently resort to commonsense knowledge – knowl-
edge that state-of-the-art NLP models are not ex-
plicitly aware of. Existing models for this chal-
lenging problem use some flavor of learning-based
approaches to NLP (see Section 2). One of the
existing approaches that is closest in theory to ours
is KOALA (Zhang et al., 2021) – a neurosymbolic
model encoding entity-centric knowledge into a
neural network that is used to track entity states
and locations during a process. We re-implemented
this model and adopted it as our baseline. One of
our contributions in this work is offering a method
for encoding symbolic event semantic knowledge
into a neural model. In practice, we are proposing
an approach to expose a neural model to sequences
of latent universal concepts composing an event,
allowing the network to learn from the spelled out
event semantics as well as the surface forms of the
events realized mostly as verbs.

In addition to our neurosymbolic model (SKIP:
Semantic Knowledge In Procedural text under-
standing), we have also developed a purely sym-
bolic model1 called LEXIS. Error analysis and abla-
tion tests on this model demonstrate other sources
of external knowledge that show promise for in-
clusion in a neural model in future work. In ad-
dition, we show that our theory and approach are
dataset- and domain-independent, and can be used
in any NLP task where knowledge of event seman-
tics plays a major role for humans to achieve the
goal of the task. We will also briefly illustrate our
explanation module for LEXIS.

We evaluated SKIP on the ProPara dataset
(Mishra et al., 2018), and LEXIS on both the
ProPara and Recipes (Bosselut et al., 2017)
datasets2. LEXIS achieved a new state-of-the-art

1Here, purely symbolic is used as opposed to sub-symbolic
models that learn by example. (Garcez et al., 2019; Hamilton
et al., 2022)

2The reason we did not evaluate SKIP on the Recipes
dataset was that we only exposed SKIP to the knowledge

performance on the Recipes dataset (70.1% F1,
improving over the existing state-of-the-art model
by 11.7%), and SKIP performed better than our
adopted neurosymbolic baseline model, (71.8% F1,
improving over the re-implemented baseline model
by 4.1%)3.

Our contributions are two-fold: (1) We adapt the
methodology introduced by Zhang et al. (2021) for
incorporating symbolic entity-centric knowledge
to the incorporation of VerbNet event semantics.
We extract and encode event semantic knowledge
for injection into a neural network, and present
SKIP, an end-to-end neurosymbolic model devel-
oped using this method, in conjunction with data
augmentation and transfer learning techniques. (2)
We present a general knowledge-based approach to
text understanding using existing NLP resources,
and present LEXIS, a purely symbolic model we
developed for entity state tracking that achieves a
new state-of-the-art on the Recipes dataset, with an
architecture that is adaptable to different genres of
natural language text, and is explainable4.

2 Related Work

This work is inspired by the concept of event se-
mantics and event structure offered by the Genera-
tive Lexicon theory, in efforts such as Pustejovsky
and Moszkowicz (2011), Mani and Pustejovsky
(2012), and Brown et al. (2022), where event struc-
ture is enriched to encode and dynamically track
object attributes that are modified during an event.
The idea is that a complex event can be decom-
posed into simpler ordered subevents that explicitly
label the transitions between entity states.

With regard to Entity State Tracking, most recent
existing models mainly rely on large language mod-
els (Amini et al., 2020; Faghihi and Kordjamshidi,
2021; Zhang et al., 2021), while earlier models
(prior to 2020) rely on neural (Gupta and Durrett,
2019; Das et al., 2018; Du et al., 2019) or learning-
based approaches (Ribeiro et al., 2019). The only
existing neurosymbolic model (to our knowledge)
is KOALA (Zhang et al., 2021), which retrieves

extracted directly from the VerbNet parser, which does not
shed light on the types of state change the model is expected
to predict in the Recipes dataset. We have access to such
knowledge and will perform this evaluation in future work.

3Our code is publicly available at https://github.
com/ghamzak/SKIP (for SKIP) and https://github.com/
ghamzak/Lexis (for LEXIS).

4Disclaimer: the models developed and introduced in this
work are for research purposes only and are not to be trusted
in real-world applications.
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informative knowledge triples from ConceptNet
(Speer et al., 2017) and performs knowledge-aware
reasoning while tracking the entities. To compen-
sate for data scarcity, they perform (raw) data aug-
mentation by automatically retrieving the top 50
Wikipedia articles closest in content and writing
style to the raw paragraphs in the ProPara dataset
(using tf-idf). This augmented corpus of raw proce-
dural texts is then used to perform transfer learning,
fine-tuning a BERT encoder in two stages, first on
raw procedural texts collected from Wikipedia, and
then further fine-tuning it on the raw text from the
dataset. The whole model follows a multi-stage
training schema (more details in section 3.1).

The main difference between KOALA and SKIP
is the type of external symbolic knowledge intro-
duced to the model. Whereas KOALA only lever-
ages entity-centric knowledge, we introduce event
semantic knowledge based on the Generative Lexi-
con theory and its implementation in the VerbNet
lexical resource (Schuler, 2005; Brown et al., 2018,
2019). This allows the model to have access to
direct and explicit knowledge about entity state
transitions for all the participants in an event, the
roles of each participant in the event, as well as
causal relationships and temporal links between
subevents (Brown et al., 2022).

On the Recipes dataset, Zhang et al. (2021) eval-
uate only for location prediction, because location
change is one of the state change types needed by
ProPara as well. To enable prediction for the rest
of the state change types required by the Recipes
dataset , a previously lacking knowledge resource
has recently become available (Kazeminejad et al.,
2022) which explicitly provides the lexical seman-
tic components indicating state changes such as
changes in temperature or form, giving our sym-
bolic model (LEXIS) an edge over other competing
models5.

3 Methodology

Following Zhang et al. (2021), we develop SKIP
by neural encoding of symbolic knowledge and al-
lowing the model to selectively pay more attention
to knowledge that is conducive to more accurate
predictions. As mentioned in section 1, our main
contribution is proposing a way to make a neu-
ral model utilize event semantic knowledge in its
predictions, and use the obtained neurosymbolic

5Again, we have not yet exposed SKIP to this knowledge
resource, but this will be done in future work.

model for downstream NLP tasks where knowledge
of event semantics tends to be beneficial according
to linguistic theory.

In order to obtain logical representations of
subevent semantics as well as temporal and causal
relations between the subevents for encoding into
our neural model, we rely on VerbNet – a large En-
glish verb lexicon which expands event semantics
into sequences of subevents. To automate this pro-
cess, we use the state-of-the-art VerbNet semantic
parser (Gung, 2020; Gung and Palmer, 2021) and
obtain the symbolic logical representations for indi-
vidual sentences corresponding to the steps in each
process. These logical representations, illustrated
in Table 1, are the horsepower of our approach.

¬Degradation_Material_Integrity(e1, The sediment)

¬Has_Physical_Form(e1, The sediment, V_Final_State)

Degradation_Material_Integrity(e2, The sediment)

Has_Physical_Form(e2, The sediment, V_Final_State)

Table 1: Logical representations generated by the Verb-
Net parser for the sentence “The sediment breaks down.”
The span ‘breaks down’ is identified as the verb, and
verb sense disambiguation classifies it as belonging to
the VerbNet class break-45.1.

In VerbNet, verbs are classified into different
classes based on similarities in their syntactic and
semantic behavior. For example, all verbs be-
longing to the break-45.1 class (Table 1) indi-
cate some sort of physical change of state that
leads to the breaking into parts of a Patient argu-
ment. Different syntactic frames may incorporate
more information such as the causal agent of the
event, or the instrument used by the causal agent to
achieve the result. The set of semantic predicates
adopted by the VerbNet lexicon (such as Degrada-
tion_Material_Integrity or Has_Physical_Form in
Table 1) are universal eventive concepts that lead
human cognitive contsrual of events, and are based
on cognitive linguistic theories such as Force Dy-
namics (Talmy, 1988; Croft, 2015, 2017; De Mul-
der, 2021). More details on event semantic knowl-
edge extraction will follow in 3.2.

The VerbNet-extracted event semantic knowl-
edge is then translated into natural language so that
it is neurally encodable. We choose this method
of encoding over direct encoding of the logical
representations, because LLMs such as BERT are
already familiar with the structure of natural lan-
guage, and we want to hone this existing power
instead of introducing a whole new representation
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system which might be harder to learn, especially
given the small size of the dataset. In order to
acquaint a vanilla text encoder with the language
translated from the event semantic logical represen-
tations, we fine-tune a BERT encoder (Kenton and
Toutanova, 2019) on the translated knowledge ex-
tracted for the training data. This will be explained
in more detail in 3.3.

3.1 Neurosymbolic Framework

The base architecture of SKIP (shown in Figure 1)
is developed on top of KOALA (Zhang et al., 2021),
which we adopted as our baseline model. As ex-
plained in Section 2, our major point of departure
is the introduction of event semantics to the model,
and, for that matter, a method to obtain such repre-
sentations for free. Before attending to our differ-
ences, however, we present a brief overview of our
similarities with the KOALA framework.

Following KOALA, we perform multi-stage train-
ing to obtain our text and knowledge encoders.
To get contextualized embeddings for raw input
paragraphs, we train a text encoder specialized
in understanding procedural texts by fine-tuning
a vanilla BERT encoder on a tf-idf-retrieved corpus
of raw procedural texts from Wikipedia, and then
on the raw paragraphs from the ProPara dataset.
SKIP duplication of KOALA ends here. To obtain
a knowledge encoder, since our sources of external
knowledge are different, our knowledge extraction
methods are different as well (see 3.2). Naturally,
our post-knowledge-extraction translation rules are
also different, with the event semantic translation
rules being arguably more complex, the first reason
being that the entities are always represented in
triples, while events could be intransitive, transi-
tive, or ditransitive, each requiring a different type
of translation.

After knowledge translation, a knowledge en-
coder is obtained by training a vanilla BERT en-
coder on the knowledge translations (more de-
tails to follow in 3.3), learning to make sense
of VerbNet-style event semantics, as well as
ConceptNet-style entity semantics (see Figure 2).
In the final training stage, SKIP (like KOALA)
leverages an encoder-decoder architecture, and per-
forms state tracking and location prediction in two
separate yet parallel subtasks (as shown in Fig-
ure 1). The training objective of the model is to
jointly optimize state and location prediction, as
well as knowledge selection, which is attending to

and selecting the best knowledge pieces that are
instrumental in state and location prediction.

As shown in Figure 1, the state tracking mod-
ule is endowed with a knowledge injector (see 3.4
for more details), a bi-LSTM state decoder, and a
conditional random field (CRF) layer since we are
performing multi-class classification for multiple
target state change types. For location prediction,
we use the same architecture except for the CRF
layer which is changed to a linear classifier, be-
cause the model is learning to predict only one
location for a given entity at a given time step in
a given paragraph. Of course the learned weights
and the knowledge triples selected by the attention
module will be different from those in the state de-
coder, because the attention will need to attend to
different predictor variables for state tracking and
location prediction.

In the location prediction module, given that
there are M location candidates for paragraph P (all
nominal phrases and words extracted from P using
a POS-tagger), the location decoder is executed M
times, and the linear classification layer outputs a
score for each location candidate at each time step
t based on the decoder’s hidden states. Using a
Softmax function, the probability distribution for
each location candidate for entity e at time-step t in
paragraph P is obtained, and a loss function is used
to train the optimal model for location prediction.

3.2 Event Semantic Knowledge Extraction

This paper describes the extraction and incorpora-
tion of event semantic knowledge into our neural
architecture. For entity-centric knowledge extrac-
tion from ConceptNet, we simply follow Zhang
et al. (2021): for each target entity, we find Con-
ceptNet nodes representing the concept using exact
string matching and fuzzy matching, finding the
most similar nodes based on embedding distance.
The extracted knowledge triples, which are two en-
tities and the relation between them, are then trans-
lated into natural language using handcrafted rules
that translate the relations, enabling fine-tuning for
developing the knowledge encoder.

For SKIP, we selected a subset of VerbNet se-
mantic predicates that are indicative of the types
of state changes of interest for the ProPara dataset:
Move, Create, and Destroy. It is imperative to
note that selected subsets can change to match
the requirements of the task at hand. For each
sentence Xt in paragraph P and for entity e, the
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Figure 1: An overview of our model, adopted from Zhang et al. (2021). Compared to the baseline model, the sources
of symbolic knowledge have been updated to include event semantics from VerbNet. Note that in the location
prediction module (on the left), the whole module is applied to each entity separately and in parallel at each time
step. While the text encoder is obtained by fine-tuning a BERT encoder on raw procedural texts from Wikipedia and
the ProPara dataset, the knowledge encoder (see Figure 2) is obtained by fine-tuning a BERT encoder on various
combinations of knowledge: knowledge from VerbNet only, from ConceptNet only, and from both.

subevents translation
¬has_location(A,B) A moves towards
has_location(A,B) destination B
be(A) A is destroyed
¬be(A)
¬be(A) A is created
be(A)

Table 2: Sample translation rules for extracted informa-
tive subevents from VerbNet.

model reads all the generated subevents in order,
and keeps those that satisfy the following two con-
ditions: (1) the VerbNet semantic predicate is a
member of the hand-selected subset of VerbNet
predicates6; and (2) one of the arguments in the
subevent has an overlap in surface form with the en-
tity e. Finally, the retained subevents are translated
into natural language using a set of handcrafted
translation rules, such that the translation exposes
the type of state change undergone by entity e at
time step t. Table 2 has one example for each of
the state change types.7

3.3 Event Semantic Knowledge Encoding
As shown in Figure 2, after extracting symbolic
event semantic knowledge from VerbNet, we fine-

6For a complete list of these selected VerbNet predicates,
see Appendix A in Kazeminejad (2023)

7For the complete list of translation rules see Appendix E
in Kazeminejad (2023).

tune a BERT encoder on the extracted knowledge
with the aim of familiarizing the BERT encoder
with the vocabulary and style of translations of
knowledge statements. Subevents have important
structural information which we preserve in our
fine-tuning stage by separating the argument spans
and the translation of the chosen semantic predi-
cates. We use BERT special tokens for token-level
separation [SEP], and begin the translated sentence
by the BERT [CLS] special token to mark sentence-
level detachment. For example, for the sentence
‘The sound waves hit an object’, the first argument
is a Theme corresponding with the span ‘The sound
waves’, and the second one is a Goal corresponding
with the span ‘an object’. Since the subevents in
the first row in Table 2 apply to this sentence , the
translated sentence with preserved structure will
be [CLS] The sound waves [SEP] moves towards
destination [SEP] an object [SEP]. For fine-tuning,
we modify the conventional masked language mod-
eling (MLM) objective to fit the structural features
of the extracted event semantic knowledge from
VerbNet (Figure 3).

Since BERT has a bi-directional architecture, we
iteratively mask out tokens and ask the encoder to
predict the masked tokens given the unmasked to-
kens (see Figure 3). This allows the BERT encoder
to better understand the relationships between dif-
ferent entities (realized as arguments) and between
entities and events (translated into a sequence of
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Figure 2: Developing a knowledge encoder model by fine-tuning a BERT encoder on event semantic knowledge
extracted from VerbNet subevents

tokens with explicit state change information). Fol-
lowing the empirical results obtained by Zhang
et al. (2021), if the arguments are multi-word, we
mask 50% of the argument tokens at a time to make
sure the model is trainable. For the translation of
the semantic predicate, we mask out all the tokens
at once, because the set of semantic predicates in
VerbNet is a closed one, and we want the model to
learn the meaning of the predicate at once and as
a whole. Such fine-tuning enables the encoder to
learn to model the structural information conveyed
in the retained subevents.

3.4 Attentive Knowledge Infusion

Having obtained the knowledge encoder, in the
final training stage, the contextualized represen-
tations of the extracted (and translated) symbolic
knowledge from both VerbNet and ConceptNet are
calculated by mean pooling over the knowledge
encoder outputs for all tokens.

Even though we have tried to keep only the in-
formative subevents, not all of them may end up
being useful in guiding the model to predict correct
labels. To enable the model to select the most rel-
evant knowledge, the knowledge injector module
injects encoded knowledge into the model before
each decoder as a query to attend to the encoded
knowledge, helping the model attend to knowledge
relevant to the context paragraph. Each decoder
is equipped with an input gate to select informa-
tion from the original input and the injected knowl-
edge. Zhang et al. (2021) empirically found out
that such gate integration performs better than sim-
ply concatenating the encoded text and knowledge.
The training objective is to maximize the attention
weights of all “relevant” triples. By the end of train-
ing and during inference, the model is expected to
better identify the relevance between knowledge
and prediction targets. Finally, the overall loss
function is computed as the weighted sum of the
loss functions for the three sub-tasks: state track-

ing, location prediction, and relevant knowledge
selection.

4 Experiments

We evaluate SKIP on the ProPara dataset (Mishra
et al., 2018), which is an entity state tracking
dataset developed by AI2, containing 488 human-
authored paragraphs describing scientific processes,
with an 80/10/10 data split. While state change
types (Move, Create, and Destroy) were expertly
annotated, entity location annotation was crowed-
sourced, resulting in lower quality and consistency.
We perform document-level evaluation on ProPara,
using the official evaluation code 8.

In re-implementing the baseline model (KOALA),
we only changed the batch size, downsizing from
32 to 16 due to hardware limitations9. KOALA’s
reported results along with our re-implementation
results are demonstrated in the first two rows of
Table 3.

The whole model contains 235M parameters in-
cluding 2 BERT encoders. In LM fine-tuning, we
used the uncased BERTBASE model, and manu-
ally tuned hyper-parameters, setting the batch size
to 16 and learning rate to 5× 10−5. While we used
the same text encoder developed by Zhang et al.
(2021), our knowledge encoder was different. It
was trained for 2 epochs on external knowledge.
In the final training stage, we used a batch size of
10 and a learning rate of 3 × 10−5 on the Adam
optimizer. The hidden size of the LSTMs was set
to 256 and the dropout rate to 0.4. We performed
early stopping with an impatience of 20 epochs,
by evaluating changes in model accuracy over the
dev set (∼1.5 GPU hours). We selected the best
checkpoint in prediction accuracy on the dev set.

As shown in Table 3, our three main exper-
imental settings included changes to the source

8https://github.com/allenai/
aristo-leaderboard/tree/master/propara/evaluator

9TITAN Xp GPU with 12 GB Memory
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Figure 3: Translation and masking of one VerbNet-extracted subevent for the entity ‘rain’, indicating that “rain is
created by rain clouds”.

Model Precision Recall F1
KOALA reported results 77.7% 64.4% 70.4%
KOALA reimplementation (baseline) 73.0% 63.1% 67.7%
SKIP – fine-tuned on VN only 76.5% 67.6% 71.8%
– fine-tuned on both VN and CN 72.0% 61.4% 66.3%
– fine-tuned on CN only 74.1% 63.3% 68.3%

Table 3: The top two rows show the reported and re-implementation results of the KOALA model. The bottom three
rows demonstrate the results of our three main experimental settings, where the knowledge encoder used in model
training is obtained by fine-tuning on VN (VerbNet) only, CN (ConceptNet) only, or both. These are all evaluations
on the ProPara dataset.

of semantic knowledge in developing our knowl-
edge encoder. SKIP performed better compared to
the baseline in the experimental setting where the
source of knowledge for developing the knowledge
encoder was only VerbNet event semantics. Note
that we use both entity and event knowledge during
the final training stage, and it is only the changes
in knowledge source for LM fine-tuning to obtain
different knowledge encoders that leads to the best
experimental results.

5 Discussion

Our experimental results were interesting in two
ways. First, the fact that LM fine-tuning on both
VerbNet and ConceptNet lowers the performance
compared to fine-tuning on only one knowledge
source could be an indication that, given the size of
the data, two different sources of knowledge seems
to confuse the knowledge encoder more than help-
ing it. Secondly, comparing fine-tuning on VerbNet
only vs. ConceptNet only, the former proved to be
more effective. This might indicate that knowledge
of event semantics may better help the model track
entity states and locations during a process, just
as we had initially hypothesized based on lexical
semantic theories. While entity-centric knowledge
may give the model a better understanding of enti-
ties and their properties, such as their typical loca-

tion, state changes are eventive concepts and often
lexically encoded in verbs. Since VerbNet provides
explicit labels for transitions between entity states,
a successful VerbNet parse ensures explicit sym-
bolic knowledge which clarifies the types of state
change lexically encoded in verbs.

5.1 Error Analysis

An error analysis on the test set showed that 52.49%
of the state change type misclassifications were in
fact correct model predictions and incorrect gold
annotations, with a further 6.69% examples where
both the gold and predicted labels were incorrect.
To illustrate, given the two subsequent time steps
‘Animals eat plants.’ and ‘Animals make waste.’,
for the target entity ‘plants’, the gold labels include
two Move events, one at each time step: first from
an unknown location to ‘animal’, and then from
‘animal’ to an unknown location. In contrast, SKIP
predicts a Destroy event at the end of the first
time-step. Arguably, an entity that is eaten and
converted to waste is destroyed, because it has lost
its physical integrity, such as a glass that breaks.
What returns to nature is not a plant anymore, but
waste. This assumption is also confirmed elsewhere
in the data. For example, in the sentence ‘They
absorb nitrates from the soil into their roots.’, the
gold label for the entity ‘nitrates’ is Destroy. This
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both suggests inconsistency in human annotation,
and the accuracy of SKIP.

Overall, the error analysis demonstrates that the
annotation task for entity state tracking is quite
complex and challenging, and obtaining acceptable
inter-annotator agreement is hard. A knowledge-
aware model such as SKIP could be quite benefi-
cial for annotation quality control.

5.2 Purely Symbolic Entity State Tracking
Model

LEXIS was designed based on an approach to sim-
ulate the cognitive construal of events by humans.
This approach is inherently domain-independent
and can be readily adapted to other natural lan-
guage domains or NLP tasks. As an example model
founded on this approach, LEXIS relies on the same
informative subevents and semantic features from
VerbNet that benefited SKIP. In addition, Prop-
Bank SRL is used as a backoff for gaps in VerbNet
parses. For more details on an earlier version of
LEXIS, see (Kazeminejad et al., 2021a)10.

In addition to the ProPara dataset, we also
evaluated LEXIS on the Recipes dataset, which
contains 866 human-annotated recipes, with an
80/10/10 data split, with each recipe contain-
ing an average of 8.8 sentences. Recipes state
change types include changes in composition,
cookedness, temperature, rotation, shape,
cleanliness, and accessibility, as well as
location. Apparently, there is very little overlap
with ProPara state change types of interest. Nei-
ther are these state change types normally found in
VerbNet. However, we were able to use the recently
developed semantic layer added to the VerbNet
lexicon that includes more fine-grained semantic
features specific to each verb, hence called verb-
specific features (Kazeminejad et al., 2022). For in-
stance, the Other_cos-45.4 class with more than
300 verb members is generally about some physical
change of state occurring to a Patient argument.
These semantic components provide details such
as the physical property that is changing (e.g. tem-
perature, speed, intensity, etc.), or the final state of
the Patient entity (e.g. ±clean, ±open, etc) that
LEXIS can use to predict state change types.

LEXIS also uses spaCy (Honnibal et al., 2020)
dependency parsing and POS tagging for conjunc-
tion analysis, compound identification, extracting

10However, keep in mind that the latest version of this
system that is referenced here is yet to be published.

objects of prepositions and heads of noun phrases.
ConceptNet was used to identify whether an entity
is ontologically considered locative, and also to per-
form fuzzy search (using the spaCy large model) to
find the most likely typical location if not explicitly
mentioned in a given sentence. We also used fast-
coref (Toshniwal et al., 2021), a high-performing
generalizable domain-independent coreference res-
olution module, to identify co-referring entities
given a paragraph, and substitute pronominal forms
with their content word counterpart. Finally, we
used the the logical rule of location transitivity to
enable the model to update entity locations accord-
ingly.

On the ProPara dataset, LEXIS achieves an over-
all F1 score of 55.6% on the test set.

P R F1
72.8 45.0 55.6

Table 4: LEXIS results on the ProPara dataset

On the Recipes dataset, LEXIS achieves a new
state-of-the-art both in F1 score and accuracy (see
Table 5).

Model P R F1 Acc
Lexis 67.9 72.4 70.1 94.6
SGR* 69.3 50.5 54.8 -
KOALA 60.1 52.6 56.1 -
REAL** 55.2 52.9 54.1 -
IEN† 58.5 47.0 52.2 -
NCET† 56.5 46.4 50.9 -
NPN‡ - - 44.64 55.05

Table 5: LEXIS evaluation results on the test set of the
Recipes dataset. * (Tang et al., 2022); ** (Huang et al.,
2021); † (Tang et al., 2020); ‡ (Bosselut et al., 2017).

A series of ablation tests on the ProPara dataset
showed that the best model performance was
achieved when all the proposed knowledge com-
ponents were included in the model. In addition,
following VerbNet and PropBank parses which had
the greatest impact11, the single component with
the most significant impact on LEXIS results used
the verb-specific features (the semantic layer re-
cently added to VerbNet), the removal of which
lowered model performance by 3.5% (F1).

In addition, an error analysis of the model
showed that within the 24.5% prediction mis-

11Note that the first version of LEXIS (Kazeminejad et al.,
2021b) only used VerbNet parses.
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matches, only 7.18% were due to cross-label con-
fusion. For the main part, the mismatches were
either false negatives or false positives, with the
false negatives being about two times the number
of false positives. This is due to the design of the
model which tends to avoid labeling if there is any
ambiguity or uncertainty. In other words, the model
is deterministic by design.

Regarding explainability, LEXIS contains an ex-
planation module which traces back on the predic-
tion path and explains every step in making deci-
sions, including the provenance of that decision.
For instance, for the sentence ‘They are buried in
sediment’, LEXIS predicts a Move event for the
entity ‘plants’, from an unknown location to ‘sedi-
ment’. Here is what the explanation module gener-
ates:
The verb ‘bury’ is in put-9.1-1 VerbNet class.
(provenance: VerbNet parser).
‘they’ moves to ‘sediment’. (provenance: VerbNet
parser).
‘they’ refers to ‘plants’. (provenance: fast-coref).
‘plants’ move to ‘sediment’. (provenance: substitu-
tion).

6 Conclusions and Future Work

We presented a method to extract event semantic
knowledge and encode it in neural architectures for
NLP applications where event semantics theoreti-
cally promises to enhance the predictive power of
the model. We showed that this method was effec-
tive in SKIP – our neurosymbolic model designed
for procedural text understanding. Our error anal-
ysis demonstrated that SKIP can be relied on to
perform annotation quality control. Furthermore,
LEXIS, our purely symbolic entity state tracking
model designed based on our domain-independent
approach, achieved a new state-of-the-art on the
Recipes dataset. We explained why this approach
is domain-independent and can be adapted to other
domains and NLP tasks.

In future work, we would like to expand our neu-
rosymbolic model to use other sources of linguistic
knowledge that proved useful in LEXIS ablation
tests. It would also be interesting to assess the
success of this approach in other NLU tasks, such
as causal inference and textual entailment, where
event semantic knowledge is again theoretically
important.

Limitations

Since our methodology relies heavily on the Verb-
Net lexicon and parser, the inherent limitations and
shortcomings of them percolate into our model as
well. VerbNet classes are designed to generalize
over and abstract away from some semantic aspects
of verbs in order to achieve meaningful classes.
Therefore, we can rely on VerbNet only when the
type of semantic knowledge we intend to obtain is
included in existing VerbNet semantic predicates.
For example, ProPara state change types have coun-
terparts in VerbNet semantic predicates, while the
Recipes dataset state change types do not. As ex-
plained in 5.2, we resorted to verb-specific features
to obtain the type of semantic knowledge needed
to predict state changes for Recipes.

VerbNet’s coverage imposes a second limitation.
Some verbs are missing from the lexicon (e.g. ‘mi-
grate’), leading to empty parses. Some other verbs
may exist in the lexicon but a certain sense of them
is missing. For example, at the time of developing
the VerbNet labeled data, the locative sense of the
verb ‘be’ was missing from the lexicon, and by
extension from the labeled data. In such cases, the
parser assigns that verb to an alternative class with
a different sense of the same verb lemma (in this
case to seem-109-1-1).

Finally, the amount of VerbNet training data is
relatively small (compared to PropBank (Kings-
bury and Palmer, 2002) or AMR (Banarescu et al.,
2013)), leading to misclassifications due to sparse
data. All of these limitations can be improved by
expanding the coverage of the VerbNet lexicon, and
expanding and updating the VerbNet labeled data
accordingly.
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Abstract

In this paper we investigate the application
of active learning to semantic role labeling
(SRL) using Bayesian Active Learning by Dis-
agreement (BALD). Our new predicate-focused
selection method quickly improves efficiency
on three different specialised domain corpora.
This is encouraging news for researchers want-
ing to port SRL to domain specific applica-
tions. Interestingly, with the large and diverse
OntoNotes corpus, the sentence selection ap-
proach, that collects a larger number of predi-
cates, taking more time to annotate, fares better
than the predicate approach. In this paper, we
analyze both the selections made by our two
selections methods for the various domains and
the differences between these corpora in detail.

1 Introduction

The majority of natural language processing (NLP)
systems are reliant on manual annotations to train
supervised models. Although semi-supervised and
unsupervised methods are frequently employed to
help adapt models to new domains, human anno-
tation remains the gold standard for quality input.
Due to the high cost of human annotation, espe-
cially if the task requires expert knowledge, and
the time-intensive process, this can be daunting for
many applications.

Active learning (AL) has been shown to reduce
annotation requirements for a variety of NLP tasks
(Zhang et al., 2022) by selecting more informative
instances that are most likely to fill gaps in the
model’s knowledge.

In this paper, we focus specifically on the NLP
task of semantic role labeling (SRL). The goal of
SRL is to identify and label the who, what, and
when of predicates in a sentence. This information
can be used as features in downstream applications
such as information extraction (MacAvaney et al.,
2017), machine translation (Marcheggiani et al.,
2018), and features prominently in Abstract Mean-

ing Representation (AMR) applications (Banarescu
et al., 2013).

In this paper, we propose a new selection strategy
tuned for SRL that is based off of previous methods
of using model dropout to approximate a Gaussian
process (Siddhant and Lipton, 2018). We compare
this to prior work on AL selection for SRL (Myers
and Palmer, 2021) on four corpora in a variety of
domains: ecology, earthquakes, clinical notes, and
the large multi-genre OntoNotes corpus.

Since sentences in most domains typically con-
tain multiple predicates, there are often redundan-
cies in choosing predicates to annotate on the sen-
tence level. Although a sentence may contain a
particularly informative predicate, annotating high-
frequency verbs such as "be" that co-occur in the
sentence may not be beneficial. We instead use a
method to select specific predicate-argument struc-
tures and compare the impact on performance as
compared to selecting whole sentences instead.

This method is a natural extension that allows
us to even better leverage the focused annotation
that active learning offers by using a more granular
approach. While we find consistent early bene-
fit in the more domain-specific corpora, this finer-
grained approach proves to be slower for the more
diverse OntoNotes.

We also explore the statistical differences be-
tween these corpora, the selections our algorithm
makes, and test a variety of selection batch sizes in
order to shed light on expectations for use in future
domains.

2 Background

Proposition Bank (PropBank) (Palmer et al., 2005)
is verb-oriented semantic representation consisting
of a predicate and its arguments. Predicates are
given a roleset ID, which distinguishes the sense
of the word, such as play.01 (to play a game) or
play.02 (to play a role). Each roleset has its own
list of permissible semantic roles, or arguments, for
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play.01
play a game

ARG0 player
ARG1 game
ARG2 equipment
ARG3 opponent

Table 1: PropBank roleset for play.01

that predicate, such as ARG0 (typically the agent
of the action). Additionally, all rolesets support the
use of a set of modifier arguments such as location
(ARGM-LOC) and direction (ARGM-DIR). These
arguments are annotated for the constituent spans
of the sentence. For example:

[ARG0 I] [Pred played] [ARG1 chess] [ARG3 against
him].

Active learning is an iterative process by which
data is selected for annotation using the model’s
own confidence. After initially training the model
on a small amount of annotated data (referred to as
the seed set), each unlabeled instance is predicted
by the model and those that the model is least cer-
tain about (conventionally, by the model’s outputs)
are presumed to be more informative to learn from
than those that the model has high certainty about.
The uncertain instances can then be manually anno-
tated and added into the training pool for the next
training iteration. This process can repeast until
either the performance is no longer significantly
increasing or time/budget has been exhausted.

Previous work has shown that neural networks
tend to be overconfident in their predictions, owing
to their nonlinearity and tendency to overfit (Gal
and Ghahramani, 2016)(Dong et al., 2018). There-
fore, more recent work (Siddhant and Lipton, 2018)
(Shen et al., 2017) has explored using Bayesian
Active Learning by Disagreement (Houlsby et al.,
2011) (BALD) rather than model outputs as a way
of selecting informative instances for active learn-
ing for SRL and other NLP tasks. By using dropout
during prediction, multiple forward passes can be
treated as Monte Carlo draws from a stochastic
model. The instances that have more disagreement
amongst the predictions are considered to be more
informative for the model to learn from.

Myers and Palmer (2021) applied BALD to SRL
by calculating disagreement among five forward
passes of the trained model using dropout, break-

ing down agreement scores by individual argument
labels. We describe this in more detail in Section
4.1. The active learner used two alternative meth-
ods to select sentences: 1) using the average dis-
agreement score amongst all predicates in the sen-
tence (BALD-AP) or 2) by choosing the sentences
that contain the single lowest scoring predicate
(BALD-LSP). Since BALD-LSP performed best,
we compare our predicate-focused BALD strategy
against this method on both corpora used previ-
ously (OntoNotes and THYME Colon) as well as
two new geoscience corpora from the ClearEarth
project (Duerr et al., 2016).

3 Data

We aim to provide a demonstration of active learn-
ing for SRL across a variety of domains and sub-
languages (Kittredge, 1982). Some knowledge
domains exhibit narrow lexical, syntactic, and se-
mantic structures that distinguish them from more
general-purpose domains. This can lower perfor-
mance dramatically when testing with an off-the-
shelf general purpose model. Special techniques
that take these domain specific-structures into ac-
count are needed for adapting NLP tools to these
domains, as illustrated below.

THYME Colon is comprised of unstructured clin-
ical notes relating to treatment of colon cancer
(Albright et al., 2013). This corpus contains spe-
cialised medical vocabulary for a narrow domain
and a large number of formulaic sentences, such as
the following example:

Pathology demonstrated a tubular ade-
noma with moderate dysplasia.

This contains medical terminology (tubular ade-
noma, dysplasia) as well as a non-standard use of
demonstrate, which includes the shortening of The
pathology report to simply pathology. This particu-
lar framing re-occurs frequently in THYME Colon,
sometimes with show or reveal instead, and occa-
sionally including the word report as in pathology
report.

We also used two distinct geoscience domains
from the ClearEarth project (Duerr et al., 2016):

• Earthquakes consists of 41k tokens of text
from Wikipedia and education texts, and a
glossary. This text includes specialised sci-
entific language relating to earthquakes and
plate tectonics, but also discussion of the his-
tory of the field at a high school reading level
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and content related to disasters. For example:
The ways that plates interact depend on their
relative motion and whether oceanic or conti-
nental crust is at the edge of the lithospheric
plate.

• Ecology consists of 83k tokens of text from
Wikipedia, educational websites, an ecology
glossary, and Encyclopedia of Life. The sci-
entific content covers genetics, evolution, re-
production, and food chains. For examples:
Anguis fragilis is an example of ovo-viviparity.
and Alternatively, transcription factors can
bind enzymes that modify the histones at the
promoter.

OntoNotes 5.0 (Weischedel et al., 2013) spans
multiple genres, largely consisting of news sources,
but also including telephone conversations, text
from the New Testament, weblogs, and Usenet.
This popular corpus serves as a broad purpose cor-
pus for us, as opposed to the other more specialised
domains.

We use a version of OntoNotes that does not
include files that had no manual PropBank annota-
tion performed. There still exist sentences within
this version of the data that had only partial annota-
tion, but we consider this to have a relatively small
impact on performance.

Evaluation was performed on the standard test
subset for each respective corpus.

4 Methods

We simulated active learning using AllenNLP’s
(Gardner et al., 2018) implementation of a state-
of-the-art BERT-based SRL model (Shi and Lin,
2019).

In order to simulate active learning on each of
these corpora, we partitioned the training subset of
each corpus into 200 random sentences for seeding
the learner, with the remainder used as the initial
"unlabeled" pool for selection. The initial 200 seed
sentences were the same across the three selection
methods tested for each respective corpus.

After initially training on the seed set, we then
select a batch of either 100 predicates or a number
of sentences containing approximately 100 pred-
icates to add to the training pool using the BALD

PREDICATES or BALD SENTENCES strategy described
below in Section 4.1 or by choosing 100 random
predicates to simulate a passive learning approach.

Results are reported on the test subset of the re-
spective corpora and the model was retrained with
the extended training pool. We continue iterations
of selection and re-training until either all the data
has been selected and moved into the training pool,
or the experiment performances have sufficiently
plateaued.

Our training procedure for this model used 25
epochs or stopped early with a patience of 5 based
on the validation data for the relevant corpus.

4.1 Selection Methods

We use the BALD-LSP method tuned for SRL as
described in Myers and Palmer (2021), which we
will refer to in this paper as BALD SENTENCES for
comparison.

After a model is trained, this method uses 10%
dropout during 5 forward passes in order to gen-
erate multiple predictions for each instance in the
unlabeled pool. For each predicate-argument struc-
ture in a sentence and each argument label type
present in the predictions, we calculate how many
of the 5 predictions do not match the mode pre-
dicted span. If all five predictions have different
spans for an ARG1, for example, then this results in
the highest possible disagreement score for ARG1.

After disagreement scores are calculated for each
argument label, these scores are averaged to pro-
duce a score for the predicate. If there is only one
predicate in a sentence, this is the score for the
sentence. If a sentence has multiple predicates, the
sentence is assigned the score of the predicate that
had the most disagreement. The sentences with the
highest scores are selected to be included in the
next round of training.

Our BALD PREDICATES method is a more granular
extension of this previous work. We use the same
idea of scoring individual argument spans based
on agreement and averaging them into a single
score for a given predicate instance, but we do
not combine the scores of all predicates within a
given sentence. We instead use the score to choose
specific predicate instances to add to the training
pool

We also compare these two active learning meth-
ods against a passive baseline of selecting random
predicate instances.

5 Results

We present the learning curves of the different se-
lection methods for the four corpora are presented
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Figure 1: Performance of selection method by approx-
imate number of predicates in the training pool on
THYME Colon dataset.

Figure 2: Performance of selection method by approx-
imate number of predicates in the training pool on
ClearEarth Ecology dataset.

in Figures 1, 2, 3, and 4. Natural variability in
training the model produces some amount of noise,
most prominently during the early iterations. In or-
der to improve readability of these learning curves,
we applied a Savitzky–Golay filter using a window
of 15 data points and using a cubic polynomial.

We see consistent benefits of the BALD PREDI-

CATES method at different points depending on the
corpus.

For Colon, Ecology, and Earthquakes we be-
gin to see consistent improvement for the BALD

PREDICATES method over the other methods by ap-
proximately 1,500-2,000 predicates. On the other
hand, for OntoNotes, it only catches up to random
selection around 4,500 predicates and begins to
improve over it around 7,000 predicates. For this
corpus, BALD SENTENCES performs better.

Figure 3: Performance of selection method by approx-
imate number of predicates in the training pool on
ClearEarth Earthquakes dataset.

Figure 4: Performance of selection method by approx-
imate number of predicates in the training pool on
OntoNotes.

6 Analysis of Selections

In order to better understand the differences be-
tween the selection processes used and their vari-
ance across datasets, we examine the selections
within each batch.

6.1 Diversity
By selecting multiple predicates or sentences in
each iteration, we expect that there may be redun-
dancies. For example, if the model has never seen
a given predicate, it will likely have low confidence
in its predictions for it. We present a study of the
diversity of the selections over time.

We first observe the amount of redundancy
within BALD PREDICATES. This method is choosing
multiple instances of the same predicate lemma,
as observed in Figure 5. In the two ClearEarth
corpora we have analysed in this regard, which

402



both ran to completion on the training data, ap-
proximately 25 of the 100 predicates are duplicates
in the early phase of active learning and with re-
dundancy getting worse as the process gets closer
to completion. The results for Colon contain ap-
proximately similar amounts of redundancy for the
duration we trained it.

While there may sometimes be value in selecting
the same lemma in order to obtain multiple senses
of the same predicate, minimising this could prove
beneficial. Future work could be done to study
the effect of limiting the selection batch to unique
lemmas.
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Figure 5: Number of unique predicate lemmas selected
in each batch by the BALD PREDICATES method over
iterations.

Additionally, the BALD PREDICATES method is ca-
pable of selecting multiple instances from the same
sentence. While this may be beneficial, it’s also
possible that learning from just one predicate in the
sentence will provide information that can improve
agreement on other instances in the sentence.

We have found that for Colon, a randomly se-
lected batch of 100 predicates contains 3 duplicate
sentences on average, while the selections by BALD

PREDICATES contain only 1 duplicate on average. For
the Ecology corpus, both methods pick 3 duplicate
sentences on average. This appears indicative that
this is not a significant factor that necessitates cor-
rection.

Furthermore, we are interested in the sentence-
level semantic redundancies within batches. Us-
ing the pre-trained all-mpnet-base-v2 model (Song
et al., 2020), we can calculate the average pairwise
cosine similarity between the unique sentences
within batches. In Figure 6, we find that both ac-
tive learning methods contain more sentence-level
similarity on average (0.26) than what is chosen
through random selection (0.19) from the THYME
Colon corpus.

We can see clear signs of the active learner
choosing sentences that would be wasteful to have
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Figure 6: Average pairwise cosine similarity of se-
lected sentences in each batch over iterations on THYME
Colon.

annotated. In one such batch, BALD SENTENCES

selected 29 out of the 52 sentences where the
sentences were all of the same basic form, but with
varying AJCC cancer staging designations:

With available material: AJCC ypT1N0MX
With available surgical material [AJCC pT3N2Mx]

On the other hand, the difference in selection
diversity is less pronounced on the other datasets.
In Figure 7, we show the similarity in the selections
on ClearEarth Ecology, where all methods average
0.20 across the iterations.
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Figure 7: Average pairwise cosine similarity of selected
sentences in each batch over iterations on ClearEarth
Ecology.

6.2 Vocabulary Coverage
We hypothesised that a contributor to BALD PRED-

ICATES’s performance may be a rapid coverage of
vocabulary, as predicates that involve unseen vocab-
ulary could result in more disagreement. In Figure
8, we show the percentage of the unique vocabulary
of the training set that is within the training pool as
selections are made.
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Across the datasets, we see varying results in
how much BALD PREDICATES expedites vocabulary
coverage. We find that BALD PREDICATES is not
tending to choose unseen vocabulary compared to
selecting predicates randomly for Ecology. On the
other hand, active learning greatly accelerates this
for Ontonotes, even after performance has largely
plateaued. For THYME Colon, active learning pro-
vides an initial boost to vocabulary, but around the
time that the performance plateaus, this decelerates
below random.

6.3 Disagreement

For BALD PREDICATES, we calculate an average dis-
agreement score for each selected batch. While
early batches primarily contain predicates for
which all predictions are in full disagreement, we
see this disagreement trend downwards as perfor-
mance plateaus. This is presented in Figure 9.

Although performance on OntoNotes has largely
plateaued around an F-score of 79 by 7.5k training
predicates, we know that training this model on the
full dataset yields another 4 points. Since the dis-
agreement scores of batches chosen by BALD PRED-

ICATES is still over 70%, this seems indicative of the
additional further performance to be gained, albeit
at a slow pace that gets little value for the effort. In
contrast, Colon plateaued around 82, but the bene-
fits of annotating the remaining 50k predicates only
provides an additional increase of 1 point. With the
disagreement score having fallen below 45%, this
points toward an appropriate stopping point.

7 Corpus Analysis

Although the new predicate selection method of-
fers immediate benefit over BALD SENTENCES for the
three sublanguage corpora, this is inconsistent with
the result on OntoNotes, where selecting BALD SEN-

TENCES is more advantageous until about 7k pred-
icates. In order to better understand the possible
reasons for this, we compare the make-up and distri-
bution of the corpora. These statistics are presented
in Table 2.

We use PropBank roleset ID’s as our measure of
polysemy, since we have gold standard annotation
for them in all 4 corpora. Note that PropBank sense
distinctions are fairly coarse-grained and were gen-
erally only created when there were differences
between senses with respect to the semantic roles.
VerbNet (Schuler, 2005), FrameNet (Baker et al.,
1998) and WordNet (Miller, 1995) would all give

much higher polysemy counts.
The largest and most diverse corpus in our ex-

periments is OntoNotes, although we find that in
terms of ratio of total tokens to predicates, unique
rolesets, and unique tokens, OntoNotes is statisti-
cally more similar to the THYME Colon Cancer
corpus than to either of the ClearEarth corpora.
OntoNotes and Colon contain approximately one
unique roleset per 376-403 tokens, whereas Earth-
quakes and Ecology contain one per 39 and 60
tokens, respectively.

Since OntoNotes covers a wider diversity of text
types, it’s unsurprising that it contains a much more
diverse set of senses compared to the other corpora.
While a lemma like "take" shows up with 25 dif-
ferent senses in OntoNotes, it only shows up in 8
senses in Colon.

For OntoNotes, only 30% of predicate occur-
rences are monosemous within the context of the
corpus, whereas this figure is between 54%-61%
for the other three corpora. 6% of the unique pred-
icate lemmas within OntoNotes are seen in 3 or
more rolesets, while this is true of only 2% of the
set of lemmas in each of the other corpora.

We believe this polysemy factor may contribute
to the predicate selection method being dispropor-
tionately slower to improve the learning curve on
OntoNotes compared to the more focused domain
corpora. BALD PREDICATES may be disadvantaged
by more frequently choosing these rare senses even
though they make up proportionally less of the
training data and provide less value in terms of
performance, but further investigation is needed.

OntoNotes Colon Earthquakes Ecology
Tokens 2.2 mil 522k 41k 83k
Unique tokens per token 44.55 36.88 8.42 10.43
Predicates 301k 57k 7.5k 15k
Tokens per predicate 7.41 9.11 39.63 60.45
Avg sentence length 18.74 11.33 23.39 24.48
Unique rolesets 5535 1389 1046 1376
Tokens per roleset 403 376 39 60
Predicate lemmas
with 1 roleset

3829
(83.33%)

1340
(90.24%)

985
(91.20%)

1416
(92.73%)

Predicate lemmas
with 2 rolesets

494
(10.75%)

112
(7.54%)

73
(6.76%)

80
(5.24%)

Predicate lemmas
with 3+ rolesets

272
(5.92%)

33
(2.22%)

22
(2.04%)

31
(2.03%)

Monosemous predicate
occurences

29.95% 55.02% 53.53% 60.94%

Table 2: Statistics about the four corpora.

8 Batch Sizes

Each iteration of active learning includes selecting
an arbitrary number of instances to query. The num-
ber may be static, or dynamic with larger batches
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Figure 8: Percent coverage of training vocabulary in by number of predicates in training pool.

being selected in the early training process and
smaller batches later on.

To maximally benefit from the model’s feedback,
in an ideal setup, each iteration would query for
only one new instance, thereby minimizing the like-
lihood of selecting a batch of sentences with redun-
dant information (Schohn and Cohn, 2000). Unfor-
tunately, this leads to the process of active learning
being significantly slower due to needing to re-train
a model more often. Additionally, annotating a sen-
tence at a time with long breaks in between may
cost additional time on the part of the annotator due
to mental context-switching and needing to load
up appropriate software and resources. It would
be more efficient for them to be able to annotate
numerous examples in a row.

Our previous experiments testing the BALD PRED-

ICATES method show positive results when selecting
100 predicates in a batch. This small batch size re-
quires about 60 iterations before the learning curve
plateaus for the Colon corpus. We examine the ef-
fect of larger batches on the learning curves for the
THYME Colon and the two ClearEarth corpora.

8.1 Results

We used the BALD PREDICATES selection strategy
with varying sizes of 100, 500, and 1000 query
instances. These results are presented for three

datasets in Figure 10, using datapoints on intervals
of 1000 predicates.

Interestingly, changing the batch size has differ-
ing impacts on the datasets we examined this for.
The THYME Colon corpus suffers very little from
scaling all the way to 1000 predicates per selection
batch. The results on Earthquakes show the clearest
need for small batch sizes, while Ecology exhibits
shifting performance over the course of iterations.

9 Conclusion and Future Work

In this paper, we’ve demonstrated that active learn-
ing can reduce annotation requirements for seman-
tic role labeling across multiple domains by em-
ploying Bayesian Active Learning by Disagree-
ment and using dropout to provide variability in pre-
dictions from the model. These predictions can be
used to estimate the model’s confidence in its pre-
dictions and select informative training instances
to annotate.

Selecting predicate instances through the BALD

PREDICATES method offers significant improvement
in efficiency for THYME Colon, ClearEarth Earth-
quakes and Ecology, which have very focused do-
mains. This method does not provide the same per-
formance increase on the more general OntoNotes
over the previous BALD SENTENCES, which selects
whole sentences.
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# training predicates

Figure 9: Average disagreement in selected batches decreases as iterations continue, while F-score increases and
plateaus.

We have provided a statistical comparison of
these corpora and offered some possible reasons
for the divergence in performance, including a
notable difference in polysemy within OntoNotes
compared to the rest of the corpora.

Additionally, we examined the diversity of the
selected predicates and sentences for BALD PREDI-

CATES. Although these results vary across the differ-
ent datasets, it indicates a couple potential avenues
of future improvement. Reducing sentence-level
semantic similarity seems of particular relevance to
the THYME Colon corpus. We have also identified
redundancies in the predicates chosen in each batch
by BALD PREDICATES.

We also presented the change in model predic-
tion disagreements over iterations as compared to
model performance, which could be beneficial to
determine when the costs of further annotation out-
weigh the additional gains that the model can pro-
vide.

Since the choice of how many selections to take
on each iteration cannot be tuned for in real-world
use of active learning, we have attempted to shed
light on the levels of impact to expect on several
different corpora, which vary in how sensitive they
are to larger batches. We find that further investi-
gation is needed to determine the most significant
factors causing these differences so that future ap-
plications of active learning to SRL can predict
the most ideal selection batch size that balances
performance against training time for their target
domain.

Limitations

While it reduces annotation costs, AL can be com-
putationally intensive and its success is correlated
to the number of training iterations. Whether this
will be a net savings for a given project may vary
from case to case, depending on computing re-
source availability and annotator costs. The work-
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Figure 10: Performance of using BALD PREDICATES, selecting varying numbers of predicates per iteration.

flow of annotating and re-training may not be fea-
sible in the budgetary constraints that inherently
make AL desirable over randomly annotating train-
ing data.

Partial SRL annotation of sentences or docu-
ments may not be desirable in projects that simul-
taneously annotate other things, such as AMRs
or coreference, which rely on whole-sentence or
whole-document annotation.
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Abstract

Prior work typically describes out-of-domain
(OOD) or out-of-distribution (OODist) sam-
ples as those that originate from dataset(s) or
source(s) different from the training set but for
the same task. When compared to in-domain
(ID) samples, the models have been known to
usually perform poorer on OOD samples, al-
though this observation is not consistent. An-
other thread of research has focused on OOD
detection, albeit mostly using supervised ap-
proaches. In this work, we first consolidate and
present a systematic analysis of multiple defini-
tions of OOD and OODist as discussed in prior
literature. Then, we analyze the performance
of a model under ID and OOD/OODist settings
in a principled way. Finally, we seek to identify
an unsupervised method for reliably identifying
OOD/OODist samples without using a trained
model. The results of our extensive evaluation
using 12 datasets from 4 different tasks suggest
the promising potential of unsupervised metrics
in this task.

1 Introduction

What happens when you train a machine learning
model on a dataset and use it to predict a sam-
ple whose source is unknown? Would you fully
rely on the model’s prediction on the test sample?
Basically, this situation is encountered in most real-
world scenarios where the test sample may differ
considerably from the training samples. Recent
works show that models perform poorer on the
samples that come from a different distribution
(Gokhale et al., 2022). In many real-world sce-
narios, such as health and law, false predictions or
misclassified results could have significant conse-
quences, and as such identifying out-of-domain or
out-of-distribution data beforehand is critical.

Previous works have defined OOD and OODist
data in different ways or used them interchangeably.
Early works define data that comes from a related
but different domain as OOD (Dai et al., 2007),

whereas OODist data has been defined as the data
that might have been collected at a different time
(Ovadia et al., 2019). In recent studies, (Chrysos-
tomou and Aletras, 2022) use the term OOD to
describe different datasets for the same task (e.g.,
SST, IMDb, and Yelp for sentiment classification),
whereas (Lin et al., 2022) use OODist to describe
the datasets that are not in the training set, includ-
ing those that are subsets of the same dataset (e.g.,
PDTB 2.0 (Carlson et al., 2002)). In this paper, we
first present a focused analysis of all the various
terminologies used in this context in recent works.

Another thread of research has focused on iden-
tifying OOD/OODist samples, mostly through su-
pervised methods (Varshney et al., 2022; Chiang
and Lee, 2022; Gokhale et al., 2022). However,
considering that trained models may not always be
available, we take a complementary approach in
this work to identify metric(s) that may be able to
support OOD detection in an unsupervised manner.

The first part of our methodology focuses on
establishing to what extent performance (e.g., ac-
curacy) can inform the detection of OOD samples1.
Our results indicate that indeed performance can
serve as a reliable metric for estimating OODness,
however, this requires a supervised model. To ad-
dress this limitation, in the second part of this work,
we explore several unsupervised metrics for esti-
mating semantic similarity between the training
and test samples. We hypothesize that an unsu-
pervised metric which sufficiently correlates with
performance, may be considered as a feasible alter-
native for detecting OOD samples.

The major contributions of this paper are:

• an in-depth exploration of the usage of the
terms OOD and OODist in recent works;

• a systematic assessment of the effectiveness
1As formally distinguishing between the two terms re-

mains beyond the scope of this paper, in this work we use the
terms OOD and OODist interchangeably.
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Paper Setup Term Metrics Task

Chrysostomou and Aletras
(2022)

A OOD - Sentiment classification

Le Berre et al. (2022) A OOD Accuracy MCQ
Lin et al. (2022) A OODist - Extractive QA
Nejadgholi et al. (2022) A OOD AUC, F1 Sentiment classification
Chiang and Lee (2022) A OODist Cosine similarity, Confi-

dence score, Probability
distribution

Sentiment classification

Mishra and Arunkumar
(2022)

A OODist NLI diagnostics NLI

Varshney et al. (2022) A OOD Accuracy NLI, Duplicate detection,
Sentiment analysis, MCQ,
Commonsense Reasoning

Omar et al. (2022) A OODist Accuracy, Success rate,
Error rate, Diversity,
Fairness, IBP tightness,
Robustness

Classification, Paraphras-
ing, NLI

Adila and Kang (2022) A OODist Confidence, Variability NLI
Singhal et al. (2022) A OOD Accuracy NLI, Phrase identification
Agrawal et al. (2022) A OOD Accuracy Visual QA
Aghazadeh et al. (2022) A, B OODist Accuracy Metaphorical knowledge
Chen et al. (2023) A, B OODist Accuracy Sentiment analysis, Toxi-

city detection, News Clas-
sification, Dialogue Intent
Classification

Mai et al. (2022) B OODist - Anomaly detection
Garg et al. (2022) B OOD Accuracy Rating generation, Toxic-

ity classification
Jin et al. (2021) B OOD False Positive Ratio,

AUROC, AUPR
Text Classification

Atwell et al. (2022) C OOD h-discrepancy Discourse parsing
Gokhale et al. (2022) C OOD Accuracy, EM NLI, QA, Image classifi-

cation

Table 1: A survey of recent works using various setups to study OODist or OOD settings. Here, A describes the
cases where the train set is from one dataset, and the test set from another dataset; B describes the scenario where
the train and test sets are two subsets of the same dataset; and C is a combination of both A and B. The “Metrics"
column represents the metrics, while the “Task" column lists the tasks studied in these papers. Note that several
papers whose setup can be described as A use different terms.

of performance in estimating OODness, and
an investigation of unsupervised approaches
for identifying OODness;

• an extensive evaluation across four different
tasks using a total of twelve datasets; we will
also make our code available for facilitating
reproducibility.

2 Related Work

Prior research has often used the terms OOD and
OODist interchangeably. In some works, datasetX
is described to be OODist to dataset Y if they are
different datasets, but support the same task (Lin
et al., 2022; Aghazadeh et al., 2022; Chiang and
Lee, 2022; Mishra and Arunkumar, 2022; Omar
et al., 2022; Adila and Kang, 2022), while in other
works, the term OOD is used to describe the similar
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Task Datasets train/ val/ test

Sentiment IMDb, SST2, Yelp 3310/ 428/ 909
MCQ SCIQ, CS, QASC 8134/ 926/ 920
Extractive QA SQUAD, News, Trivia 61688/ -/ 4212
NLI MNLI, WNLI, QNLI 635/ 71/ 146

Table 2: Task and dataset details

setting (Chrysostomou and Aletras, 2022; Le Berre
et al., 2022; Nejadgholi et al., 2022; Varshney et al.,
2022). Beyond that, while some consider differ-
ent subsets of the same dataset to be OODist (Mai
et al., 2022; Garg et al., 2022; Jin et al., 2021), oth-
ers refer to these as OOD to describe distribution-
ally different datasets (Atwell et al., 2022; Gokhale
et al., 2022).

When it comes to detecting OOD or OODist sam-
ples, using the model’s accuracy (Le Berre et al.,
2022; Aghazadeh et al., 2022; Gokhale et al., 2022;
Omar et al., 2022), input features, hidden features
representations, and output probability distribution
of the network layers (Chiang and Lee, 2022), or
AUC and F1 score (Nejadgholi et al., 2022) have
been well-studied. Table 1 presents a brief sum-
mary of some recent works.

3 Method

3.1 Problem Definition

Given two datasets, X = {x1, ..., xm} and Y =
{y1, ..., ym}, the goal is to assess the correlation
between the performance of the two datasets under
ID/OOD settings and their (semantic) similarity.
The performance is measured by training a model
on one of the datasets, say, Xtrain and testing it on
the test set Xtest which represents the ID setting,
and Ytest representing the OOD setting. The ID
similarity is computed by averaging the similarity
between the instances of Xtrain and Xtest, while
OOD similarity is measured between Xtrain and
Ytest.

3.2 Datasets

We study four different tasks using a total of 12
datasets (3 datasets for per task). We include the
most common tasks that have been used in prior
work.
(i) Sentiment Analysis: given a text, classify its
sentiment as negative or positive.
(ii) Multiple Choice Question Answering (MCQ):
given a question and a context, select the correct

answer from a pool of possible answers.
(iii) Extractive Question Answering (QA): given
a question and a context, find the answer to the
question from the context.
(iv) Natural Language Inference (NLI): given a
premise and a hypothesis, determine whether the
hypothesis contradicts, entails, or is neutral with
respect to the premise.

Table 2 presents the details of the datasets and
the tasks. For sentiment classification, we use
IMDb (Maas et al., 2011), SST2 (Socher et al.,
2013), and Yelp (Zhang et al., 2015) datasets.
We experiment with SCIQ (Welbl et al., 2017),
CommonsenseQA (CS) (Talmor et al., 2019), and
QASC (Khot et al., 2020) for the MCQ task. For
the Extractive QA task, SQUAD, News, and Trivia
(Fisch et al., 2019) datasets are selected from the
MRQA dataset (note that since these datasets do
not have a separate test set, we use the validation
data as the test set). The NLI datasets include
MNLI, QNLI, and WNLI from the GLUE bench-
mark (Wang et al., 2018). All the other datasets
were accessed from the HuggingFace repository2.

Data preparation: Prior work has largely over-
looked the effect of an important aspect – dataset
size – in such studies. As such, we control the
dataset size as a variable in our study by main-
taining the size of all train, validation (when avail-
able), and test splits for all three datasets per task
by downsampling them to match the size of the
smallest dataset in each set. For instance, all the
splits of all three sentiment analysis datasets are
downsampled to be of equal size. Additionally,
we balance the number of instances for each class
when possible (e.g., in the sentiment datasets).

3.3 Metrics

We use three categories of metrics, one for mea-
suring the performance of the model, another for
estimating the similarity between the two datasets,

2https://huggingface.co/datasets/
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and the third for computing the correlation between
performance and similarity.

Performance Metrics. We report accuracy for the
classification tasks, i.e., sentiment analysis, MCQ,
and NLI tasks, and F1 score for extractive Ques-
tion Answering task to measure the correctness of
model predictions.

Similarity Metrics. To estimate the closeness
among the ID and OOD datasets, we use metrics re-
lated to semantic similarity (higher value means the
samples are from nearby distributions) and seman-
tic distance (higher value indicates less similarity).
These include: (i) Cosine Similarity: measures the
distance between the samples from two sources3.
(ii) Mauve Score: measures the similarity between
two texts4 (Pillutla et al., 2021). (iii) Wasserstein
Distance (Wstn): measures the distance between
the two distributions and if the distributions overlap
enough, then they are close to each other5 (Weng,
2019). (iv) Jensen Shannon Distance (JSD): quan-
tifies the similarity between two probability distri-
butions, where the smaller the value, the closer the
distributions6 (Manning and Schutze, 1999).

Correlation Metrics. Lastly, we use two com-
monly used correlation metrics – Kendall Tau and
Pearson7 (we also experimented with Spearman
which gave similar results), with the goal of under-
standing the relationship between performance and
similarity of datasets under ID/OOD settings.

3.4 Measuring Performance and Similarity
For measuring the performance, we fine-tune a
BERT base uncased model for 2 epochs on each
Xtrain and test it on Xtest (ID) and Ytest (OOD).
For estimating the similarity between the ID and
OOD datasets, we randomly sample two sets of
20 instances, Xtrain20 and Ytest20, and estimate
pairwise similarity between all of these samples,
obtaining a total of 400 similarity scores which are
then averaged to compute the similarity.

4 Results and Discussion

Performance analysis: Table 3 presents the results
of the performance experiments, where we observe

3We estimate this using word2vec embeddings.
4We use the default embeddings (GPT-2) https://

pypi.org/project/mauve-text/.
5We use the universal sentence encoder for estimating this.
6We used word2vec embeddings.
7https://pandas.pydata.org/docs/

reference/api/pandas.DataFrame.corr.html

Trained on Tested on Performance

IMDb-train
IMDb-test 0.90

Yelp-test 0.87
SST2-test 0.17

SST2-train
SST2-test 0.89
IMDb-test 0.21

Yelp-test 0.16

Yelp-train
Yelp-test 0.93

IMDb-test 0.86
SST2-test 0.19

SCIQ-train
SCIQ-test 0.64

QASC-test 0.18
CS-test 0.34

CS-train
CS-test 0.49

SCIQ-test 0.58
QASC-test 0.84

QASC-train
QASC-test 0.92
SCIQ-test 0.51

CS-test 0.48

SQUAD-train
SQUAD-test 0.86

News-test 0.51
Trivia-test 0.55

News-train
News-test 0.66

SQUAD-test 0.77
Trivia-test 0.56

Trivia-train
Trivia-test 0.66

SQUAD-test 0.52
News-test 0.31

MNLI-train
MNLI-test 0.57
WNLI-test 0.56
QNLI-test 0.54

WNLI-train
WNLI-test 0.42
MNLI-test 0.26
QNLI-test 0.47

QNLI-train
QNLI-test 0.83
MNLI-test 0.43
WNLI-test 0.56

Table 3: Performance results under different ID/OOD
settings. Instances where ID performance is better than
OOD performance are indicated in blue.

that the model performance under ID settings is
generally better than under OOD settings, except
for three exceptions, suggesting that performance
can indeed serve as a reasonably dependable met-
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ric for detecting OOD. However, this requires a
supervised model, which motivates us to explore
unsupervised approaches for estimating OODness.
It is worth noting that while Garg et al. (2022)
found that OOD accuracy is less than the ID ac-
curacy, this observation does not always hold true
according to our analysis.

Correlation between performance and similarity:
Figure 1 presents the heatmap visualizing the corre-
lation (Kendall and Pearson) between performance
and similarity metrics, across all 12 datasets for
the four tasks (the full set of results is included in
Appendix A). In looking at the results, we observe
that according to Kendall Tau correlation analysis,
Wasserstein distance (Wstn) shows the most con-
sistent correlation (in 10 out of 12 cases), whereas
according to Pearson correlation, both Wasserstein
and Cosine are acceptable metrics (in 9 out of 12
cases). In all the scenarios, however, JSD is clearly
the least correlated metric. This suggests the poten-
tial of unsupervised approaches in estimating OOD
samples.

5 Conclusion

In this work, we aim to identify unsupervised ap-
proaches for identifying OOD samples. We con-
ducted an in-depth analysis of different unsuper-
vised similarity metrics and estimated their correla-
tion with performance of a model under ID/OOD
settings. Our findings indicate that Wasserstein
distance presents a promising metric for determin-
ing OOD samples. The natural question of how
to determine the appropriate threshold, however,
remains to be explored in future work. Another di-
rection worth exploring is to verify the robustness
of these similarity metrics when estimated using
different embeddings.

Limitations

While our analysis suggests some promising results,
we acknowledge some limitations of this work such
as:

• on some datasets, the ID performance was ob-
served to be less than the OOD performance,
and further investigation is needed to study
this observation in detail and bring additional
insights.

• all the analysis in this study focuses on
datasets in English language, and it will be

(a)

(b)

Figure 1: (a) Kendall and (b) Pearson correlation be-
tween performance and dataset similarity, evaluated
over 12 datasets with each serving as an ID dataset
once. For Cosine and Mauve, darker shades are desir-
able, whereas for Wstn and JSD, lighter shades indicate
better correlation.

interesting to investigate whether our findings
will generalize to other languages.
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Trained Tested Model
Accu-
racy

Cosine Mauve Wstn JSD

IMDb IMDb 0.90 0.92 1 0.004 0.21
IMDb Yelp 0.87 0.87 0.91 0.0039 0.26
IMDb SST2 0.17 0.78 0.42 0.0052 0.36

SST2 SST2 0.89 0.66 0.99 0.0032 0.46
SST2 IMDb 0.21 0.77 0.22 0.0051 0.38
SST2 Yelp 0.16 0.72 0.004 0.0046 0.41

Yelp Yelp 0.93 0.86 0.98 0.0036 0.26
Yelp IMDb 0.86 0.87 0.76 0.0041 0.27
Yelp SST2 0.19 0.73 0.94 0.0038 0.4

SCIQ SCIQ 0.64 0.82 1 0.004 0.33
SCIQ QASC 0.18 0.66 0.01 0.008 0.46
SCIQ CS 0.34 0.78 1 0.004 0.37

CS CS 0.49 0.71 0.94 0.003 0.45
CS SCIQ 0.58 0.62 0.01 0.007 0.48
CS QASC 0.84 0.61 0.004 0.005 0.49

QASC QASC 0.92 0.75 1 0.003 0.4
QASC SCIQ 0.51 0.78 0.99 0.004 0.38
QASC CS 0.48 0.66 0.004 0.006 0.48

SQUAD SQUAD 0.86 0.84 0.99 0.0037 0.34
SQUAD NEWS 0.51 0.82 0.32 0.0041 0.33
SQUAD TRIVIA 0.55 0.81 0.04 0.0059 0.33

NEWS NEWS 0.66 0.89 0.91 0.0036 0.23
NEWS SQUAD 0.77 0.86 0.11 0.0046 0.31
NEWS TRIVIA 0.56 0.84 0.89 0.0039 0.27

TRIVIA TRIVIA 0.66 0.88 0.99 0.0031 0.23
TRIVIA SQUAD 0.52 0.82 0.04 0.0062 0.34
TRIVIA NEWS 0.31 0.82 0.99 0.0042 0.29

MNLI MNLI 0.57 0.72 0.97 0.0035 0.43
MNLI WNLI 0.56 0.71 0.27 0.0032 0.43
MNLI QNLI 0.54 0.73 0.99 0.0037 0.42

WNLI WNLI 0.42 0.74 0.79 0.0032 0.41
WNLI MNLI 0.26 0.68 0.66 0.0036 0.46
WNLI QNLI 0.47 0.67 0.004 0.0035 0.46

QNLI QNLI 0.83 0.75 0.97 0.0036 0.41
QNLI MNLI 0.43 0.64 0.66 0.0039 0.45
QNLI WNLI 0.56 0.58 0.01 0.0034 0.48

Table 4: The results for the sentiment, MCQ, extractive QA, and NLI datasets.
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Abstract
In this study, we propose using the GPT-3 as
a query generator for the backend of CLIP as
an implicit word sense disambiguation (WSD)
component for the SemEval 2023 shared task
Visual Word Sense Disambiguation (VWSD).
We confirmed previous findings — human-like
prompts adapted for WSD with quotes benefit
both CLIP and GPT-3, whereas plain phrases
or poorly templated prompts yield the worst
results. Our code is available at https://
github.com/pxm427/WSD-for-IR.

1 Introduction

The SemEval 2023 shared task VWSD1 combines
WSD and Image Retrieval (IR), which aims to se-
lect a correct image among ten candidates using a
phrase containing ambiguous words. Neural mod-
els are likely to be attracted by frequent tokens,
labels, and senses of ambiguous words, particularly
in limited contexts. We determined that CLIP (Rad-
ford et al., 2021) fails to find the correct images us-
ing phrases with the ambiguous words of frequent
senses even enhanced with contrastive learning on
large-scale data.

As shown in Figure 1, given phrase “Andromeda
tree”, the pretrained CLIP selected incorrect im-
ages that focused on either constellation “An-
dromeda” or part of “tree”, neglecting the phrase’s
meaning entirely. This sample demonstrates am-
biguity as a challenge for state-of-the-art neural
models. Therefore, we exploited GPT-3 (Brown
et al., 2020), a large language model (LLM), for
its pretrained knowledge as implicit sense disam-
biguation and phrase context enrichment for this
task.

Prompt engineering boosts model performance
and plays a crucial role in applying LLMs to many
NLP tasks, which lessens training and testing dis-
crepancies resulting from human-like languages

∗Now at Hitotsubashi University
1https://raganato.github.io/vwsd/

3.Andromeda tree

1.Andromeda

7.Ebenaceae

4.Erythrostemon 
gilliesii2.Euphorbiaceae

5.Gentiana triflora

8.ambystoma 
mexicanum

9.Orcinus orca

6. Helianthus

10.Crotalus

Figure 1: CLIP ranks ten images with respective rele-
vance to the phrase “Andromeda tree”, which consists
of ambiguous word “Andromeda” and limited context

“tree”. The goal is to select the correct image from ten
images of different relevance corresponding to the in-
tended meaning of “Andromeda tree”. Note that the
first (blue) and second (green) images ranked higher
than the correct third image (red).

(Liu et al., 2023). A prompt refers to a text or a set
of instructions that guides the model to generate
a specific type of response or output. A prompt
can be a question, statement, keyword, or sequence
of words that provide context and information to
the model. Recent research on prompt techniques
demonstrates that well-designed prompts spur the
potential of neural models without modifying their
parameters (Jin et al., 2022). We are curious about
how prompts can improve the performance of CLIP
on VWSD.

Our main contributions are as follows:

1. We explored different templates for queries
and observed their effects on VWSD. The
quotes and highlighting ambiguity are effec-
tive.

2. We adopted GPT-3 as a key VWSD compo-
nent to generate queries, which improved the
performance in terms of accuracy.

3. We demonstrated that our prompt techniques
are effective for finetuning CLIP.
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Figure 2: Overview of our method. The left part framed by a brown dotted line is the structure of CLIP, and the
right part framed by a blue dotted line and a gray dotted line are our Text and Image Inputs. The bottom part framed
by a purple dotted line is our Output.

2 Method

Each VWSD phrase contains an indication of the
ambiguous word(s). As illustrated in Figure 2, we
first introduce a baseline CLIP that takes text input
as either VWSD short phrases or a longer query en-
hanced with templates for ambiguous words. Then,
we leverage GPT-3 to further enrich these queries
for CLIP.

CLIP with phrase and queries In a shared fea-
ture space, CLIP provides a joint embedding rep-
resentation for each (image, text) pair. The joint
embedding representation allows for semantic sim-
ilarity comparisons between images and text, that
is

similarity score = CLIP(Eimage , Etext) ,

where Eimage and Etext are the embeddings ob-
tained from its image and text encoders, respec-
tively. We focus on text input for VWSD.
text takes the form of either a single VWSD

phrase or list of queries that bears the phrase and
indication of the ambiguous words in the phrase.
Table 1 lists our nine templates for creating the
queries. Take “Andromeda tree” as an example;
“Andromeda” fits the slot [ambiguous word(s)]
and “tree” fits [rest of word(s)]. Template #1 ap-
pears to be logically contradicted with #2. This is
because some ambiguous words in the phrase do
not fit slot [ambiguous word(s)], but fits slot [rest
of word(s)]. Moreover, template #3 is for both
ambiguous words and rest of words to improve the
coverage. These different templates semantically

fit different phrases in VWSD, and their perfor-
mance with CLIP are similar. We select the maxi-
mum of the similarity scores from all the queries,
and we want the image with the highest score.

Query Enrichment with GPT-3 GPT-3 is a pow-
erful language model that can perform various NLP
tasks such as language generation, text classifica-
tion, and question answering. It was designed to
improve upon the limitations of previous language
models by training a large-scale neural network on
massive amounts of text data. This allows GPT-3
to understand the context and generate coherent
and contextually relevant responses to text-based
inputs, making it useful for a wide range of NLP
applications. Additionally, GPT-3 can be finetuned
on specific NLP tasks to further enhance its ability
to perform various language-related tasks.

As shown in Table 2, we induce additonal
knowledge from GPT-3 by posing different ques-
tions for VWSD phrases which was used to fine-
tune the CLIP: 1) a direct query, 2) a query
with double quotes to highlight the phrase, and 3)
adding an explicit phrase to separate the phrase
ambiguity (i.e., ambiguous word(s)) from others
based on 2). These three types are concatenated to
the original phrase as a query to finetune CLIP for
better performance.

3 Experiments

3.1 Settings

In this study, we used data resources including im-
ages and phrases released by SemEval-2023 Task
1. Here, we chose only the English version from
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# Query template for CLIP

1 [phrase] is [ambiguous word(s)], but [rest of word(s)].
2 [phrase] is really [ambiguous word(s)], but [rest of word(s)].
3 [phrase] is not [ambiguous word(s)], but [rest of word(s)].
4 [phrase] is not really [ambiguous word(s)], but [rest of word(s)].
5 [phrase] is apparently [ambiguous word(s)], but indeed [rest of word(s)].
6 Actually, [phrase] is apparently [ambiguous word(s)], but indeed [rest of word(s)].
7 In fact, [phrase] is apparently [ambiguous word(s)], but indeed [rest of word(s)].
8 [phrase] is not only [ambiguous word(s)], but [rest of word(s)].
9 [phrase] is not really [rest of word(s)], but [ambiguous word(s)].

Table 1: Nine query templates for CLIP.

Prompt Type Question for GPT-3 Answer as Knowledge for CLIP

Direct What is the Andromeda tree? Andromeda tree is a species of evergreen
shrub that belongs to the genus Pieris . . .

Double quotes What is the “Andromeda tree”? The Andromeda tree is a species of flow-
ering evergreen shrub native to . . .

Explicit phrase Instead of “Andromeda” and “tree”,
what is the “Andromeda tree”?

The Andromeda Tree is a species of ever-
green shrub or small tree native to . . .

Table 2: Three types of prompts for inducing GPT-3 knowledge: direct query, double quotes for a phrase, and
explicit phrase to separate ambiguous word(s).

Model Prompt Type Dev Test

CLIP with phrase only N/A 71.50 58.53 —

CLIP finetuned
with nine queries
and GPT-3 knowledge

Direct
90.60 56.16

56.80
90.20 55.29 (ensemble)

Double quotes
93.20 65.44

65.87
93.00 65.23 (ensemble)

Explicit phrase
92.20 66.09

65.01
91.80 66.95 (ensemble)

Table 3: Dev and Test accuracy results based on data from SemEval 2023. To exclude the effects of randomness, we
conducted the experiments twice for each prompt type. Model represents different versions in our experiments,
where the baseline is CLIP (phrase). Prompt Type indicates the different prompt types used as mentioned in Table
2.

all the language versions (English, Farsi, Italian).
We divided the official training data into a training
set (11,869) and development set (500). Finally,
we evaluated our finetuned models on the test data
(463), whose contents are different from the train-
ing data.

We employed pretrained CLIP as our baseline
to calculate the similarity score between the image

and text. In the baseline, we used only a phrase
as the input of the text component, and the per-
formance is not good. We further finetuned the
CLIP to improve the performance by expanding
the phrases to queries, and even enriching queries
with GPT-3.

For training, we set the batch size to 100 with 10
epochs and used a learning rate of 1e-7. For GPT-3,
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Nine Queries GPT-3 Knowledge Finetuning Dev Test Better Worse

71.50 58.53 0 0√
72.40 61.12 64 46√ √
80.40 64.58 90 56√ √
88.20 61.34 92 74√ √ √
92.20 66.09 107 60

Table 4: Accuracy of ablation experiments testing on Dev and Test. Table 4 presents the number of Test samples
becoming Better and Worse after finetuning. Here, only Prompt Type Explicit Phrase is used.

we chose text-davinci-003, which was considered
the most capable GPT-3 model. text-davinci-003
exhibited a better performance with a higher qual-
ity, longer output, and better instruction-following
than the other models.

3.2 Results & Analysis

Table 3 lists the results based on the baseline model
and finetuned models using different prompt types.

As shown in Table 3, the accuracy of the
finetuned models on Dev and Test performed bet-
ter than the baseline model. This proves that
finetuning can improve the performance of CLIP.
All the results on the Test were much lower than
those on the Dev. This may be because the Dev
data was obtained from the training dataset, which
is thematically different from the Test dataset.

For different prompt types, the accuracy on the
Dev varied. The finetuned CLIP adapting prompt
type Direct had the lowest overall performance
with 90.20, and prompt type Double quotes had
the highest overall performance with 93.20. A
speculative reason for this was the lower knowl-
edge quality when selecting the prompt type Direct
because GPT-3 tended to not consider the phrase
entirely when asking directly, thereby generating
inaccurate knowledge. For prompt type Explicit
phrase, it could reach a point of 92.20.

On the Test, including the baseline, prompt type
Explicit phrase exhibited the best performance,
which could reach up to 66.95. This indicates that
the knowledge generated by GPT-3 was beneficial.
Conversely, the performance of prompt type Direct
was worse than the baseline, which may indicate
that poor knowledge can introduce negative effects.

Finally, we conducted ensemble experiments be-
tween each prompt type. The results demonstrated
an improvement in accuracy for all prompt types
except Explicit phrase.

3.3 Ablation Study

To investigate the benefit of the effect of queries,
knowledge from GPT-3, and finetuning, we con-
ducted ablation experiments. We counted the num-
ber of answers that improved or worsened in terms
of the change of the gold answer rank. Table 4
shows that samples that improve are increasing.

Query templates. As shown in Table 4, the base-
line results were the lowest: 71.50 and 58.53 on
Dev and Test, respectively. This is because the
phrase was too short to carry meaningful informa-
tion. Therefore, when creating a sentence including
a target phrase as a query, more contextual infor-
mation can be obtained. Consequently, the score
increased by 0.9 and 2.59 on Dev and Test, respec-
tively, compared with the baseline.

Prompt engineering. To better use of the infor-
mation in context, we have added knowledge from
GPT-3 based on the prompts. The score particu-
larly increased to 80.40 on Dev, which proves that
adding knowledge from GPT-3 improves the per-
formance.

Finetuning. In the finetuning section, we first
finetuned CLIP with only queries. After finetuning,
the accuracy on Dev increased by 15.80 compared
with CLIP with queries, which proves the impor-
tance of finetuning. Paying attention to the results
on Test in CLIP with queries and GPT-3 knowl-
edge is also important. Table 4 shows the score
of 64.58 was 3.24 points higher than the result
of CLIP finetuned with queries. This is partially
explained by the knowledge from GPT-3 being par-
tially effective. We further finetuned CLIP with
prompts and GPT-3. The best performance reached
scores of 92.20 and 66.09 on Dev and Test, repec-
tively, which illustrates the usefulness of GPT-3.
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4 Related Work

4.1 Knowledge generated from LLMs
Unlike WordNet (Miller, 1994) and SemCor (Miller
et al., 1993), recent large-scale language models
(LLMs) provide an easy explanation for ambiguous
words. In particular, LLMs are well suited for
disambiguation tasks. For example, BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) have
a general language understanding ability that has
been demonstrated to capture word senses (Coenen
et al., 2019).

Recently, Brown et al. (2020) proposed Gener-
ative Pretrained Transformer-3 (GPT-3), an LLM
trained on a massive amount of data, for various
NLP tasks such as dialogue generation (Zheng
and Huang, 2021; Lee et al., 2022). It demon-
strates an understanding of logical reasoning and
external knowledge, which has made it applica-
ble GPT-3 to solving complex problems involving
cause-and-effect relationships (Liu et al., 2022).
When provied with a proper prompt or asked a
human-like question, a pretrained GPT-3 model re-
sponds with fluent and relevant text as an answer,
which shows passable “logic” and details for dis-
ambiguation. The quality of the answer depends
on the prompt and question. However, to the best
of our knowledge, no research has been conducted
on VWSD using LLMs. In this study, we rely on
LLM output as external knowledge for VWSD.

4.2 Image Retrieval
Recently, IR has undergone dramatic shifts from
approaches handcrafted with global and local de-
scriptors, to convolutional neural networks (He
et al., 2016) with adaptive local descriptors, to re-
cent non-convolutional models with one global de-
scriptor, such as a Vision Transformer (Dosovitskiy
et al., 2021, ViT). Experimental evaluations (Gke-
lios et al., 2021) show that ViT achieves competi-
tive results at a low complexity and even finetuning
is not required, which makes it an attractive choice
as a baseline model for IR.

Recently, researchers began leveraging natural
language descriptions in computer vision to im-
prove performance. He and Peng (2017) and Liang
et al. (2020) showcased the utilization of natural
language descriptions and explanations to enhance
the fine-grained visual classification of birds. Rad-
ford et al. (2021) presented CLIP in a zero-shot
setting, which demonstrated the model’s substan-
tial potential for widely-applicable tasks such as IR

(Mori et al., 1999).

5 Conclusion and Future Work

We explored the effects of a query on VWSD and
used GPT-3 as a key to generate queries. Af-
ter finetuning CLIP with queries generated from
GPT-3, we determined that queries generated by
GPT-3 using prompts improved the performance in
terms of accuracy.

In the future, we plan to apply some other multi-
modal models and compare the results with those
of existing works. We also intend to adopt GPT-4
2 to generate knowledge considering both textual
and visual cues for VWSD.
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Abstract

Functional Distributional Semantics is a lin-
guistically motivated framework for modelling
lexical and sentence-level semantics with truth-
conditional functions using distributional infor-
mation. Previous implementations of the frame-
work focus on subject–verb–object (SVO)
triples only, which largely limits the contex-
tual information available for training and thus
the capability of the learnt model. In this pa-
per, we discuss the challenges of extending
the previous architectures to training on arbi-
trary sentences. We address the challenges by
proposing a more expressive lexical model that
works over a continuous semantic space. This
improves the flexibility and computational effi-
ciency of the model, as well as its compatibility
with present-day machine-learning frameworks.
Our proposal allows the model to be applied to
a wider range of semantic tasks, and improved
performances are demonstrated from experi-
mental results.

1 Introduction

Functional Distributional Semantics (FDS; Emer-
son and Copestake, 2016; Emerson, 2018) aims
to capture the truth-conditional aspects of words
through learning from distributional information of
a corpus. Whilst truth-conditional semantics deals
with predications over discrete entities, FDS aims
to generalize about predications over a space of
entity representations with probabilistic semantics.

Contrasted with most distributional methods
which map words to vectors, FDS can model vari-
ous aspects of meaning in a linguistically rigorous
manner. For example, vagueness is represented
by the probabilistic nature of predications, and hy-
pernymy, defined formally as the subsumption of
the extensions between two word senses, can be
represented by the subsumption of regions of space
(Emerson, 2020b).

Going beyond simple vector spaces, some mod-
els of distributional semantics represent words as

tensors for composition (e.g., Coecke et al., 2010;
Baroni et al., 2014), as static distributions for un-
certainty and entailment (e.g., Vilnis and McCal-
lum, 2015), as posterior distributions for context-
specific meaning (e.g., Bražinskas et al., 2018), and
as regions for set-theoretic properties (e.g., Das-
gupta et al., 2022). Among them, only a region-
based approach favours logical interpretations (for
a discussion, see: Emerson, 2020b, 2023).

In order to be computationally tractable, most
models of distributional semantics are trained
based on instances defined by context windows
(e.g., Mikolov et al., 2013a; Pennington et al., 2014)
or incomplete linguistic structures such as immedi-
ate dependencies (e.g., Levy and Goldberg, 2014;
Czarnowska et al., 2019). All previous instances of
FDS (further discussed in §2) are only trained on
SVO triples. Consequently, these models underuti-
lize much contextual information.

We hope to extend FDS learning to arbitrary sen-
tences, but not larger linguistic units (e.g., para-
graphs), for handling them requires non-trivial
extensions such as robust coreference resolution,
which is beyond the scope of this work. To this end,
we propose to adopt a continuous semantic space
and a more expressive lexical model in place of the
previous world model on a discrete space. Our new
formulation provides a computationally efficient
and linguistically principled solution to applying
FDS to arbitrary sentences. Furthermore, this also
situates the framework closer to modern machine
learning models which are mostly built upon con-
tinuous latent spaces, thus favouring comparisons
among and integration with them. For example,
Liu and Emerson (2022) integrated a pre-trained
computer vision model with a continuous space
to FDS, applying it to annotated images. Joint
learning of the visually-grounded and corpus-based
models was however left as future work due to the
incompatibility of latent spaces.

In this paper, we first give an introduction to FDS
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in §2, explaining why it is difficult for previous
implementations to scale up. Then, we present in
detail the proposed formulation and how to train
the model in §3–§4. Finally, we demonstrate how
our model can be applied to a number of semantic
evaluation data sets and present the results in §5.

2 Functional Distributional Semantics

The core idea of Functional Distributional Seman-
tics is that a sentence refers to a set of entities, and
a word is a predicate that is true or false of entities.
Compared to other approaches to distributional se-
mantics, it aligns more with model-theoretic se-
mantics, which approaches meaning in the same
way in terms of a model structure.

However, fixing a specific set of entities would
make it impossible to generalize to new situations.
In order for the model to be learnable, predicates do
not directly take entities as input, but rather entity
representations, referred to as pixies for brevity. A
predicate is represented as a function from pixies
to probabilities of truth. This allows the model to
account for vagueness.

FDS does not submit to a fixed interpretation
of pixies nor process of obtaining them. Rather,
pixies are introduced to merely convey information
of latent entities. In the work of Liu and Emerson
(2022), pixies are dimensionality-reduced vectors
obtained from a pretrained network. In this work,
they are learnt to best represent entities accord-
ing to our particular formulation by probabilistic
graphical models, which are introduced below and
in detail in §4.

2.1 Probabilistic Graphical Models

The framework is formalized in terms of a family
of probabilistic graphical models, each of which
generates predicates in a semantic graph. It con-
sists of the world model, which handles the joint
distribution of pixies, and the lexical model, which
handles truth-conditional semantics. Given an ar-
gument structure (predicate–argument structure mi-
nus predicates, i.e., a directed graph with labelled
edges and unlabelled nodes), a predicate can be
generated for each node, in three steps. First, a
pixie is generated for each node, which together
represent the entities to be described. Then, a truth
value in {⊤,⊥} is generated for each entity and
each predicate in the vocabulary V . Finally, a sin-
gle predicate is generated for each entity. This is
shown in Fig. 1, for the simple predicate–argument

ARG1 ARG2

postman deliver
ARG1 ARG2

mail

Figure 1: Probabilistic graphical model of FDS for gen-
erating words in an SVO triple (e.g., ‘postman deliver
mail’). The Z nodes are pixie-valued random variables;
T nodes are truth-valued; R nodes are predicate-valued.
Only the R nodes are observed (e.g., R1=postman,
R2=deliver, R3=mail). This figure contrasts two po-
sitions where argument information can be used. In
previous work, argument information (i.e., ARG1 and
ARG2) only contributes to the world model (in dashed
lines). In our formulation, it only contributes to the
lexical model (in green lines).

structure of an SVO triple. Different argument
structures have different graphical models.

In previous work, Z is sparse binary-valued vec-
tors, and the joint distribution of pixies is deter-
mined by a Cardinality Restricted Boltzmann Ma-
chine (CaRBM) using the argument structure. The
lexical model comprises unary semantic functions,
each of which maps one pixie to the probability
that the predicate is true of the pixie.

In §3, we will propose to move the information
about the predicate–argument structure from the
world model to the lexical model and set Z = Rd.
Concretely, the dependencies among pixies are re-
moved and extra truth-valued random variables
T
(r,a)
Zi,Zj

are added (also shown in Fig. 1).

2.2 Model Learning from DMRS
The model is trained on graphs of Dependency
Minimal Recursion Semantics (DMRS; Copestake
et al., 2005; Copestake, 2009). A DMRS graph
is derived using the broad-coverage English Re-
source Grammar (ERG; Flickinger, 2000, 2011),
providing a compact representation of the predica-
tions expressed by a sentence. Figs. 1 and 2 show
three simplified DMRS graphs (with quantifiers
and scope removed). Model parameters are opti-
mized in an unsupervised manner to maximize the
likelihood of generating the observed predicates
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given the argument structure of a DMRS graph.
In principle, the formalism of semantic graphs

for learning is not restricted to DMRS, but any
that include predicate–argument structures. Bender
et al. (2015) argued that deriving semantic graphs
compositionally and automatically using a broad-
coverage grammar is more scalable and consistent
than manual annotation, as is common for other for-
malisms such as Abstract Meaning Representation
(AMR; Banarescu et al., 2013).

In §2.3–§2.4, we discuss the linguistic and com-
putational challenges of training previous FDS
models on more complex sentences.

2.3 Linguistic Challenges

Vocabulary. Addressing SVO triples only re-
quires training and testing on nouns and verbs.
With arbitrary sentences, the vocabulary of predi-
cates expands to (1) adjectives, adverbs and adpo-
sitions, which are also predicates, (2) conjunctions,
which not only contribute to extensional logic oper-
ations (e.g., and, or and else) but also intensional,
modal or temporal ones (e.g., until, if and since),
and (3) quantifiers. In addition, scope-taking pred-
icates like quantifiers and conjunctions are barely
meaningful when the scopes of them are under-
specified. Therefore, it is not straightforward to
apply the framework to arbitrary sentences without
further linguistic assumptions.

Overloaded Argument Roles. The world model
with CaRBM uses shared weights for argument
roles of different predicates. However, argu-
ment roles are overloaded in DMRS. For example,
ARG1 of the inchoative predicate _break_v_1 and
causative _break_v_cause specify what is broken
and what breaks something, respectively. Conse-
quently, predicate-specific thematic interpretations
of argument roles are missed out. Argument roles
also vary across different parts of speech: the ARG1
of nouns mostly denotes their prepositional com-
plements, that of verbs denotes the agent, and that
of an adjective denotes the element to be modified.
Dealing with a larger vocabulary of predicates mag-
nifies the problem with the coarse generalization
by the undirected graphical models.

2.4 Computational Challenges

With Discrete Pixie Space. Training the model
requires computing the likelihood of the observed
data, thus the prior of the latent variables. How-
ever, it is intractable to compute the probability of

a set of pixies in the discrete CaRBM because it
requires normalizing over all possible sets of pixie
values. Emerson (2020a) approximated the prob-
ability using belief propagation methods (Yedidia
et al., 2003), which is still computationally expen-
sive. This problem only gets worse when consider-
ing larger semantic graphs.

With Continuous Pixie Space. Switching to
more tractable continuous distributions makes nor-
malization easier. Nevertheless, the problem is
still not simple. Fabiani (2022) explored the use
of a continuous space, using a Gaussian Markov
Random Field for the world model, and parame-
terizing the inverse covariance matrix according
to the argument roles. Such a matrix has a size
of nd × nd for a DMRS graph with n predicates
with pixie dimension d. The complexity of com-
puting its determinant scales to O(d3n3), which is
feasible for simple graphs such as SVO triples but
computationally prohibitive for larger graphs.

3 Enriching the Lexical Model

In this section, we describe our enriched lexical
model and explain how it provides a solution to the
linguistic and computational challenges mentioned.

3.1 Neo-Davidsonian Event Semantics

We follow Neo-Davidsonian event semantics
(Davidson, 1967; Parsons, 1990) as with previous
work, assuming that verbal and adjectival predi-
cates refer to events. For example, to evaluate the
claim that ‘x eats y’, we decompose it into three
claims: e is an eating event, the ARG1 of this eating
event is x, and the ARG2 of this eating event is y.

The event argument naturally allows FDS to
be applied to not just nouns and verbs but arbi-
trary sentences with various types of modifications.
For example, for x eats y very quickly, we have
eat(e1, x, y) ∧ quick(e2, e1) ∧ very(e3, e2).

3.2 Semantic Functions

As mentioned in §2.1, we introduce truth-valued
random variables for argument roles. The proba-
bility of truth is determined by either a unary func-
tion, as in (1), or a binary function, as in (2), over
continuous-valued pixies.

P
(
T
(r,0)
Ze

=⊤
∣∣∣ ze
)
= t(r,0)(ze) (1)

P
(
T
(r,a)
Ze,Zx

=⊤
∣∣∣ ze, zx

)
= t(r,a)(ze, zx) (2)
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postman deliver and parcel
ARG1

mail
L-INDEX

ARG2
R-INDEX

postman deliver quick
ARG1 ARG2

mail

ARG1

Figure 2: Probabilistic graphical models which can generate the two sentences ‘A postman delivers mail and parcels’
(left) and ‘A postman delivers mail quickly’ (right) respectively, illustrating how the example in Fig. 1 can be
extended with a coordinating conjunction and an adverb. Blue and red lines show the correspondence between
dependencies in the graphical models and DMRS argument structures.

We may interpret t(r,0)(ze) as the probability that
r is true of the entity e (represented by ze) and
t(r,a)(ze, zx) as the probability that the a-th argu-
ment role of r holds between e and x (represented
by ze and zx). For example, given a predicate r
that takes two arguments (e.g., the transitive ‘eat’),
the probability of the predication being true is:

P
(
T
(r,0)
Ze
∧T (r,1)

Ze,Zx
∧T (r,2)

Ze,Zy
=⊤

∣∣∣ ze, zx, zy
)

= t(r,0)(ze)t
(r,1)(ze, zx)t

(r,2)(ze, zy)
(3)

In the same spirit as Paperno et al. (2014)’s pro-
posal, this decomposition of arity-dependent predi-
cates allows dropped arguments to be handled nat-
urally. For the example ‘y is eaten’, we have:

P
(
T
(r,0)
Ze
∧T (r,2)

Ze,Zy
=⊤

∣∣∣ ze, zy
)

= t(r,0)(ze)t
(r,2)(ze, zy)

(4)

3.3 Addressing the Challenges
Lexical Model beyond Nouns and Verbs. In
our lexical model, nouns, verbs, adjectives, and ad-
verbs all introduce truth-valued random variables
but not adpositions, whose uses are considered too
flexible to be modelled by our implementation (dis-
cussed in §4.3). Proper nouns that mostly denote
distinct entities are discarded and arguments that
take proper nouns are dropped, as it results in an
unreasonably large vocabulary otherwise. We also
discard pronouns which require coreferences. Ar-
gument roles are propagated through coordinating
conjunctions: if a predicate takes a coordinating
conjunction as an argument, the argument role is
applied to each conjunct. We also neglect quanti-
fiers and modal verbs. Fig. 2 illustrates how the

example in Fig. 1 can be extended with additional
truth-valued random variables to handle coordinat-
ing conjunctions and adverbs. The proposed lexical
model thus addresses the vocabulary challenge and
also provides a workaround to the problem with
overgeneralization of arguments in §2.3.

Computational Efficiency. The information of
the predicate–argument structure, which was previ-
ously encoded in the world model via dependencies
between pixies, is now embedded in the design of
the semantic functions. As discussed in §2.4, the
main computational challenge in FDS is normaliz-
ing joint distributions for sets of pixies. In contrast,
the computational cost of binary semantic functions
can be kept essentially the same as for unary func-
tions, as discussed further in §4.3. By offloading
the complexity from the world model to the lexical
model, we can use a simple prior distribution that
is trivially normalized, as discussed further in §4.5.

Summary. As compared to previous implemen-
tations, our proposal makes FDS more scalable
by covering a much broader class of predicates,
drastically reducing the computational complex-
ity, and providing a more appropriate treatment
of predicate-specific argument roles for richer sen-
tence structures.

4 Variational Autoencoder

As mentioned in §2.2, each training instance is a
DMRS graph, which can be characterised in terms
of n predicates R = {r1, . . . , rn} , and the argu-
ment structure A =

{
(i, j, a) : ri

ARGa−−−→ rj

}
.

To optimize the parameters θ of the generative
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model, we use a variational autoencoder (VAE)
(Kingma and Welling, 2014; Rezende et al., 2014).
The intractable true posterior distributions pθ(z |
R,A) over the pixies z = {z1, . . . , zn} are first
approximated by tractable distributions chosen a
priori (discussed in §4.1). Instead of directly per-
forming maximum likelihood estimation on the
observed DMRS graphs, the lower bound in (5) is
maximized following the β-VAE (Higgins et al.,
2017), using a probabilistic encoder qϕ (discussed
in §4.2) and decoder pθ (discussed in §4.3). §4.4
and §4.5 reformulate the two terms in (5) respec-
tively based on empirical insights for training sta-
bility. Parameters of the encoder and decoder are
thus jointly learnt via gradient descent.

Lϕ,θ(R | A) = Eqϕ(z|R,A) [lnPθ(R | z,A)]
− βDKL (qϕ(z | R,A) ∥ pθ(z | A))

(5)

4.1 Approximate Posterior Distributions
Given an observed DMRS graph with n latent pix-
ies Zi, the approximate posterior is partitioned into
n independent Gaussians with spherical covariance.
Gaussian distributions provide convenient closed
forms for analytical computation. For instance,
sampling of pixies can be avoided in §4.3. For
each Zi, the encoder qϕ predicts a mean vector
µZi and a variance σ2Zi

. This gives the distribution
in (6), where N is the Gaussian density function.

qϕ(z | R,A) =
n∏

i=1

N (zi;µZi , σ
2
Zi
I) (6)

4.2 Amortized Variational Inference
We devise an encoder that uses both the local
predicate–argument structure and global topical
information from the whole sentence. For exam-
ple, the encoder should predict different pixie dis-
tributions for ‘deliver’ in the contexts of Fig. 2
(delivering mail) and Fig. 3 (delivering a song).
The encoder architecture is described by (7), (8),
(9) and illustrated in Fig. 3. It is similar to the
encoder of Bražinskas et al. (2018), but leverages
argument structure. It can also be seen as a simple
instantiation of Deep Sets (Zaheer et al., 2017) or
a graph-convolutional network (GCN) with com-
plement edges (De Cao et al., 2019). The mean
µZi and log variance lnσ2Zi

are inferred based on a
hidden layer h(Zi), where the logarithm ensures a
positive variance. The input embeddings e(r,a) rep-
resent predicates standing in particular relation to
the target predicate, as detailed in Fig. 3. f can be

talented singer song
ARG1 ARG1

deliver
ARG2

emotionally

ARG1

Figure 3: An encoder for inferring the posterior distri-
bution of the pixie of deliver in the sentence talented
singer deliver song emotionally. The inputs represent
context predicates standing in particular relation to the
target predicate. The embedding e(r,a) represents the
predicate r with relation a, where negative a indicates
an argument role of the target predicate, positive a an
argument role of a context predicate, 0 the target predi-
cate itself, and ∅ the absence of a direct argument role.
The embedding with dropout is shown in dashed lines.

the identity function or a non-linear function, e.g.,
the hyperbolic tangent. We perform experiments
on both choices.

h(Zi) = f


 1

n

n∑

j=1

e(rj ,aj,i)


 (7)

µZi =W⊤h(Zi) + c1 (8)

lnσ2Zi
= w⊤h(Zi) + c2 (9)

During VAE training, the parameters of t(ri,0)

and e(ri,0) will be optimized to maximize t(ri,0)(zi).
There is a chance that the distributions of pixies
are inferred purely from the embedding of intrin-
sic arguments and the remaining embeddings are
trivially optimized to very small values. To prevent
such a learning shortcut, we apply dropout to the
embeddings e(ri,0) with a certain probability where
h(Zi) aggregates without it.

In contrast to our work, Emerson (2020a) used a
two-layer GCN as the encoder. Scaling a GCN to
larger graphs requires a deeper network to incorpo-
rate long-distance, yet crucial topical information.
However, a deeper network is computationally ex-
pensive and hard to train. We believe that it is
worthwhile to start with a simpler and more effi-
cient architecture for our new formulation.

4.3 Probabilistic Decoder
The generative model can be seen as a probabilis-
tic decoder. It consists of the unary and binary
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semantic functions of predicates. The functions
are implemented as linear classifiers in (10) and
(11), where S denotes the sigmoid function and
zi,j denotes the concatenation of zi and zj .

t(ri,0)(zi) = S
(
v(ri,0)

⊤
zi + b(r,0)

)
(10)

t(ri,a)(zi, zj) = S
(
v(ri,a)

⊤
zi,j + b(ri,a)

)
(11)

Linear classifiers provide a number of advan-
tages over complex ones, albeit less expressive.
First, they are computationally less expensive. Sec-
ond, the frequency of word occurrence in a corpus
has a long tail, so there are inadequate instances
for training more powerful classifiers for the rare
predicates. Last but not least, since the pixies are
normally distributed given the observation as de-
fined in §4.2, we may use the probit approxima-
tion (Murphy, 2012, §8.4.4.2) for computing the
expectation of (1) and (2) over the approximate
posterior. (12) shows such approximation for the
unary semantic function.1 Computing the first term
in (5) otherwise requires sampling, which is more
computationally expensive and can result in poor
estimations when the variance is high.

Eqϕ

[
t(r,0)(zi)

]
≈ S

(
v(r,0)

⊤
µZi + b(r,0)

(1 + π
8σ

2
Zi
)
1
2

)
(12)

4.4 Contrastive Objective on Truth

The first term of (5) requires computing the proba-
bility of generating the observed predicatesR given
the distributions of pixies z and the argument struc-
ture A. In previous work, such a probability is set
to be proportional to the probabilities of truth of the
predications. Consequently, training on this objec-
tive only considers the relative probabilities of truth
but not absolute probabilities. Truth regularization
was introduced to increase the absolute probabil-
ities for better interpretability (Emerson, 2020a).
However, both improved and deteriorated model
performances were reported by Liu and Emerson
(2022) with such regularization. Moreover, we find
from experiments that training using the original
objective is unstable and requires careful tuning of
the regularization coefficient, which furthermore is
sensitive to the value of β.

Instead of maximizing the relative probabilities,
we propose a contrastive objective on absolute prob-
abilities of truth: we aim to maximize the truth of

1For brevity, we use Eqϕ to denote Eqϕ(z|R,S) hereafter.

the observed predicate and the falsehood of nega-
tively sampled predicates, analogous to Skip-gram
negative sampling (Mikolov et al., 2013b).

The objective is given in (13) and (14), for unary
and binary semantic functions respectively. Each
term Ci or Ci,j,a corresponds to a truth value node
in Fig. 1 and 2, and N(i) denotes the negative
samples for the predicate ri.

Ci = lnEqϕ

[
t(ri,0)(zi)

]

+
∑

r′∈N(i)

lnEqϕ

[
1− t(r′,0)(zi)

] (13)

Ci,j,a = lnEqϕ

[
t(ri,a)(zi, zj)

]

+
∑

r′∈N(i)

lnEqϕ

[
1− t(r′,a)(zi, zj)

] (14)

Underlying this objective is the assertion that
randomly drawn predicates are usually false of the
inferred pixies. This objective departs from the
generative model in §2.2 and directly operates on
probabilities of truth instead of generation proba-
bilities. The proposed objective achieves a very
similar goal as the original one, i.e., to maximize
the probabilities of truth of the observed predicates
and minimizes those of the unobserved, while truth
regularization is unnecessary and changes in β do
not lead to instability.

For each observed predicate, we draw K sam-
ples from the unigram distribution. However, we
restrict the distribution to predicates that are com-
patible with the observed argument roles. Each
predicate has a set of possible argument roles (those
that appear somewhere in the training data). We
restrict to predicates whose possible argument roles
are a superset of the observed roles.

4.5 Alternative Variance Regularization

Since we have removed the dependencies among
pixies and we have no prior knowledge about the la-
tent space, the KL term in (5) is not informative. In
fact, we empirically find that it can even be harmful:
(1) adopting a standard normal prior with β > 0
always yields worse performance on the develop-
ment set (discussed in §5.2) than when β = 0, and
(2) when β = 0, the inferred variance occasion-
ally takes very large values when f is the identity
function, rendering inference uninformative.

We devise an alternative regularization term (15)
that replaces the KL divergence in (5), where d is
the dimensionality. This term is derived from the
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KL divergence of qϕ from a standard normal distri-
bution, which pulls variances to one but neglects
the means. This way, the variance is still regular-
ized to avoid extreme values, while not imposing a
strong belief about the expected locations of pixies.

D =
d

2

n∑

i=1

(
σ2Zi
− lnσ2Zi

)
(15)

For each instance, the final training objective to
maximize is reformulated to (16).

L̃ϕ,θ(R | A) =
n∑

i=1

Ci +
∑

(i,j,a)∈A
Ci,j,a − βD (16)

5 Experiments

Evaluating a semantic model is not an easy task.
We focus on tasks that involve semantic composi-
tion and contextualized meaning. In particular, we
select RELPRON (Rimell et al., 2016) and GS2011
(Grefenstette and Sadrzadeh, 2011) (and GS2013
(Grefenstette and Sadrzadeh, 2015), a re-annotated
version of GS2011), the two data sets evaluated by
Emerson (2020a). This allows a direct comparison
between our approaches. In addition, our proposed
approach formally incorporates adjectives, which
gives us the opportunity to evaluate on GS2012
(Grefenstette, 2013). Our implementation is avail-
able online.2

5.1 Training Data
The data we train on is DMRS graphs extracted
from Wikiwoods3 (Flickinger et al., 2010; Solberg,
2012) using Pydelphin4 (Copestake et al., 2016).
Wikiwoods provides linguistic analyses of 55m sen-
tences (900m tokens) in English Wikipedia. Each
sentence was parsed by the PET parser (Callmeier,
2001; Toutanova et al., 2005) using the 1212 ver-
sion of the ERG, and the parses are ranked by
a ranking model trained on WeScience (Ytrestøl
et al., 2009). The preprocessed data consists of
DMRS graphs of 36m sentences, where 254m to-
kens are involved in training (preprocessing details
described in §A.1). We preprocess the evaluation
data into DMRS graphs following ERG analyses.

5.2 Model Configurations
We test for two model configurations: FDSAStanh
and FDSASid. They differ in activation functions

2https://github.com/aaronlolo326/TCSfromDMRS
3http://ltr.uio.no/wikiwoods/1212/
4https://github.com/delph-in/pydelphin

Model
MAP

Dev. Test

Vector addition (add.) (Rimell et al., 2016) 0.496 0.472
Sim. Practical Lexical Function (Rimell et al., 2016) 0.496 0.497
Vector add. (Czarnowska et al., 2019) 0.485 0.475
Dependency vector add. (Czarnowska et al., 2019) 0.497 0.439
Pixie Autoencoder (PixieAE) (Emerson, 2020a) 0.261 0.189
Ensemble of PixieAE & vector add. (Emerson, 2020a) 0.532 0.489

BERTBASE (tuned template with full stop) 0.677 0.667
BERTBASE (tuned template without full stop) 0.302 0.200
FDSAStanh 0.486 0.477
FDSASid 0.657 0.580

Table 1: Results on RELPRON.

(discussed in §4.2). Each of them comprises 54m
parameters. All other hyperparameters are sim-
ply fixed (reported in §A.2). Since only REL-
PRON provides a development set but not GS2011,
GS2013, or GS2012, each of our models is tuned
on the development set of RELPRON (described
in §A.2) and have their outputs averaged over three
random seeds. For fair comparisons, we only report
results of previous works that train their models on
a corpus in an unsupervised manner. We select the
best result from each of their models.

5.3 Evaluation on Semantic Composition

RELPRON is a data set of subject and object rela-
tive clauses. It consists of terms (e.g., ‘telescope’),
paired with up to 10 corresponding properties (e.g.,
‘device that astronomer use’). Each property comes
in lemmatized words. The development set con-
tains 65 terms and 518 properties and the test set
contains 73 terms and 569 properties. The task is to
rank all properties for each term so that the correct
ones come before the incorrect ones. Performance
is measured using Mean Average Precision (MAP).

5.3.1 Using FDS
Following Emerson (2020a), for each property, the
encoder is used to compose from the relative clause
and infer the pixie distribution of the target subject
or object. Then, for each term, we rank the proper-
ties by the log of the expected probability that the
term is true of the target pixie. This is obtained by
applying the semantic function of the term to the
inferred pixie distribution using (12).

5.3.2 Results
As a baseline, we adopt BERTBASE (Devlin et al.,
2019), a language model with 110m parameters,
using the Transformers library (Wolf et al., 2019).
It performs masked prediction on a cloze sentence,
e.g., ‘[CLS] a device that an astronomer uses is a
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[MASK]. [SEP]’. As RELPRON properties are lem-
matized and contain no articles, they must be con-
verted into cloze sentences using a template. Ex-
perimenting with different cloze templates, the best
one on the development set uses singular nouns,
the article a/an, an inflected verb (using Pattern
(Smedt and Daelemans, 2012)), and a full stop.

Table 1 shows the results on RELPRON. Our
best model outperforms all existing work, except
the BERTBASE baseline. Nevertheless, it is impor-
tant to note that BERTBASE has twice as many pa-
rameters and is trained on ten times more tokens
compared to each of our models. As mentioned by
Emerson (2020a), vector space models are good
at capturing topical relatedness, whereas the Pix-
ieAE uses FDS and learns different information.
Our large improvement over Emerson’s ensemble
model suggests that our formulation manages to
combine the best of both worlds.

The BERTBASE baseline achieves a new state
of the art. Nevertheless, our experiments show
BERT’s sensitivity to the template. While Emer-
son (2020a) discussed template tuning for BERT,
they did not mention punctuation, which we find
to be crucial for high performance. Aligning with
Kementchedjhieva et al. (2021)’s observation, we
found that BERT often generates a full stop with
over 90% probability when the template does not
end with one, although the [SEP] token already
indicates the end of a sentence. This shows that
ending the sequence with a full stop is more impor-
tant to BERT than grammaticality. Performance is
also degraded if either of the [CLS] or [SEP] tokens
are missing. In contrast, FDS models operate on
DMRS, abstracting over punctuation and inflection,
and extra tuning of templates is unnecessary.

Rimell et al. (2016) also designed RELPRON
to have confounders, non-corresponding terms and
properties with lexical overlap, e.g., ‘soil’ with
‘activity that soil support’ (which corresponds to
‘farming’) and ‘fuel’ with ‘phenomenon that re-
quire fuel’ (which corresponds to ‘propulsion’).
There are 33 confounders in the test set and Emer-
son (2020a) reported that a vector addition model
incorrectly ranked all the confounding properties
in the top 4 for the overlapping term. In contrast,
FDSAStanh, FDSASid and BERTBASE rank them
65st, 70th and 70th on average respectively.

5.4 Evaluation on Verb Disambiguation

GS2011 tests if a model is able to disambiguate
ambiguous transitive verbs given the context of a
subject and an object noun. It comprises 199 entries
and 2,500 judgements by 25 annotators. Each entry
of the data set provides an SVO triple (e.g., ‘ser-
vice meet need’) from the British National Corpus
(BNC) and a transitive landmark verb (e.g., ‘visit’
and ‘satisfy’) from WordNet (Miller, 1995). Using
a score from 1 to 7, the annotators rate the semantic
similarity of the verb pair when each of the verbs
takes the given subject and object. We also report
the results on GS2013, the re-annotated version of
GS2011 with a total of 9,950 judgements, where
each pair is annotated by 50 annotators.

GS2012 also tests for verb disambiguation. It ad-
ditionally includes an adjective for both the subject
and object in the entries of GS2011 (e.g., ‘social
service meet educational need’). It comprises 194
entries and 9,700 judgements by 50 annotators. A
good model is expected to utilize the adjectives for
better contextualization.

For each of these data sets, we measure the cor-
relation of models’ predictions with either separate
or averaged annotators’ judgements using Spear-
man’s ρ. We compute the inter-annotator agree-
ments (IAAs) by averaging the Spearman’s ρ of
each annotator’s judgement against the other anno-
tators’. IAA is believed to provide the theoretical
maximum value for any model’s performance.

5.4.1 Using FDS

We follow Emerson (2020a) that a score between a
verb pair is the log of the expected probability that
the landmark verb is true of the other verb pixie.

5.4.2 Results

We adopt BERTBASE as a baseline using the best
template tuned on the development set of REL-
PRON. Tables 2, 3 and 4 show the results.

Care must be taken when comparing the face val-
ues of correlations for two reasons. First, models
are trained on data of different sizes and sources.
Hashimoto and Tsuruoka (2015) mentioned that
their models trained on 1.9m sentences of BNC
yield comparable results to those trained on 33m
sentences from Wikipedia, which might be due to
GS2011 being produced based on BNC. Training
on a different corpus (e.g., Wikipedia) can better re-
flect how well a model generalizes. Hashimoto and
Tsuruoka (2016) showed that models trained on
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Model
Training Data ρ

Sources #Sentence (m) #Token (m) Separate Averaged

Kartsaklis and Sadrzadeh (2013); Grefenstette (2013); Van de Cruys et al. (2013); Polajnar
et al. (2015); Fried et al. (2015); Tian et al. (2016); Emerson and Copestake (2017) < 0.4 < 0.5

Hashimoto et al. (2014) B 6 - 0.41 0.50
Hashimoto and Tsuruoka (2015) W 80 [33] - - 0.614
Hashimoto and Tsuruoka (2016) (Ensemble) W+B 86 [35] - 0.524 0.680
Gupta et al. (2015) W+B+U - - 0.406 -
Gamallo (2019) W+B - 2,500 0.46 -
Wijnholds et al. (2020) U 130 3,200 - 0.54
Emerson (2020a) (PixieAE) W 55 [31] 900 [72] 0.406 0.504

BERTBASE W+O - 3,300 0.394 0.519
FDSAStanh W 55 [36] 900 [254] 0.438 0.553
FDSASid W 55 [36] 900 [254] 0.444 0.552

Inter-annotator agreement 0.578 0.739

Table 2: Results on GS2011. Sources: W: Wikipedia, B: BNC, U: ukWaC (Baroni et al., 2009), O: BookCorpus
(Zhu et al., 2015). Numbers of sentences and tokens are for raw data. In brackets are numbers after preprocessing;
for our models, we report the number of tokens contributing to semantic functions. ‘-’ means not reported.

Model
Training Data ρ

#Snt. (m) #Token (m) Sep. Avg.

Grefenstette and Sadrzadeh (2015) - - 0.26 -
Tilk et al. (2016) 138 - 0.34 -
Hong et al. (2018) - 2,000 0.367 -

BERTBASE - 3,300 0.426 0.562
FDSAStanh 55 [36] 900 [254] 0.439 0.573
FDSASid 55 [36] 900 [254] 0.457 0.601

Inter-annotator agreement 0.587 0.777

Table 3: Results on GS2013.

Model
Training Data ρ

#Snt. (m) #Token (m) Sep. Avg.

Grefenstette and Sadrzadeh (2015) - - 0.27 -
Tian et al. (2016) - - 0.33 -
Gupta et al. (2015) - - 0.357 -
Paperno et al. (2014) - 2,800 0.36 -

BERTBASE - 3,300 0.404 0.608
FDSAStanh 55 [36] 900 [254] 0.444 0.655
FDSASid 55 [36] 900 [254] 0.449 0.660

Inter-annotator agreement 0.459 0.687

Table 4: Results on GS2012.

Wikipedia and BNC produce disagreeing outputs,
and ensembling them is useful as seen in Table 2.

Second, there is no development set. It is not
easy to conclude from a large number of model vari-
ants with high variances in test set results. For in-
stance, Hashimoto et al. (2014) reported results for
10 settings, where 8 and 9 out of 10 have ρ < 0.35
for separate and averaged judgements respectively.
Gamallo (2019) presented 11 model variants and
FDSASid only loses to one of them.

All models trained on substantially more data
lose to our models across three data sets, ex-
cept Gamallo (2019)’s. Bootstrap tests on sep-
arate judgements across three data sets show

that FDSASid outperforms BERTBASE significantly
(p < 0.02). We also improve over the PixieAE
that adopted FDS on GS2011. FDSASid performs
nearly on par with IAA on GS2012, showing that
our approach appropriately handles adjectives.

Trained on similar sources and comparable
numbers of sentences, Hashimoto and Tsuruoka
(2015)’s model outperforms ours by a consider-
able margin. They concluded that the use of verb
matrices allows direct interaction between verbs
and their arguments which helps with verb disam-
biguation. In contrast, the binary semantic function
introduced in (11) allows very limited interaction
between the two pixies z0 and za, which in the verb
disambiguation case correspond to the verb and ar-
gument entities respectively. Two advantages of
this formulation are that the number of parameters
required grows just linearly with respect to the pixie
dimension, and the probit approximation in (12) is
still applicable. Increasing the expressiveness of
the function while keeping a reasonable number
of model parameters is an interesting avenue for
future work.

6 Conclusion

We analyzed the linguistic and computational chal-
lenges of Functional Distributional Semantics and
presented a new formulation where we have im-
proved: applicability to diverse natural language
structures, computational efficiency, compatibility
with contemporary models, and performances on
a range of semantic tasks. We believe this work
bridges truth-conditional semantics to practical dis-
tributional semantics at scale.
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Limitations

From a linguistic perspective, we only handle the
extensional fragment of natural language. Con-
sequently, modality and temporal information are
excluded from the framework. Nevertheless, we
train on encyclopediac text which is believed to be
a reasonable domain for the extensional restriction.

From a computational perspective, although the
reformulated model is already more computation-
ally efficient than previous implementations of
FDS, the variable sizes and topologies of input
graphs make efficient batching difficult. It is thus
not maximally optimized for training on GPUs
(statistics are given in §A.3). We currently set the
batch size to 1 and perform gradient accumulation
to attain a larger effective batch size.

The framework is now only applicable to English
because the training data is DMRS graphs parsed
from texts using the English Resource Grammar
(ERG). This implies: (1) sentences not parsable by
the grammar are not available for training, (2) the
correct parse for each sentence may not be ranked
top by the parser, and (3) for the model to be appli-
cable to other languages, we either need a broad-
coverage grammar on these languages for parsing
texts to semantic graphs, or adequate semantic de-
pendency graphs of sentences already annotated in
these languages. Still, the ERG is a broad-coverage
grammar so (1) is largely mitigated.

Ethics Statement

We anticipate no ethical issues directly stemming
from our experiments. However, as with all dis-
tributional semantic models, our trained model is
likely to have picked up social biases present in the
training corpus. Any real-world application of a
trained model would need to mitigate risks due to
such biases.
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A Training Details

A.1 Preprocessing

Predicates in DMRS can be divided into two
classes, namely abstract predicates and surface
predicates. Abstract predicates constitute a very
small class. They mostly represent grammatical
constructions (e.g., apposition and passivization)
and are ignored in this work. On the other hand,
surface predicates are exclusively introduced by
lexical entries, which include nouns, verbs, adjec-
tives, adverbs, adpositions, conjunctions and overt
quantifiers. As in previous work, we assume an
extensional model structure with entities being ex-
istentially quantified, so we ignore predications
that take scopal arguments., e.g., quantifiers and
modal verbs. Furthermore, the predicates are lem-
mas. Derivational and morphological distinctions
of word-forms are thus disregarded in the frame-
work. This alleviates data sparsity and aligns to
the extensional assumption without further tempo-
ral information from inflections, such as tense and
aspect.

To keep a reasonable size of vocabulary, we filter
out the semantic functions that occur fewer than
100 times and keep only the 100,000 most frequent
embeddings for the encoder. After that, we further
remove the DMRS graphs with only one distinct
predicate. A total of 60,081 semantic functions of
41,046 predicates are trained.
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A.2 Hyperparameters and Tuning
For the common hyperparameter values among all
models, we set the probability of dropout in the
encoder to 0.5, and model parameters are optimized
with gradient descent using the Adam optimizer.

For FDSAStanh and FDSASid, we set K to 32,
d to 300, and the dimension of the encoder’s em-
bedding to 300. We set β to 0 for FDSAStanh and
β for FDSASid to 0.01. The initial learning rates
of both the parameters in the encoder and seman-
tic functions are set to 0.001. The learning rates
are multiplied by 0.8 per each epoch. We perform
gradient accumulation over 128 batches of size 1.
We trained with distributed data parallelism using
3 GPUs, so the effective batch size is 384 and the
effective learning rates are 0.000333.

As mentioned in §5.3.2, the performance of
FDSAStanh peaks early and plateaus on the devel-
opment set of RELPRON within 2 epochs whereas
FDSASid is still improving after 6 epochs. Since
we train models in an unsupervised manner and the
only development set we have is from RELPRON,
we have to ensure that training is not stopped pre-
maturely based on the development set for evalua-
tion on all other test sets.

To ensure sufficient time for training, we set a
minimum number of epochs to be trained for each
of our models, and apply early stopping by taking
the performance on the development set of REL-
PRON at the end of it as a benchmark. Concretely,
if a later checkpoint performs better than the bench-
mark on the development set of REPLRON, we se-
lect such a checkpoint for evaluations. To take care
of different training dynamics, we set FDSAStanh
to train for a minimum of 3 epochs and FDSASid
for a minimum of 7 epochs, before performing the
early stops.

A.3 Computational Configurations
All models are implemented in PyTorch (Paszke
et al., 2019) trained with distributed data paral-
lelism on three NVIDIA GeForce GTX 1080 Ti
for a single run. Training a run of FDSAStanh and
FDSASid model takes about 540 and 1260 GPU
hours respectively.
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Abstract
Transformers have been shown to work well for
the task of English euphemism disambiguation,
in which a potentially euphemistic term (PET)
is classified as euphemistic or non-euphemistic
in a particular context. In this study, we ex-
pand on the task in two ways. First, we an-
notate PETs for vagueness, a linguistic prop-
erty associated with euphemisms, and find that
transformers are generally better at classifying
vague PETs, suggesting linguistic differences
in the data that impact performance. Second,
we present novel euphemism corpora in three
different languages: Yoruba, Spanish, and Man-
darin Chinese. We perform euphemism disam-
biguation experiments in each language using
multilingual transformer models mBERT and
XLM-RoBERTa, establishing preliminary re-
sults from which to launch future work.

1 Introduction

Detecting and interpreting figurative language is a
rapidly growing area in Natural Language Process-
ing (NLP) (Chakrabarty et al., 2022; Liu and Hwa,
2017). Unfortunately, little work has been done on
euphemism processing. Euphemisms are expres-
sions that soften the message they convey. They
are culture-specific and dynamic: they change over
time. Therefore, dictionary-based approaches are
ineffective (Bertram, 1998; Holder, 2002; Rawson,
2003). Euphemisms are often ambiguous: their
figurative and non-figurative interpretation is of-
ten context-dependent; see Table 1 for examples.
Thus, existing work refers to these expressions as
potentially euphemistic terms (PETs). State-of-the-
art language models such as transformers perform
well on many major NLP benchmarks. Recently,
an attempt has been made to determine how these
models perform in the euphemism disambiguation
task (Lee et al., 2022a), in which an input text is
classified as containing a euphemism or not. The
described systems report promising results; how-
ever, without further analysis and experimentation,

it is unclear what transformers are capturing in or-
der to perform the disambiguation, and the full
extent of their ability in other languages.

To address this, the present study describes two
experiments to expand upon the euphemism disam-
biguation task. In the first, we investigate a prag-
matic property of euphemisms, vagueness, and use
human annotations to distinguish between PETs
which are more vague (vague euphemistic terms, or
VETs) versus less vague. We then experiment with
transformers’ abilities to disambiguate examples
containing VETs versus non-VETs, and find that
performance is generally higher for VETs. While
we are unable to ascertain the exact reason for this
discrepancy, we analyze the potential implications
of the results and propose follow-up studies. In the
second experiment, we create novel euphemism
corpora for three other languages: Yorùbá, (Latin
American and Castilian) Spanish, and Mandarin
Chinese. Similarly to the English data, examples
are obtained using a seed list of PETs, and include
both euphemistic and non-euphemistic instances.
We run initial experiments using multilingual trans-
former models mBERT and XLM-RoBERTa, test-
ing their ability to classify them. The results es-
tablish preliminary baselines from which to launch
future multilingual and cross-lingual work in eu-
phemism processing.

2 Previous Work

In the past few years, there has been an interest in
the NLP community in computational approaches
to euphemisms. Felt and Riloff (2020) present
the first effort to recognize euphemisms and dys-
phemisms (derogatory terms) using NLP. The au-
thors use the term x-phemisms to refer to both.
They used a weakly supervised algorithm for se-
mantic lexicon induction (Thelen and Riloff, 2002)
to generate lists of near-synonym phrases for three
sensitive topics (lying, stealing, and firing). The
important product of this work is a gold-standard
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Non-euphemistic Euphemistic
Asked to choose between jobs and the environment, This summer, the budding talent agent was
a majority – at least in our warped, between jobs and free to babysit pretty much
first-past-the-post system – will pick jobs. any time.
Managers and scientists switch between jobs in private The couple say that they employ some great
industry and government in USA in a manner baristas and are looking to train more as the
perhaps not yet noticeable in India. business expands, they emphasise that it

is a job offering a great career and not just
for students and those between jobs.

Table 1: Euphemistic and non-euphemistic interpretations are context-sensitive.
Ambiguity of between jobs (Retrieved from the News on the Web Corpus, October 6, 2021)

dataset of human x-phemism judgements showing
that sentiment connotation and affective polarity
are useful for identifying x-phemisms, but not suf-
ficient.

While the performance of Felt and Riloff
(2020)’s system is relatively low and the range of
topics is very narrow, this work inspired other re-
search on euphemism detection. Thus, Zhu et al.
(2021) define two tasks: 1) euphemism detection
(based on the input keywords, produce a list of can-
didate euphemisms) 2) euphemism identification
(take the list of candidate euphemisms produced
in (1) and output an interpretation). The authors
selected sentences matched by a list of keywords,
created masked sentences (mask the keywords in
the sentences) and applied the masked language
model proposed in BERT (Devlin et al., 2018) to fil-
ter out generic (uninformative) sentences and then
generated expressions to fill in the blank. These
expressions are ranked by relevance to the target
topic.

Gavidia et al. (2022) present the first corpus of
potentially euphemistic terms (PETs) along with
example texts from the GloWbE corpus. They
also present a subcorpus of texts where these
PETs are not being used euphemistically. Ga-
vidia et al. (2022) find that sentiment analysis on
the euphemistic texts supports that PETs generally
decrease negative and offensive sentiment. They
observe cases of disagreement in an annotation
task, where humans are asked to label PETs as
euphemistic or not in a subset of our corpus text
examples. The disagreement is attributed to a vari-
ety of potential reasons, including if the PET was a
commonly accepted term (CAT). This work is fol-
lowed by Lee et al. (2022b) who present a linguisti-
cally driven proof of concept for finding potentially
euphemistic terms, or PETs. Acknowledging that
PETs tend to be commonly used expressions for a
certain range of sensitive topics, they make use of

distributional similarities to select and filter phrase
candidates from a sentence and rank them using a
set of simple sentiment-based metrics.

With regards to the euphemism disambiguation
task, in which terms are classified as euphemistic
or non-euphemistic, a variety of BERT-based ap-
proaches featured in the 3rd Workshop on Figura-
tive Language Processing have shown promising
results. Keh et al. (2022) and Kesen et al. (2022)
both show that supplying the classifier with in-
formation about the term itself, such as embed-
dings and its literal (non-euphemistic) meaning,
significantly boost performance, among other en-
hancements. In a zero-shot experiment, Keh (2022)
shows that BERT can disambiguate PETs unseen
during training (albeit at a lower success rate), sug-
gesting that some form of general knowledge is
learned, though it is unclear what.

3 VET Experiments

In this section, we discuss the concept of Vague
Euphemistic Terms (VETs), and subsequent exper-
iments. The linguistics literature often describes
euphemisms as either ‘more ambiguous’ or ‘vaguer’
than the non-euphemistic expressions they substi-
tute (Burridge, 2012; Williamson, 2002; Égré and
Klinedinst, 2011; Russell, 1923; Di Carlo, 2013).
We understand ambiguity as a countable property,
when an expression can have a certain number of
senses; whereas vagueness is not countable, a con-
tinuum of meaning or theoretically an infinite num-
ber of interpretations. However, we note that these
qualities are on a "spectrum", and may not be equal
for all euphemisms. See below for examples of
some euphemisms which may be considered to be
VETs, and others, non-VETs:

VAGUE: The funds will be used to help <neu-
tralize> threats to the operation and ensure our
success. (Counter? Peacefully or violently? Kill?
Some other form of removing power?)
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Non-euphemistic Euphemistic
pregnant woman woman in a certain condition
aged care institution home, hostel, house, cottage, village, residence
old age certain age
false statements alternative facts
war special military operation/campaign
we have to change and do something we aren’t used to we must reach beyond our fears
being out of work being in transition
a lack of consistent access to enough food for an active healthy life food insecurity
prison correctional facility
blind visually challenged, visually impaired

Table 2: Euphemisms are vaguer than the expressions they substitute.

VAGUE: They were really starting to like each
other, but did not know if they were ready to <go
all the way> yet. (Start dating? Have sexual
intercourse? Begin or complete some other
process?)
NONVAGUE: As part of their restructuring, the
company will <lay off> part of their workforce by
next week.
NONVAGUE: There is always gossip about who
<slept with> who on the front page of the magazine.

Additionally, Gavidia et al. (2022); Lee et al.
(2022b) observed that there are different kinds of
potentially euphemistic terms (PETs). One distinc-
tion they suggest is ‘commonly accepted terms’
(CATs), which are so commonly used in a par-
ticular domain that they may have less pragmatic
purpose (intention to be vague/neutral/indirect/etc.)
than other euphemisms. Some examples of PETs
which may be CATs are "elderly", "same-sex",
and "venereal disease". Humans may disagree
on whether these terms are euphemistic in con-
text, since CATs may be viewed as "default terms"
rather than a deliberate attempt to be euphemistic.
Notably, since many of the PETs under investiga-
tion are established expressions, we expect a fair
amount to be non-vague; i.e., modern speakers of
the language should precisely understand what the
term means.

The differences described above may be a fac-
tor in computational attempts to work with eu-
phemisms; e.g., some examples may be harder to
disambiguate. To investigate this, we assess trans-
formers’ performances on examples annotated to
be "vague" versus those that are "non-vague". How-
ever, defining and determining the relative vague-
ness of an expression is not a trivial task. Below, we
describe our methodology for obtaining vagueness
labels, experimental results and follow-up analyses.

3.1 Methodology

3.1.1 Vagueness Labels
To examine correlations between model perfor-
mance and vagueness, we first aim to label each
PET with a binary label (0 for non-vague, and 1 for
vague). Existing computational methods for mea-
suring vagueness are primarily lexically driven, us-
ing a dictionary of "vague terms", such as "approx-
imately" or gradable adjectives like "tall" (Guélor-
get et al., 2021; Lebanoff and Liu, 2018), and do
not fit our use case. Thus, we consider human-
annotation approaches. However, in discussions
with authors and annotators, we found that there
was significant disagreement on what is meant by
"vagueness", and how it should be defined for this
task. Lacking clear instructions for explicitly an-
notating vagueness, we opted for an indirect an-
notation task. In this task, we asked annotators to
replace the PET with a more direct paraphrase (if
possible), and use similarities in annotators’ para-
phrases as a proxy for "vagueness". Intuitively, if
annotators give dissimilar responses for a particular
PET, then this indicates the PET is open to multiple
interpretations, and thus a VET.

The way we computed the labels was as follows:

1. We supply annotators with a randomly se-
lected example of each PET from the Eu-
phemism Corpus; if a PET was ambiguous,
both a euphemistic and a non-euphemistic
example was supplied, resulting in an an-
notation task of 188 examples. A total of
6 linguistically-trained annotators were re-
cruited. Annotators were then supplied with
these instructions:

"For this task, you will read through text sam-
ples and decide how to paraphrase a certain
word/phrase in the text. Each row will contain
some text in the “text” column containing a
particular word/phrase within angle brackets
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Text Euph Label Paraphrases Cos Sim Vague Label
The violent Indian
<Freedom Fighters> who
fought the British were very
much this. [...]

1 revolutionaries, reformers,
anti-government activists,
insurrectionists, terrorists,

terrorists

0.53 1

[...] He’s <passed away>
but he started out as [...]

1 dead, died, died, died, died,
died

0.924 0

[...] were electrocuted for
<passing on> nuclear
information to Soviet
Russia [...] [...]

0 smuggling, leaking,
illegally spreading, giving,
passing on, giving away

0.330 1

At home, I wasn’t allowed
to watch certain movies
until I had reached <a
certain age>. [...]

0 an old enough age, a certain
age, grown mature enough,

maturity, adulthood, a
certain age

0.608 0

Table 3: Sample of annotation results. The "Paraphrases" column shows the six annotators’ responses, and the "Cos
Sim" column shows the cosine similarity scores between embeddings of the responses.

< >. In the “paraphrase” column, please try
to replace the word/phrase with a more direct
interpretation. If you can’t think of one, then
answer with the original word/phrase."

2. Sentence-BERT (Reimers and Gurevych,
2019) was then used to generate embeddings
of the annotators’ responses. The cosine sim-
ilarities between the embeddings were com-
puted for each example and acted as an au-
tomatic measure of similarity between re-
sponses. See Table 3 for sample responses
and the respective cosine similarity scores be-
tween them.

3. While this transformer-based similarity score
generally captured semantic similarity well
for strong cases of similarity or dissimilarity
(e.g., see rows 2 and 3 of Table 3), we found
that there were several "borderline cases" in
which the score did not accurately reflect
the semantic similarity between responses.
For instance, annotators sometimes "over-
paraphrased" non-euphemistic examples, pro-
viding responses with significant lexical differ-
ences (e.g., the non-euphemistic usage of the
word "expecting" was paraphrased as "expect-
ing", "anticipating", "foreseeing", etc.), that
led to a low cosine score, despite being seman-
tically similar to human judgment. Therefore,
based on an examination of such borderline
cases, we used the automatic method to assign
a label of 0 (non-vague) to examples with a

cosine score greater than 0.65, a label of 1
(vague) to examples with a score lower than
0.50, and manually annotated all examples in
between. See Table 3 for sample responses,
and the label they resulted in.

4. Lastly, these labels were generalized to the
rest of the dataset under the assumption that
euphemistic and non-euphemistic PETs are
either vague or non-vague, regardless of con-
text. For example, the euphemistic uses of
“passed away" or “lay off" are usually non-
vague, while “neutralize" and “special needs"
are usually vague. Table 4 shows the final
distribution of vagueness labels in our dataset
when using this procedure.

It should be noted that this is an experimen-
tal procedure for approximating human labels of
vagueness, in lieu of a more established method.
In particular, the generalization that all PETs are
vague or not regardless of context is a strong as-
sumption. We leave exploring alternate methods of
annotating vagueness for future work.

Vague Non-
Vague

Euphemistic 408 975
Non-Euphemistic 361 208

Table 4: Number of vague vs. non-vague examples in
the dataset
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3.1.2 Data and Model

The euphemism dataset used for the experiments
is the one created by Gavidia et al. (2022). A
few modifications were made to several examples
we believed to be misclassified. The final dataset
contained 1952 examples, of which 1383 are eu-
phemistic and 569 are non-euphemistic, spanning
128 different PETs.

The model used for all experiments was
RoBERTa-base (Liu et al., 2019). RoBERTa was
fine-tuned on the data using 10 epochs, a learning
rate of 1e-5, a batch size of 16; all other hyperpa-
rameters were at default values.

Using the vagueness labels, we run classifica-
tion tests in which RoBERTa is fine-tuned on both
vague and non-vague examples, and then tested
on both vague and non-vague examples. Then,
we compute performance metrics separately for
vague and non-vague examples in the test set for
comparison. In the training and test sets, the data
was split as evenly as possible across all labels
of interest to help eliminate the impact of class
imbalance on output metrics. Specifically, sam-
ples were randomly selected using the size of the
smallest subgroup (vague-euphemistic, nonvague-
euphemistic, etc.), and then evenly distributed into
training and test sets using an 80-20 split. For ex-
ample, for the vagueness data shown in Table 4,
208 is the size of the smallest subgroup, so 208 ex-
amples were randomly selected from all other sub-
groups for a total of 832 examples (664 train and
168 test); i.e., there were equal amounts of vague-
euphemistic, vague-non-euphemistic, etc. exam-
ples in both training and test sets. Additionally, the
number of unique/ambiguous PETs was approxi-
mately the same in all data splits.

3.2 Experimental Results and Observations

Table 5 shows the results of the VET experiment,
which are metrics (Macro-F1, Precision, and Re-
call) averaged across 10 different classification
runs. As aforementioned, in order to look at the
effect of vagueness, we compute metrics for vague
and nonvague examples separately; the first row
shows the average metrics for the vague test exam-
ples in each run, while the second row shows met-
rics for the non-vague test examples. We observe
that the performances are better for the examples
marked as vague, rather than non-vague, suggest-
ing that this is a meaningful distinction between
examples.

F1 P R
Vague 0.853 0.856 0.854

Non-vague 0.793 0.805 0.795

Table 5: Results from the vagueness experiments.

As a consequence of the annotation procedure,
the immediate conclusion is that examples contain-
ing non-vague PETs (i.e., those which annotators
interpreted similarly) are somehow harder to clas-
sify, while those containing VETs are easier. How-
ever, a concrete explanation of this result remains
elusive. An initial hypothesis was that non-vague
PETs may be more likely to be PETs which anno-
tators disagreed on in the original dataset (Gavidia
et al., 2022), but this was not necessarily the case.

An error analysis of the most frequently misclas-
sified examples leads us to a potential cause for the
comparatively poor performance of the non-vague
examples. We noted that a significant proportion of
misclassified examples were non-euphemistic ex-
amples (which had been consistently misclassified
as euphemistic by BERT). PETs in these exam-
ples appeared to co-occur with a relatively high
number of "sensitive words" - words relating to
sensitive topics that people may typically use eu-
phemisms for, such as death, politics, and so on. If
certain "sensitive words" are typically associated
with euphemistic examples, then examples where
this is not the case may mislead the classifier. In
an attempt to quantify this, we use the following
procedure:

1. Using a list of sensitive topics previously used
for euphemism work as a starting point (Lee
et al., 2022b), we come up with "sensitive
word list" comprising of a list of 22 words
we believe to represent a range of "sensitive
topics". See Appendix A for the full list.

2. For each example, we go through each word
and compute the cosine similarity with the
words in our "sensitive word list" using
Word2Vec (Mikolov et al., 2013). For every
comparison that yields a similarity score > 0.5,
we add a point to this example’s "sensitivity
score".

3. We then isolate the examples which were mis-
classified 10 or more times in the experiments,
and repeat the above.
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Table 6 below shows the results of this procedure.
Each row shows a particular subgroup (e.g., the first
row is for the euphemistic, vague examples), the
number of examples in the subgroup, and the mean
"sensitivty score" for examples in the subgroup.
The last column shows the score normalized by the
number of words in each example.

Euph Vague Data-
set

Size Mean
Score

Norm
Score

1 1 Full 408 7.94 0.126
1 0 Full 975 7.78 0.13
0 1 Full 361 5.59 0.094
0 0 Full 208 5.56 0.095
1 1 Err 21 3.57 0.056
1 0 Err 42 4.36 0.076
0 1 Err 45 7.09 0.114
0 0 Err 35 8.26 0.13

Table 6: Average sensitivity scores for each subgroup of
the full corpus (top 4 rows) versus frequently misclassi-
fied examples (bottom 4 rows).

The first 4 rows of the dataset show that for the
full corpus, sensitivity scores are higher for eu-
phemistic examples than for non-euphemistic, re-
gardless of vagueness. This suggests that, although
euphemisms are milder alternatives to sensitive
words, they tend to co-occur with other sensitive
words in the context.

In contrast, we observe that this trend is reversed
for the frequently misclassified examples (bottom 4
rows). That is, the misclassified euphemistic exam-
ples have an unusually low sensitivity score, while
non-euphemistic examples have an unusually high
score. If BERT has associated sensitive words with
the euphemistic label, then it may be "confused"
by non-euphemistic examples which have a high
occurrence of them, and vice versa. Intuitively, we
speculate that this happens more frequently with
non-vague examples, because usage of a non-vague
PET may correlate with decreased pragmatic intent.

Overall, there appears to be a correlation be-
tween the sensitivity score and misclassifed ex-
amples. Unfortunately, follow-up experiments in-
volving model interpretability and ablation did not
yield concrete results, so we cannot yet claim that
BERT is "paying attention" to sensitive words. We
leave a more comprehensive investigation to future
work. However, the vagueness distinction between
PETs indicates that there are linguistic differences
between examples that have a concrete impact on

model performance. Future work includes investi-
gating other pragmatic features of euphemisms in a
similar fashion, such as indirectness or politeness,
and in other languages besides English.

4 Multilingual Experiments

Euphemism disambiguation thus far has focused on
American English. In this section, we describe eu-
phemism disambiguation experiments run on mul-
tilingual data. For each of the different languages,
native speakers and language experts created a list
of PETs, collected example texts for each PET, and
annotated each text for whether the PET was being
used euphemistically given the context. We then
test the classification abilities of multilingual trans-
former models. The results are intended to show
whether multilingual transformer models have the
potential to disambiguate euphemisms in languages
other than English, and establish preliminary base-
lines for the task.

4.1 Datasets
The data collection and annotation for each lan-
guage is described below. Note that, while inter-
annotator agreement is reported by (Gavidia et al.,
2022), we did not have enough annotators to report
agreement for each language. However, we assume
that the agreement for other languages will be sim-
ilar to American English, and leave more precise
metrics for future work with more annotators.

4.1.1 Mandarin Chinese
Euphemisms are widely used in Chinese Mandarin
in both formal and informal contexts, and in spoken
and written language. It has been a social norm to
use euphemisms to express respect and sympathy,
and also to avoid certain taboos and controversies.
For example, Chinese speakers are accustomed to
use euphemisms to talk about topics such as death,
sexual activities and disabilities, as explicit and
direct narratives can be considered inappropriate or
disrespectful.

In collecting the PETs, terms used by mainly
ancient Chinese were excluded since the corpus is
contemporary. Also, the PETs were restricted to
single words and multi-word expressions, rather
than sentences (Zhang, 2019). The euphemistic
terms are generated based on the language knowl-
edge of the collector, who is a native speaker of
Mandarin Chinese. For the source corpus, we re-
ferred to an online Chinese corpus made by Bright
Xu (username: brightmart) on Github (brightmart,
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Non-euphemistic Euphemistic
放在手机上看又不方便。 / It is not convenient to read
it on the phone.

吃饭时，一人说去方便一下。 / During the meal, a
person went to use the bathroom.

方便了秦始皇的全国巡游。 / It made the nation-wide
tour convenient for Qin Shi Huang.

于是选择了就近的河边方便一下。 / So he chose to
relieve himself right by the river.

Table 7: Examples of euphemistic and non-euphemistic sentences in Mandarin Chinese

Non-euphemistic Euphemistic
Es perfecta para divertirse, pasar un buen rato y dejarte
llevar por una historia sin más pretensión. / It is perfect
to have some fun, have a good time and to let yourself
carry by an unpretentious story.

Con el propósito evidente de pasar un buen rato con ella.
La chica no era muy brillante, pero lo que le faltaba
de inteligencia le sobraba en curvas. / With the clear
purpose of having a good time with her. The girl was
not that brilliant, but her curves overshadowed her intel-
ligence.

Que los pocos recursos disponibles estaban comprometi-
dos para pagar las deudas ocultas. /That the few re-
sources are destined to pay off the hidden debt.

Para que jóvenes de pocos recursos logren alcanzar su
profesionalización en las aulas. /So that poor young
students find a way to become professionals at school.

Table 8: Examples of euphemistic and non-euphemistic sentences in Spanish

Non-euphemistic Euphemistic
Tá.iwò, é.gbo.n Fùnkè. rí àlejò ré. lánà tó wá láti ìlú Èkó. Obìnrin tí kò rí àlejò ré. .
Taiwo, Funke’s elder sibling saw her visitor who came
from Lagos yesterday.

The woman who does not see her menstruation.

A kò gbo. dò. dá.kè. . E. sara gírí, bàbá ti dáké. .
We should not be quiet. Be brave, father is dead.

Table 9: Examples of euphemistic and non-euphemistic sentences in Yorùbá

2019). The particular corpus used was 新闻语
料json版 (news2016zh) which consists of 2.5 mil-
lion news articles from 63,000 media from 2014 to
2016, including title, keyword, summary and text
body.

See Table 7 for examples of Chinese PETs.
For example, 方便 means "to use the bath-
room / to relieve oneself" when used euphemisti-
cally; and means "convenient" when used non-
euphemistically.

4.1.2 Spanish
Spanish, a Romance language, is the second most
spoken language in the world (Lewis, 2009). For
the sake of building a wide and robust corpus, it
was paramount considering all different dialects
of Spanish. Some of the countries considered are:
Equatorial New Guinea, Puerto Rico, Argentina,
Spain, Chile, Cuba, Mexico, Bolivia, Ecuador,
Paraguay, Dominican Republic, Venezuela, Costa
Rica, Colombia, Nicaragua, Honduras, Guatemala,
Perú, El Salvador, Uruguay, and Panama.

Euphemisms are highly used in Spanish on a
daily basis. Topics related to politics, employ-
ment, sexual activities or even death are widely
communicated with euphemistic terms. First, a
list of potentially euphemistic terms (PETs) was

created using a dictionary of euphemisms as main
reference (Garcia, 2000; Rodríguez and Estrada,
1999). For extracting PETs, we relied heavily
on the Real Academia Española (Real Spanish
Academy)1. The corpus we collected contains sen-
tences with PETS, PET label (euphemistic/non-
euphemistic), data source and country of origin.
For example: "Pasar un buen rato" meaning "to
have/spend a good time" can be used as both, eu-
phemistically and non-euphemistically. This term
could be used to express involvement on a sexual
activity or to spend a good time with a friend, fam-
ily or an acquainted. Furthermore, the phrase "Dar
a luz" meaning "to give birth" is another example
that comprises both uses. Women naturally give
birth to babies but women can also give birth to
wonderful ideas, so as any other human being. See
more examples in Table 8.

4.1.3 Yorùbá
Yorùbá is one of the major languages of Nigeria,
the most populous country on the African conti-
nent (Okanlawon, 2016). With over 50 million
language users as speakers, it is the third most spo-
ken language in Africa (Shode et al., 2022). There

1https://apps2.rae.es/CORPES/view/
inicioExterno.view
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Language Total
Examples

Euph
Examples

Non-
Euph

Examples

Total
PETs

Always-
Euph
PETs

Ambiguous
PETs

American English 1952 1383 569 129 71 58
Mandarin Chinese 1552 1134 418 70 46 24

Spanish 961 564 397 80 33 47
Yorùbá 1942 1281 661 129 62 69

Table 10: Statistics of multilingual datasets used for euphemism disambiguation experiments.

Language mBERT XLM-RoBERTa-base XLM-RoBERTa-large
F1 P R F1 P R F1 P R

American English 0.819 0.876 0.933 0.765 0.852 0.894 0.854 0.907 0.930
Mandarin Chinese 0.901 0.952 0.938 0.884 0.921 0.960 0.952 0.967 0.982

Spanish 0.747 0.781 0.816 0.765 0.799 0.819 0.776 0.813 0.826
Yorùbá 0.729 0.801 0.859 0.683 0.771 0.843 0.667 0.768 0.814

Table 11: Results of euphemism disambiguation experiments on the multilingual datasets.

are many different dialects of Yoruba spoken by
Yoruba people in Nigeria, Benin, and Togo, all of
which are tonal (change depending on tone) and
agglutinative (words are made up of linearly se-
quential morphemes) in nature.

Euphemisms are often used in everyday Yorùbá
language conversations. Speakers use them to com-
municate sensitive topics like death and physical
or mental health in a more socially acceptable man-
ner, and to show reverence for certain people or
occupations such as elders of the night which re-
fer to witches and wizards, prostitutes, and so on.
Euphemisms in Yorùbá are used to soften the harsh-
ness of situations; to report the death of an individ-
ual, speakers of the language mostly use indirect
or subtle sentences instead of saying it directly.

In NLP research, Yorùbá is considered as a low
resourced language because of the limited availabil-
ity of data in digital formats. There is no corpus
dedicated to Yorùbá euphemisms available online
so PETs were collected from different sources such
as news websites like BBC Yorùbá, Alaroye, re-
ligious sources including Yorùbá Bible, JW.org,
transcribed Muslim and Christian sermons, Yorùbá
wikipedia, Yorùbá Web corpus (YorubaWaC), blog-
posts, journals, research works, books, Global
Voices, Nigerian song lyrics, written texts writ-
ten by Yorùbá native speakers and social media
platforms such as tweets, Facebook public posts,
and Nairaland. Some samples of PETs are listed in
Table 9.

4.2 Methodology
From each language dataset, a maximum of 40 eu-
phemistic and non-euphemistic examples per PET
were randomly chosen to be in the experimental
dataset. This was done to in an effort to ensure
an overall balance of PETs in the data and reduce
skewed label proportions for each PET. We also in-
clude American English data, sampled in the same
manner, to provide a basis of comparison. The final
statistics for each dataset are shown in Table 10.

We test three multilingual transformer models:
mBERT (Devlin et al., 2018), XLM-RoBERTa and
XLM-RoBERTa-large (Conneau et al., 2020). The
hyperparameters used were the same as those de-
scribed in 3.1.2. A stratified 5-fold split is used to
create 5 different train-test splits of each dataset,
which includes every example while preserving the
80-20 ratio used in previous experiments.

4.3 Results and Observations
Table 11 shows the performance of each model.
The metrics reported are macro-F1 (F1), precision
(P), and recall (R), averaged across 5 experiments.

We note several things about the results: (1)
All languages performed at least decently, indi-
cating that multilingual BERT models pick up on
something to disambiguate euphemisms in each
language. (2) As expected, XLM-RoBERTa-large
generally performed better than XLM-RoBERTa-
base, which consistently performed worse than
mBERT. (3) Because of differences in each lan-
guage’s dataset, the results are not directly com-
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parable. We aim to make the experimental setup
more consistent for future work, but some present
inconsistencies include:

• The Chinese data is the only one in which
the PET is consistently "identified" (i.e. sur-
rounded) by angle brackets <>, which the clas-
sifier may have used to its advantage. (Empiri-
cally, we notice that such "identifiers" improve
performance.)

• The proportion of non-euphemistic examples
to the entire dataset was the smallest for
Chinese (27%), followed by English (29%),
Yorùbá (34%) and Spanish (41%). This, along
with the number of ambiguous PETs, may re-
flect the relative "difficulty" of disambiguation
for each language.

• While mBERT is pretrained on Yorùbá data,
the XLM-RoBERTa models are not. Thus,
any sort of disambiguation capabilities shown
by the XLM-RoBERTa models are notable.

5 Conclusion and Future Work

This study presents an expansion of the euphemism
disambiguation task. We describe our method for
annotating vagueness, and show that this kind of
pragmatic distinction may reveal interesting trends
in BERT’s ability to perform NLU. Namely, BERT
performs better for PETs labeled as VETs, which
leads us to the potential result that BERT may be
associating the presence of "sensitive words" to eu-
phemisms. Corroborating this result and exploring
additional properties of euphemisms are left for
future work.

The multilingual results show that BERT models
can already disambiguate euphemisms in multiple
languages to some extent, and establish a baseline
from which to improve results. While continuously
expanding the multilingual corpora is a must, a
number of modeling aspects can be investigated
as well. For instance, error analyses can be run
to reveal potential misclassification trends in each
language, and data and modeling improvements
that were shown to work for American English can
be attempted on other languages. In general, such
investigations may be used to suggest useful cross-
lingual features for PET disambiguation, and more
broadly, universal properties of euphemisms.

Limitations

Euphemisms are culture and dialect-specific, and
we do not necessarily investigate the full range
of euphemistic terms and topics covered by our
selected languages. Even for "English", for in-
stance, we do not explore euphemisms unique to
"British English", though that warrants a study of
its own. Additionally, as aforementioned, differ-
ences in the multilingual dataset render the results
not directly comparable. For example, there are
few large, structured corpora of Yorùbá, so the data
was taken from a variety of sources, as opposed to
the other languages. Additional limitations prevent
some analyses, such as limited ability to identify
the PET in Yorùbá due to loss of diacritics.
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A List of Words used to Represent Sensitive Topics

Listed below are the 22 "sensitive words" used to compute a sensitivity score for each example in the
corpus:

[’politics’, ’death’, ’kill’, ’crime’, ’drugs’, ’alcohol’, ’fat’, ’old’, ’poor’, ’cheap’, ’sex’, ’sexual’, ’employ-
ment’, ’job’, ’disability’, ’pregnant’, ’bathroom’, ’sickness’, ’race’, ’racial’, ’religion’, ’government’]
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Abstract

We tackle the problem of monolingual phrase
alignment conforming to syntactic structures.
The existing method formalises the problem
as unordered tree mapping; hence, the align-
ment quality is easily affected by syntactic am-
biguities. We address this problem by expand-
ing the method to align parse forests rather
than 1-best trees, where syntactic structures
and phrase alignment are simultaneously iden-
tified. The proposed method achieves efficient
alignment by mapping forests on a packed
structure. The experimental results indicated
that our method improves the phrase alignment
quality of the state-of-the-art method by align-
ing forests rather than 1-best trees.

1 Introduction

Monolingual phrase alignment, which identifies se-
mantically corresponding phrase pairs in sentences,
is a fundamental technique useful for paraphrase
recognition (Das and Smith, 2009), textual entail-
ment recognition (MacCartney et al., 2008; Heil-
man and Smith, 2010), question answering (Wang
and Manning, 2010), and interpreting semantic tex-
tual similarity (Agirre et al., 2015; Li and Srikumar,
2016). Its ability to declare overlapping informa-
tion across sentences is also useful for summari-
sation (Brook Weiss et al., 2021) and for interac-
tive document exploration (Shapira et al., 2017;
Hirsch et al., 2021). There are two approaches to
phrase alignment: one aligns chunks of arbitrary
spans (e.g., n-grams) (Yao et al., 2013; Ouyang
and McKeown, 2019; Lan et al., 2021) while the
other targets on syntactic phrases (Arase and Tsujii,
2017, 2020). In this study, we take the latter ap-
proach to identify phrasal paraphrases conforming
to syntactic structures that allow modelling sen-
tences based on syntax (Socher et al., 2013; Tai
et al., 2015).

∗This work was completed at Osaka University.

[Person name] made this statement at the Karachi Shipyard when talking with reporters

[Person name] gave this statement while speaking to media persons at Karachi Shipyard

Figure 1: Phrase alignment example by the proposed
method (corresponding nodes are colour-coded). Our
method aligns a source (top) and target (bottom) parse
forests simultaneously determining their structures.

The current state-of-the-art syntactic phrase
alignment (Arase and Tsujii, 2020) has formulated
the phrase alignment as the unordered tree map-
ping problem between trees of source and target
sentences.1 Their method realised an efficient align-
ment with a solid theoretical background by adopt-
ing the constrained tree edit distance algorithm
(Zhang, 1996), which aligns syntactic trees. How-
ever, their experiments were limited to using man-
ually assigned gold syntactic trees, disregarding
the effects of syntactic ambiguities that cause parse
errors in practical parsers.

We address this problem by expanding the
method proposed by Arase and Tsujii (2020) to
align parse forests. Specifically, our method con-
siders the likelihood of both syntactic structures
and phrase alignment, i.e., it simultaneously identi-
fies the syntactic structures of input sentence pairs
and phrase alignment within. Figure 1 illustrates
phrase alignment by our method, where the trees
show syntactic structures of the source (top) and
target (bottom). The alignment is colour-coded;
the same colour nodes are pairs. For example, the
pair of orange nodes represent that verb phrases
‘made this statement’ and ‘gave this statement’ are
paraphrases. Remarkably, in the source tree, the

1We refer to one sentence of a pair as a source and another
as a target for the sake of explanation.

449



prepositional phrase ‘at the Karachi Shipyard’ (the
pink node) is correctly attached to the preceding
verb phrase (the orange node) because the attach-
ment ambiguity is resolved by referring to the tar-
get. In contrast, the 1-best tree failed to derive this
structure.

The experimental results on the standard cor-
pus indicated that the proposed method improves
the phrase alignment quality of the state-of-the-art
aligning 1-best parse trees. We also conducted a
manual analysis that revealed attachment errors can
be addressed by forest alignment.

2 Preliminary: Tree Alignment

Arase and Tsujii (2020) has formulated phrase
alignment as the unordered tree mapping. They
adopted the constrained tree edit distance (CTED)
algorithm (Zhang, 1996) to identify optimal map-
pings of phrases in polynomial time. The CTED al-
gorithm is based on dynamic programming; hence
their method recursively aligns phrases from leaves
to root nodes of source and target syntactic trees.

In the alignment algorithm, alignment of node i
and j, denoted as ⟨i, j⟩, incurs a cost defined by a
function γ(⟨i, j⟩) → R. In their method, the cost
function is the cosine distance between phrase vec-
tors of spans covered by i and j, where the vectors
are computed by pooling token representations ob-
tained by a fine-tuned pre-trained language model.
A phrase is allowed not to have correspondence,
i.e., null alignment, which is modelled as alignment
to an empty node τϕ. The cost of null alignment is
predetermined and given as a hyperparameter λϕ.

We denote Ti as the subtree rooted at node i. If
we delete the node i from Ti, there remain a set of
subtrees whose root nodes have been the children
of i: {iℓ|i1, · · · , ini}, where ni is the number of the
children. When we do not assume the order among
these subtrees, they constitute an unordered forest,
denoted as Fi. The CTED algorithm recursively
computes the minimum cost to align subtrees of T s

i

and T t
j as follows.

D(T s
i , T

t
j ) =

min





D(τϕ, T
t
j ) + min

1≤k≤nj

{D(T s
i , T

t
jk
)−D(τϕ, T

t
jk
)},

D(T s
i , τϕ) + min

1≤ℓ≤ni

{D(T s
iℓ
, T t

j )−D(T s
iℓ
, τϕ)},

D(F s
i , F

t
j ) + γ(⟨i, j⟩).

(1)

Specifically, Equation (1) computes the minimum
cost among the cases regarding the alignment of i
and j, i.e., ⟨τϕ, j⟩, ⟨i, τϕ⟩, and ⟨i, j⟩, which corre-
spond to the first, second, and the third expressions,

respectively. Notice that the last case (i.e., ⟨i, j⟩)
requires the alignment cost of forests under these
nodes, i.e., F s

i and F t
j . The cost to align F s

i and
F t
j is computed as follows.

D(F s
i , F

t
j ) =

min





D(τϕ, F
t
j ) + min

1≤k≤nj

{D(F s
i , F

t
jk
)−D(τϕ, F

t
jk
)},

D(F s
i , τϕ) + min

1≤ℓ≤ni

{D(F s
iℓ
, F t

j )−D(F s
iℓ
, τϕ)},

min
M(i,j)

γ(M(i, j)).

(2)

Here, the first two expressions correspond to null
alignment. The third expression identifies the con-
strained edit distance mapping between F s

i and F t
j ,

denoted asM(i, j), of the minimum cost. It can
be efficiently solved as the minimum cost maxi-
mum flow problem on a graph constructed based
on these forests. For more details of the alignment
algorithm, please refer to (Arase and Tsujii, 2020).

Some phrases may have long-distance correspon-
dences (Heilman and Smith, 2010; Arase and Tsu-
jii, 2017) that cannot be monotonically composed
of alignment of descendant nodes, which hence
cannot be identified by the CTED algorithm. Arase
and Tsujii (2020) align such phrases by heuristic-
based post-processing.

3 Proposed Method: Forest Alignment

We expand the alignment method proposed by
Arase and Tsujii (2020) to align parse forests in-
stead of trees. The syntactic structures of the input
sentence pair are determined simultaneously with
phrase alignment. A naive approach to align forests
is considering combinations of all candidate trees
and then finding the best one. However, this pro-
cedure is prohibitively computationally expensive
considering the number of valid tree structures. We
achieve efficient forest alignment by expanding the
CTED algorithm to perform tree mapping on a
packed forest structure (Miyao and Tsujii, 2008).

Syntactic Plausibility Studies on parallel pars-
ing (Burkett et al., 2010; Choe and McClosky,
2015) have shown that syntactic ambiguity can be
resolved by referring to sentences parsed in parallel
with each other. Inspired by these studies, we con-
sider the likelihood of parsing in the alignment cost
function. Specifically, Equation (2) is expanded to
consider the parsing likelihoods:

D̂(F s
i , F

t
j ) = D(F s

i , F
t
j )− λs

S(T s
i )+S(T t

j )

2 , (3)
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made this statement at the Karachi Shipyard

made this statement at the Karachi Shipyard

gave this state while speaking to media persons

Source Target

gave this state while speaking to media persons

(a)

(b)

Figure 2: Packed forest structure efficiently stores possible forests under the same nodes.

where S(·) indicates the likelihood of a subtree
obtained from a syntactic parser, and λs is a hyper-
parameter that balances both terms.

Alignment on Packed Forests The packed for-
est structure corresponds to the packed charts in
the CFG parsing and can represent an exponen-
tial number of trees with a polynomial number of
nodes. Specifically, a packed forests under the node
i, PFi = {F i

k}k, stores different possible syntactic
structures (forests) under i. Figure 2 shows ex-
amples. Each box corresponds to a node where
different possible structures are stored. In the left
box, the source can be composed by combining (a)
a verb phrase ‘made’ and noun phrase ‘this state-
ment at the Karachi Shipyard’ and (b) a verb phrase
‘made this statement’ and prepositional phrase ‘at
the Karachi Shipyard’.

Algorithm 3.1 illustrates our alignment mecha-
nism. It computes the cost to align all combina-
tions of possible structures on the packed forests
and memorizes only the one with the minimum
cost. That is, only the pair with the minimum cost
needs to be considered in the alignment of the up-
per nodes. In the examples in Figure 2, there are
2 possible structures in the source and target. The
proposed method computes the costs of the 2× 2
combinations and stores only the minimum cost
and the corresponding structures.

4 Experiment

We evaluate the performance of syntactic phrase
alignment of the proposed method compared to the
previous state-of-the-art.

4.1 Evaluation Corpus

As an evaluation corpus, we used Syntactic Phrase
Alignment Dataset for Evaluation (SPADE) (Arase

Algorithm 3.1 Packed forest mapping

Input: Packed (unordered) forests under the node
i and j: PFs,i and PFt,j

1: cm ←∞ ▷ Minimum cost
2: MF← ∅ ▷ Pair of forests
3: for all F s,i

k ∈ PFs,i do
4: for all F t,j

ℓ ∈ PFt,j do
5: c← D̂(F s,i

k , F t,j
ℓ ) ▷ Eq. (3)

6: if c < cm then
7: cm ← c
8: MF← {F s,i

k , F t,j
ℓ }

9: Compute D(T s
i , T

t
j ) with cm,MF ▷ Eq. (1)

and Tsujii, 2018).2 SPADE consists of English
paraphrase sentence pairs assigned by their gold
constituency trees annotated by linguistic profes-
sionals and phrase alignment identified by three
native and near-native English speakers. It pro-
vides 50 sentence pairs as a development (dev) set
and 151 sentence pairs as a test set. While these
numbers of sentences may look small, the numbers
of phrase pairs are sufficiently large to have statis-
tically meaningful observations, i.e., 8, 708 phrase
pairs and 25, 709 phrase pairs in the dev and test
sets, respectively. Remind that our method does not
require training; only its hyper-parameters should
be tuned using the dev set.

4.2 Evaluation Metrics

Metrics for Alignment Quality Alignment re-
call (ALIR), alignment precision (ALIP), and
alignment F-measure (ALIF) are the standard eval-
uation metrics defined by SPADE. ALIR evaluates
how gold-standard alignment can be replicated by
automatic alignment, and ALIP measures how au-
tomatic alignment overlaps with alignment pairs

2
https://catalog.ldc.upenn.edu/LDC2018T09
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identified by at least one annotator.

ALIR =
|{h|h ∈ H ∧ h ∈ G ∩ G′}|

|G ∩ G′| , (4)

ALIP =
|{h|h ∈ H ∧ h ∈ G ∪ G′}|

|H| , (5)

where H is a set of identified pairs, G and G′ are
those obtained by two respective annotators, and
the operator | · | counts the elements in a set. ALIF
computes the harmonic mean of ALIR and ALIP.
Because SPADE provides alignment pairs by three
annotators, there are three combinations for G and
G′. The final ALIR, ALIP, and ALIF values are
calculated by taking the averages.

Note that these evaluation metrics count null
alignment pairs also; hence, ALIP performs dif-
ferently from the general precision in that stricter
models will have lower ALIP scores. This is be-
cause a stricter model aligning only a small num-
ber of phrases ( ̸= τϕ) increases the number of null
alignment pairs, making |H| larger.

Metric for Phrase Structure We also evaluated
the correctness of phrase structures as the phrase
span matching ratio (PSMR) against the gold trees.
Specifically, PSMR computes the ratio of gold
spans that exactly match with the spans in aligned
trees. We compute the macro-average of PSMR of
all source and target sentences.

4.3 Baseline
We compared our method to the state-of-the-art
(Arase and Tsujii, 2020) on the SPADE corpus
(denoted as TreeAligner hereafter). Their origi-
nal experiments aligned gold syntactic trees anno-
tated in SPADE. To replicate a realistic scenario
where gold syntactic structures are unavailable,
we used an off-the-shelf syntactic parser, namely,
Enju (Miyao and Tsujii, 2008).3 We evaluated
TreeAligner by inputting the 1-best trees obtained
by Enju as the baseline. In contrast, the proposed
method (denoted as ForestAligner hereafter) takes
parse forests in the packed representation obtained
by Enju as input.

4.4 Model Settings
For replicating TreeAligner, we used the released
codes of the authors.4 We implemented our Fore-
stAligner based on them using Pytorch5. As the

3
https://mynlp.is.s.u-tokyo.ac.jp/enju/

4
https://github.com/yukiar/phrase_alignment_cted

5
https://pytorch.org/ (version 1.7.1)

Structure ALIR ALIP ALIF PSMR

TreeAligner Gold tree 88.2 86.6 87.4 100.0

TreeAligner 1-best tree 79.8 76.7 78.2 93.1
ForestAligner Forest 81.1 79.3 80.2 93.4

Table 1: Experimental results on the SPADE test set (%)
(the performance of TreeAligner on the gold trees were
borrowed from the original paper.)

phrase representation model in both TreeAligner
and ForestAligner, we commonly used the bidirec-
tional encoder representations from transformers
(BERT) (Devlin et al., 2019) fine-tuned by Arase
and Tsujii (2020)6. After inputting a sentence
pair, a phrase representation was obtained by mean-
pooling the token representations consisting of the
corresponding phrase.

The hyperparameters were tuned to maximise
the evaluation metrics on the SPADE dev set. For
TreeAligner, the hyperparameter of the null align-
ment cost, λϕ, was set to 0.75 to maximise ALIF
on the dev set. For ForestAligner, λϕ and λs were
set to 0.80 and 3.0 × 1011,7 respectively, to max-
imise the arithmetic mean of ALIF and PSMR on
the dev set.

4.5 Results

Table 1 shows the experimental results. The ALIR,
ALIP, and ALIF scores of TreeAligner significantly
dropped when aligning 1-best trees compared to
the case of aligning gold trees (the first row). Our
ForestAligner improved ALIR by 1.3%, ALIP by
2.6%, and ALIF by 2.0% compared to TreeAligner
with 1-best trees, which confirms the effectiveness
of forest alignment.

For PSMR, ForestAligner moderately improved
TreeAligner by 0.3%, which shows the parse er-
rors in 1-best trees can be fixed through forest
alignment. To investigate what kind of parse er-
rors were addressed and newly introduced by for-
est alignment, we randomly sampled 40 sentence
pairs where the PSMR score increased (20 sen-
tences) and decreased (20 sentences) compared
to TreeAligner. One of the authors observed re-
sultant trees and manually categorised them into
error types. Table 2 shows the results, indicating

6
https://zenodo.org/record/4686663#.YpcR2S_3LJQ

(Model: BERT1F_TripletMarginLoss_margin-1.0_lr-3e-
05_mean_100_ft-bert-base-uncased.pkl)

7The λs takes a large value due to different ranges of
alignment cost and parsing likelihood. It was searched in the
range of 1.0× 1011 to 9.0× 1011.
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Error type Improved Deteriorated

PP attachment 8 8
NP attachment 5 1
Modifier attachment 1 4
Coordination 2 2
Other 4 5

Table 2: Error analysis of syntactic structures

ForestAligner tends to fix noun phrase attachment
errors while increases modifier attachment errors.
The prepositional phrase attachment is a mixture
of both improvements and deterioration.

Figure 1 illustrates alignment results by Fore-
stAligner. For the source sentence, the correct struc-
ture of composing a phrase ‘made this statement
at the Karachi Shipyard’ with a child verb phrase
‘made this statement’ (the orange node) and prepo-
sitional phrase ‘at the Karachi Shipyard’ (the pink
node) were identified. In contrast, in the 1-best
tree, the prepositional phrase was wrongly attached
to a noun phrase of ‘this statement’ to compose
a phrase ‘this statement at the Karachi Shipyard’,
which prevented alignment of ‘made this statement’
and ‘gave this statement’ (the orange node pair).

5 Discussion: Alignment of Less-Similar
Sentences

As discussed in Section 1, phrase alignment is cov-
eted by various applications like paraphrase and
textual entailment recognition and question answer-
ing. Such applications are different from SPADE,
i.e., alignment of paraphrases, in that they require
alignment of less-similar sentences, too. It is not a
trivial difference as it sounds.

As a preliminary experiment, we aligned the
test set8 of the semantic textual similarity (STS)
benchmark (Cer et al., 2017) and converted align-
ment costs into similarity scores. Specifically, we
normalised the root-level alignment costs by sen-
tence lengths9 and scaled them to be compatible
with the STS labels, i.e., from 0 (dissimilar) to 5
(equivalent). As a result, Pearson’s correlation co-
efficient of the predicted scores and human labels
was limited to 0.51, which is comparable to esti-
mating sentence-level similarity using static word
embeddings.10

8We excluded 7 sentence pairs that Enju failed to output.
9Alignment costs obviously depend on sentence lengths.

10
https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark

Human label [0, 1) [1, 2) [2, 3) [3, 4) [4, 5]

Prediction 3.7 3.6 3.6 3.3 4.0

Table 3: Average similarity scores per human labels
converted from ForestAligner’s alignment costs

Table 3 shows the average similarity scores per
human label. While ForestAligner outputs a notice-
ably high score on the most similar sentence pairs,
other scores are almost uniform on less similar sen-
tences. We conjecture that one of the factors caus-
ing this phenomenon is the lack of exposure to less-
similar examples during development. The same
can happen on existing phrase alignment methods
trained on annotated corpora consisting of para-
phrasal or highly similar sentence pairs (Thadani
et al., 2012; Lan et al., 2021). The distributions
of alignment pairs are largely different in seman-
tically similar and less-similar sentences, where
alignment is dense in the former but sparse in the
latter. Hence, alignment methods trained only on
similar sentences may tend to align phrases that
should be unaligned.

While there are only a few corpora annotating
alignment on less-similar sentences (Ernst et al.,
2021), this direction is worth exploring to apply
alignment techniques in practical applications. In
future work, we will create corpora of this kind and
explore robust phrase alignment on both similar
and less-similar sentences.
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Abstract

In this work we build upon negative results
from an attempt at language modeling with pre-
dicted semantic structure, in order to establish
empirical lower bounds on what could have
made the attempt successful.1 More specifi-
cally, we design a concise binary vector rep-
resentation of semantic structure at the lexical
level and evaluate in-depth how good an incre-
mental tagger needs to be in order to achieve
better-than-baseline performance with an end-
to-end semantic-bootstrapping language model.
We envision such a system as consisting of a
(pretrained) sequential-neural component and
a hierarchical-symbolic component working to-
gether to generate text with low surprisal and
high linguistic interpretability. We find that (a)
dimensionality of the semantic vector represen-
tation can be dramatically reduced without los-
ing its main advantages and (b) lower bounds
on prediction quality cannot be established via
a single score alone, but need to take the distri-
butions of signal and noise into account.

1 Introduction

It is well-established by now that large pretrained
Transformer language models (LMs) can obtain de-
tectable knowledge about linguistic structure from
raw text distributions (Jawahar et al., 2019; Tenney
et al., 2019a, inter alia), thus continuing a long
line of research in collecting solid empirical ev-
idence for the Distributional Hypothesis (Harris,
1954; Firth, 1957). This is often presented in stark
contrast to symbolic linguistic theories and repre-
sentations, which put more emphasis on higher-
level structural principles. In practice, purely neu-
ral models have achieved groundbreaking perfor-
mances in a wide range of NLP tasks (Devlin et al.,
2019; Brown et al., 2020) in a much more scal-
able manner than seems to be possible with sym-
bolic ones. Still, theoretical linguistic questions

1Our experimental code is available at https://
github.com/jakpra/SufficiencyLowerBounds.

But the test may prove to be more sensitive
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Figure 1: Example of incremental semantic graph slices
obtained from a PTG graph and information flow in a
(hypothetical) semantic-bootstrapping LM. In this ex-
ample, the dark-red-shaded token ‘to’ is the current LM
target; the light-yellow-shaded cells to the left and be-
low directly influence the LM decision as in P+22; and
the pink arrow marked with ? stands for the intermedi-
ate slice prediction step, for which we want to establish
sufficiency lower bounds.

about the relationship between neural implemen-
tation and higher-level symbolic patterns are far
from being answered definitively. A common crit-
icism of purely distributional models is that they
generally lack grounding, because they do not have
access to the external world, while meaning is in-
herently a relation between a linguistic form and
a communicative intent about something external
to language (Bender and Koller, 2020; Trott et al.,
2020; Merrill et al., 2021; Lenci, 2023).2

We aim to contribute to this discussion by build-
ing upon results by Prange et al. (2022, henceforth
P+22), who found that incremental LM perplexity
can be significantly improved by providing hier-
archical semantic structure as an additional token-
level input (fig. 1 and §2.1). Indeed, the integration
of symbolic and distributional approaches has long
been seen as a possible and necessary step towards
the full legitimacy of Distributional Semantic Mod-
els (DSMs) as models of meaning (Boleda and Her-
belot, 2016; Emerson, 2020), and there is recently

2But see Abdou et al. (2021) for a more optimistic view,
backed by empirical results.
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more and more evidence supporting the benefits of
hybrid neuro-symbolic models (e.g., Li and Sriku-
mar, 2019; Li and Rush, 2020), especially for com-
positional and long-tail generalization (Weißenhorn
et al., 2022; Prange et al., 2021) and interpretability
(Opitz and Frank, 2022).

P+22’s results seem to suggest that at least some
aspects of symbolic semantic structure may not be
contained in the incremental LM’s representation—
i.e., that these aspects might constitute an instance
of grounding, which is helpful for language under-
standing, but not fully learnable from text alone.
Alternatively, we consider the possibility that the
crucial semantic information could be learned, ex-
tracted, or induced to a sufficient extent, if only
explicit supervision were provided at training time.
The notion of sufficiency, in our case, relates to
the potential of improving over a baseline LM (§3).
This paints a grand vision of semantic bootstrap-
ping, i.e., a scenario in which the LM first com-
mits to local semantic structure based on the re-
vealed sentence prefix (pink ? arrow in fig. 1) and
then uses its prediction to reduce the next token’s
perplexity. The work by P+22 established upper
bounds by using an oracle setup where rich seman-
tic structure inputs are known to be correct, not
only during training but also at test time. As the
main contribution of this work, assuming the local
semantic bootstrapping scenario is feasible at all,
we look instead for lower bounds on what would
constitute sufficient substance and accuracy in pre-
dicted semantic structure for such an improved end-
to-end neuro-symbolic LM.

Concretely, we conduct two analyses: First,
we make P+22’s original formulation of seman-
tic graph slices (SGS) more parsimonious (§5). We
extract binary vectors (B-SGS) representing only
bare-bones (unlabeled and unanchored) structural
relations (§5.2) and find that they are sufficient for
improving LM perplexity over a strong baseline in
the oracle setting (§5.3). Second, we measure how
the language modeling benefits of B-SGS are af-
fected by increasing levels of noise, aiming to emu-
late various imperfect taggers (§6). Interestingly, a
comparison of two different shuffling mechanisms
(§6.2) as well as a simple pilot tagger (§6.1) re-
veals that how errors are distributed throughout
the data is much more important than overall er-
ror rate. Based on our observations, we establish
sufficiency lower bounds of B-SGS for use in a se-
mantic bootstrapping LM. We begin by providing

the reader with relevant background information
from the literature (§2), defining concisely what
we mean by sufficiency lower bounds (§3), and
describing our data set and general experimental
setup (§4). Finally, we discuss our findings and
limitations within the bigger picture of ongoing
research directions (§7).

2 Background

2.1 Language Modeling with Linguistic
Graph Slices

P+22 proposed a type of ensemble language model,
consisting of a pretrained Transformer and a neu-
ral encoder of symbolic linguistic structure, both
jointly predicting the next token in a sentence,
given the revealed prefix. They extract token-level
“slices” from sentence-level graphs.

An incremental linguistic graph slice is defined
as a connected subgraph minimally including a
node directly anchored in the target token (or a
preceding token if no such node is available) and
extending vertically to include parents, grandpar-
ents, and children, horizontally to include left sib-
lings, and diagonally to include children’s par-
ents (“co-parents”) and parents’ siblings (“aunts”).
This is illustrated in fig. 1: The original sentence-
level graph is shown above the sentence, and ex-
tracted token-level slices are shown below. Slices
are then encoded as fixed-length vectors, includ-
ing both edge label information and token an-
chor information. Out of two encoding methods,
R-GCN (Schlichtkrull et al., 2018) and a simple
concatenation- and averaging-based one, the lat-
ter is much faster at roughly equal model size and
roughly equal LM quality, so we choose it in our
experiments. In essence, the embeddings of all pre-
ceding tokens related to the target token in one of
the structural ways listed above (parents, siblings,
etc), as well as their one-hot-encoded edge labels,
are concatenated in a specific pre-defined order. If
there are multiple instances of a given relation, or
multi-token anchors, their vector representations
are averaged. Missing relations are zero-padded.
The final slice vector is fed through a simple feed-
forward encoder in order to compute logits over
the vocabulary, which are finally added to the LM’s
logits before softmax normalization. The resulting
distribution is used to compute the loss (during
training) or predict the next token (at test time).

In their study, P+22 compared linguistic repre-
sentations of several different flavors, including
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syntactic and dependency frameworks. Here we
focus on two semantic frameworks, PTG and EDS
(§4.1), which structurally go beyond bilexical de-
pendencies, and thus we use the term semantic
graph slice (SGS). We further extend P+22’s work
by explicitly comparing their oracle setup against
several versions of SGS with varying degrees of
richness and correctness, stemming from either sig-
nal reduction (§5), automatic prediction (§6.1), or
controlled noise induction (§6.2).

2.2 Related Work

Linguistic Analyses of LMs. A large number of
studies in the LM literature has been dedicated to
the analysis of the linguistic knowledge they en-
code. A common methodology employs probing
tasks, where a simple model is asked to solve a
task requiring linguistic knowledge using a rep-
resentation derived from a LM with little or no
specific linguistic supervision. If the model is suc-
cessful, we then can infer that the LM encodes that
knowledge (see Linzen et al., 2016; Tenney et al.,
2019a,b; Hewitt and Liang, 2019; Liu et al., 2019;
Wu et al., 2020; Chersoni et al., 2021; Geiger et al.,
2021, inter alia). Probes can be particularly insight-
ful when applied contrastively to sets of minimal
sentence pairs that differ in their grammatical ac-
ceptability (Warstadt et al., 2020; Hu et al., 2020;
Kim et al., 2019). Our approach of treating seman-
tic structure as an input rather than an output of a
neural LM is orthogonal to probing, but can sim-
ilarly be used for inferences about what kind of
knowledge is (not) already encoded in the baseline
model. Recently, an interpretability method based
on contrastive explanations (Jacovi et al., 2021)
has been proposed to explain LM predictions on
sets of minimal sentence pairs that differ in their
grammatical acceptability, showing that the salient
tokens for the LM preference of the correct form
are quite well aligned with human knowledge of
grammatical phenomena (Yin and Neubig, 2022).

Incremental Supertagging and Parsing. Pre-
dicting linguistic structure incrementally has been
explored especially in the context of strongly-
formulated lexico-syntactic grammar formalisms
like CCG, in the form of incremental supertagging
(Hassan et al., 2009; Ambati et al., 2015; Stanoje-
vić and Steedman, 2019, 2020). Having word-level
structural categories built in to the formalism has
many advantages for both modeling efficiency and
linguistic interpretability. But also Penn Treebank-

style constituency syntax trees can be parsed in-
crementally using, e.g., language model grammars
(Sartran et al., 2022; Dyer et al., 2016) or word-
level beam search (Stern et al., 2017). Finally,
another line of work aims to backpropagate lin-
guistic knowledge into the LM itself by optimizing
incremental structure prediction as an auxiliary ob-
jective (Qian et al., 2021; Glavaš and Vulić, 2021;
Kitaev et al., 2022).

Model Explanations and Cognitive Predictions
using Linguistic Symbols. Hale et al. (2018)
proposed a method relying on probabilistic gen-
erative grammars (Dyer et al., 2016) and word-
synchronous beam search that allows to extract
predictive metrics of processing difficulty, such as
surprisal and entropy. The authors showed that, us-
ing such metrics as predictors in a regression model,
it was possible to predict the amplitude effects of
several components of naturalistic EEG. Ek et al.
(2019) enhance a LSTM-based LM with syntactic,
semantic tags and dependency tree depth features,
and reported that the additional linguistic knowl-
edge did not increase the correlation with human
ratings in a sentence acceptability task, although
syntactic tags and dependency tree depth were help-
ful for lowering perplexity. Stanojević et al. (2021)
used CCG-based predictors to improve a regres-
sion model of fMRI time course in six different
brain regions, over and above predictors obtained
with a simple context-free phrase structure gram-
mar. Finally, Opitz and Frank (2022) presented
a technique to partition the BERT sentence em-
beddings into different sub-embeddings, each one
covering meaningful semantic aspects of sentences
as represented in the Abstract Meaning Representa-
tions (AMR) framework. Experiments on zero-shot
sentence and argument similarity tasks proved that
the approach maintains a high-level of correlation
with human judgements, while making the sentence
embeddings interpretable.

3 Sufficiency Lower Bounds

We introduce the concept of sufficiency3 lower
bounds on the strength of a data signal ξ in order
for a system Σ, which takes ξ as an input, to reach
a certain performance threshold θ. In this work,
the system Σ is a neuro-symbolic LM as proposed

3We do not consider necessity lower bounds here. I.e., we
do not say that data signals of worse substance than our lower
bounds cannot be sufficient. We say that distributions of at
least lower-bound quality are probably sufficient.
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by P+22 (§2.1), ξ is an SGS vector representation
(§5) for each (sub)word token in a text corpus D,
and θ is the baseline LM performance (measured as
surprisal, §4.3). Establishing such bounds is impor-
tant because ξ’s richness may need to be reduced
in one way or another—either by theoretical design
(because small, simple representations and models
are desirable; §5), or by practical necessity (due
to unavoidable noise in predicting ξ; §6). A main
takeaway from our exploratory study is that it is
important to identify (i.e., define or measure) can-
didate bounds in a way that considers the signal’s
configuration as a whole, rather than focusing on a
single aggregate metric.4 Approached empirically,
this involves computing (multivariate) distributions
over ξ as instantiated in a data set D, such that
when the system Σ is run on D, the quality of its
output is at least θ (i.e., it outperforms a baseline).
Simply put, if the signal ξ surpasses the sufficiency
lower bound in D, it will likely enable the system
Σ to reach performance θ or better.

4 Experimental Setup

4.1 Data
We use the jointly-annotated corpus of the cross-
framework meaning representation parsing (MRP)
shared tasks (Oepen et al., 2019, 2020), which con-
sists of large parts of the English Wall Street Jour-
nal corpus. In particular, we examine two symbolic-
structured linguistic representation frameworks,
Prague Tectogrammatical Graphs (PTG; Sgall
et al., 1986; Böhmová et al., 2003; Hajič et al.,
2012) and Elementary Dependency Structures
(EDS; Oepen and Lønning, 2006; Flickinger, 2000;
Copestake et al., 2005), each of them focusing on
different aspects of semantic predicate-argument
structure. EDS derives from Minimal Recursion
Semantics (MRS) and thus rather explicitly en-
codes nominal/referring expressions due to MRS’
foundation in variable binding. PTG, on the other
hand, is somewhat more guided by syntax and
(case-)semantic roles. We use the same training
split as P+22, but deviate slightly in using only
the first 500 sentences of their development set
and reporting most of our results and analyses on
this subset. This is because we are reporting in-
cremental results and wish to reserve substantial

4This somewhat circular-looking reasoning warrants full
disclosure: We were already proponents of holistic, detailed
evaluations over single-number benchmarks before this study,
but were still surprised by most of our results, particularly the
contrast between §6.1 and §6.2.

unseen data for unbiased full evaluation in future
work. For comparison, we report a limited amount
of aggregate scores over the test set in table 2.

4.2 Model Implementation

Our models (see §2.1 for a conceptual overview)
and experiments are implemented in Python, build-
ing on P+22’s codebase.5 In addition to standard
neural language modeling libraries used therein
(PyTorch, huggingface), we also leverage the
Pyro-PPL library (Bingham et al., 2018) to imple-
ment the variational autoencoder (§6.1).

We follow P+22 in using GPT-2 (Radford et al.,
2019, 124M parameters) as the pretrained incre-
mental language model and a simple multilayer per-
ceptron (MLP) to encode and project slice vectors
into the vocabulary. These logits are then added
to the LM’s before taking the softmax to obtain
the final next-token prediction distribution. During
training, tokens are sampled from a categorical dis-
tribution and contribute to the VAE’s overall ELBO
loss. While this technically is a slight difference to
P+22, who used categorical cross-entropy loss, we
are able to closely reproduce their reported base-
line perplexity on the test set (≈ 46 ± 0.1). As the
language modeling baseline we finetune GPT-2 in
the target domain (on the raw WSJ text) without
any exposure to SGS, as did P+22.

4.3 Evaluation

We measure language modeling performance in
terms of surprisal or perplexity (PPL), which is
computed as the exponential of the model’s token-
averaged negative log-likelihood (NLL).6 When-
ever we report aggregate performance over all data,
we use PPL (tables 2 and 3), but in the detailed
analysis of smaller subsets of data we switch to
NLL for better readability (fig. 6). For both met-
rics, lower is better. To evaluate B-SGS correctness,
we consider binary micro-accuracy over individual
vector dimensions, macro-accuracy over tokens, as
well as edge precision, recall, and F1-score.

5 Representation Distillation: What
makes semantic structure valuable to
language modeling?

Currently well-known as a popular and effective
deep learning technique (e.g., Polino et al., 2018;
Sanh et al., 2019), distillation (of neural models)

5
https://github.com/jakpra/LinguisticStructureLM

6See Limitations section for shortcomings of this metric.
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aims to reduce redundancy and unwieldiness (§5.1)
while retaining core information. Here we apply
a similar concept to a family of symbolic linguis-
tic representations, SGS. Rather than relying on a
blackbox training process to transfer knowledge
from a large pretrained model to a smaller model,
we manually design a less detailed variant of SGS,
which we call B-SGS (§5.2). We use ground-truth
B-SGS as additional input to the incremental LM
as before and find that it does constitute a lower
bound of sufficient richness (§5.3).

5.1 Unparsimoneousness of Fully Labeled and
Anchored SGS

While the very rich SGS representation used by
P+22 (which, here, we call F(ull)-SGS; §2.1 and
fig. 2 top) proved to be a very potent next token
predictor, this power comes at the cost of being
rather unwieldy and, as it turns out, redundant.

As input. Recall from §2.1 that, in F-SGS, pre-
ceding tokens that are semantically related to each
target token (via edges in the graph) are encoded by
concatenating their embeddings (in a specific order
and with zero-padding to preserve their structural
relation, e.g., parent vs. sibling, see §2.1). It is ob-
vious at first glance that this quickly leads to very
large slices and models (P+22 report an average
influx in models size of 50-60 million parameters
for SGS encoding alone). Furthermore, linguistic
formalisms vary greatly in the number of semantic
relation types (edge labels) they distinguish: e.g.,
10 in EDS vs. 72 in PTG. And while this num-
ber does not seem to be directly associated with
model performance, it still makes the comparison
somewhat blurry. In addition to their excessive
size, F-SGS vectors also seem to be partially re-
dundant with a pretrained LM, since P+22 found
in their ablation experiments that the correct edge
label assignment is not essential for achieving high
language modeling performance.

As output. In addition to oracle-augmented lan-
guage modeling, a major use case of SGS we work
towards is to incrementally predict them (cf. §1
and §6). This is, however, a non-trivial structured
prediction problem. It consists at least of edge
prediction and relation classification (cf. Liu et al.,
2019). And while on the surface, this is reminiscent
of a task that could be solved with an edge-factored
parser (Kiperwasser and Goldberg, 2016; Dozat
and Manning, 2017), our scenario is much more
complex due to the multitude of structural relations
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Figure 2: Deriving Full and Binary semantic graph slice
(SGS) vectors from the PTG subgraph for the token ‘to’
in fig. 1. The continuous anchor dimension would be
filled, e.g., in the SGS for the tokens ‘test’ and ‘prove’,
which each share the rest of their slice with their respec-
tive preceding tokens. Node 5⃝ in the slice for ‘may
prove’ is an example of a co-parent.

(not just parents), the possibility of multiple parents
for each node, abstract nodes not directly anchored
in a single token, as well as incrementality. In-
deed, it is more akin to supertagging (Bangalore
and Joshi, 1999; Clark and Curran, 2004, §2.2) but
without the formal guarantees of a mildly context-
sensitive grammar formalism like TAG or CCG. In
our early exploration with simple multilayer per-
ceptron (MLP) classifiers and a combination of
loss functions (categorical cross-entropy for labels;
cosine similarity and/or attention loss for token-
to-token anchoring), we found it very difficult to
train a model to convergence. We suspect that full
SGS prediction warrants more complex modeling,
optimization, and inference mechanisms, which we
leave to future work.

5.2 Reducing SGS to Binary Structural
Relations

The challenges described above prompt us to dras-
tically simplify the SGS encoding. We propose
to collapse both edge labels and anchor-token em-
beddings into mere binary indicators of whether
an edge of a given structural relation type (flat
subword continuation, parent, sibling, grandparent,
aunt, child, co-parent) exists, resulting in binary
semantic graph slices, or B-SGS (fig. 2).7

7While each node may have multiple relatives of the same
type (e.g., 2 parents and 3 siblings), a single binary dimension
for each type could only indicate the existence of at least one
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A P P+ O S T C R

UD .11 .34 0. .24 .31 .17 .34 0.
DM .33 .48 .21 .19 .24 .09 .25 .21

PTG .43 .75 .07 .69 .42 .41 .41 .10
EDS .30 .69 .51 .17 .29 .09 .26 .22

Table 1: Relation-wise density of B-SGS vectors in the
development set. A: continued anchor, P: parent, P+: 2
or more parents, O: grandparent, S: sibling, T: aunt, C:
child, R: co-parent. UD and DM are shown for reference
(cf. Liu et al., 2019, §6.1).

Data statistics. We report average density of ma-
jor SGS dimensions (= relation types) in table 1.
Note in particular that EDS and PTG differ sub-
stantially in the types of structures they encode,
with PTG being denser on average. EDS is quite
similar to DM because they are both derived from
the same underlying formalism. In contrast to EDS,
PTG, and DM graphs, which are generic DAGs,
UD graphs are strictly bilexical dependency trees,
leading to necessarily empty P+ and R dimensions.

5.3 Validating LM Performance with Oracle
B-SGS

Setup. We train for up to 10 epochs, with early
stopping based on development set perplexity. See
§4 for more details.

Results. Table 2 shows that although B-SGS per-
plexity is slightly worse than with F-SGS—which
is to be expected given the drastic reduction of the
input signal—it still clearly outperforms the non-
symbolic baseline. This suggests that the most cru-
cial signal contributed by SGS in general is, in fact,
the bare-bones hierarchical structure itself. And
while P+22’s ablation analysis already suggested
that the grouping into different edge labels may
be less important, it is quite surprising that even
the information about which other tokens the target
token is hierarchically-related to is not necessary
to improve language modeling with SGS.

A possible explanation can be found in the fact
that the baseline LM already has extensive gra-
dient representation of parts-of-speech, syntactic
functions, and semantic roles (namely, in its dense
hidden states and attention distributions). What it

such instance. We follow P+22 in allocating additional ‘low-
resolution’ dimensions for certain relation types to indicate the
existence of 2 or more relatives. This is illustrated for parents
(P+) in table 1 but otherwise omitted (e.g., from fig. 2) for
simplicity. Note that a node having multiple parents is distinct
and independent from it having one or more co-parents (i.e.,
other parents of the node’s children).

PTG EDS

Pretrained GPT-2 59.3
Domain-finetuned (baseline) 46.1

Gold F-SGS 26.8 24.7
Gold B-SGS (ours) 33.9 28.0

Table 2: Comparing test set LM perplexity (lower is
better) with our Binary slices against Fully labeled/
anchored ones (P+22).

might be lacking, then, is any discrete representa-
tion, and in particular a commitment to discrete and
complex semantic structure seems to be beneficial.

Gold B-SGS is thus a sufficiency lower bound.

6 Noise Robustness: How accurate should
bootstrapped semantic structure be in
order to improve a LM?

In a pilot experiment, we integrate into the P+22
model B-SGS prediction. As illustrated in fig. 3,
this is an intermediate step, the output of which
is now used as input to next-token prediction in-
stead of the ground truth slice. We find that while
our relatively simple model (§6.1) produces B-SGS
outputs of seemingly reasonable overall quality (in
terms of micro-accuracy and F-score), they are not
sufficient for supporting LM performance. This
prompts us to actively search for lower bounds
of sufficient correctness by artificially inducing
various types and levels of noise into gold B-SGS
inputs (§6.2). We do find several bounds, but learn
that what makes them sufficient has less to do with
their single-number correctness and more with intri-
cate details of their overall noise distribution (§6.3).

6.1 Pilot Prediction

Setup. Since we are interested in lower bounds
and we are running an exploratory study, we do
not perform extensive model engineering. The fol-
lowing description is purely intended for clarity
and replicability rather than as a state-of-the-art
model proposal. We decide on a variational autoen-
coder (VAE; Kingma and Welling, 2013), where
sampling from the latent space mediates between
the LM’s hidden state and the sigmoid-activated
B-SGS dimensions (fig. 3). This setup is motivated
by the high uncertainty involved in the task (we pre-
dict the symbolic structure of a token that has not
been observed yet, and there may be much genuine
ambiguity). All encoders, decoders, and projec-
tors within the VAE, besides GPT-2, are simple
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Figure 3: Our simple variational autoencoder model.
We project the encoding of observed (solidly shaded)
previous words w<i into latent space and sample hidden
states z⃗i. Predicted graph slices g⃗i and target tokens
ŵi are supervised during training but unobserved at
test time. P+22 used ground truth slices g⃗∗i instead of
predicted ones. The standard LM is a component in
both versions.

feed-forward MLPs. B-SGS prediction is trained
deterministically with binary cross-entropy loss.8

We train the slice predictor for up to 10 epochs with
early stopping based on dev set F-score, and then
train the SGS-augmented LM as before.

Results. As shown in fig. 4, SGS prediction per-
formance is best in layers 8 (PTG) and 9 (EDS).
This is in line with previous studies on probing
semantic structure (e.g., Liu et al., 2019; Jawahar
et al., 2019; Tenney et al., 2019a), which obtained
the best performances in middle/high layers. How-
ever, even these best predictions cannot outperform
the finetuned LM baseline in the augmented lan-
guage modeling setting (compare black solid and
red dashed lines in fig. 5).

Validation. Prediction micro-accuracies (.84 for
PTG, .90 for EDS; last row table 3) are in the
same order of magnitude as Liu et al. (2019)’s bi-
nary edge prediction results for UD and DM, two
representation frameworks featured in the litera-
ture much more frequently than PTG and EDS.
Although there are many differences in task and ex-
perimental setup (dependencies vs. constituencies,
single-parent vs. B-SGS prediction; cf. table 1),
we find this to be a valuable sanity check for both
us and the reader in lieu of a proper baseline.

6.2 Artificial Noise

Why is our pilot system not sufficient? Maybe
prediction accuracy just needs to be better? We
investigate by using shuffled gold B-SGS as in-
puts to the LM and systematically altering several
characteristics of the shuffling routine. This style of

8We also experimented with Bernoulli sampling, but to no
success.
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Figure 4: Graph slice prediction performance on the
development set by LM layer. P = precision (propor-
tion predicted edges correct), R = recall (gold edges
predicted), F = F1-score (harmonic mean of P and R).

control task is inspired by Hewitt and Liang (2019);
Dubossarsky et al. (2018).

We consider two different shuffling mechanisms:
(a) Shuffling the node-to-word anchor mapping of
graphs before vector extraction (i.e., which slice
corresponds to which word token, cf. P+22). This
guarantees well-formed graphs but may be too op-
timistic since we only shuffle within each sentence.
Thus we also consider a more aggressive option:
(b) Randomly switching bits (= whether or not a
given edge type exists) in the slice vectors extracted
from gold graphs.

For both, we also produce varying degrees of
noise. Namely, whenever we are about to shuffle a
graph anchor or vector bit, we decide to instead re-
tain the correct assignment with probability pGold.

Results. Table 3 shows how the different shuf-
fling conditions affect B-SGS correctness. As ex-
pected, within-sentence graph anchor shuffling is
generally much more optimistic than bit-switching.
By definition, pGold directly determines micro-
accuracy in bit-switched slices, whereas in anchor-
shuffled slices, pGold is more closely correlated
with macro-accuracy. LM perplexity of each condi-
tion is shown in fig. 5. Note that the signal strength
of bit-switching is symmetric around .5. This is
an intuitive corollary of it being a binary signal
(though macro-accuracy and F-score naturally con-
tinue to decline with pGold < .5, as shown exem-
plarily for values .1 and 0.).

First, we identify conditions that beat the
domain-finetuned LM baseline from fig. 5, and
then consult table 3 to find their corresponding slice
quality. This results in the following sufficiency
lower bounds (marked with asterisks in table 3):
Shuffled graphs with pGold ∈ {.9, .8, .7, .6, .5}
for both PTG and EDS as well as pGold ∈
{.4, .3, .2, .1, 0.} for EDS; and bit-switched vec-
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Figure 5: Dev set perplexity (lower is better) of noise-
interpolated B-SGS LMs.

tors with pGold ∈ {.9, .8, .2, .1, 0.}, which can be
generalized |pGold − .5| ≥ .3.

6.3 Detailed Analysis

Unexpectedly, shuffled slices with clearly worse
overall accuracy than predicted ones (table 3) sill
yield much better perplexity (fig. 5). This leads us
to the following hypotheses which we address in or-
der. For brevity, we focus only the comparison be-
tween predicted and bit-switched with pGold = .8,
because this condition seems to be a good trade-off
between matching or slightly beating the PPL base-
line and realism in terms of closeness to predicted
in terms of overall accuracy. Consider fig. 6.

Hypothesis: The noise of shuffled slices is uni-
formly distributed over tokens whereas the noise of
predicted slices is distributed similarly as baseline
LM surprisal.
Average F-score of predicted B-SGS does in-
deed decrease as baseline LM surprisal increases
(fig. 6b). However, contrary to our expectation, the
same is true for the F-score of uniformly shuffled
slices (fig. 6d)! Thus, the distribution of F-score
means over suprisal bins alone does not explain the
difference.

Hypothesis: Due to high-surprisal tokens having
low B-SGS correctness, we create a noisy feedback
loop which worsens LM surprisal in particular for
already high-surprisal words (open-class content
words) without gaining enough advantage on low-
surprisal words.
We find quite the opposite: Both predicted and
shuffled slices help in particular for very-high-
surprisal tokens, despite the higher average slice
noise (fig. 6c+e). In contrast, predicted slices tend
to slightly increase surprisal for low-surprisal to-
kens. And since low-BL-surprisal tokens make up
the vast majority of the data (fig. 6a), this slight in-
crease might be enough to confuse the LM beyond
baseline. Another crucial factor might be variance

PTG EDS

MaA MiA F LB MaA MiA F LB

Gold 1.00 1.00 1.00 * 1.00 1.00 1.00 *

Shuffled graph anchors
pGold = .9 >.99 >.99 >.99 * .95 .99 .97 *
pGold = .8 .88 .97 .94 * .81 .97 .91 *
pGold = .7 .60 .93 .86 * .65 .95 .84 *
pGold = .6 .54 .92 .83 * .53 .93 .76 *
pGold = .5 .36 .87 .72 * .34 .88 .63 *
pGold = .4 .23 .83 .64 ? .25 .87 .56 *
pGold = .3 .18 .81 .60 − .19 .85 .49 *
pGold = .2 .12 .80 .56 − .17 .84 .48 *
pGold = .1 .10 .79 .55 ? .14 .83 .44 *
pGold = 0. .08 .78 .53 − .13 .82 .41 *

Bit-switched vectors
pGold = .9 .17 .90 .81 * .17 .90 .75 *
pGold = .8 .02 .80 .66 * .02 .80 .58 *
pGold = .7 <.01 .70 .53 ? <.01 .70 .44 ?
pGold = .6 <.01 .60 .42 − <.01 .60 .34 −
pGold = .5 0. .50 .32 − 0. .50 .26 −

...
...

...
pGold = .1 0. .10 .05 * 0. .11 .05 *
pGold = 0. 0. <.01 <.01 * 0. .01 .02 *

Predicted .18 .84 .68 − .29 .90 .68 −

Table 3: Correctness F1-score (F), accuracy at the macro
(token-level, MaA) and micro (bit-level, MiA) levels)
of B-SGS with various levels of noise (measured on the
dev set). The LB columns indicate whether a condition
is a sufficiency lower bound (*=yes, ?=maybe, −=no),
i.e., if its corresponding PPL beats the baseline (fig. 5).

in slice correctness, which is generally much higher
in predicted slices than in shuffled ones (fig. 6b+d).

Most affected words. We manually inspect the
data to get an idea of how predicted B-SGS benefits
the LM the most. The top 10 tokens in terms of
both baseline NLL and ∆ NLL (bottom right re-
gion of fig. 6c) are dominated by (recurring) named
entities and dates, which are likely just an artifact
of overfitting. After filtering these out, we find that
the highest-baseline-NLL tokens are mostly nouns,
adjectives, and verbs that are either rare themselves
(e.g., hopscotched, instrumentation) or used in a
rare construction (paying thin compliments). In
contrast, both PTG and EDS B-SGS reduce NLL
the most for verbs, particularly in participle con-
structions (dividing, has begged, will be relocated).

7 Discussion and Conclusions

We proposed a general framework for semantically-
enriched language modeling. Our proposal aims
to provide a new perspective on qualitative distri-
butional linguistic analysis, expanding upon prior
work in linguistic analysis of neural models in sev-
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Figure 6: Box-and-whiskers plots of distributions over dev set tokens of B-SGS quality (F1-score) and effect on LM
surprisal (∆ NLL), binned by baseline (BL) NLL. × markers are means and lines within boxes are medians.

eral ways (§7.1). We implemented and tested this
framework with GPT-2 and semantic graph slices
(SGS) from two formalisms, finding interesting
patterns with potential impact for meaning repre-
sentation design and low-resource modeling (§7.2).

7.1 General Framework

Probing and related methods evaluate language
models based on their ability to predict linguistic
representations from text. Although this is a rela-
tively practical setup which has already produced
many fascinating and replicable findings, it has the
disadvantage that results need to be interpreted rel-
ative to both the linguistic framework governing
the output and the specific probing architecture. In
contrast, the approach of Prange et al. (2022) takes
linguistic representations as an input and evaluates
the language model directly on its native language
modeling task. The main problem with their oracle
setup is that it is unrealistic to have ground truth
linguistic structures available at test time.

We argue for unifying the advantages of both
directions, by considering what is in essence a
concatenation of the two: a pipeline in which the
output of a structure prediction model (similar to
probing, except that it may be supervised) is fed
back into the LM, enabling comparable evaluation
on the raw text itself. This makes it possible to
identify shortcomings of the LM and/or benefits
of the linguistic representation quantitatively and
qualitatively, by modifying either the probing archi-
tecture or the linguistic representation itself until
LM performance starts or stops improving. The
lower bounds of this continuum in particular (in
contrast to upper bounds) have many theoretical
and practical implications, since they separate the
wheat from the chaff when it comes to the effi-

ciency/effectiveness trade-off for model and rep-
resentation. Our definition of sufficiency lower
bounds in terms of the signal’s data distribution
in §3 is intentionally kept high-level and flexible
to stimulate adaptations of the idea for a variety
of use cases. While here we take an exclusively
empirical approach, the framework may lend itself
to formally-provable accounts as well.

7.2 Concrete Take-aways

In our experiments with GPT-2 (§5 and §6), we
were able to crystallize the simple (unlabeled and
unanchored) discrete hierarchical semantic struc-
ture of PTG and EDS as both beneficial to language
modeling and robust to certain types of noise. We
also found, though, that measuring prediction qual-
ity via a single aggregate score hides important
aspects of the distributions of signal and noise, to
the extent of potentially nullifying LM improve-
ments. While the respective structures of PTG and
EDS differ from each other in terms of density, re-
lations encoded (§5.2), prediction accuracy (§6.1),
and LM benefit (§6.2), the types of words they help
the LM with the most are similar (§6.3).

As a nice side-effect from §5, removing the ex-
plicit token anchoring from SGS also makes it more
applicable to unanchored semantic representations
such as AMR (Banarescu et al., 2013). Note, how-
ever, that we still need some source of basic anchor-
ing information (e.g., from an automatic aligner) in
order to assign a slice to each token.

Finally, based on our findings in §6.3 that rare
high-surprisal words most positively affected by
even noisily SGS-enhanced language modeling, we
are hopeful that our method may be particularly
helpful for the Zipfian tail at a small cost to the
majority of data.
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Limitations

No guarantees. As stated in §3 and substanti-
ated in §6, sufficiency lower bounds tend to be non-
trivial, multifaceted configurations. We explore this
to some extent (we find, e.g., that overall correct-
ness scores alone, without variance, are not reliable
identifiers of sufficiency lower bounds), but not
exhaustively. To make stronger guarantees rather
than just optimism, we need to precisely define
when a candidate distribution is ‘similar enough’
to a known lower bound (e.g., via goodness-of-fit).

Practicability of semantic bootstrapping. We
do not present a complete working system yet. It
could be that sufficiently distributed performance
can only be achieved with more intricate struc-
tured decoding mechanisms (e.g., Viterbi or beam
search), which would negatively affect running
time and thus usability as an end-to-end LM.

Limited evaluation of LM quality. Our eval-
uation of LM quality has been limited to the ef-
fects of the predicted graph slices on the per-
plexity metric. Alternative evaluations adopting
psycholinguistically-inspired metrics, such as the
correlation with human norms collected from cloze
completion tasks, might yield different results (Hao
et al., 2020).
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Abstract

Words of Estimative Probability (WEP) are
phrases used to express the plausibility of a
statement. Examples include terms like proba-
bly, maybe, likely, doubt, unlikely, and impossi-
ble. Surveys have shown that human evaluators
tend to agree when assigning numerical prob-
ability levels to these WEPs. For instance, the
term highly likely equates to a median proba-
bility of 0.90±0.08 according to a survey by
Fagen-Ulmschneider (2015). In this study, our
focus is to gauge the competency of neural lan-
guage processing models in accurately captur-
ing the consensual probability level associated
with each WEP. Our first approach is utilizing
the UNLI dataset (Chen et al., 2020), which
links premises and hypotheses with their per-
ceived joint probability p. From this, we craft
prompts in the form: "[PREMISE]. [WEP],
[HYPOTHESIS]." This allows us to evaluate
whether language models can predict if the
consensual probability level of a WEP aligns
closely with p. In our second approach, we
develop a dataset based on WEP-focused prob-
abilistic reasoning to assess if language mod-
els can logically process WEP compositions.
For example, given the prompt "[EVENTA]
is likely. [EVENTB] is impossible.", a well-
functioning language model should not con-
clude that [EVENTA&B] is likely. Through
our study, we observe that both tasks present
challenges to out-of-the-box English language
models. However, we also demonstrate that
fine-tuning these models can lead to significant
and transferable improvements.

1 Introduction

Expression of uncertainty is an important part of
communication. Formal statistics are the rigorous
way to quantify uncertainty but do not fit all com-
munication styles. Words of estimative probability
(WEP) such as maybe and believe are adverbs or
verbs that are informal alternatives. Kent (1964)
noted the importance of clarifying WEP meaning

for intelligence analysis in the Central Intelligence
Agency, and provided guidelines for mapping WEP
to numerical probabilities. Several studies then
measured the human perceptions of probability
words and discovered some agreement with Kent
(1964)’s guidelines. In this work, we use the scale
derived from a survey (Fagen-Ulmschneider, 2015),
which is the largest and most recent WEP percep-
tion survey available. 123 participants were asked
to label WEP with numerical probabilities. We use
the median of the participant answers to assign a
consensual value to each WEP. Associated prob-
abilities for the 19 WEP we use are available in
Appendix A, table 2.

Here, we assess whether neural language mod-
els learn the consensual probability judgment of
WEP from language modeling pretraining. We
develop datasets and a methodology to probe neu-
ral language model understanding of WEP. The
first dataset leverages previously annotated proba-
bility scores between a premise and a hypothesis,
in order to measure a language model’s ability to
capture the agreement between numerical proba-
bilities and WEP-expressed probabilities. The sec-
ond dataset is based on compositions of facts with
WEP-expressed probabilities, and measures verbal
probabilistic reasoning in language models.

Our contributions are as follows: (i) two datasets
and methods to measure understanding of WEP;
and (ii) evaluation of the ability of neural language
models (GPT2, RoBERTa-trained on MNLI) to
tackle WEP-related problems, showing that off-
the-shelf models are very little influenced by them,
even though fine-tuning on our constructed datasets
quickly leads to high accuracies. The code and
generated datasets are publicly available1

1/hf.co/.../probability_words_nli
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2 Related work

Our work probes a particular aspect of language
understanding. We do not analyze the inside of
the models (Rogers et al., 2020). We focus on the
models’ ability to perform controlled tasks (Naik
et al., 2018; Richardson et al., 2020) involving
WEP. WEP were studied in the context of intel-
ligence analysis and linguistics, our work is the
first to look at them through natural language pro-
cessing (NLP) models. Our study also pertains to
NLP analyses of logical reasoning and probability
problems, and to uncertainty in natural language
inference tasks.

Linguistics study of WEP Kent (1964)’s semi-
nal work was the first to link WEP and numerical
probability estimates, with intelligence analysis
motivations (Dhami and Mandel, 2021) and a pre-
scriptivist approach. This inspired further quantifi-
cations of human perceptions of WEP, in the con-
text of medical reports (O’Brien, 1989; Ott, 2021)
and weather reports (Lenhardt et al., 2020). Fagen-
Ulmschneider (2015) proposed the largest survey
up to date with 123 participants about general-
domain WEP perception.

Logical and probabilistic reasoning Another
strand of work probes NLP text encoders capa-
bilities, notably reasoning abilities. Weston et al.
(2015) probed understanding of specific problems
like negation, spatial and temporal reasoning with
the bAbI dataset. Richardson et al. (2020) probe
understanding of first-order logic reasoning, Sileo
and Lernould (2023) probe epistemic logic reason-
ing. Our work is the first to address probabilistic
logic, alongside Dries et al. (2017); Suster et al.
(2021) who construct a dataset of natural language
probability problems, e.g., "A bag has 4 white and
8 blue marbles. You pull out one marble and it is
blue. You pull out another marble, what is the prob-
ability of it being white?". They also rely on the
ProbLog solver (De Raedt et al., 2007), but focus
on numeric probability problems. By contrast, our
work targets WEP, and textual probabilistic logical
reasoning.

Natural language inference, uncertainty, modal-
ity, evidentiality Uncertainty was also studied
in the context of natural language inference tasks.
Zhou et al. (2022) study the disagreement across
annotators when labeling entailment relationships.
Zhang et al. (2017) annotate graded entailment with
5 probability levels, and the UNLI dataset (Chen

et al., 2020) go further by annotating numerical
probabilities. Our work also pertains to the study
of modality (Palmer, 1992; Saurí et al., 2006) and
more particularly evidentiality (Su et al., 2010), but
where previous work focused on WEP.

3 Probing WEP understanding

3.1 Verbalization and distractor generation

Our goal is to measure the understanding of WEP.
One requirement of WEP understanding is captur-
ing the consensual probability level. To test that,
we use contexts (PREMISE) paired with a conclu-
sions (HYPOTHESIS). The likelihood of a conclu-
sion, p, depends on the associated context. One
example from UNLI (Chen et al., 2020), which
annotates that, is (A man in a white shirt taking a
picture , A man takes a picture , 1.0).

We convert a triplet (PREMISE, HYPOTHESIS,
p) to the following verbalization:

PREMISE. Tp(HYPOTHESIS). (1)

where Tp is a text template assigned to the prob-
ability p. To select a template, we find the WEP
whose associated median probability (see table 2) is
the closest to p. We then use handcrafted templates
to construct a modal sentence from the selected
WEP and the hypothesis, e.g., "It is certain that
a man takes a picture". Table 3 in appendix B
displays the templates that we associate with each
WEP.

We also generate an invalid verbalization by ran-
domly selecting an incorrect WEP (a WEP whose
consensual probability differs from p by at least
40%)2, e.g., It is unlikely that a man takes a picture.
We hypothesize that language models and entail-
ment recognition models should give a higher score
(respectively likelihood and entailment probability)
to the correct valid verbalization than to the invalid
verbalization of p.

3.2 WEP-UNLI: probability/WEP matching

The UNLI dataset annotates (PREMISE, HYPOTH-
ESIS) pairs from the SNLI dataset (Bowman et al.,
2015) with joint probability scores p, totaling
55k training examples, 3k/3k validation/test ex-
amples. We use these examples to generate WEP-
understanding dataset with verbalization validity
prediction as shown in the previous subsection.

2This threshold ensures sufficient distance, while also en-
suring that each WEP has at least one possible distractor.
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% Round 1 template Sampled round 1 (premise)
p1::factA. There is a very good chance that Bernhard is a swan.
p2::factB. It is almost certain that Greg is gray.
p3::factC. There is a better than even chance that Sandra left the apple.

% Round 2 template Sampled round 2 (premise, continued)
p4::factX:-op1(fact1, fact2). Chances are slight that if Bernhard is a swan, or Sandra left the apple, then sheep are afraid of mice.
p5::factY:-op2(fact3, fact4). It is improbable that if Greg is gray, and Bernhard is a swan, then Lily is a rhino.
p6::factZ:-op3(fact5, fact6). There is a very good chance that if Greg is gray, and Sandra left the apple, then Sumit is thirsty.

% Round 3 template Sampled hypothesis
hypothesis:-op4(fact7, fact8). Either Bernhard is a swan or sheep are afraid of mice.
query(hypothesis).

ProbLog
Reasoner

p=0.7235
T
p’
(hyp.):

 
It is likely that either Bernhard is a swan or sheep are afraid of mice. 1

T
p’
(hyp.):

 
It is unlikely that either Bernhard is a swan or sheep are afraid of mice. 0

Reasoning
template

premise
hyp.

p

Sample bAbI 
facts A,B,C,X,Y,Z

Sample facts 1...8 from facts 
A,B,C,X,Y,Z in previous rounds

Sample op 1…4 from {and, or, xor}Sample chances 
p1…p6

distractor

Compute 
hypothesis 
likelihood, 

relevant 
WEP

factA

Generated label y:
p verbalization validity

T
p1

Probability 
verbalization

premise
T
p’
(hyp.)

yp’ ≈ p

hypothesis 
likelihood

Generated input: premise, T
p’
(hyp.)

Figure 1: WEP-reasoning task constructions, with 2 hops. We sample randomly concrete facts facti and probabilities
pi then build modal sentences with verbalization templates. We randomly sample logical operators to compose the
modal sentences from the previous rounds to construct a premise, then a hypothesis, and we use a probabilistic soft
logic solver to compute the hypothesis probability. We then correctly and incorrectly verbalize this probability. This
process generates data for the task of probability verbalization validity. 1 hop reasoning skips the second round:
fact7 and fact8 are sampled from {factA,factB,factC}

3.3 WEP-Reasoning: WEP compositions

Here, our goal is to assess models’ ability to rea-
son over combinations of probabilistic statements.
We construct synthetic (PREMISE, HYPOTHESIS,
p) examples from random factoids extracted from
the bAbI dataset (Weston et al., 2015). Figure 1
illustrates the construction of WEP-reasoning ex-
amples:

We randomly sample initial facts and associ-
ated probability levels, and we verbalize them with
the previously mentioned templates from Table 3
(Round 1). We further compose them with ran-
domly sampled logical operators (and, or, xor). We
then generate a hypothesis with logical combina-
tions of the previous round. Finally, we feed the
constructed premise and hypothesis to a probabilis-
tic soft reasoning engine in order to derive the like-
lihood of the hypothesis given the premise. We rely
on the ProbLog (De Raedt et al., 2007) reasoner
which implements Dantsin (1992) semantics.

To evaluate different complexities of reasoning,
we propose two variants: 2-hop reasoning, where
facts in Round 2 combine facts from Round 1, and
the final hypothesis combines facts from Round 2.
and 1-hop reasoning where facts from the hypoth-
esis combine Round 1 facts (Round 2 is skipped).

Since we want to sample more than two facts and
we cannot a priori use text from the UNLI dataset,

because UNLI only provides entailment likelihood
for specific pairs. Combining several sentences
could cause unaccounted interference. Therefore,
we sample subject/verb/object factoids from the
bAbI (Weston et al., 2015) datasets instead, which
is built with handwritten arbitrary factoids such
as John went to the kitchen. To sample multiple
factoids, we prevent any overlap of concepts (verb,
subject, object) between any pair of facts to make
the facts independent of one another.

We sample probability levels from the list of me-
dians of all WEP to prevent sampling the levels that
too distant from a known WEP. When we assign a
WEP to a probability level, we assume that the cor-
rect semantics is the consensual one, but humans
differs slightly from this consensus. Still, when
adding random perturbations of 20% to sampled
p1...6, the hypothesis probability is perturbed by
less than 40% for 98% of examples.

We generate 5k examples using the template
depicted in Figure 1, and use 10%/10% of the data
for the validation/test splits. Appendix C shows the
distribution of correct WEP for each dataset.

4 Experiments

We conduct verbalization validity prediction (bi-
nary classification task of WEP correctness detec-
tion between two candidates) under two settings.
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WEP-Reasoning (1 hop) WEP-Reasoning (2 hops) WEP-UNLI

Chance 50.0 50.0 50.0
Human baseline 97.0±1.0 93.5±1.5 89.5±2.5

GPT2 likelihood zero-shot 50.1±0.0 50.0±0.0 45.6±0.0
RoBERTa likelihood zero-shot 63.4±0.0 63.2±0.0 53.2±0.0
RoBERTa-MNLI zero-shot 49.2±5.4 41.7±4.2 54.6±3.7

RoBERTa+WEP-Reasoning (1 hop) fine-tuning 97.8±0.4 81.6±1.3 61.2±0.4
RoBERTa+WEP-Reasoning (2 hops) fine-tuning 85.0±1.6 91.1±0.1 62.3±1.7
RoBERTa+WEP-UNLI fine-tuning 62.4±0.4 64.3±0.1 84.4±0.5

Table 1: Test accuracy percentage of different models over the 3 WEP-understanding tasks. The last three rows
display the accuracy when fine-tuning on each task, and transferability of the fine-tuned model outside the diagonal.

4.1 Zero-shot models
We use off-the-shelf language models to assign
likelihood scores to a context and its conclusion.
We evaluate the rate at which valid verbalization
is scored higher than invalid verbalization. We
refine the scores by also considering the average
likelihood per token (Brown et al., 2020; Schick
and Schütze, 2021) and calibrated scores (Brown
et al., 2020; Zhao et al., 2021) where we divide
the score of a PREMISE. Tp(HYPOTHESIS). by the
score of Tp(HYPOTHESIS). We evaluate the nor-
malized, length-normalized, and calibrated like-
lihood on the validation sets of each dataset and
select the most accurate method for each dataset
and model.

We also consider a pretrained natural language
inference model, which is trained to predict entail-
ment scores between a context and a conclusion.

GPT2 We use the pretrained GPT2 base ver-
sion with 127M parameters (Radford et al., 2019),
which is a causal language model trained to esti-
mate text likelihood. We concatenate the premise
and hypothesis and compute their likelihood as a
plausibility score.

RoBERTa We also use the pretrained RoBERTa
base model with 123M parameters (Liu et al., 2019)
to score the masked language modeling likelihood
of the premise/hypothesis pair.

RoBERTa-MNLI We fine-tune RoBERTa on the
MNLI entailment detection dataset (Williams et al.,
2018) with standard hyperparameters (see the fol-
lowing subsection).

Human baseline To establish human baseline
performance on the constructed dataset, we had
two NLP researchers annotate 100 examples ran-
domly sampled from the test set of each dataset,
with a multiple-choice question answering setting.

Overall inter-annotator agreement is relatively high,
with a Fleiss’s κ of 0.70/0.68/0.71 for WEP Rea-
soning 1 hop, 2 hops and WEP-UNLI respectively.

4.2 Fine-tuning and transfer across probes

We fine-tune RoBERTa-base models on our
datasets, using standard (Mosbach et al., 2021) hy-
perparameters3 (3 epochs, sequence length of 256,
learning rate of 2.10−5 batch size of 16. We use
length-normalization with GPT2 likelihood and cal-
ibration with RoBERTa likelihood as they worked
best on the validation sets.). We use a multiple-
choice-question answering setup (we predict logit
scores for the valid and invalid verbalization, com-
bine their score with a softmax, then optimize the
likelihood of the valid verbalization). The same for-
mat is applied to all tasks, so we can also study the
transfer of capacities acquired during fine-tuning
of each probe, for instance, between probability
matching and compositional reasoning.

4.3 Results and discussion

Table 1 shows the results of our experiments. The
very low accuracy of causal and masked language
models (first two rows) demonstrates how challeng-
ing the WEP-understanding tasks are.

RoBERTa fine-tuned on MNLI dataset performs
better than chance for WEP-UNLI. MNLI contains
814 instances of probably in the MNLI dataset, but
we found little to no evidence of WEP composi-
tions among them, which can explain the results.

Finally, fine-tuning on the dataset of a particular
probe leads to high test accuracy on the associ-
ated test set. More surprisingly, fine-tuning on one
dataset also causes substantial accuracy gain on
other probes. This suggests that our datasets can

3Deviation from these hyperparameters did not yield sig-
nificant improvement on the validation sets.
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be incorporated in text encoder training in order to
improve WEP handling.

5 Conclusion

We investigated WEP understanding in neural lan-
guage models with new datasets and experiments,
showing that WEP processing is challenging but
helped by supervision which leads to transferable
improvement. Future work could extract WEP
probability scales from the UNLI dataset as an
alternative to human perception surveys, but our
work suggests that this requires language modeling
progress.
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A Associated probabilities

WEP Median probability judgment

certain 100†

almost certain 95.0± 10.9
highly likely 90.0± 8.4
very good chance 80.0± 10.8
we believe 75.0± 15.0
likely 70.0± 11.3
probably 70.0± 12.9
probable 70.0± 14.7
better than even 60.0± 9.1
about even 50.0± 4.9
probably not 25.0± 14.4
we doubt 20.0± 16.9
unlikely 20.0± 15.0
little chance 10.0± 12.2
chances are slight 10.0± 10.9
improbable 10.0± 17.5
highly unlikely 5.0± 17.3
almost no chance 2.0± 17.0
impossible 0†

Table 2: Median probability percentage associated to words of estimative probability according to (Fagen-
Ulmschneider, 2015). First and last words (†) are taken from (Kent, 1964).

B WEP verbalization template

WEP Verbalization template

about even chances are about even that [FACT]
almost certain it is almost certain that [FACT]
almost no chance there is almost no chance that [FACT]
better than even there is a better than even chance that [FACT]
certain it is certain that [FACT]
chances are slight chances are slight that [FACT]
highly likely it is highly likely that [FACT]
highly unlikely it is highly unlikely that [FACT]
impossible it is impossible that [FACT]
improbable it is improbable that [FACT]
likely it is likely that [FACT]
little chance there is little chance that [FACT]
probable it is probable that [FACT]
probably it is probably the case that [FACT]
probably not it is probably not the case that [FACT]
unlikely it is unlikely that [FACT]
very good chance there is a very good chance that [FACT]
we believe we believe that [FACT]
we doubt we doubt that [FACT]

Table 3: Templates used to convert a fact and a WEP expressed uncertainty into a modal sentence.
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C WEP frequencies on the generated datasets

WEP-reasoning (1 hop) WEP-Reasoning (2 hops) WEP-USNLI

WEP frequency WEP frequency WEP frequency

about even 11.1 impossible 13.2 impossible 25.6
probably not 9.7 about even 10.8 better than even 10.7
better than even 7.7 probably not 9.0 certain 7.2
we believe 7.1 highly unlikely 8.2 about even 6.9
highly likely 6.4 almost no chance 8.0 almost certain 6.7
certain 6.0 better than even 6.6 highly likely 6.0
highly unlikely 5.9 we believe 4.3 very good chance 5.9
almost no chance 5.8 highly likely 4.0 almost no chance 5.0
impossible 5.3 very good chance 4.0 we believe 4.1
almost certain 5.1 we doubt 4.0 highly unlikely 4.1
very good chance 4.7 improbable 3.9 probably not 3.4
chances are slight 3.6 chances are slight 3.9 likely 2.5
little chance 3.5 unlikely 3.6 probable 2.4
probable 3.2 little chance 3.5 probably 2.4
unlikely 3.1 almost certain 2.9 unlikely 1.5
likely 3.1 certain 2.7 little chance 1.5
probably 3.0 likely 2.5 chances are slight 1.5
we doubt 2.9 probable 2.4 improbable 1.4
improbable 2.9 probably 2.2 we doubt 1.4

Table 4: Validation set frequency of WEP in the correct answer of each dataset (percentages).
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Abstract

State-of-the-art pretrained language models
tend to perform below their capabilities when
applied out-of-the-box on tasks that require un-
derstanding and working with numbers. Recent
work suggests two main reasons for this: (1)
popular tokenisation algorithms have limited
expressiveness for numbers, and (2) common
pretraining objectives do not target numeracy.
Approaches that address these shortcomings
usually require architectural changes or pre-
training from scratch. In this paper, we propose
a new extended pretraining approach called
Arithmetic-Based Pretraining that jointly ad-
dresses both in one extended pretraining step
without requiring architectural changes or pre-
training from scratch. Arithmetic-Based Pre-
training combines contrastive learning to im-
prove the number representation, and a novel
extended pretraining objective called Inferable
Number Prediction Task to improve numer-
acy. Our experiments show the effectiveness
of Arithmetic-Based Pretraining in three differ-
ent tasks that require improved numeracy, i.e.,
reading comprehension in the DROP dataset,
inference-on-tables in the InfoTabs dataset, and
table-to-text generation in the WikiBio and Sci-
Gen datasets1.

1 Introduction

Numbers are ubiquitous in natural language. There-
fore, understanding and working with numbers
(usually referred to as numeracy) is a critical ca-
pability for pretrained language models such as
BART (Lewis et al., 2020) or T5 (Raffel et al.,
2019), cornerstones of modern NLP, in order to
utilize quantitative information for various NLP
tasks. Recent works question whether these mod-
els meet this requirement out-of-the-box (Wallace
et al., 2019; Zhang et al., 2020): Common pretrain-
ing objectives such as the denoising autoencoder of

1Code, data, and models trained using Arithmetic-
Based Pretraining are available here: https://github.com/
UKPLab/starsem2023-arithmetic-based-pretraining.

BART (Lewis et al., 2020), the masked language
modeling objective of BERT (Devlin et al., 2019),
or the span-corruption objective of T5 (Raffel et al.,
2019), are designed for understanding structure
and semantic meaning of language and not to learn
working with numbers. Furthermore, commonly
used subword-based tokenisation algorithms such
as Byte Pair Encoding (Sennrich et al., 2016) or
WordPiece (Wu et al., 2016) are designed to handle
patterns that are frequently observed during train-
ing, which is disadvantageous for numbers. For
instance, 0.72 and 0.73 are two similar numbers.
They should be processed similarly, but according
to their frequency in the pretraining data they might
be tokenised very differently, e.g., [0, ., 72] and [0,
., 7, 3], which will have an impact on their repre-
sentation in embedding space. To address these
shortcomings, various approaches have been pro-
posed recently. However, most of them introduce
additional components or rely on predefined fea-
tures that limit their application, e.g., they are only
applicable in a specific task like reading compre-
hension (Andor et al., 2019; Geva et al., 2020) or
require architectural changes (Herzig et al., 2020).

In this paper, we propose a new extended pre-
training approach called Arithmetic-Based Pretrain-
ing that targets both shortcomings for pretrained
language models in one extended pretraining step
without introducing new components or requiring
pretraining from scratch. It consists of:

• A contrastive loss that combines subword-
based with character-level tokenisation to im-
prove the representation of numbers.

• A denoising pretraining objective, called the
Inferable Number Prediction Task, to im-
prove the model’s capability of working with
numbers.

Our experiments show that Arithmetic-Based
Pretraining has a positive impact on BART (Lewis
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et al., 2020), T5 (Raffel et al., 2019) and Flan-
T5 (Chung et al., 2022) in various tasks. It im-
proves the accuracy in case of reading compre-
hension and inference-on-tables, and the factual
correctness in case of table-to-text generation.

2 Related Work

Number Representations in Language Models.
State-of-the-art language models like BART (Lewis
et al., 2020) or T5 (Raffel et al., 2019) use subword-
based tokenisation algorithms (such as Byte Pair
Encoding (Sennrich et al., 2016)) to build vocab-
ularies based on frequently observed sequences
in a text corpus. While this is effective for com-
mon words, it is problematic for numbers. In an
extensive study, Wallace et al. (2019) shows that
models using character-level tokenisation, such as
ELMo (Peters et al., 2018), usually achieve better
results in numerical probing tasks and extrapolate
better to unseen numbers compared to models us-
ing subword-based tokenisation. Thawani et al.
(2021), Peng et al. (2021) and Zhang et al. (2020)
report similar findings. In our work, we use the
character-level tokenisation for numbers to address
this shortcoming in BART, T5, and Flan-T5 (Chung
et al., 2022).

Approaches for Improving Numeracy. Numer-
acy requires to understand and work with num-
bers, i.e., to do artihmetic operations, in order
to generate the expected result. To improve this
capability, recent approaches propose pretraining
from scratch or architectural changes to tailor pre-
trained language models towards specific tasks.
TAPAS (Herzig et al., 2020) targets question an-
swering with tabular data. It is pretrained from
scratch and extends BERT (Devlin et al., 2019) by
introducing additional embeddings for capturing
tabular structure. GenBERT (Geva et al., 2020)
reuses a pretrained BERT model and adds a de-
coder on top. It is then further trained using math
word problems and arithmetic operations for (1)
incorporating the character-level tokenisation for
numbers, and (2) to improve the numerical rea-
soning skills. It achieves state-of-the-art results
in the DROP (Dua et al., 2019) and SQUAD (Ra-
jpurkar et al., 2016) datasets. Andor et al. (2019)
also reuses the pretrained BERT model and tar-
gets reading comprehension. They add a new layer
on top that predicts and executes arithmetic op-
erations. Suadaa et al. (2021) target table-to-text
generation and propose a framework that uses the

template-guided text generation from Kale and Ras-
togi (2020) to inject pre-executed numerical oper-
ations into the pretrained GPT-2 (Radford et al.,
2019) and T5 (Raffel et al., 2019) models.

In their experiments, all of these works show
that much of their performance improvements are
due to specific design decisions or multi-level pre-
training setups which result in new or task-specific
models. With Arithmetic-Based Pretraining, we
propose an approach that improves a model’s nu-
meracy with just one extended pretraining step and
without changing its architecture.

Domain-Adaptive Pretraining. The idea of
domain-adaptive pretraining is to bridge the gap
between the vocabulary of a model’s original pre-
training corpus and the target domain by continu-
ing pretraining using in-domain data (Gururangan
et al., 2020). In this work, we propose the Infer-
able Number Prediction Task which is similar to
domain-adaptive pretraining if the data used is from
the same domain as that of finetuning. However,
we show that this is not the only reason for perfor-
mance improvements (Section 5.3).

Contrastive Learning. Contrastive learning is a
general way to learn to map vector representations
of similar data points (usually called anchor and
positive) close to each other while pushing non-
similar data points apart. In NLP, it is commonly
used for learning sentence representations (Kim
et al., 2021; Giorgi et al., 2021) or semantic simi-
larities (Wang et al., 2021). In this work, we use
contrastive learning to improve the representation
of numbers.

3 Arithmetic-Based Pretraining

In this section, we propose Arithmetic-Based Pre-
training. It combines different tokenisation al-
gorithms, i.e., character-level and subword-based,
with contrastive learning to improve the represen-
tation of numbers in pretrained language models
(Section 3.1), while training on the Inferable Num-
ber Prediction Task (Section 3.2) to improve the
capability of working with numbers. Section 3.3
describes the joint loss function.

3.1 Contrastive Learning
We propose to use a contrastive loss as additional
training signal to improve the representation of
numbers. For example, the model should learn
a similar representation for the number 108.89,
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whether it is initially tokenised as [1, 0, 8, ., 8, 9]
(character-level) or [10, 8, ., 89] (subword-based).
If a number frequently occurs in the pretraining
corpus, its corresponding subword-based encoding
may be more informative. If this is not the case, its
character-level tokenisation may be more informa-
tive. Therefore, our motivation is to benefit from
both embedding spaces for learning better number
representations. For implementation, we use the
Multiple Negative Ranking Loss as proposed by
Henderson et al. (2017)2:

LC = − 1

N

N∑

i=1

esim(avg(p̂i),avg(p̂′i))
∑

j e
sim(avg(p̂i),avg(p̂neg))

(1)

For the contrastive loss, we consider all numbers
in the batch independently of the input sequences.
Each number is used twice, once in character-level
tokenisation (anchor), and once in subword-based
tokenisation3. Assume p is a list of all numbers
in the batch in character-level tokenisation. p′ is a
list of all numbers in the batch in subword-based
tokenisation. We consider pi and p′i as a positive
pair. Every other number in p and p′ is considered
as negative sample to pi (denoted as pneg). p̂i,
p̂′i, and p̂neg are the corresponding embeddings
after the encoder pass. sim represents the cosine
similarity and avg represents the mean-average of
the embedding. Averaging is a simple and effective
form of aggregation which is necessary at this point,
as the numbers are split into multiple tokens during
tokenisation.

3.2 The Inferable Number Prediction Task
The Inferable Number Prediction Task is a varia-
tion of the classic masked language modeling ob-
jective (Devlin et al., 2019), but aims on improving
a model’s capability on working with numbers by
focusing on data that requires arithmetic operations.
The task consists of input C and the correspond-
ing target sequence D. C consists of a pair of text
sequences, C1 and C2, that are separated with a
special character. C2 equals to D, but contains
a masked number that can be inferred from C1.
Given C, the task is to reconstruct D by correctly

2We use the implementation from the sentence-transformer
library (Reimers and Gurevych, 2019).

3Note that we use both only for Arithmetic-Based Pre-
training. For finetuning and during inference, we only use
character-level tokenisation for numbers.

predicting the masked number in C2
4. For instance,

for the task of table-to-text generation, C consists
of the linearized form of the input table (C1) and
its description with one masked number (C2). We
select data with the following criteria:

• D (C2 in C) and C1 should have at least one
overlapping entity, e.g., D should contain at
least one of the entities that appear in the row
or column headers of C1 if C1 is a table. This
ensures that D is relevant to the information
given in C1.

• D (C2 in C) should contain at least one num-
ber that either occurs in C1 or is inferable by
summation, subtraction, multiplication, divi-
sion or ordering. This ensures that the masked
number in C2 is arithmetically related to the
numbers given in C1.

Next, we reduce C to the necessary information.
If C1 is an extensive text or paragraph, we apply
each of these heuristics to each of the sentences and
retain only the matching ones (the same applies to
C2). If C1 is a table, we remove rows and columns
that do not share entities with C2 (see Appendix B
for further details and illustrations).

For training, we use the cross-entropy loss func-
tion:

LINP (x, y) =
1

N

N∑

n=1

− log

(
e(xn,yn )

∑K
k=1 e

(xn,k)

)

(2)
where x represents the logits of the predicted input
sequence, and y = y1, ..., yN represents the indices
of the tokens of the output sequence. N is the size
of the target sequence. xn,yn is the logit of the xn
token corresponding to the output token yn. K is
the size of the model’s vocabulary.

3.3 Joint Loss Function
We combine the contrastive loss LC (Equation 1)
and the loss for the Inferable Number Prediction
Task LINP (Equation 2) as weighted sum in a joint
loss function:

L =
LC
2

+
LINP

2
(3)

4Preliminary experiments revealed that just reconstructing
the masked number, without its context, has a negative impact
on a model’s text generation capabilities.
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4 Experimental Setup

We implement our approach using Python 3.10, Py-
Torch (Paszke et al., 2019) and Huggingface (Wolf
et al., 2020). As pretrained language models, we
use the large variant of BART (Lewis et al., 2020)
and the base variant of T5 (Raffel et al., 2019) and
Flan-T5 (Chung et al., 2022) as provided by the
Huggingface platform (see Appendix A for details
on hyperparameters)5. All models are pretrained
Transformer-based encoder-decoder models, but
different in size. BART-large consists of a total of
24 layers and 406M parameters. T5-base and Flan-
T5-base consist of 12 layers and 220M parameters.
Flan-T5 is based on T5, but trained on more tasks,
e.g., arithmetic reasoning, and chain-of-thought
data (instructions). It significantly improves the
results of the original model in many tasks (Chung
et al., 2022). We conduct all experiments on a Tesla
V100-SXM3 GPU with 32 GB memory. For ex-
periments using table-to-text datasets, we represent
tables as linearized sequence. We report the results
of the best single runs.

4.1 Original Datasets
Reading Comprehension. The task of reading
comprehension is to answer a question by reason-
ing over a related text passage. DROP (Dua et al.,
2019) is such a dataset. It contains over 96,567
open-domain question-answer pairs and 6,735 para-
graphs. According to the authors, 59.1% of an-
swers consist of numbers and therefore implicitly
require performing arithmetic operations to be pre-
dicted correctly. Each paragraph consists of 9.19%
numbers on average. We split the dev data into two
equally-sized subsets and use one for testing. Each
subset contains 4,828 question-answer pairs.

Inference-on-Tables. Given a premise and a hy-
pothesis, natural language inference (NLI) is the
task of deciding whether the hypothesis is en-
tailed, contradictory, or neutral to the premise. In-
foTabs (Gupta et al., 2020) extends NLI to using
semi-structured data, i.e., tables, as hypothesis. It
consists of 23,738 hypothesis for 2,540 Wikipedia
infoboxes from a variety of domains and provides
three different test sets: in-domain, cross-domain,
and an adversarial test set. The cross-domain test
set uses premises from domains not used for train-
ing. The adversarial test set uses a different set

5We could not use the large variant of T5 and Flan-T5 due
to hardware limitations (each model has 770M parameters).

of source tables. Furthermore, the wording of hy-
potheses was slightly changed by expert annotators.
According to the authors, InfoTabs requires nu-
merical and temporal reasoning (which implicitly
requires performing arithmetic operations) across
multiple rows and to a large extent. Each table
consists on average of 13, 89% numbers.

Table-to-Text Generation. Table-to-text genera-
tion is the task of summarizing tabular data (which
is often numerical) in a descriptive text. It requires
to implicitly perform arithmetic operations such
as ordering, summation or subtraction, or to cap-
ture magnitudes. SciGen (Moosavi et al., 2021)
is a table-to-text generation dataset that requires
to generate descriptions for scientific tables6. It is
designed for arithmetic reasoning and consists of
53,136 table-description pairs. Each table consists
of 41.55% numbers on average.

WikiBio (Lebret et al., 2016) is a dataset from
the biographical domain. It consists of 728,321
table-description pairs. The task is to reproduce the
first paragraph of biographical Wikipedia articles,
given the corresponding infobox. According to
the authors, dates, ages, and other quantities play
an important role. Each table consists of 16.83%
numbers on average. However, most values can be
directly copied from the tables and do not require
arithmetic operations.

4.2 Preprocessing for the Inferable Number
Prediction Task

To fulfill the requirements of the Inferable Number
Prediction Task, we apply the criterias described
in Section 3.2 to all datasets in an offline prepro-
cessing step. In case of InfoTabs (Gupta et al.,
2020), we only use the data labeled with entailed
in order to exclude contradictions (see Appendix B
for examples and illustrations). Table 1 shows the
resulting datasets.

Train Dev Test
SciGen 4,859 1,473 55
WikiBio 412,053 51,424 51,657
DROP 8,336 849 850
InfoTabs 1,981 1,800 1,800

Table 1: Data distribution for the Inferable Number Pre-
diction Task after applying the criterias to the original
dataset splits.

6NumericNLG (Suadaa et al., 2021) is a similar dataset.
As SciGen (Moosavi et al., 2021) provides more unsupervised
training pairs that we can use for Arithmetic-Based Pretraining,
we use SciGen in our experiments.
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We also find that the resulting datasets have
slightly different number-to-word ratios. In the
case of DROP (Dua et al., 2019) and InfoTabs,
preprocessing increases the portion of numbers up
to 18.98% and 17.25% in paragraphs and tables.
In the case of WikiBio (Lebret et al., 2016) the
ratio remains unchanged and in the case of Sci-
Gen (Moosavi et al., 2021) it reduces the numbers
per table to 33.88%.

OCC ORD SUM SUB MUL DIV
DROP 0.41 0.32 0.04 0.07 0.13 0.02
InfoTabs 0.23 0.34 0.05 0.17 0.15 0.06
SciGen 0.11 0.06 0.03 0.12 0.41 0.27
WikiBio 0.24 0.38 0.03 0.10 0.20 0.03

Table 2: Distribution of arithmetic operations in the
preprocessed datasets.

Table 2 shows the ratio of samples per dataset
that we have identified as being inferable by
arithmetic operiations, i.e., occurence (OCC), or-
dering (ORD), summation (SUM), subtraction
(SUB), multiplication (MUL) or division (DIV).
Appendix C provides a detailed analysis.

5 Evaluation

In this section, we evaluate the impact of
Arithmetic-Based Pretraining on downstream appli-
cations with BART (Lewis et al., 2020), T5 (Raffel
et al., 2019) and Flan-T5 (Chung et al., 2022) using
in-domain data (Section 5.2), and out-of-domain
data (Section 5.3). For Arithmetic-Based Pretrain-
ing, we use the preprocessed subsets of the original
datasets as described in Section 4.2.

5.1 Evaluation Metrics
For inference-on-tables, we evaluate the results
using Exact Match (EM score). For reading com-
prehension, we additionally use F1 score. The
EM score evaluates the prediction accuracy, i.e., if
the prediction exactly matches the target. It is the
preferred metric for these tasks (Dua et al., 2019;
Gupta et al., 2020). The F1 score reports the over-
lap between the prediction and the target. This re-
sults in partial reward in cases where the prediction
is partially correct. In case of table-to-text genera-
tion, we conduct a human evaluation. This is due
to the shortcomings of common automatic metrics
for this task, as they are hardly able to assess the
correctness of information not directly contained
in the source data, i.e., information obtained by rea-
soning (Moosavi et al., 2021; Chen et al., 2020b;

Suadaa et al., 2021). We provide the results of the
automatic metrics in Appendix D.

For all experiments, Baseline represents the
BART (Lewis et al., 2020), T5 (Raffel et al., 2019),
and Flan-T5 (Chung et al., 2022) model directly
finetuned on the corresponding dataset without
Arithmetic-Based Pretraining. Ours represents
these models with Arithmetic-Based Pretraining.
We highlight statistically significant improvements
of Ours over the respective baseline in the tables
(independent two-sample t-test, p ≤ 0.05).

5.2 In-Domain Pretraining
This section discusses the results on downstream
tasks when using models that are pretrained using
Arithmetic-Based Pretraining with in-domain data.
For comparison, we will also report the results of
the specialised state-of-the-art model for each task.

Reading Comprehension. Table 3 shows the re-
sults achieved on DROP (Dua et al., 2019).

EM F1

BART Baseline 36.00 39.26
Ours 45.60 49.50

T5 Baseline 10.40 14.60
Ours 11.00 15.20

Flan-T5 Baseline 46.34 94.41
Ours 72.18 97.65

QDCAT 85.46 88.38

Table 3: Evaluation on the DROP dataset. Our approach
outperforms the baseline in all cases.

In all cases, Arithmetic-Based Pretraining im-
proves the results over the baseline. Based on our
analysis of the test results, i.e., by comparing the
predictions of Baseline with Ours, we find that our
approach reduces the incorrectly predicted num-
bers by 14.27% in case of BART (Lewis et al.,
2020), 16.62% in case of T5 (Raffel et al., 2019),
and 30.56% in case of Flan-T5 (Chung et al., 2022).
The results achieved with Flan-T5 even outperform
the results reported by Geva et al. (2020) for Gen-
BERT (EM 68.6)7. Regarding the performance
differences between BART and T5, we attribute
this to the difference in model size. In this con-
text, the performance difference between BART
and Flan-T5 is particularly interesting. We attribute
this to the fact that among other things, Flan-T5
was trained in arithmetic reasoning. QDCAT (Chen

7We also did preliminary experiments with the math word
problems dataset provided by Geva et al. (Geva et al., 2020)
as a first pretraining task but found that this does not improve
the results (see Appendix G).
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et al., 2020a) is the current state-of-the-art in the
DROP task. It was built for reading comprehension
and is based on RoBERTa (Liu et al., 2019), but
adds an additional question-conditioned reasoning
step on top (using a graph-attention network).

Inference-on-Tables. Table 4 presents the pre-
diction accuracies (EM score) achieved on the In-
foTabs (Gupta et al., 2020) dataset.

In-Domain Cross-Domain Adversarial

BART Baseline 33.30 23.67 27.68
Ours 67.20 54.40 57.20

T5 Baseline 32.00 11.76 13.00
Ours 32.30 18.07 15.25

Flan-T5 Baseline 27.23 25.14 29.17
Ours 34.04 26.14 29.04

BPR 78.42 71.97 70.03

Table 4: Evaluation on the InfoTabs dataset. Our ap-
proach significantly improves the results on the in-
domain data.

Similarly to reading comprehension, Arithmetic-
Based Pretraining significantly improves EM
scores in all cases. This applies especially to the in-
domain test set. For the other two test sets, our ap-
proach also shows improvements over the baselines
(mostly for BART (Lewis et al., 2020)), indicating
to improve the model’s robustness and capability
to extrapolate to unseen data. We attribute perfor-
mance differences to model sizes. Furthermore,
analysis of the in-domain test results shows that
T5 and Flan-T5 are biased toward predicting en-
tailment. Since we observe this in both Baseline
and Ours, we do not attribute this to how the data
was preprocessed for the Inferable Number Predic-
tion Task (Section 4.2). This is different for BART.
An analysis of the in-domain test results shows
that the model correctly predicts 60.30% of entail-
ments, 75.50% of contradictions, and 65.83% of
neutrals. BPR (Neeraja et al., 2021) is the current
state-of-the-art in the InfoTabs task. It is based
on BERT (Devlin et al., 2019) but built for infer-
ence over tabular data. It provides an improved
representation of the input data, is pretrained on
MultiNLI (Williams et al., 2018), and incorporates
external knowledge.

Table-to-Text Generation. For human evalua-
tion8, we follow the approach used by Moosavi
et al. (2021) for evaluating the results on SciGen.
As this is very time-consuming, we only analyse

8The human evaluation was conducted by one of the au-
thors.

100 random table-description pairs from each, the
SciGen and WikiBio (Lebret et al., 2016) dataset,
and also only from the BART (Lewis et al., 2020)
experiments. For SciGen, we use the results from
the large split experiment9.

For annotation, we break down each generated
output to its corresponding statements (facts). We
create one CSV file for each dataset that contains
these statements in random order. This way, the
annotator can not see whether a statement was gen-
erated by Ours (BART with Arithmetic-Based Pre-
training) or Baseline (BART without Arithmetic-
Based Pretraining). Alongside with the generated
statements, this CSV file contains the original ta-
bles and gold descriptions. The annotator then de-
cides for each of the statements whether it belongs
to one of the following labels:

• Entailed: The statement is entailed in the gold
description, e.g., a fact that is mentioned ei-
ther in a similar or different wording in the
description.

• Extra: The statement is not entailed in the
gold description but is factually correct based
on the table’s content.

• Incorrect: The statement is relevant to the
table, i.e., it contains relevant entities but is
factually incorrect. For instance, the state-
ment says system A outperforms system B by
2 points while based on the table system A
has a lower performance than system B.

• Hallucinated: The statement is not relevant to
the table.

Based on these labels, we then
compute the recall (#entailed/#gold),
precision (#entailed/#generated), correct-
ness ((#entailed + #extra)/#generated), and
hallucination (#hallucinated/#generated) scores
for the generated facts. #gold and #generated refers
to the respective number of included statements,
not complete sequences. Table 5 shows the results.

Arithmetic-Based Pretraining improves the pre-
cision, recall, and correctness for both SciGen and
WikiBio. In case of WikiBio, it improves the pre-
cision by 0.06 points, suggesting that generated

9For SciGen, BART is the current state-of-the-art, and the
baseline results of our human evaluation are comparable with
those reported by Moosavi et al. (2021). We are not aware
of a comparable human evaluation for WikiBio. Appendix D
shows a comparison of automatic metrics for both datasets.
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Prec. Rec. Cor. Hall.
SciGen

Baseline 0.08 0.02 0.31 0.29
Ours 0.09 0.03 0.40 0.33

WikiBio
Baseline 0.22 0.07 0.33 0.03
Ours 0.28 0.09 0.46 0.02

Table 5: Results of the human evaluation. In both cases,
our approach improves the correctness of the generated
facts.

statements are more concise and closer to the target
description. It also improves the ratio of statements
that are factually correct by 0.13 points. In case
of SciGen, the baseline results reflect the results
reported by Moosavi et al. (2021), who also used
the large variant of BART for their experiments.
Ours improves the results in almost every aspect
(especially in case of factual correctness, where it
improves the results by 0.09 points). However, we
observe a slight increase in hallucinations, which
is a minor deterioration. We found that while Base-
line seems to generate descriptions close to the
target, Ours is somewhat more oriented towards
the tabular values, whereby these values are used
out-of-context in some cases which might be the
reason for this deterioration. Nevertheless, all mod-
els generate fluent and valid-looking descriptions
(see Appendix H for examples). This suggests that
Arithmetic-Based Pretraining has no negative im-
pact on a model’s text generation capability. This
is also supported by the results achieved using au-
tomatic metrics (see Appendix D).

5.3 Out-of-Domain Pretraining
To investigate whether the effectiveness of
Arithmetic-Based Pretraining is a result of using
in-domain data for pretraining (domain-adaptive
pretraining) or improved numeracy, we evaluate
our approach using out-of-domain data for pretrain-
ing. We focus on BART (Lewis et al., 2020) for
this experiment and perform Arithmetic-Based Pre-
training on a different dataset before finetuning
on DROP (Dua et al., 2019) and InfoTabs (Gupta
et al., 2020). For instance, for the DROP exper-
iments, we pretrain models on WikiBio (Lebret
et al., 2016), SciGen (Moosavi et al., 2021), and
InfoTabs, which all include data from a different
domain, before finetuning. For SciGen, we use the
large split in this experiment.

Table 6 shows the results. Overall, the models
pretrained using SciGen achieve the best out-of-

EM F1
DROP

DROP (in-domain) 45.60 49.50
Wikibio→ DROP 6.00 33.50
InfoTabs→ DROP 35.50 39.63
SciGen→ DROP 47.70 51.60

InfoTabs
InfoTabs (in-domain) 67.20 -
WikiBio→ InfoTabs 33.15 -
DROP→ InfoTabs 32.80 -
SciGen→ InfoTabs 64.70 -

Table 6: Results of the out-of-domain pretraining (see
Tables 3 and 4 for the in-domain experiments).

domain results in both cases. In case of DROP,
the results even exceed the ones achieved with
in-domain pretraining. We find that the extent to
which the pretraining dataset requires understand-
ing and working with numbers has a major im-
pact on the downstream performance (the more,
the greater the impact). Among the datasets used,
SciGen is in particular designed for the task of text
generation based on arithmetic reasoning. It has
a high number-to-word ratio and the subset used
for pretraining on the Inferable Number Predic-
tion Task (see Section 3.2) predominantly depends
on arithmetic operations such as multiplications
or divisions (see Table 2) instead of lookups or
orderings (like in the other datasets).

6 Ablation Study

In this section, we investigate the impact of
Arithmetic-Based Pretraining on the numeracy of
a pretrained language model. Due to the short-
comings of automatic metrics in table-to-text gen-
eration (see Section 5.1) and because we want
to be able to compare and discuss the impact of
each component across datasets, we use the Infer-
able Number Prediction task for this and evaluate
the number of correctly predicted context-related
masked numbers (please see Appendix E for abla-
tion experiments in downstream tasks)10. We use
the preprocessed subsets of the original datasets for
the Inferable Number Prediction Task (see Sec-
tion 4.2). For evaluation, we use Exact Match
(EM score) and F1 score (see Section 5.1). Table 7
shows the results.

We consider the large variant of BART (Lewis
et al., 2020) with its default tokenisation (DT)
and masking procedure (DM) as baseline for this

10In case of the contrastive loss, we also experiment with
other number representations (see Appendix F).
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EM F1
WikiBio

BART 29.69 48.12
CLT + INP 43.13 69.97
Ours 77.38 74.69

SciGen
BART 7.04 32.21
DT + INP 7.20 35.11
CLT + INP 12.26 36.78
Ours 24.68 45.81
Ours - INP 21.49 40.51

InfoTabs
BART 12.43 22.17
DT + INP 23.20 46.17
CLT + INP 59.09 73.88
Ours 60.45 74.33
Ours - INP 59.66 72.71

DROP
BART 7.20 7.20
DT + INP 6.33 55.51
CLT + INP 29.40 66.43
Ours 30.58 67.07
Ours - INP 25.37 59.83

Table 7: Ablation study on the Inferable Number Predic-
tion Task. We conduct DT + INP and Ours - INP once
for each task and with SciGen (Moosavi et al., 2021) as
representative for table-to-text generation.

experiment. DT + INP uses the default tokenisa-
tion but our masking procedure (INP). CLT + INP
then uses the character-level tokenisation for num-
bers (CLT). Ours finally combines CLT and INP
with the contrastive loss (CL) as supporting signal
to improve the representation of numbers. As last
ablation, Ours - INP combines CLT with the con-
trastive loss but uses DM instead of INP and shows
the contribution of our masking procedure to the
effectiveness of Arithmetic-Based Pretraining.

In comparison with BART, DT + INP shows
that our masking procedure improves the results
across all tasks. This is most significant in case
of InfoTabs (up to 10.77 points in EM score). In
case of DROP, it raises the F1 score from 7.20 to
55.51 points, meaning that there is a significantly
larger overlap between predicted numbers and tar-
get numbers. Using character-level instead of de-
fault tokenisation for numbers (CLT + INP) again
improves the results across all datasets, indicat-
ing improved capabilities for arithmetic operations.
Compared to DT + INP, it improves the EM score
by 35.89 points in case of InfoTabs, and by 23.07
points in case of DROP. Ours further improves the
results across all datasets. This is most significant
in case of the table-to-text datasets, where it im-
proves the EM score by 34.25 points in case of

WikiBio (Lebret et al., 2016), and 12.42 points
in case of SciGen (Moosavi et al., 2021). Since
we create the pairs for the contrastive loss batch-
wise, i.e., we consider all numbers in a batch inde-
pendently from the samples (see Section 3.1), an
advantageous number-to-word ratio favors a good
positive-negative pair ratio for the contrastive loss,
as in the case of SciGen which has the highest
number to word ratio in input tables (33.88%, see
also Section 4.1). This is counteracted by WikiBio
which has a lower number-to-word ratio (16.32%).
However, with 728, 321 samples, Wikibio is the
largest dataset. We therefore assume that more data
compensates for a poor number-to-word ratio. Ours
- INP deteriorates the EM score by 5.21 points in
case of DROP, 3.19 points in case of SciGen, and
0.79 points in case of InfoTabs. This shows the
contribution of our masking procedure to the effec-
tiveness of Arithmetic-Based Pretraining.

7 Conclusions

In this paper, we propose Arithmetic-Based Pre-
training, an approach for jointly addressing the
shortcomings of pretrained language models in un-
derstanding and working with numbers (usually
referred to as numeracy). In contrast to existing
approaches, Arithmetic-Based Pretraining does not
require architectural changes or pretraining from
scratch. It uses contrastive learning to improve
number representation and a novel extended pre-
training objective, the Inferable Number Prediction
Task, to improve numeracy in just one extended
pretraining step. Our experiments show perfor-
mance improvements due to better numeracy in
three different state-of-the-art pretrained language
models, BART, T5, and Flan-T5, across various
tasks and domains, including reading comprehen-
sion (DROP), inference-on-tables (InfoTabs), and
table-to-text generation (SciGen and WikiBio). We
show that the effectiveness of our approach is not
limited to in-domain pretraining, but rather depends
on the extent to which the dataset used in the In-
ferable Number Prediction Task requires under-
standing numbers. For example, pretraining on the
SciGen dataset improves the results achieved on
DROP. Our ablation studies show that contrastive
learning and the Inferable Number Prediction Task
are key to improving the numeracy of the examined
models.
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8 Limitations

Our work is subject to some limitations. First of
all, due to hardware limitations, we could not use
the large variant of T5 (Raffel et al., 2019) and
Flan-T5 (Chung et al., 2022) in a setting com-
parable to our BART-large experiments. Further-
more, BART (Lewis et al., 2020) restricts the max-
imum length of input sequences to 1024 char-
acters11. For better comparability, we also use
T5 and Flan-T5 accordingly. This limitation is
due to the increased computational complexity of
longer input sequences, but it is problematic with
table-to-text generation datasets. For example, Sci-
Gen (Moosavi et al., 2021) consists in large parts
of tables that exceed this sequence length when rep-
resented as a linearized sequence. While we have
tried to take this into account by reducing the input
data to necessary information, it was not guaran-
teed that the model always sees the complete infor-
mation, which certainly has a negative impact on
the evaluation results achieved on the downstream
tasks. We guess that the results would have been
more expressive if we would have used a different
representation for tables, or focused on models that
do not have this sequence length limitation.

Another limitation of our work concerns the im-
pact of contrastive learning. According to Hen-
derson et al. (2017), the impact of contrastive loss
is favored by large batch sizes. Due to hardware
limitations, we were only able to use small batch
sizes (see Appendix A). The models might have
adapted better if we would had the possibility to
train with larger batch sizes. Regarding the weight-
ing of contrastive and masked loss in the joint loss
function, we only use equal weighting for our ex-
periments, since we found that this already leads to
good results, and due to the already large number
of experiments conducted in this paper, we did not
experiment with other weightings. However, opti-
mizing this hyperparameter could further improve
the results.

Evaluation is also a critical point. Although
metrics such as PARENT (Dhingra et al., 2019)
try to measure the factual correctness of generated
descriptions, it requires a more individual exam-
ination in many cases. Especially in such highly
specialized scenarios such as SciGen. Therefore,
we conduct a human evaluation in order to analyse

11https://huggingface.co/docs/transformers/
model_doc/bart#transformers.BartConfig, last ac-
cessed on 10/02/23.

the impact of our Arithmetic-Based Pretraining on
the downstream tasks. However, due to limited re-
sources, we were only able to conduct a small-scale
human evaluation. At this point, we would also like
to mention that our evaluation setup in general is
subject to limitations. As an extended pretrain-
ing approach, Arithmetic-Based Pretraining might
have a negative impact on a model’s general ap-
plicability, i.e., downstream performance in tasks
used for pretraining, e.g., translation in case of T5,
or other non-number related tasks commonly used
in model benchmarking, such as question answer-
ing, text classification, or sentiment analysis. We
only examined the impact on text generation as
part of our human evaluation and with automatic
metrics (see Appendix D). However, since (1) the
Inferable Number Prediction Task (Section 3.2) is
a variation of the widely used masked language
modeling objective (Devlin et al., 2019), and (2)
character-level tokenisation does not introduce new
embeddings into a pretrained language model, we
don’t expect a negative impact here.

Another limitation concerns the evaluation of
the Inferable Number Prediction Task on a model’s
numeracy. Since it is not reliably traceable whether
and which arithmetic operation was used by a
model to come to a specific result, we can only infer
improved capabilities for arithmetic operations by
performance improvements in the Inferable Num-
ber Prediction Task. We cannot clearly distinguish
performance improvements on specific arithmetic
operations.
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A Hyperparameters for Experiments

Table 8 shows the hyperparameter configuration for
our experiments. In order to not train longer than
necessary, we have determined the optimal number
of epochs for each experiment by using early stop-
ping with a patience of 10. For the downstream
tasks, we have used the MoverScore (Zhao et al.,
2019) with the table-to-text generation datasets.
For DROP (Dua et al., 2019) and InfoTabs (Gupta
et al., 2020), we have used the EM score. All mod-
els were trained for the same amount of epochs.

Batch Size Epochs Learning Rate
Inferable Number Prediction Task

SciGen 8 50 3e-5
WikiBio 8 3 3e-5
InfoTabs 8 21 3e-5
DROP 8 48 3e-5

Downstream Tasks
SciGen 8 27 3e-5
WikiBio 8 9 3e-5
InfoTabs 8 14 3e-5
DROP 8 10 3e-5

Table 8: Hyperparameter Configuration.

B Inferable Number Prediction Task –
Example Input Data

For table-to-text generation, Figure 1 shows an ex-
ample of a (linearized) table from SciGen (Moosavi
et al., 2021) with its caption as C1, concatenated
to its masked description C2 using </s>. <s> and
</s> are special tokens used by BART (Lewis et al.,
2020) to represent the beginning and ending of a
sequence. In case of WikiBio (Lebret et al., 2016),
the input data is represented accordingly.

Figure 1: Illustration of a linearized table that is used
for the Inferable Number Prediction Task. <R>, <C>
and <CAP> symbolize the beginning of a new row, cell,
and the table’s caption.

For DROP (Dua et al., 2019), Figure 2 shows
an example. It consists of the paragraph C1, and a
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question C2. The question contains a number (2)
that also occurs in the paragraph.

Figure 2: Illustration of an input sample for the Inferable
Number Prediction Task using DROP.

Figure 3 shows an example for the In-
foTabs (Gupta et al., 2020) datasets. It is basically
the same as for the table-to-text generation datasets,
but uses the hypothesis as C2.

Figure 3: Illustration of an input sample for the Inferable
Number Prediction Task using InfoTabs.

C Inferable Number Prediction Task –
Dataset Details

In this section, we want to provide more details
on the distribution of arithmetic operations across
datasets used for the Inferable Number Prediction
Task. Table 9 shows the ratio of each arithmetic
operation on the overall number of samples for each
split for the InfoTabs (Gupta et al., 2020) dataset.

OCC ORD SUM SUB MUL DIV
Train 0.24 0.35 0.05 0.16 0.15 0.05
Dev 0.15 0.34 0.07 0.18 0.20 0.06
Test 0.22 0.16 0.09 0.23 0.23 0.07

Table 9: Ratio of arithmetic operations for each split of
the InfoTabs dataset.

Table 10 shows this ratio for the DROP (Dua
et al., 2019) dataset.

OCC ORD SUM SUB MUL DIV
Train 0.41 0.32 0.4 0.07 0.13 0.03
Dev 0.42 0.31 0.05 0.05 0.14 0.03
Test 0.43 0.30 0.04 0.05 0.15 0.03

Table 10: Ratio of arithmetic operations for each split
of the DROP dataset.

Table 11 shows this ratio for the Sci-
Gen (Moosavi et al., 2021) dataset.

OCC ORD SUM SUB MUL DIV
Train 0.11 0.06 0.04 0.12 0.40 0.27
Dev 0.11 0.05 0.04 0.12 0.43 0.25
Test 0.15 0.09 0.02 0.19 0.43 0.13

Table 11: Ratio of arithmetic operations for each split
of the SciGen dataset.

Table 12 shows this ratio for the WikiBio (Lebret
et al., 2016) dataset.

OCC ORD SUM SUB MUL DIV
Train 0.25 0.38 0.03 0.10 0.20 0.03
Dev 0.25 0.38 0.03 0.10 0.19 0.04
Test 0.25 0.38 0.03 0.11 0.20 0.03

Table 12: Ratio of arithmetic operations for each split
of the SciGen dataset.

D Evaluation Using Automatic Metrics

This section presents the evaluation of our results
on table-to-text datasets using automatic metrics.
For this, we use a variety of metrics commonly
used for this task, i.e., BLEU (Papineni et al., 2002),
MoverScore (Zhao et al., 2019), BLEURT (Sellam
et al., 2020), and PARENT (Dhingra et al., 2019).
While BLEU calculates the concordance between
the predicted description and the actual target on
word-level, MoverScore and BLEURT measure the
semantic concordance between the predicted de-
scription and the target using BERT (Devlin et al.,
2019). BLEURT also takes the fluency of the pre-
dictions into account. PARENT estimates the fac-
tual correctness by comparing the predicted de-
scription to the original table and the target descrip-
tion, and especially rewards correct information
that is contained in the table but not in the target. It
has a higher correlation with human judgment. Ta-
ble 13 reports the results. We highlight statistically
significant improvements of our approach over the
respective baseline in the tables (independent two-
sample t-test, p ≤ 0.05).
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MoverS BLEU BLEURT PARENT
SciGen

BART

Baseline
Few 52.48 4.60 -0.63 3.38
Medium 53.76 4.26 -0.69 3.72
Large 53.43 4.87 -0.70 3.68

Ours
Few 53.30 1.73 -0.76 3.81
Medium 53.40 2.71 -0.78 3.45
Large 55.00 9.30 -0.76 3.82

BART (Moosavi et al.) Large 14.00 5.04 -0.71 -

T5

Baseline
Few 52.30 2.96 -0.94 6.39
Medium 51.79 2.67 -0.95 4.08
Large 53.00 3.40 -0.70 5.18

Ours
Few 52.00 2.83 -0.98 4.32
Medium 52.00 2.51 -0.86 4.70
Large 53.40 2.96 -0.89 6.72

BART (Moosavi et el.) Large 6.00 3.38 -0.79 -

Flan-T5

Baseline
Few 53.03 2.76 -0.67 7.89
Medium 53.56 3.03 -0.68 6.14
Large 54.15 3.54 -0.65 7.94

Ours
Few 54.22 3.14 -0.65 8.54
Medium 54.76 3.25 -0.71 8.12
Large 55.12 3.34 -0.61 9.32

WikiBio

BART
Baseline 61.50 17.98 -0.64 45.18
Ours 62.78 18.54 -0.27 44.32

T5
Baseline 60.30 17.94 -0.86 43.97
Ours 60.10 20.00 -0.22 45.25

Flan-T5
Baseline 59.81 17.56 -0.78 44.67
Ours 62.51 21.11 -0.18 46.10
MBD - 41.56 - 56.16

Table 13: Evaluation of our results on table-to-text
datasets using automatic metrics. Baseline presents
the results of the BART-large and Flan-T5-base models
without Arithmetic-Based Pretraining. Ours shows the
results of these models with Arithmetic-Based Pretrain-
ing.

The results show that Arithmetic-Based Pretrain-
ing slightly improves the performance in most ex-
periments (based on PARENT and MoverScore),
and has no negative impact text generation capa-
bilities. However, as outlined in Section 5.1, none
of these metrics can really assess the correctness
of a fact that might be reasoned from the source
data (Moosavi et al., 2021; Chen et al., 2020b;
Suadaa et al., 2021). PARENT tries to address
this, which is why this metric is the most appro-
priate one. Like BLEURT, Moverscore measures
the semantic concordance between target and pre-
diction. The advantage of MoverScore is that it is
easier to interpret.

In case of SciGen, even our baseline results for
BART (Lewis et al., 2020) are better than reported
by Moosavi et al. (2021). We attribute this to dif-
ferent training hyperparameters (they did not re-
port hyperparameters). While BART (Lewis et al.,
2020) and T5 (Raffel et al., 2019) are state-of-the-
art in SciGen (Moosavi et al., 2021), MBD (Re-
buffel et al., 2021) is the state-of-the-art in Wik-
iBio (Lebret et al., 2016). It is a multi-branch de-
coder that was build to reduce the hallucination in
data-to-text tasks.

E Ablation Study – Downstream Tasks

This section shows the results of our downstream
ablation experiments. For experiments, we use the
same setup as described in Section 6, i.e., we con-
sider the large variant of BART (Lewis et al., 2020)
with its default tokenisation (DT) and masking pro-
cedure (DM) as baseline for this experiment. Addi-
tionally, we finetune the models in the downstream
task (using the hyperparameters described in Ap-
pendix A). For evaluation, we use the respective
test splits (in-domain in case of InfoTabs (Gupta
et al., 2020)). Table 14 and Table 15 show the re-
sults of our ablation experiments in downstream
tasks. We conduct the same experiments as for
the general ablation study (Section 6): DT + INP
uses the default tokenisation but our masking pro-
cedure (the Inferable Number Prediction Task, Sec-
tion 3.2), CLT + INP uses the character-level to-
kenisation for numbers (CLT), Ours combines CLT
and INP with the contrastive loss (CL), and Ours
- INP combines CLT with the contrastive loss but
uses DM instead of INP. Overall, the results reflect
the findings described in Section 6. We highlight
statistically significant improvements of our ap-
proach over the respective baseline in the tables
(independent two-sample t-test, p ≤ 0.05).

MoverScore BLEU
WikiBio

BART 61.50 17.98
DT + INP 61.74 17.31
CLT + INP 62.01 18.42
Ours 62.78 18.54
Ours - INP 62.15 18.25

SciGen
BART 53.43 4.87
DT + INP 53.76 4.65
CLT + INP 54.12 6.45
Ours 55.00 9.30
Ours - INP 54.87 7.32

Table 14: Downstream ablation study for SciGen and
WikiBio.

According to automatic metrics, the impact on
table-to-text generation is rather limited. We sus-
pect that this is partly due to their shortcomings
in assessing the correctness of information not di-
rectly included in the source data (see also Sec-
tion 5.1). DT + INP shows that pretraining using
our masking procedure slightly improves the re-
sults in both cases. Using the character-level to-
kenisation for numbers further improves the results
(CLT + INP). In case of SciGen, the comparison be-
tween Ours and Ours - INP suggests that using the
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character-level tokenisation and contrastive learn-
ing to improve the number representation has more
impact than pretraining using INP. In case of Wik-
iBio, the differences are rather negligible (although
Ours outperforms the baseline). This might be due
to the characteristics of the dataset. As described in
Section 4.1, WikiBio rather requires copying num-
bers from input tables to output text, than inferring
context-related numbers (which is different in the
other datasets).

EM F1
DROP

BART 36.00 39.26
DT + INP 39.87 43.77
CLT + INP 42.19 46.09
Ours 45.60 49.50
Ours - INP 43.68 47.45

InfoTabs
BART 33.30 -
DT + INP 48.21 -
CLT + INP 61.56 -
Ours 67.20 -
Ours - INP 62.56 -

Table 15: Downstream ablation study for DROP and
InfoTabs

In case of DROP (Dua et al., 2019) and In-
foTabs (Gupta et al., 2020), the results are more
expressive. In both cases, we find that just us-
ing INP (DT + INP) as an extended pretraining
task already brings a significant improvement over
the baselines. This is further improved by using
character-level tokenisation for numbers (CLT +
INP) and contrastive learning (Ours). Ours - INP
shows that in both cases, INP has a significant im-
pact on performance improvements.

F Experiments using other Contrastive
Representations

Regarding the contrastive representation, we also
experiment with number representations other than
the default subword-level one in order to improve
the representation of numbers using the character-
level tokenisation, i.e., exponent-mantissa (Zhang
et al., 2020), a verbalized representation, and a com-
bination of all of them using the Inferable Number
Prediction Task. We focus on BART (Lewis et al.,
2020) (the large variant) for this experiment. We
conduct this experiment using the large split of the
SciGen dataset (Moosavi et al., 2021). Table 16
shows the results.

None of the other representations improves the

Experiment EM F1
BART (verb. repr.) 15.69 41.01
BART (exp.-mant. repr) 18.13 36.78
BART (subword-based tok.) 24.68 45.81
BART (combined) 17.92 38.43

Table 16: Comparison of results when using different
representations for incorporating the character-level to-
kenisation.

results over using the default subword-level tokeni-
sation.

G Preliminary Math Experiments

With GenBERT, Geva et al. (2020) propose to
start pretraining with math word problems in or-
der to improve the model’s number understanding
and capabilities for arithmetic operations. There-
fore, following this idea would be an obvious
step in order to improve the numeracy of gen-
eral purpose pretrained language models. Table 17
shows the results of a preliminary experiment using
GenBERT’s math word problems dataset (MWP),
BART (Lewis et al., 2020), and SciGen (Moosavi
et al., 2021) on the Inferable Number Prediction
Task. We highlight statistically significant improve-
ments of our approach over the respective base-
line in the tables (independent two-sample t-test,
p ≤ 0.05).

Experiment EM F1
Baseline 7.20 35.11
MWP-pretrained Baseline 15.19 34.18
MWP-pretrained Baseline + CLT 22.94 42.55
MWP-pretrained Baseline + CLT + CL 22.78 43.14
Ours 24.68 45.81

Table 17: Results achieved on the Inferable Number
Prediction Task with and without pretraining using math
word problems.

Baseline refers to the BART-large model. MWP-
pretrained Baseline shows the results for Baseline,
but further pretrained on MWP. MWP-pretrained
Baseline + CLT represents the results for the
MWP-pretrained Baseline, but uses the character-
level representation (CLT) for numbers instead of
BART’s default tokenisation. Accordingly, MWP-
pretrained Baseline + CLT + CL incorporates the
contrastive loss (CL) as additional training signal.
The results show that pretraining using math word
problems as a first step, in general, improves the
results for the Inferable Number Prediction Task,
but not over using Arithmetic-Based Pretraining
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(Ours).
In case of SciGen, the Inferable Number Predic-

tion Task, only uses samples with target descrip-
tions that contain numbers that are inferable from
the input table by lookup or arithmetic operations
(see Section 4.2). Therefore, even though it is a
synthetic task, the results give insights on how ef-
fective pretraining on math word problems is for
improving a model’s numeracy.

H Examples from the Human Evaluation

Figure 4 shows two sample generations from our
approach and the BART (Lewis et al., 2020) base-
line from the SciGen (Moosavi et al., 2021) experi-
ment using the medium split. Both read fluent and
plausible.
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Figure 4: Generation from our approach and the BART baseline from the SciGen experiment using the medium
split.
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Abstract

Stance detection deals with identifying an au-
thor’s stance towards a target. Most existing
stance detection models are limited because
they do not consider relevant contextual infor-
mation which allows for inferring the stance
correctly. Complementary context can be found
in knowledge bases but integrating the context
into pretrained language models is non-trivial
due to the graph structure of standard knowl-
edge bases. To overcome this, we explore an
approach to integrate contextual information as
text which allows for integrating contextual in-
formation from heterogeneous sources, such as
structured knowledge sources and by prompt-
ing large language models. Our approach can
outperform competitive baselines on a large
and diverse stance detection benchmark in a
cross-target setup, i.e. for targets unseen during
training. We demonstrate that it is more ro-
bust to noisy context and can regularize for un-
wanted correlations between labels and target-
specific vocabulary. Finally, it is independent
of the pretrained language model in use.1

1 Introduction

Given a text and a target the text is directed at,
stance detection (SD) aims to predict whether the
text contains a positive or negative stance towards
the target or is unrelated. We provide an example in
Figure 1. In contrast to formal polls, stance detec-
tion (SD) provides a scalable alternative to assess
opinions expressed in unstructured texts. However,
in contrast to predicting the polarity of a text (i.e.,
sentiment analysis), SD is more challenging be-
cause it requires establishing the relation towards
a target which is rarely mentioned in the text (Au-
genstein et al., 2016).

Further, to infer the correct stance, often the text
alone is not sufficient and contextual information

∗* Equal contribution.
1Data and code at https://github.com/UKPLab/

arxiv2022-context-injection-stance

needs to be taken into account (Du Bois, 2007).
In contrast, most stance classification models are
expected to make a correct prediction given the
text and target only. This can lead to overly relying
on label correlations with target-specific vocabu-
lary (Reuver et al., 2021; Thorn Jakobsen et al.,
2021). In our example (Figure 1), it is challenging
to follow the reasoning of the text if the meaning
of school spirit is left unclear.

Target: School Uniforms
Label: Pro
Text: Creates a sense of school spirit.
Context: [’school spirit is the enthusiasm and
pride felt by the students of a school’, ’a strong
sense of school spirit is a positive and uplifting
influence on the school and its students’]

Figure 1: Example for Stance Detection from the UKP
ArgMin dataset (Stab et al., 2018). The context is not
part of the original dataset and was extracted from a
large language model via prompting.

Consequently, providing external knowledge as
an additional signal to stance classification has been
proposed as a remedy. However, lacking a gen-
eral solution, previous work applies knowledge
integration only for a specific text domain like
social media (Allaway et al., 2021; Clark et al.,
2021). Nevertheless, SD algorithms are applied
on a multitude of different text sources like social
media (ALD), news (Hanselowski et al., 2019) or
debating fora (Hasan and Ng, 2013; Chen et al.,
2019) and on diverse targets such as persons (Sob-
hani et al., 2017; Li et al., 2021), products (Soma-
sundaran and Wiebe, 2010), or controversial top-
ics (Stab et al., 2018; Jo et al., 2021a), among other
things. In addition, existing approaches (Zhang
et al., 2020; Paul et al., 2020) often depend on the
structure of the external knowledge source used.
However, a single source of knowledge will likely
not suffice for all different scenarios and adapting

494

http://www.ukp.tu-darmstadt.de/
http://www.hslu.ch/
https://github.com/UKPLab/arxiv2022-context-injection-stance
https://github.com/UKPLab/arxiv2022-context-injection-stance


the model architecture to the structure of a spe-
cific knowledge source (e.g. graph-based) limits its
applicability.

This work proposes a flexible and robust ap-
proach to integrate contextual information by en-
coding it as text. It is better aligned to the encoding
schema of a pre-trained language model (PLM) and
circumvents any dependency on the structure of a
particular knowledge source. It also allows for us-
ing any context source that best fits the data’s text
domain or mixing contextual information from mul-
tiple sources. In detail, we propose a dual-encoder
architecture (INJECT), which encodes the input
text and context information separately while facil-
itating information exchange between both via at-
tention. We investigate extracting contextual infor-
mation from various sources using different extrac-
tion strategies. We evaluate our approach across a
benchmark of 16 stance detection datasets exhibit-
ing different characteristics concerning text source,
size, and label imbalance.

First, we demonstrate that existing state-of-the-
art approaches outperform standard baselines only
on the domains they have been tuned for - but per-
form worse on average. When integrating context
via INJECT, we observe improvements on average
and provide an analysis demonstrating the robust-
ness of our approach. In summary, we make the
following contributions:

• We show that the performance of existing
state-of-the-art approaches does not transfer
across a large and diverse benchmark of 16
SD datasets compared to a standard baseline.

• We propose the INJECT architecture to inte-
grate contextual information for cross-target
stance detection. Our approach leads to perfor-
mance improvements across the benchmark
and is independent of the underlying pre-
trained language model.

• We compare different sources for extracting
contextual information and their effectiveness
for stance detection. We extract context from
structured knowledge bases by prompting a
large pre-trained language model.

• An analysis highlights our approach’s ben-
efits compared to a more direct integration
via appending the context to the input. Our
approach regularizes the influence of correla-
tions of target-specific vocabulary and is ro-
bust to noisy contexts.

2 Related Work

Many tasks in NLP benefit from access to ex-
ternal knowledge such as natural language infer-
ence (Chen et al., 2018), machine translation (Shi
et al., 2016) or argument mining (Lauscher et al.,
2022). Within the era of PLMs, many approaches
rely on extensive pretraining using data from
knowledge bases (Peters et al., 2019; Zhang et al.,
2019) (KB) or supervision from knowledge comple-
tion tasks (Wang et al., 2021; Rozen et al., 2021).

Early works leveraged sentiment lexicons (Bar-
Haim et al., 2017b) or combinations thereof (Zhang
et al., 2020) to improve SD classification perfor-
mance. Other contextual components like au-
thor information (Li et al., 2018; Sasaki et al.,
2018; Lukasik et al., 2019), dissemination features
of social media (Lai et al., 2018; Veyseh et al.,
2017) such as retweets or structural discourse ele-
ments (Nguyen and Litman, 2016; Opitz and Frank,
2019) have been shown to play an important role
for stance detection. Similarly to the aforemen-
tioned approaches, the focus in SD has shifted to-
wards combining structural KBs and PLMs. Kaw-
intiranon and Singh (2021) identify label-relevant
tokens and prioritize those during masked language
modeling. This approach risks overfitting on target-
specific tokens because stance is often expressed
using target-specific terminology - an issue which
is particularly problematic for argumentative sen-
tences (Thorn Jakobsen et al., 2021). Clark et al.
(2021) apply a knowledge infusion method for
PLMs by filtering Wikipedia triplets for contex-
tual knowledge. Popat et al. (2019) extend BERT
by introducing a consistency constraint to learn
agreement between the text and its target. Jo et al.
(2021b) presents a variant of BERT pre-trained
using a variety of supervised tasks resembling log-
ical mechanisms. Paul et al. (2020) extract rele-
vant concepts from ConceptNet using graph-based
ranking methods to improve argument relation clas-
sification. Likewise, Liu et al. (2021) uses Con-
ceptNet to identify relevant concept-edge pairs and
integrate them via a graph neural network during
training. Finally, Hardalov et al. (2021) used label
embeddings to improve SD multi-dataset learning
and recently showed (Hardalov et al., 2022) that
sentiment-based pretraining improves multi-lingual
stance detection.

In summary, most existing approaches inte-
grate knowledge through extensive pretraining on
knowledge-rich data. This does not guarantee im-
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provement of the downstream task they are in-
tended for and requires additional experiments. An-
other line of work introduces architectural depen-
dencies on the structure of the knowledge source,
thereby limiting their usage to tasks and domains
for which the knowledge source is applicable. In
contrast, our approach does not require further pre-
training but directly learns to integrate contextual
information during supervised training. The use-
fulness of the context is, therefore, directly mea-
surable. Further, our proposed approach integrates
context in natural language, thereby decoupling
it from the structure of the context source. It is
better aligned with the encoding mechanism of
pre-trained language models and enables the in-
tegration of contextual information from various
sources.

3 Methodology

Our goal is twofold: (1) we aim to integrate contex-
tual information independent of the context source
and (2) in a way that is robust to noisy and irrele-
vant content in the context. We propose INJECT,
a dual encoder approach to integrate contextual
sentences using the cross-attention mechanism in-
troduced by Vaswani et al. (2017). The general
intuition is that information can flow from input
to context and vice versa, thereby regularizing the
attention in both encoders. Thus, the context pro-
vides further information to reweigh the prediction
importance of individual tokens in the input.

3.1 Contextual information

With regards to stance detection, we define con-
textual information (or short context) as the sum
of all information which, given the text and its tar-
get, renders the conclusion of the stance plausible.
The context for each dataset instance is retrieved
beforehand and is provided as text to the model.
Formally, we describe context c ∈ C where c is
a list containing m texts which provide contextual
information on the input text x. See Figure 1 for
an example (m = 2). The length of these texts is
upper bounded by the maximum sequence length
of the encoder model.

3.2 Context integration via INJECT

Figure 2 provides a high-level visualization of our
proposed INJECT architecture. It consists of two
modules: input- and context-encoder. The input
encoder processes input and target I = (X,T )

Figure 2: Visualization of the INJECT architecture. It
consists of two modules - input encoder and context
encoder. The context encoder encodes contextual in-
formation, and both encoders are interwoven using an
INJECT-block based on the cross-attention mechanism.

while the context encoder processes the context
sentences C. The encoders exchange information
using inject blocks (IB(j)) which are injected on
layer j of both encoders. j is a hyperparameter
tuned using the dataset’s development set. All other
layers are standard transformer blocks. An IB
block is technically similar to a self-attention block
but receives different inputs for key K, value V ,
and query Q. In detail, the inject block of the
context-encoder (on layer j) receives the output
from the self-attention e(j)(I,s) on layer j of the input-
encoder as key and value and the output of its own
self-attention e(j)(C,s) on layer j as query:

IB(j)(K=e
(j)
(I,s), V=e

(j)
(I,s), Q=e

(j)
(C,s))

Afterward, it is forwarded to get the new hidden
state h(i)C of the context. Next, we back-inject the
context into the input-encoder by feeding h(i)C as
key and value in its inject block:

IB(j)(K=h
(j)
C , V=h

(j)
C , Q=e

(j)
(I,s))

Next, the hidden state h(i)I at layer j of the input en-
coder is produced by processing the cross-attention
output e(j)(I,c). Finally, we add a classification head
to the input encoder, which consists of a pooling
layer, a dropout, and a linear classification layer.
The parameters of both modules are optimized us-
ing the standard cross-entropy loss.

Our architecture is flexible regarding the number
of context sentences that can be encoded (parame-
ter m). In the case of multiple sentences, we aver-
age the cross-attention for all of them. Due to the
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dual encoders, INJECT is computationally more
efficient than context integration via concatenation,
as we explain in the Appendix A.7.

3.3 Context integration via concatenation

An alternative approach would be to append con-
textual information to the input text such that the
model can exploit context directly using the self-
attention mechanism. Technically, this is imple-
mented by separating the input and context using
the model-specific separation token (e.g., text +
[SEP] + context for BERT)2.

We see two major drawbacks of this approach.
First, integrating irrelevant context will hurt down-
stream performance due to its direct influence on
attention. Second, it is limited by the maximum
sequence length of the model in use.

4 Context integration for stance detection

Task In stance detection, given an input text x ∈
X and its corresponding target t ∈ T, the goal is to
identify the correct label y ∈ Y from a predefined
set of stance descriptions. We further provide a set
of contextual sentences C. The retrieval of C is
explained in the next section.

4.1 Context retrieval

The INJECT model expects the context in natural
language form and is therefore flexible with regard
to the source of contextual information. To show-
case, we evaluate different context sources that we
deem relevant for inferring stance relations: (1) a
structured knowledge base which stores knowledge
as entity-relationship triplets, (2) a set of causal
relations extracted from an encyclopedia, and (3)
prompting a large pretrained language model us-
ing predefined question templates. The latter pro-
vides an intuitive interface to prompt for relevant
sample-specific context, especially without suitable
knowledge bases.

We neither expect these sources always to pro-
vide perfect contextual information nor to be suit-
able for all of the heterogeneous stance detection
applications (see §5.1). However, our proposed
architecture is designed to be robust, i.e., it utilizes
beneficial context and ignores irrelevant informa-
tion. In the following, we describe each approach
in detail.

2In case of two input texts, the context is concatenated to
the second input text.

ConceptNet Oftentimes, commonsense knowl-
edge is beneficial to infer the stance towards a target
correctly and has been shown to complement stance
classification (Liu et al., 2021). Therefore, we use
ConceptNet (Speer et al., 2017), a directed graph
whose nodes are concepts and whose edges are
assertions of commonsense about these concepts.
For every edge, ConceptNet provides a textual de-
scription of the type of node relationship. Further,
ConceptNet provides a weight factor for every edge
computed based on the edge frequency within the
ConceptNet training corpus.

Our approach uses the English subset of Con-
ceptNet to get context sentences. We filter out
concepts that are part of English stopwords 3 and
ignore relations without descriptions. In total, we
consider 400k nodes connected through approxi-
mately 600k edges. To retrieve the context, we
use all tokens of the input text to search for string
matches within the ConceptNet concepts. We con-
sider only paths of length one where the start-
and/or end-concept are contained in the input text.
Finally, we sort the paths based on their weight
(provided by ConceptNet) and convert every path
into a context candidate by joining the descriptions
of all its edges, as done in previous work (Lauscher
et al., 2020).

CauseNet Causal relations, as a more specific
example of commonsense knowledge, are often
beneficial for understanding opinionated expres-
sions (Sasaki et al., 2016) but rarely formulated in
the text. To explain such relations, we investigate
CauseNet (Heindorf et al., 2020), a KB of claimed
causal relations extracted from the ClueWeb12 cor-
pus and Wikipedia. We use the causal relations con-
tained in the high-precision subset4 of CauseNet,
consisting of 80,223 concepts and 199,806 re-
lations. We ignore concepts shorter than three
characters or consisting of a modal verb (see Ap-
pendix A.6.1). We encode all relations using a sen-
tence encoder (Reimers and Gurevych, 2019) using
BERT-base-uncased weights. For each sample in a
dataset, we retrieve the most relevant relations by
ranking based on the cosine similarity between the
encoded sample and all relations.

Pretrained language model Large PLMs can
be queried as KBs using natural language
prompts (Petroni et al., 2019; Heinzerling and Inui,

3As in NLTK (Bird, 2006)
4see https://causenet.org/
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2021). We adopt this paradigm and generate con-
text candidates by prompting a PLM to provide
more information on either the target, parts of the
input, or a combination of both. Precisely, we
extract noun-phrases from the input sentence of
a length of up to three words using the Stanford
CoreNLP tool (Manning et al., 2014), ignoring
stopwords and filtering noun-phrases that are equal
to the target. Then, we create prompts using the
following templates for single inputs a (e.g., target
or noun-phrase)

P1(a) = define a

P2(a) = what is the definition of a

P3(a) = explain a

and combination of inputs (a, b).

P4(a, b) = relation between a and b

P5(a, b) = how is a related to b

P6(a, b) = explain a in terms of b

The single-input approach is referred to
as T0pp-NP, and the second approach as
T0pp-NP-T. We found those prompts to gener-
ate the most meaningful contexts across different
targets and noun-phrases (see Appendix A.6.2 for
more details). The prompts can then generate out-
puts using any pre-trained sequence-to-sequence
model.

We make use of T0pp5 (Sanh et al., 2022), which
is based on a pre-trained encoder-decoder (Raffel
et al., 2020) and was fine-tuned using multiple di-
verse prompts generated using a large set of super-
vised datasets. We set the output sequence length
to 40 words and sort the generated outputs by the
length in descending order because we sometimes
observe T0pp degenerate into producing single
words. We filter those candidates where more than
half of the generated words are repetitions. Finally,
we remove all special tokens from the candidates.
We found using two context sentences (m = 2)
most beneficial in preliminary experiments.

5 Experiments

5.1 Datasets
We use a SD benchmark (Schiller et al., 2021;
Hardalov et al., 2021), which covers 16 English

5See https://huggingface.co/bigscience/
T0pp. We also did experiments using T5 directly but found
the outputs to be inferior to T0pp.

datasets for research on (cross-domain) stance de-
tection. We use this benchmark (Table 1) because
it shows a large diversity regarding text sources,
the number of targets, the number of annotated
instances, and label imbalance. Thus, it provides
a suitable testbed to evaluate the effectiveness of
our context injection approach. More information
about the details of each dataset can be found in
the Appendix A.2.

5.2 Experimental details

Evaluation Our results are evaluated in a cross-
target fashion (Augenstein et al., 2016; Xu et al.,
2018), i.e., the setup is organized such that in-
stances of a specific target are only contained in
the training, development, or test split. We point
out that our results are not directly comparable to
Hardalov et al. (2021) as they perform experiments
in a cross-domain fashion, i.e., their goal is to eval-
uate transfer learning effects by training on all but
one dataset, which is used for testing. In contrast,
we use one dataset per experiment to study the
usefulness of context integration.

Baselines We compare INJECT to the follow-
ing baselines. BERT is provided only the input,
whereas BERT+Target is provided with both in-
put and target using the model-specific separator to-
ken. (BERT⊕X) refers to BERT+Target with the
retrieved context being appended, where X refers to
context sources used (ConceptNet, CauseNet,
T0pp-NP and T0pp-NP-T). We also test a com-
bination of all context sources (All) and integra-
tion of random context (Random). To the best of
our knowledge, no prior work has evaluated context
integration for cross-target SD on the full bench-
mark. Thus, we compare with TGA-Net (All-
away and McKeown, 2020), STANCY (Popat et al.,
2019), and JointCL (Liang et al., 2022) three
state-of-the-art methods for SD which have been
proposed for subsets of the benchmark. TGA-Net
uses clustering to identify generalized topic rep-
resentations. STANCY applies contrastive learn-
ing to learn embeddings where texts supporting
a target are closer and opposing texts are more
distant to their targets. JointCL use a prototyp-
ical graph for target-aware token representations.
All of them require target information, which is
not available for semeval19. In addition, we found
JointCL is not working on fnc1 due to its long in-
put texts. In these cases, we use the corresponding
BERT-Target score for macro-F1 avg. calcula-
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Dataset Target Type Labels Source

arc (Habernal et al., 2018) Headline User Post unrelated (75%), disagree (10%), agree (9%), discuss (6%) Debates
iac1 (Walker et al., 2012) Topic Debating Thread pro (55%), anti (35%), other (10%) Debates
perspectrum (Chen et al., 2019) Claim Perspective Sent. support (52%), undermine (48%) Debates
poldeb (Somasundaran and Wiebe, 2010) Topic Debate Post for (56%), against (44%) Debates
scd (Hasan and Ng, 2013) None (Topic) Debate Post for (60%), against (40%) Debates

emergent (Ferreira and Vlachos, 2016) Headline Article for (48%), observing (37%), against (15%) News
fnc1 (Pomerleau and Rao, 2017) Headline Article unrelated (73%), discuss (18%), agree (7%), disagree (2%) News
snopes (Hanselowski et al., 2019) Claim Article agree (74%), refute (26%) News

mtsd (Sobhani et al., 2017) Person Tweet against (42%), favor (35%), none (23%) Social Media
rumor (Qazvinian et al., 2011) Topic Tweet endorse (35%), deny (32%), unrelated (18%), question (11%), neutral (4%) Social Media
semeval2016t6 (Mohammad et al., 2016) Topic Tweet against (51%), none (24%), favor (25%) Social Media
semeval2019t7 (Gorrell et al., 2019) None (Topic) Tweet comment (72%), support (14%), query (7%), deny (7%) Social Media
wtwt (Conforti et al., 2020) Claim Tweet comment (41%), unrelated (38%), support (13%), refute (8%) Social Media

argmin (Stab et al., 2018) Topic Sentence argument against (56%), argument for (44%) Various
ibmcs (Bar-Haim et al., 2017a) Topic Claim pro (55%), con (45%) Various
vast (Allaway and McKeown, 2020) Topic User Post con (39%), pro (37%), neutral (23%) Various

Table 1: Stance Detection Benchmark datasets and their characteristics (sorted by source, then alphabetically). This
table is based on Hardalov et al. (2021).

macro-F1avg. arc iac1 perspectrum poldeb scd emergent fnc1 snopes mtsd rumor semeval16 semeval19 wtwt argmin ibmcs vast

BERT 48.3±0.7 21.5 35.6 64.6 51.3 56.7 78.3 27.2 68.7 40.4 44.6 63.5 53.7 25.5 59.6 50.7 32.2
BERT+Target 56.8±0.8 62.5 36.3 76.0 49.8 57.9 78.0 72.9 69.7 41.2 40.5 64.8 53.7 55.2 60.3 52.0 36.1

STANCY 56.2±0.5 62.6 36.9 75.2 50.2 57.9 78.3 74.3† 69.9 40.3 32.9 64.9 – 54.0 60.0 52.5 36.1
TGA-Net 46.8±1.4 57.2 33.9 57.5 42 49.8 59.0 46.2 57.1 37.7 16.0 59.5 – 19.0 50.1 47.9 62.7†
JointCL 50.9±1.8 28.6 35.8 69.6 27.2 47.1 78.9 – 69.7 55.1† 51.5† 67.5† – 65.1† 35.3 35.3 31.4

BERT⊕ConceptNet 55.7±0.6 61.4 39.3† 74.2 49.2 57.6 76.4 72.1 69.4 41.1 44.6 63.5 53.3 43.5 60.2 50.0 35.1
BERT⊕CauseNet 54.9±1.3 60.6 35.0 74.4 50.0 58.0 75.0 70.9 69.2 43.2 39.1 61.1 54.3 44.5 59.4 47.3 36.0
BERT⊕T0pp-NP 55.7±1.0 61.3 37.2 74.0 49.8 54.5 77.2 71.9 69.4 42.1 41.3 62.4 52.2 50.9 60.2 51.1 35.4
BERT⊕T0pp-NP-T 56.2±0.8 61.4 36.7 73.3 48.8 58.2 77.5 72.1 69.8 40.6 44.5 61.9 53.5 54.2 59.3 52.2 34.4
BERT⊕All 55.5±1.3 61.5 38.2 74.3 49.5 56.2 75.7 70.9 68.8 43.5 42.7 62.4 55.3† 42.9 60.3 50.6 35.5
BERT⊕Random 54.5±1.1 61.3 36.3 74.5 49.7 48.3 74.8 72.1 69.6 38.4 38.2 61.8 53.8 49.6 59.0 48.2 36.1

BERT⊗ConceptNet 57.2±1.0 62.7 36.5 75.6 49.3 58.3 77.8 73.8 69.0 41.9 47.9 65.1 54.4 52.5 60.1 53.0 37.4†
BERT⊗CauseNet 57.7±0.9 62.9 36.9 75.5 48.9 58.0 78.1 73.6 69.3 42.4 48.1 65.7† 55.1 54.8 60.7 53.6† 39.6†
BERT⊗T0pp-NP 57.5±1.0 62.6 37.2 75.6 48.7 57.2 77.2 73.7 69.6 41.2 49.2† 65.6† 55.1 55.6 60.9 52.9 37.3†
BERT⊗T0pp-NP-T 57.8±1.0 62.7 37.2 75.9 49.1 57.9 78.7 74.0† 69.1 41.4 52.2† 65.9† 55.0 54.4 61.0 53.4† 37.5†
BERT⊗All 57.2±0.9 63.0 36.6 75.4 49.7 57.9 78.8 73.3 69.1 42.4 44.3 65.5 54.8 53.6 60.3 53.6† 37.7†
BERT⊗Random 57.3±1.0 62.9 36.8 75.5 49.4 57.9 78.0 73.5 69.6 41.6 45.4 65.8 54.3 54.4 60.5 53.4† 37.5†

Table 2: Overview of the cross-target results across stance detection benchmark datasets. We highlight best
performance per evaluation setting and dataset in bold. Statistically significant differences compared to the best
performing baseline without access to context (BERT+Target) are indicated by †. Numbers are macro-F1 scores
averaged over ten runs with differently initialized seeds.

tion for a fair comparison.

Training setup We make use of the standard
splits given in the benchmark (Hardalov et al.,
2021) where possible or create our own (see Ap-
pendix A.1). We use macro-F1 as evaluation metric
and average across ten runs with different seeds.
Performance is measured after the best-performing
epoch based on the development set. We use Mann-
Whitney U-Test (Mann and Whitney, 1947) with
p < 0.05 to test statistical significance. We use
the uncased BERT base model (Devlin et al., 2019)
for all experiments. We use the same set of hyper-
parameters for all model setups. For INJECT, we
use the same model architecture for the input and
context encoder. We tune the layer j for context
integration (see §3.2). We tested layers 3, 6, 9, and
12 on the development set of the benchmark. Layer
12 performed the best and was used for all reported

results. More details are in the Appendix A.1.

6 Results

This section shows the effectiveness of INJECT by
providing constant improvements using noisy con-
text on the heterogeneous benchmark (Table 2).

First, we note a large performance boost
(+8.5pp) when including information about the tar-
get when comparing BERT and BERT+Target.
While target information improved the perfor-
mance for individual datasetes (Stab et al., 2018),
we generalize this finding for 14 out of 16 SD
datasets.

The baselines STANCY, TGA-Net, and
JointCL mostly show the best performance for
the datasets they have been proposed for. However,
on average, they do not perform on par with
the strong BERT+Target baseline. STANCY
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performs slightly worse, probably due to the binary
contrastive loss and thereby ignoring multi-label
information. TGA-Net underperforms all other
approaches except for vast. Using generalized
topic representations transfers to a scenario where
the number of targets is relatively high (5634) and
only a few examples per target exist (mean 2.4), as
for vast. JointCL performs best on datasets from
social media (semeval16, wtwt, or mtsd), but is
outperformed by standard baselines for the rest of
the tasks. Thus, this approach can not generalize to
datasets with longer text inputs. We conclude that
existing state-of-the-art approaches for cross-target
stance detection work well for the datasets they
have been designed for but do not generalize
across the diverse set of datasets that exist in SD.

INJECT outperforms BERT+Target in 13 of
16 cases, while for three datasets (perspectrum,
poldeb, snopes) none of the extracted contexts pro-
vides benefits, independently of the integration. On
average, all context sources lead to performance
improvements in combination with INJECT, with
T0pp-NP-T being the best. Combining all con-
text sources underperforms the integration of indi-
vidual context, most probably due to the average
function leading to a perturbation of the context.
Surprisingly, integration of random context slightly
outperforms the strong BERT+Target baseline
in ten datasets while degrading the direct integra-
tion performance, as expected. We investigate the
reasons in our subsequent analysis (§6.3).

6.1 Quality of context
To evaluate the quality of each context source,
we looked at the aggregated performance differ-
ences with the baseline across each source (Fig-
ure 3b). While CauseNet leads to performance
improvements for a maximum number of tasks
(12), T0pp-NP-T leads the board concerning the
total sum of absolute improvements across all
datasets. The context quality extracted by prompt-
ing a PLM also becomes evident when looking at
the performance of BERT⊕. ConceptNet and
CauseNet lead to large performance degradation
both in number of tasks and absolute numbers.

6.2 Generalization across PLMs
We investigate if the benefits of INJECT trans-
fer to other PLM architectures by evaluating it
in combination with RoBERTa (Liu et al., 2019)
and ELECTRA (Clark et al., 2020). We follow
the same experimental protocol as for BERT A.1,

but chose only the best-performing context source
(T0pp-NP-T) due to the large number of exper-
iments. The results (Table 3) confirm the previ-
ously observed findings that INJECT improves
the performance on average across this diverse set
of stance detection tasks. We observe similar im-
provements as with BERT for both models, with
the strongest increase (+1.1pp on average) and the
best overall performance for ELECTRA.

6.3 Further analysis
As integration with INJECT outperforms direct
integration and even performs more robustly when
provided with random context, we analyze the reg-
ularization provided by the INJECT architecture.

Regularization via INJECT We analyze how
INJECT regularizes inputs by examining how mod-
els rely on target-specific vocabulary. Such vo-
cabulary is often used to express a stance (Wei
and Mao, 2019), but can lead to spurious cor-
relations (Thorn Jakobsen et al., 2021). There-
fore, we identify the top 5% label-indicative and
target-specific tokens and correlate them with the
model attributions using vector-norms (Kobayashi
et al., 2020) (see Appendix A.4 for details). Ta-
ble 4 shows these correlations for six bench-
mark datasets. For arc, argmin, and ru-
mor we note a general low to negative cor-
relation of BERT+Target. Further, we see
BERT⊕T0pp-NP-T and BERT⊗T0pp-NP-T
increasing the correlation - giving more attribu-
tion to target and label indicative tokens. This
behavior is one reason for the bad performance
of BERT+Target for these tasks. For ru-
mor, we note a correlation increase of 45.5 for
INJECT+T0pp-NP-T, which leads to a clear per-
formance improvement of 11.7pp (Table 2). Thus,
INJECT adjusts the low attribution to relevant to-
kens compared to BERT+Target. On the other
hand, we see INJECT+T0pp-NP-T reducing the
attribution for ibmcs, mtsd, and wtwt. Given the
better performance of INJECT+T0pp-NP-T on
ibmcs and mtsd, we conclude that INJECT can
reduce potential spurious correlations in this case.
For wtwt, INJECT+T0pp-NP-T reduces the cor-
relation but has a performance loss of 0.8pp. Given
the niche domain of wtwt (financial mergers and ac-
quisitions on Twitter), identifying relevant context
is more challenging using standard context sources.

Dataset characteristics We investigate which
dataset characteristics are indicative of perfor-
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Figure 3: In (a), we compare the relative performance change ∆F1 of BERT⊕T0pp-NP-T (blue) or
BERT⊗T0pp-NP-T (red) compared to BERT+Target for every task. Within (b), we show the aggregated
relative performance change of BERT⊕(blue) and BERT⊗(red) compared to BERT+Target per context source.
In addition, we count the number of tasks exhibiting performance improvement and deterioration above and below
the bars, respectively.

macro-F1avg. arc iac1 perspectrum poldeb scd emergent fnc1 snopes mtsd rumor semeval16 semeval19 wtwt argmin ibmcs vast

BERT+Target 56.8±0.8 62.5 36.3 76.0 49.8 57.9 78.0 72.9 69.7 41.2 40.5 64.8 53.7 55.2 60.3 52.0 36.1
BERT⊕T0pp-NP-T 56.2±0.8 61.4 36.7 73.3 48.8 58.2 77.5 72.1 69.8 40.6 44.5 61.9 53.5 54.2 59.3 52.2 34.4
BERT⊗T0pp-NP-T 57.8±1.0 62.7 37.2 75.9 49.1 57.9 78.7 74.0† 69.1 41.4 52.2† 65.9† 55.0 54.4 61.0 53.4† 37.5†
RoBERTa+Target 61.6±0.6 60.4 32.9 85.1 49.6 62.3 79.0 77.3 74.9 61.2 49.9 70.3 57.8 64.2 60.9 62.9 37.0
RoBERTa⊕T0pp-NP-T 60.8±0.8 61.7 35.1 84.1 50.6 62.1 77.8 77.0 73.9 55.2 51.3 68.2 57.8 63.4 61.6 57.9 35.6
RoBERTa⊗T0pp-NP-T 61.9±0.7 62.9† 33.4 85.4 49.6 59.5 78.5 77.3 74.6 64.4 51.2 70.5 58.0 62.2 61.1 63.5 38.5†
ELECTRA+Target 62.0±0.9 59.5 35.2 89.2 45.7 61.7 77.4 73.8 75.4 66.9 50.0 70.1 55.0 63.7 60.2 71.6 36.2
ELECTRA⊕T0pp-NP-T 61.6±0.7 59.6 35.5 87.5 47.8 62.1 77.4 73.8 74.0 64.7 53.1 67.2 54.1 65.3 60.6 68.4 35.2
ELECTRA⊗T0pp-NP-T 63.1±0.6 62.5† 35.4 89.3 47.4 60.4 78.2 76.2† 75.7 68.9† 54.7 70.0 57.1 63.7 60.7 71.7 37.2

Table 3: Comparing context integration using different PLM architectures in a cross-target setup across stance
detection benchmark datasets. We highlight the best performance per model architecture and dataset in bold. Statis-
tically significant differences compared to the best-performing baseline without access to context (BERT+Target)
are indicated by †. Numbers are macro-F1 scores averaged over three runs with differently initialized seeds (see
Appendix A.1 for experimental details.)

model arc rumor argmin ibmcs mtsd wtwt

BERT+Target -6.3 -14.1 6.9 27.0 64.5 11.6
BERT⊕T0pp-NP-T 4.5 31.0 16.2 25.7 48.9 5.3
BERT⊗T0pp-NP-T 8.8 31.4 9.8 22.7 33.8 6.4

Table 4: Pearson correlation between self-attention
and target-label-specific tokens for the baseline model
BERT+Target and the context integration approaches
(BERT⊕ and BERT⊗) using the best performing con-
text source (T0pp-NP-T). A larger correlation indi-
cates stronger attention attribution.

mance improvements using INJECT. Thus, we
compute the Pearson correlation of various dataset
characteristics and the performance differences
between the baseline and the average of the IN-
JECT variants. Details about how we calcu-
late dataset characteristics are provided in the Ap-
pendix A.5. The results are visualized in Figure 4.
Independent of the context source, we observe ben-
eficial improvements using INJECT if datasets

exhibit characteristics leading to performance in-
stabilities. This is indicated by positive correla-
tions with an increasing number of labels and la-
bel imbalance. Further, we measure text under-
standing difficulty using the Flesch reading-ease
score (FRES) by Flesch (1948). Interestingly, IN-
JECT can better deal with datasets exposing a high
variability of FRES within their instances (mean-
flesch, std-flesch). These factors generally con-
tribute to training instabilities where INJECT is
more robust. This observation is confirmed by the
strong positive correlation of the variance across
random initializations and INJECT performance.

Robustness We investigate robustness across all
benchmark datasets for the T0pp-NP-T context
by visualizing the performance differences to the
baseline (BERT+Target) in Figure 3a. In the
case of performance improvements, INJECT con-
sistently outperforms direct context integration. If
there is no improvement for both integration ap-
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Figure 4: Pearson correlation of various dataset charac-
teristics with performance difference compared to the
baseline.

proaches, the performance loss is less pronounced
for INJECT with only one exception (snopes). To
substantiate this finding, we contrast both context
integration approaches in a scenario with both ideal
context, i.e., the contextual information is guaran-
teed to be beneficial in predicting the correct class
and random context. Our results demonstrate IN-
JECT successfully leveraging the contextual infor-
mation while not outperforming direct integration
in the case of ideal context. However, when given
irrelevant context, INJECT is closer to context-
free baseline performance. Details about the ex-
periments are provided in the Appendix §A.3. In
summary, we conclude that context integration is
more robust regarding noisy context.

7 Conclusion

We propose INJECT, a dual-encoder approach to in-
tegrate contextual information for stance detection
based on cross-attention. While state-of-the-art ap-
proaches perform mostly well on the datasets they
have been proposed for, we evaluate our approach
across a large and diverse benchmark in a cross-
target setting and observe improvements compared
using three different sources for extracting contex-
tual information. We show that the context inte-
grated via INJECT improves stance detection and
is beneficial for generalization on targets not seen
during training. In future, we plan to explore more
sophisticated ways of prompting large pre-trained
language models for helpful context.

Ethical Considerations and Limitations

Quality of the context The performance im-
provement for contextual information injection is

bounded by the quality of the context source. In-
dependently of the source in use, it is possible to
introduce additional noise into the training proce-
dure. While this is a rather generic problem, our
proposed architecture seems to be better at filtering
noisy context than a direct integration via append-
ing to the input.

Quality of context source Most of the existing
knowledge bases provide high-quality and curated
knowledge. In contrast, when prompting a large
language model for knowledge, we are also ex-
posed to the risk that we extract the biases (e.g.
false facts or stereotypical biases) that the model
has learned during pretraining. In our experiments,
we use the T0pp language model where biases have
been reported to exist6. These biases can poten-
tially influence the prediction performance unin-
tendedly, especially as in many SD datasets, the
annotated targets are often controversial. While
investigating such effects is out of scope for this
work, we consider such an evaluation inevitable
before deploying our proposed model to any data
outside (academic) research context.

Limitations As described in §3, our proposed
approach uses two parallel encoder models (input
and context). It thus requires twice as many pa-
rameters as the baseline model we compare to,
thereby enforcing additional hardware demands.
We consider our approach as a proof-of-concept
on how to integrate contextual knowledge without
amplifying a model’s exploitation of spurious cor-
relations. We plan to make our architecture more
parameter-efficient by investigating more recent ap-
proaches for parameter sharing, e.g. with the use
of adapters (Houlsby et al., 2019).

Moreover, we acknowledge the strong influence
of wording in prompts on the output of a language
model, as has been reported in the literature (Jiang
et al., 2020; Schick and Schütze, 2021). We ex-
perienced similar effects during preliminary ex-
periments and pointed out that we did not find a
one-size-fits-all solution which works equally well
across the diverse set of SD benchmark datasets.
Therefore, special care must be taken when extract-
ing contextual information from large language
models using prompting.

6More details at https://huggingface.co/
bigscience/T0pp?
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A Appendix

A.1 Experimental Details

• All models are trained using five epochs, batch
size of 16, a learning rate of 0.00002, a
warmup-up ratio of 0.2 with linear scheduling,
and AdamW (Loshchilov and Hutter, 2019) as
optimizer. The hyperparameters tuned during
training are described in the main paper (see
§5.2).

• We use CUDA 11.6, Python v3.8.10, torch
v1.10.0, and transformers v4.13.0 as software
environment and a mixture of NVIDIA P100,
V100, A100, A6000 as GPU hardware.

• We load all pretrained language mod-
els from HuggingFace model hub. In
detail, we use the following model
tags: bert-base-uncased for
BERT, google/electra-base-
discriminator for ELECTRA, and
roberta-base for RoBERTa.

• We use the captum library (v0.5.0) to calcu-
late the vector-norms for approximating token-
attributions (Kobayashi et al., 2020) in §6.3.

• We use the statsmodel library (v0.13.2) to
calculate statistical significant differences us-
ing the Bhapkar test (Bhapkar, 1966) with
p < 0.05.

• We use sklearn (Pedregosa et al., 2011) for
computing evaluation metrics (e.g. macro-
F1).

• We measured the average training runtime of
models on the argmin dataset as a reference.
BERT+Target and BERT+ConceptNet
needed 618 seconds whereas INJECT needed
400 seconds.

• We use the seeds [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].

A.2 Datasets

We provide details about the individual split propor-
tions for the cross-target evaluation setup in Table 5.
For more information on each individual dataset,
we refer to Schiller et al. (2021) and Hardalov et al.
(2021).

Dataset Train Dev Test Total

arc 12,382 1,851 3,559 17,792
argmin 6,845 1,568 2,726 11,139
emergent 1,638 433 524 2,595
fnc1 42,476 7,496 25,413 75,385
iac1* 4,221 453 923 5,597
ibmcs 935 104 1,355 2,394
mtsd 6,227 1,317 1,366 8,910
perspectrum 6,978 2,071 2,773 11,822
poldeb 4,753 1,151 1,230 7,134
rumor* 6,093 299 505 7,106 (10,237)
scd 3,251 624 964 4,839
semeval2016t6 2,497 417 1,249 4,163
semeval2019t7* 5,205 1,478 1,756 8,439 (8,529)
snopes 14,416 1,868 3,154 19,438
vast 13,477 2,062 3,006 18,545
wtwt 25,193 7,897 18,194 51,284

Table 5: Number of examples per data split for the cross-
target evaluation setting. For datasets marked with *,
not all tweets could be downloaded or we discovered
empty instances which we excluded (in comparison to
the numbers provided by Hardalov et al. (2021)); for
mtsd, we received the full dataset by the original authors;
the original number of tweets is in parentheses.

A.3 Evaluation with ideal context

To evaluate our goal of robust integration of contex-
tual information using INJECT, we contrast both
context integration approaches in a scenario with
both ideal context, i.e. the contextual information is
guaranteed to be beneficial in predicting the correct
class, and random context. To showcase, we use the
e-SNLI (Camburu et al., 2018) corpus for natural
language inference and the Snopes (Hanselowski
et al., 2019) corpus for claim verification. We use
the provided explanations (e-SNLI, m=1) and ev-
idences (Snopes, m=10) as ideal context, respec-
tively. As random (but syntactically correct) con-
text, we randomly extract sentences from the Guten-
berg corpus7 included in NLTK (Bird, 2006). Ta-
ble 6 compares a BERT baseline without context,
BERT with context integration via concatenation
(BERT⊕), and integration via INJECT (BERT⊗).

The results demonstrate INJECT successfully
leveraging the contextual information while not out-
performing direct integration in the case of ideal
context. However, when provided with irrelevant
context, INJECT is closer to the context-free base-
line performance.
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Figure 5: Two examples of the argmin dataset. The first is an argument against gun control, while the second supports
it. It shows the token-level attribution for BERT, BERT+Target, BERT+CauseNet, and INJECT+CauseNet.

e-SNLI (Ideal) e-SNLI (Random) Snopes (Ideal) Snopes (Random)

BERT 90.33 90.33 51.8 51.8
BERT⊕ 98.70 90.08 78.0 49.7
BERT⊗ 98.35 90.52 75.8 51.1

Table 6: Comparison of context integration via concate-
nation (BERT⊕) and INJECT (BERT⊗) on e-SNLI and
Snopes. Original dataset splits are used. Scores are
macro-F1 averaged across three seeds.

A.4 Identification of target-specific label
correlations

We examine internal processes in the model archi-
tecture by analyzing how relevant a token is com-
pared to how much a model attributes to the token.
In detail, we calculate for the 5% most relevant
tokens for target and label the correlation of this
relevance and the model attribution on them.

Token Relevance We consider the probability
of a token to appear in combination with a label l
and target t. A higher probability indicates that a
token is more likely to occur within a label-target
combination.

In detail, we first calculate the relevance as the
maximum log-odds-ratio r(w,(li,tj)) (Kawintiranon
and Singh, 2021) over all possible combinations of
labels L = {l1, ..., ln} and targets T = {t1, ..., tk}
for a given token w. We define o(w,(l,t)) (Equa-
tion 1) as the probability of token t appearing
in combination with label l and target t, with
c(w, (l, t)) denoting the counts of w in texts with
label l and target t. Next, we calculate the max-
imum log odds-ratio r(t,(L,T )) as in Equation 2.
This tells us how specific a token w is at max. for
a label-target combination.

7http://www.gutenberg.org/

o(w,(li,tj)) =
c(w, (li, tj))

c(¬w, (li, tj))
(1)

r(w,(L,T )) = max
(li,tj)∈L×T

log(
o(w,(li,tj))

o(w,¬(li,tj))
) (2)

Token Attributions To approximate a to-
ken’s attribution, we calculate the vector-norms
(Kobayashi et al., 2020) for the output of the 12th
layer.

We provide anecdotal examples in Figure 5
along with their token-level attribution of
the 12th layer from (BERT, BERT+Target,
BERT+CauseNet) and INJECT+CauseNet.
For the first three, we use the self-attention and
for the latter one the cross-attention. In the first ex-
ample, INJECT+CauseNet made the right pre-
diction while all BERT-based models failed and
vice-versa for the second one. In both examples,
we see lower attribution for target-specific terms
like firearms or arms and higher attribution for
terms with general use like besides, cause, or to.
INJECT+CauseNet makes the correct predic-
tion while BERT+Target failed due to its high
attribution to firearms - an example of a spurious
correlation. However, in some cases this can also
lead to erroneous predictions as in the second ex-
ample where INJECT+CauseNet gives less im-
portance to the specific - and in this case important
- tokens of the sentences (right to bear arms).

A.5 Dataset Characteristics
In Table 7, we provide relevant dataset characteris-
tics for each dataset in the stance detection bench-
mark. To compute label imbalance, we first calcu-
late the mean and standard deviation of the number
of instances per label. The label imbalance is then
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arc iac1 perspectrum poldeb scd emergent fnc1 snopes mtsd rumor semeval16 semeval19 wtwt argmin ibmcs vast

Number of Labels 4 3 2 2 2 3 4 2 3 5 3 4 4 2 2 2
Label Imbalance 1,16 0,55 0,03 0,11 0,20 0,41 1,13 0,48 0,23 0,61 0,37 1,09 0,58 0,11 0,11 0,22
Train-Test-ratio 3.48 4.57 2.52 3.86 3.37 3.13 1.67 4.57 4.56 12.48 2 2.96 1.38 2.51 0.69 4.48
Train-Test-Vocabulary Overlap 16461 16939 2875 7553 5171 861 11244 8092 4876 818 2666 3248 7836 4454 1361 6271
FRES Mean 63.07 70.27 53.12 65.11 70.70 66.37 61.44 61.36 71.43 58.08 67.43 58.62 48.41 51.73 39.94 63.19
FRES St.Dev. 14.2 13.6 29.6 37.4 29.5 21.5 10.3 26.3 17.5 57.7 22.2 49.3 26.8 22.8 29.4 14.1
Baseline St.Dev. 0.8 2.9 0.8 2.8 1.7 1.5 1.3 0.8 2.1 9.8 0.6 2.6 4.1 1.4 1.5 1

Table 7: Overview of the dataset-characteristic for each dataset.

defined as the division of the standard deviation by
the mean.

A.6 Knowledge
The information about the average length of the
retrieved contextual knowledge is given in Table 8.
We observe substantially longer paragraphs ex-
tracted from CauseNet which is not surprising
as CauseNet consists of passages extracted from
Wikipedia.

A.6.1 CauseNet
We ignore concepts which are shorter than 3 charac-
ters or consist of one of the following modal verbs
("must", "shall", "will", "should", "would", "can",
"could", "may", "might").

A.6.2 Prompts
We manually evaluated the following prompts for
both single and combination inputs. As reported
in related work (Jiang et al., 2020; Schick and
Schütze, 2021), the generated text is sensible to
wording and punctuation in the prompt. We made
similar experiences and removed all punctuation at
the end of the prompt to prevent the model from
generating outputs of short length.

A.7 On Efficiency of INJECT
From an efficiency point-of-view, INJECTpro-
cesses a text and corresponding contexts more ef-
ficiently than via SEP integration. This is because
there is no self-attention over input and context
jointly where the attention dimension is dsep =
(len(input) + len(context)) × (len(input) +
len(context)). For INJECT, in contrast, input
and context are processed in separate encoders
with attention dimensions dinput = len(input) ×
len(input) and dcontext = len(context) ×
len(context) on every layer. Just in the INJECT-
layer, there are two additional attention blocks
with dimensions dcross context = len(input) ×
len(context) and dcross input = len(context) ×
len(input).
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Knowledge Source arc iac1 perspectrum poldeb scd emergent fnc1 snopes mtsd rumor semeval16 semeval19 wtwt argmin ibmcs vast

ConceptNet 5.1 5.1 5.5 5.1 5.2 5.5 5.1 5.5 5.6 6.0 5.5 5.6 5.6 5.3 5.3 5.1
CauseNet 91.2 112.1 20.5 78.4 69.8 34.1 137.6 40.3 56.4 50.6 52.1 47.0 43.0 36.4 23.7 89.5
T0pp-NP 13.1 13.1 13.0 12.9 12.5 13.3 14.1 13.6 12.9 13.1 12.4 13.0 12.5 12.5 13.5 13.1
T0pp-NP-T 9.9 12.7 10.5 12.1 11.9 11.6 16.7 11.9 14.0 13.6 12.7 9.4 11.1 12.7 11.7 12.2

Table 8: Average length for each combination of knowledge extraction method and dataset.

Prompt Usage

define a ✓
what is a
describe a
what is the definition of a ✓
explain a ✓
relation between a and b ✓
how is a related to b ✓
explain a in terms of b ✓

Table 9: Prompts which have been evaluated for gener-
ating contextual knowledge for stance detection.
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Abstract

This paper begins with the premise that adverbs
are neglected in computational linguistics. This
view derives from two analyses: a literature re-
view and a novel adverb dataset to probe a state-
of-the-art language model, thereby uncovering
systematic gaps in accounts for adverb mean-
ing. We suggest that using Frame Semantics for
characterizing word meaning, as in FrameNet,
provides a promising approach to adverb anal-
ysis, given its ability to describe ambiguity, se-
mantic roles, and null instantiation.

1 Introduction

Adverbs are the part of speech (POS) that has seen
the least attention in (computational) linguistics,
likely due to its challenging nature (Conlon and
Evens, 1992). As Huddleston and Pullum (2002,
563) state, “the adverb is a [. . . ] residual category
[. . . ] to which words are assigned if they do not
satisfy the more specific criteria for nouns, verbs,
adjectives, prepositions, and conjunctions.”

Syntactically, they modify many POSs, except
nouns (eat porridge quickly, hardly noticeable),
or even complete clauses (Probably, I’ll come to-
morrow). They are semantically varied (Thoma-
son and Stalnaker, 1973), ranging from intensi-
fiers/modifiers (absolutely, beautifully) to temporal
and spatial specifications (yesterday, forward), to
so-called speaker-oriented adverbs yielding infer-
ences about speaker attitudes, beliefs, and evalu-
ations. Finally, adverbs can occupy different po-
sitions in sentences, creating complex issues of
scoping and ambiguity (Alexiadou, 2004; Payne
et al., 2010). Consider the following sentences:1

(1) a. Happily, they watched TV until dinner.
b. They happily watched TV until dinner.
c. They watched TV happily until dinner.
d. They watched TV until dinner happily.

1Huddleston and Pullum (2002, 575)

While language users tend to interpret Ex. 1b–1d
as describing the TV watchers’ mental state, Ex. 1a
is ambiguous and can also be read as a positive
evaluation of the situation by the speaker.

In sum, adverbs provide crucial information not
just about the where and how of events, but also
about attitudes and evaluations. However, relatively
little research on adverbs exists in computational
linguistics, although lexical factors are generally
recognized as central for many NLP tasks (Berger
et al., 2000). Lexical information is generally rep-
resented either in online dictionaries or by embed-
dings extracted from corpora (Turney and Pantel,
2010; Devlin et al., 2019; Peters et al., 2018). As a
dictionary, WordNet (Miller et al., 1990) lists ad-
verbs but only provides a relatively impoverished
account, while lexicons for sentiment analysis (Be-
namara et al., 2007; Dragut and Fellbaum, 2014)
and hedging detection (Jeon and Choe, 2009; Is-
lam et al., 2020) only consider specific subtypes
of adverbs as to how they modulate the intensity
of adjectives. On the distributional side, adverbs
have been considered from a derviational perspec-
tive (Lazaridou et al., 2013); yet, they are rarely
scrutinized in detail. Among the standard bench-
marks, only GLUE (Wang et al., 2018) and BLiMP
(Warstadt et al., 2020) cover adverbs, and then
only marginally. The same is true of approaches
that combine dictionaries and embeddings (Faruqui
et al., 2015). As a consequence, SOTA language
models consistently struggle with adverb meaning,
as Section 2.2 will demonstrate empirically.

This paper argues that Frame Semantics (Fill-
more, 1985), as realized in FrameNet (FN) (Rup-
penhofer et al., 2016), provides an efficacious
framework to articulate the relevant aspects of ad-
verb meaning. Specifically, as Ex. 1 illustrates,
lexical ambiguity is captured in terms of frame am-
biguity. Moreover, inferences about the arguments
of adverbs, typically filled by the speaker and the
lexical unit that the adverb modifies, can be cap-
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tured and characterized via the frame elements (i.e.
semantic roles) of the frame. Notably, FrameNet
mechanisms will account for null-instantiated roles,
allowing it to hint at unexpressed content in cases
like Example 2b (v. Section 4.2 for details).

(2) a. [SPEAKER The Minister] reported
[MESSAGE that the cost had exploded].

b. [MESSAGE The cost had] reportedly
[MESSAGE exploded].

In such cases specifically, FrameNet considerations
of frame element realization help to explain the
absence of the SPEAKER semantic role in 2b.

Plan of the Paper. Section 2 defines the scope
of this paper (speaker-oriented adverbs) and shows
the lack of accounts for adverbs in NLP through
a literature review. Section 3 presents a probing
dataset for speaker-oriented adverbs on the basis
of which it demonstrates empirically that current
large language models do not provide accounts
for adverb meaning. Section 4 provides general
background information on FrameNet, gives details
on the framework’s approach to the description of
adverb meaning, and suggests its use to improve
NLP models. Section 5 concludes the paper.

2 Scope and Motivation

2.1 Scope
Given the variety and heterogeneity of adverbs,
we restrict the empirical scope of this paper to a
subclass of them – even though we believe that the
conceptual points apply to adverbs generally. We
focus on speaker-oriented adverbs (Ernst, 2009).
This broad class of adverbs, itself comprises several
subtypes brought together by their giving rise to
a range of inferences about attitudes and beliefs
of the speaker, such as epistemic beliefs (Ex. 3),
evaluations (Ex. 1 and 4), and speech acts (Ex. 5):

(3) Peter says: “Paul is certainly right”.
|= Peter is certain that Paul is right.

(4) Peter says: “Unfortunately, Paul arrived”.
|= Peter is unhappy that Paul arrived.

(5) Peter says: “Frankly, Paul annoys me.”
|= Peter voices his frank opinion.

Structurally, these entailments are similar to entail-
ments that arise from implicative verbs (Karttunen,
1971). As sources of information about how speak-
ers assess states of affairs, they are highly relevant
for tasks like opinion mining (Pang and Lee, 2008)

and stance detection (Thomas et al., 2006). How-
ever, while implicative verbs have received con-
siderable attention in the context of textual entail-
ment (Karttunen, 2012; Lotan et al., 2013), speaker-
oriented adverbs have not.

2.2 Treatment of Adverbs in Computational
Linguistics

This section summarizes work on adverbs in com-
putational linguistics in the four most relevant ar-
eas: WordNets, applications, distributional mod-
eling, and semantic annotation. Section 3 covers
large language models separately.

WordNets. Princeton WordNet (WN, version
1.3) (Miller et al., 1990) covers about 4,500 English
adverbs, comprising both single words and adver-
bial multi-word expressions like a priori. The in-
formation recorded includes senses (although most
adverbs are monosemous) and semantic relations:
almost all single-word adverbs are linked to the
adjectives from which they are derived,and some
adverbs have antonyms. However, WN has no in-
formation on the adverbs’ syntactic or semantic
behavior. The approach of corresponding Word-
Net resources varies substantially: GermaNet, for
German, does not treat adverbs at all (Hamp and
Feldweg, 1997). In contrast, plWordNet (Maziarz
et al., 2016) provides a considerably richer descrip-
tion of adverbs, notably regarding lexical relations,
but is only available for Polish.

NLP applications. Apparently, sentiment and
emotion analysis are the NLP applications that have
paid the most attention to adverbs (Benamara et al.,
2007; Dragut and Fellbaum, 2014; Chauhan et al.,
2020). Hedge detection, that is, the recognition of
expressions that modulate speaker confidence in
their statements boasts additional work on adverbs
(Jeon and Choe, 2009; Islam et al., 2020). How-
ever, these studies, are generally limited to two
specific subtypes: scalar adverbs that modify senti-
ment strength (intensifiers/minimizers: very/hardly
nice) and adverbs that modify confidence (cer-
tainly/apparently). Haider et al. (2021) also con-
siders locative and temporal adverbs. Confidence-
modifying adverbs form a subtype of the speaker-
oriented adverbs addressed here, but existing stud-
ies do not offer a general account of these adverbs
beyond the requirements of specific tasks.

Studies on structured sentiment and emotion
analysis (Barnes et al., 2021; Kim and Klinger,
2018) assume a different perspective. These works
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concentrate on defining and modeling the relations
between sentiment- and emotion- introducing ex-
pressions and their semantic arguments, such as
the experiencer of the affect and its target. As the
comparison with Example 2 shows, these relations
are at times tied to adverb meanings. However,
we are not aware of studies in this area that deal
specifically with adverbs.

Distributional modeling. A number of studies
investigated the interplay between word embed-
dings and morphology, analyzing similarity by
parts of speech (Cotterell and Schütze, 2015) or
investigating meaning shifts corresponding to mor-
phological derivation (Lazaridou et al., 2013; Padó
et al., 2016). Typically, these studies include ad-
verbs, and not surprisingly find that adverbs behave
highly inconsistently.

Semantic annotation. In principle, frameworks
for the annotation of (semantic) argument structure
are promising sources for information about adverb
meaning, but they differ widely in the information
that they offer. The PropBank (Palmer et al., 2005)
annotation scheme offers a range of modifier roles
(ARGM) for the annotation of modifiers, including
adverbs. However, the most fitting of these roles,
ARGM-ADV, is a “catch-all” category. In addition,
the PropBank analysis does not treat adverbs as
predicates in their own right and does not assign
roles to them. Thus, fortunately, she accepted and
even she accepted would receive the same analysis.

In contrast, UCCA (Abend and Rappoport, 2013)
explicitly splits adverbs into adverbial modifiers
proper (D) and ground elements (G), where the
latter expresses the speaker’s attitude toward the
event. However, UCCA does not make the struc-
tural relations explicit either.

AMR (Banarescu et al., 2013) offers a more nu-
anced approach: many adverbs are mapped to their
underlying predicates and endowed with complete
argument structure,2 while others are interpreted
as degree, manner, or time modifiers. However, no
provision exists in the representation for speaker-
oriented adverbs. To illustrate, the AMR annotation
of thankfully, she accepted the present either treats
the adverb as describing a general state of affairs
(it is good that she accepted) or simply omits it.

Finally, Frame Semantics (Fillmore, 1985) offers
the conceptual infrastructure to improve on these

2For example, AMR treats sing in sing beautifully as the
first argument of beautiful-02.

treatments and avoid their limitations. Section 4
provides justification of this understanding.

3 Case Study: Modeling Adverb Meaning
as Natural Language Inference

One possibility, so far not mentioned, is that the
knowledge inherent in large neural language mod-
els might provide a sufficient account of the mean-
ing of (speaker-oriented) adverbs. In that case, at
least from the NLP perspective, no (new) specific
treatment would be required. However, this state
of affairs is not the case, as we show below.

3.1 Creating Probing Datasets
To operationalize “a sufficient account,” we ask
language models to distinguish between valid and
invalid inferences along the lines of Examples 3–5.
As input data, we constructed probing examples
with inferences for speaker-oriented adverbs.

We examined four classes of adverbs, motivated
by current FrameNet frames containing adverbs
(see Section 4.3 for details). These are: likelihood
adverbs (e.g. undoubtedly, probably); unattributed-
information adverbs (reportedly, allegedly, suppos-
edly); degree adverbs (at least, approximately); and
obviousness adverbs (blatantly, conspicuously).

We built the datasets from combinations of
premises and hypotheses containing such adverbs,
formulated as templates with sets of fillers for the
adverbs and different participant positions. In this
manner, we assessed the LM’s capabilities irre-
spective of specific word choice. We paired each
premise with two to four unambiguous hypothe-
ses depending on the adverb class. The premise
either implies or contradicts the hypothesis. Ta-
ble 1 shows an example. Hypothesis 1 negates the
premise and constitutes a contradiction. Hypothe-
sis 2 is a valid inference about speaker evaluation;
and Hypothesis 3 is a valid inference about the
uncertainty inherent in the premise.

We report studies on two datasets with different
emphases. We designed the first to be natural-
istic, based on existing sentences for adverbs in
FrameNet. Given the limited size of this dataset,
we also created a larger synthetic dataset with sim-
pler, more varied, sentences. The Appendix lists
full details on both datasets.

Naturalistic Dataset. As stated, we created
this dataset based on sentences in the FrameNet
database containing adverbs of the four classes enu-
merated above. We “templatized” the sentences
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Premise The celebration had been postponed, osten-
sibly because of the Gulf War

Hyp 1 The Gulf War ostensibly had no effect on
the celebration (CONTRADICTION)

Hyp 2 Someone said that the celebration was
postponed because of the Gulf War
(ENTAILMENT)

Hyp 3 The Gulf War may have had no effect on the
celebration (ENTAILMENT)

Table 1: Naturalistic dataset: Probing items

by treating the position of the adverb as a slot
that can be filled by all semantically congruent
adverbs from the respective class. In sentences
where the subject is a personal name, we also
treated the subject position as a slot, which we
filled with twenty female and male names popu-
lar in the United States. Because the low num-
ber of sentences of the each type in the FrameNet
database, and most templates have only one slot,
viz. the adverb, the size of this dataset is limited.
See Table 3 for example counts by adverb class.

Synthetic Dataset. The goal of this dataset was
to test if the performance of the model is robust
with regard to the replacement of the main-event
description and varying syntactic complexity of the
premises and hypotheses. It covers three of the four
adverb classes: unattributed-information, degree,
and obviousness, where the templates from the first
dataset were most restricted. In these templates,
subjects are always exchangeable. In addition, we
also varied the description of the main action or
relation described the sentence.

Table 2 shows the template set for unattributed-
information adverbs. The set of adverbs for this
class comprises reportedly, allegedly, supposedly,
apparently, and ostensibly. Fillers of the ACTION

slot include both gerund phrases (e.g. selling the
house) and noun phrases (e.g. the wedding). Entail-
ments and contradictions are produced in pairs. For
entailments, we test two valid inferences triggered
by the adverb. For contradictions, we test embed-
ded clauses with and without negation. Table 5
shows the example count for each input type.

3.2 Probing Setup: NLI models

Arguably the best match for these types of datasets
are the family of language models optimized for
the task of natural-language inference (Storks et al.,
2019). Concretely, we evaluated the series of
NLI models released by Nie et al. (2020), the

Premise SUBJ1 said that SUBJ2 ADV opposed AC-
TION

Hyp 1 SUBJ1 said that SUBJ2 may have opposed
ACTION (ENTAILMENT)

Hyp 2 SUBJ1 is not sure that SUBJ2 opposed AC-
TION (ENTAILMENT)

Hyp 3 SUBJ1 is sure that SUBJ2 opposed ACTION
(CONTRADICTION)

Hyp 4 SUBJ1 is sure that SUBJ2 did not support
ACTION (CONTRADICTION)

Table 2: Synthetic dataset: Probing items

SNLI or Stanford Natural Language Inference mod-
els. These models carry out a three-way classifi-
cation between ENTAILMENT, CONTRADICTION,
and NEUTRAL. The author fine-tuned their models
on a data set created in an iterative, adversarial,
human-in-the-loop fashion, designed to remedy the
shortcomings of previous NLI datasets (Belinkov
et al., 2019). Preliminary experiments with dif-
ferent available base architectures (RoBERTa, AL-
BERT, BART, ELECTRA, and XLNet) showed
that RoBERTa-large3 was the best-performing vari-
ant. Thus, we used this model for evaluations. We
used our probing datasets solely for evaluation, not
for further fine-tuning.

For analysis, we checked the labels that the
model predicted with their corresponding probabili-
ties. In several cases, we performed additional tests
to verify whether the adverbs or other properties of
the sentence determined the model predictions.

3.3 Evaluation on a Naturalistic Dataset

3.3.1 Overall results
Table 3 shows overall results of the SNLI model on
the naturalistic dataset for the four adverb classes.
The adverb classes are not strictly comparable
because they are represented by different input
sentences (as described above), which include all
types of lexical and syntactic confounds. Never-
theless, our experiments showed two consistent
results: (i) the model cannot correctly draw infer-
ences based on some set of adverbs on which it
fails; (ii) the presence of adverbs increases the dif-
ficulty for the model to draw correct inferences in
general. What follows is a survey of the evidence
for these two claims.

3.3.2 Failure to Understand Adverbs
Degree adverbs. The model does not understand
that at least as big is incompatible with smaller.

3ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

515



Adverb class Error rate (%) # sentences

Likelihood 2 5,880
Unattributed
information 6 90

Degree 25 35
Obviousness 23 16

Table 3: Naturalistic dataset: SNLI model error rates by
adverb class

While it correctly labels the pair Lantau covers
nearly twice the area of Hong Kong Island – Lan-
tau is at least as big as Hong Kong Island as EN-
TAILMENT and the same premise with Lantau is
much smaller than Hong Kong Island as CONTRA-
DICTION, it considers that this premise also entails
Hong Kong Island is at least as big as Lantau,
which is also a straightforward contradiction.

The quantifier–adverb combination almost every
constitutes another weak point of the model. While
it correctly labels the pair Almost all assignments
are challenging in different ways vs. Most of the
assignments are difficult, it labels Almost every
assignment is a challenge in a different way vs. the
same as NEUTRAL.4

Unattributed-information adverbs. The correct
analysis of these adverbs is subtle since valid infer-
ences may be expressed in ways that differ from
the premise both lexically and syntactically.

Sometimes the model answers incorrectly with
extremely high confidence. The example from Ta-
ble 1 is a case in point. The Gulf War ostensibly
had no effect on the celebration is always correctly
labeled as CONTRADICTION. The Someone said...
hypothesis is also correctly labelled as ENTAIL-
MENT with any adverb in the premise. Strikingly,
the model gives the same result when the adverb
is omitted. This suggests that the model does not
take the adverb in the premise into account.

The experiments with Hypothesis 3 (cf. Table 1)
corroborated that understanding: regardless of the
combination of the adverb in the premise and the
hypothesis, the model confidently marks the pair as
CONTRADICTION or NEUTRAL with almost zero
probability attached to the prediction of ENTAIL-
MENT. This finding shows that while the model
may be able to draw a positive inference from the
hearsay adverb (the reported event may have hap-
pened), it is completely unaware of the possibility
of the negative inference, i.e. that the reported event

4The model answers correctly only when there is a larger
lexical overlap, as in Most of the assignments are challenging.

may not have taken place: 12 times out of 16, the
model confidently predicts CONTRADICTION.

3.3.3 Adverbs Complicate Inference
In another analysis, we investigate the impact of
the sentences’ structural complexity on prediction
quality. We frequently found that the model cor-
rectly inferred when the hypothesis is structurally
simple or no adverb is given, but failed when the hy-
pothesis had an embedded clause and the premise
had an adverb. Table 4 shows a concrete example,
which permits three observations:

1. The model is sensitive to whether the hypoth-
esis contains an embedded clause: the con-
fidence for the correct prediction drops from
≈1 to≈0.8 for all verbs in the no-adverb case.

2. The presence of the adverb is not noticeable
with structurally simple hypotheses: the confi-
dence in the correct answer remains >0.9.

3. The combination of an adverb and an embed-
ded clause can derail the model – paradoxi-
cally most so for the verb support, where the
model was most confident without an adverb.

Furthermore, note that an adverb can force the
model to change its decision even in the presence
of a strong lexical cue. Given the hypothesis The
students were obviously drunk, the model correctly
identifies The students abhor/forswore/renounced
alcohol as CONTRADICTION. While the model
labels The students abjured alcohol as ENTAIL-
MENT, (perhaps) because of an incorrect analysis
of the verb, when we change the hypothesis to The
students were conspicuously drunk, the model con-
fidently and correctly labels The students abjured
alcohol as CONTRADICTION.

3.4 Evaluation on a Synthetic Dataset

The results for the application of same model on the
larger synthetic dataset are shown in Table 5. They
demonstrate that in general the task of drawing cor-
rect inferences from adverbs is very difficult for
the model. Instead, the model tends to consistently
predict the same relation (entailment / neutral / con-
tradiction) for all sentences for an adverb class. It is
able to correctly predict inference for the quantity
degree class (at least two dozen people |= many
people and ̸|= nobody). However, even syntacti-
cally trivial entailments and contradictions in other
classes lead to systematic failures. E.g., while the
model can correctly identify the inference James
said that Mary reportedly opposed the wedding |=
James said that Mary may have opposed the wed-
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Verb Prediction Hypothesis obviously clearly publicly blatantly no adverb

Simple 0.94 0.94 0.95 0.96 0.97Entailment Complex 0.60 0.62 0.70 0.71 0.85
Simple 0.05 0.05 0.05 0.04 0.02aid

Neutral Complex 0.39 0.38 0.29 0.27 0.15

Simple 0.92 0.92 0.92 0.95 0.97Entailment Complex 0.53 0.52 0.58 0.61 0.77
Simple 0.07 0.08 0.08 0.05 0.03help

Neutral Complex 0.47 0.47 0.41 0.38 0.22

Simple 0.99 0.99 0.99 0.99 0.99Entailment Complex 0.41 0.43 0.57 0.39 0.85
Simple 0.01 0.01 0.01 0.01 0support

Neutral Complex 0.55 0.53 0.40 0.40 0.15

Table 4: Prediction of NLI model given Castro ADV backed the rebels as premise and Castro VERBed the rebels or
Castro tried to VERB the rebels as hypothesis (simple and complex respectively). Boldface indicates wrong model
predictions; underline indicates “borderline correct” cases where an incorrect label received a probability > 40%.

Semantic type Test Entailment Neutral Contradiction Error rate (%) # sentences

Entailment 1 70,188 12 0 ≈ 0 70,200
Entailment 2 134 70,066 0 ≈ 100 70,200
Contradiction 1 7,940 62,260 0 100 70,200

Unattributed
information

Contradiction 2 567 69,633 0 100 70,200

Entailment 31,200 0 0 0 31,200Degree (properties
of people) Contradiction 12,390 3,980 14,830 52 31,200

Entailment 840 0 0 0 840Degree (properties
of objects) Contradiction 547 0 293 65 840

Entailment 38,400 0 0 0 38,400Degree (quantities) Contradiction 0 0 38,400 0 38,400

Entailment 1 54,600 0 0 0 54,600
Entailment 2 33,217 21,383 0 39 54,600
Contradiction 1 61 0 54,539 ≈ 0 54,600Obviousness

Contradiction 2 0 1,615 52,985 3 54,600

Table 5: Synthetic dataset: Model predictions (cells with correct predictions have gray background) for each
template class and error rates.

ding, it fails on the entailment of the type James is
not sure that Mary opposed the wedding.

Similarly, with obviousness adverbs, while the
examples of the type James blatantly criticized
Mary |= James disparaged Mary are easy for the
model, entailments like James tried to disparage
Mary leads to near-chance performance. In the
domain of adverb-modulated relations, while the
model seems to do well on entailments (James is
at least twice as rich as Mary |= James’s net worth
is at least as big as Mary’s), in fact it does not
understand that the relation is not symmetric and
therefore cannot correctly identify contradictions
(Mary’s net worth is at least as big as James’s).

3.5 Discussion

Taken together, these experiments demonstrate sys-
tematic shortcomings in the ability of current large

language models to account for adverb meaning,
either glossing over them completely or making
rather random inferences about their meaning. Ar-
guably, this study only looked at a specific type
of language model and other types of language
models would fare better. However, converging
evidence from the literature exists.

For instance, Nikolaev and Padó (2023) analyzed
sentence transformers, which might be expected
to provide the most nuanced understanding of ad-
verbs. Instead, the study found that the sentences’
main participants (subjects and objects) primarily
determine the semantic similarity of sentence pairs,
which is largely independent of adverbs. The pa-
per argues that this behavior arises from the struc-
ture of the training data for sentence transform-
ers (online conversations, duplicate questions on
WikiAnswers), where sentence pairs labelled as se-
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mantically similar often have similar sets of main
participants (subjects and objects) and can vary
widely in other respects.

If a similar bias is at play in the NLI models in
the present study, creating larger, richer training
sets that involve adverbs in a systematic manner is
a way forward. However, given the relative scarcity
of adverbs and their complex behavior (cf. Sec-
tion 1), it seems unlikely that this effect will emerge
naturally by pre-training on ever larger datasets. In-
stead, the evidence provided here indicates that
adverb data must be created intentionally. The fol-
lowing section outlines a proposal to do so.

4 Describing Adverbs in FrameNet

This section will provide a brief background to
FrameNet (Section 4.1), show how FrameNet can
be useful for the analysis of adverbs (Section 4.2),
survey the data on adverbs contained in the current
version of the dataset (Section 4.3), and propose
concrete directions for next steps (Section 4.4).

4.1 Background to FrameNet

FrameNet (FN, Ruppenhofer et al. 2016) is a re-
search and resource-development project in corpus-
based computational lexicography grounded in the
theory of Frame Semantics (Fillmore, 1985).

At the heart of the work is the semantic frame, a
script-like knowledge structure that facilitates infer-
encing within and across events, situations, states-
of-affairs, relations, and objects. FN defines a se-
mantic frame in terms of its frame elements (FEs),
or participants (and other concepts) in the scene
that the frame captures; a lexical unit (LU) is a
pairing of a lemma and a frame, characterizing that
LU in terms of the frame that it evokes. FN frames
may include more than one POS, and FrameNet
does not claim that the LUs of a frame are synony-
mous, merely that they are semantically similar in
referring to the same situation. Additionally, FN
distinguishes between core FEs and non-core FEs;
the former uniquely define a frame and the later
identify concepts that characterize events or situa-
tions more generally, such as time and place. To
illustrate, Example 6 shows annotation for the verb
BUY, defined in the Commerce_buy frame, with the
FEs BUYER, SELLER, GOODS, and MONEY.5

5This paper uses the following typographical conventions:
frame names appear in typewriter font; FE names are in
SMALL CAPS; and lexical units are in BOLD CAPS.

(6) [Chuck BUYER] BOUGHT [a car GOODS]
[from Jerry SELLER] [for $2,000 MONEY]

FrameNet annotators label approximately 20 sen-
tences for each LU in each frame; and automatic
processes tabulate the results to produce valence
descriptions, or semantic-syntactic combinatorial
possibilities of each LU. These also include null-
instantiated core FEs, i.e. FEs that uniquely define
a frame, even when not realized linguistically. Such
valence descriptions provide information about
meaning-form mappings that are important for
natural-language understanding. FrameNet data,
or semantic parsers built from them, have proven
useful for tasks such as recognizing paraphrases
(Ellsworth and Janin, 2007), drawing inferences
(Ben Aharon et al., 2010), machine translation
(Zhai et al., 2013), question answering (Khashabi
et al., 2018), or paraphrasing (Wang et al., 2019).

At present, the FrameNet database (Release 1.7)
holds 1,224 frames, defined in terms of 10,478
frame-specific FEs, and 13,686 LUs. Of those lexi-
cal units, 61% have lexicographic annotation, i.e.
annotation for one target lemma per sentence.

4.2 FrameNet for the Analysis of Adverbs

We now outline how the descriptive devices of
FrameNet, as outlined in Section 4.1, can capture
the relevant facts about adverb meaning and ad-
dress the core challenges of adverb classes, ambi-
guity, inferences, and null instantation of roles.

Frames. Since frame definitions encompass
much of the meaning of each LU, many FN frames
already offer fine-grained, semantically motivated
descriptions of adverb classes. For example, the
Emotion_directed frame captures the semantic
similarity of happy, happily, happiness, sad, and
sadly and offers a starting point for the descrip-
tion of emotion-related adverbs, by exploiting the
fact that these adverbs evoke the same background
knowledge as the corresponding LUs of other parts
of speech (Ruppenhofer et al., 2016).

When a lemma is ambiguous, each sense gets
mapped to a different frame; each mapping is a
separate lexical unit (LU). For instance, Example 1
in Section 1 includes the lemma happily, which is
ambiguous: In Example 1a, happily is defined in
the Luck frame (along with fortunately and luck-
ily). The definition of this frame indicates that
there is someone, the PROTAGONIST, for whom
a particular state of affairs is surprisingly good or
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bad. But this sentence does not express the PRO-
TAGONIST; this is a case of null instantiation or
NI (see below for details). The other three sen-
tences, Examples 1b–1d, illustrate happily in the
Emotion_directed frame. This involves an emo-
tional response of someone, the EXPERIENCER, to
a stimulus, the STIMULUS FE (here, watching TV),
which evokes the emotional response, specifically
happiness (recoverable from the definition of the
LU happily). In these examples, the EXPERIENCER

is explicit, so no inference is required (although
coreference resolution will be required to resolve
the referent of they). Example 7 shows the anno-
tations of the sentences in the Luck frame (Ex. 7a)
and in the Emotion_directed frame (Ex. 7b):

(7) a. HAPPILY, [they watched TV until din-
ner STATE_OF_AFFAIRS] PROTAGONIST: NI.

b. [They EXPERIENCER] HAPPILY
[watched TV until dinner STIMULUS].

Frame Elements. In FrameNet, frame elements
are associated with (classes of) inferences (Chang
et al., 2002). Such inferences can capture important
aspects of adverb meaning, as we have shown in
Section 2. The valence patterns for the two senses
of happily shown above lead to different inferences
via the two sets of frame elements:

Luck: A STATE_OF_AFFAIRS is evaluated as
good (or bad) [...] for a particular PROTAGO-
NIST.

Emotion_directed: An EXPERIENCER [feels or
experiences] a particular emotional response
to a STIMULUS or about a TOPIC.

While such natural language descriptions were tra-
ditionally hard to formalize, the recent advances in
“prompting” language models (Shin et al., 2020)
have reestablished natural language descriptions as
sufficient in many conditions (cf. also our template-
based probing dataset in Section 3).

Null instantiation. FrameNet annotates informa-
tion about the conceptually required “core” seman-
tic roles of a frame even if absent from the text.
FN distinguishes three types of null instantiation,
one licensed by a construction and the others li-
censed lexically. FrameNet includes approximately
55,700 NI labels in its annotations; and roughly
one-quarter of these omissions are licensed con-
structionally, with the remaining 75% licensed lex-
ically (Petruck, 2019).

This capability of FrameNet is particularly im-
portant for adverbs, notably speaker-oriented ad-
verbs. By definition, these adverbs welcome in-
ferences about the speaker, who is typically not
realized unless the statement is part of reported
speech or thought: The father thought: “Happily
they are all watching TV.”

Returning to Example 2 (above), 2a illustrates
an instantiated SPEAKER and 2b illustrates a null-
instantiated SPEAKER, a fact that FN records in
its database. No other lexical resource used ex-
tensively in computational linguistics records such
information.

4.3 Current Status of Adverbs in FrameNet
Currently, FrameNet (Release 1.7) contains 217
adverb LUs. Of these adverbs, 158 have annota-
tion, with a total of 2,475 annotations of adverbs
on sentences in the database, yielding a mean of 16
annotations per LU. However, like many linguis-
tic phenomena, the annotations exhibit a highly
skewed (Zipfian) distribution: 41 of the 158 LUs
have only one annotation while nine have more
than 50 annotations each. In line with its general
principles, FrameNet chose not to define one sin-
gle frame to capture all speaker-oriented adverbs,
instead defining each such adverb according to the
specific frame it evokes. At the same time, the
class of speaker-oriented adverbs is arguably re-
coverable from the union of a set of frames all of
which support inferences about the speaker by way
of describing the speaker through a certain frame
element. In this way, the existing frames and their
annotations provide a suitable basis for creating
data for this (and future) research.

Table 6 shows the four FrameNet frames used
to suggest adverbs for the experiment described in
Section 3 together with the adverbs listed, illustra-
tive example sentences, and their definitions.

4.4 Next Steps
As the numbers show (Section 4.3), FrameNet has
not attended to adverbs either. Perhaps this fact rep-
resents a principal incompatibility: the description
of adverbs may not welcome using concepts that
FN developed for traditional predicates with clear-
cut valence. Yet, we believe that including adverbs
in FrameNet both follows the spirit of what Fill-
more (1985) called “semantics of understanding”
and is in line with FrameNet practice. Still, it will
require work on two principal levels: theoretical
development and practical lexicographic analysis.
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Frame name Adverbial lexical units & example sentence Definition

Unattributed
information

allegedly.adv, ostensibly.adv, purportedly.adv, report-
edly.adv, supposedly.adv
Ex. One person was REPORTEDLY killed. . .

A speaker presents a REPORTED FACT as
deriving from statements (made directly to
them or to others) of third parties.

Likelihood certainly, likely, probably, possibly
Ex. This will LIKELY not be enough to stop. . .

This frame concerns the likelihood of a HY-
POTHETICAL EVENT occurring, the only
core frame element in the frame.

Obviousness audibly.adv, clearly.adv, evidently.adv, noticeably.adv,
obviously.adv, visibly.adv
Ex. It is CLEARLY desirable to permit the gifted young-
sters to flourish.

A PHENOMENON is portrayed in terms of
the DEGREE of likelihood that it will be per-
ceived and known, given the (usually im-
plicit) EVIDENCE, PERCEIVER, and CIR-
CUMSTANCES in which it is considered.

Degree a little (bit).adv, a lot.adv, absolutely.adv, as hell.adv,
far.adv, fully.adv, in part.adv, kind of.adv, so.adv, some-
what.adv, that.adv, totally.adv, very.adv, way.adv
Ex. I had ABSOLUTELY nothing to say.

LUs in this frame modify a GRADABLE AT-
TRIBUTE and describe intensities at the ex-
treme positions on a scale.

Table 6: FrameNet Frames characterizing Speaker-Oriented Adverbs

At the theoretical level, the FrameNet approach
has seen constant development over the 25 years
of the project’s existence. In initial verb-centered
frames, nominals tended to fill FEs, with additional
attributes realized as adverbs. Next, FN added de-
verbal nouns to frames, which largely take the same
frame elements. To expand to other types of nouns,
like natural kinds and artifacts, FrameNet broad-
ened the concept of FE to encompass qualia such
as substance or purpose (Pustejovsky, 1991). Lay-
ering the annotation of nouns as FEs of verbs, and
modifiers of nouns as their FEs provided a richer
semantic representation. Next, FrameNet included
adjectives as frame-evoking elements, permitting
generalizations over domains like speed or temper-
ature. While most aspects of adverbs description
are already present in FrameNet (cf. above), theo-
retical analysis must make precise the implications
of annotating null instantiated adverbial frame ele-
ments at scale.

At the practical level, the time is ripe to add
many more adverbs to appropriate existing frames
and to create new frames for adverbs as needed.
The principles of annotating naturally occurring
text and extracting valence descriptions for LUs es-
tablished on the other parts of speech carry over to
adverbs. The combination of valence descriptions
and annotated instances constitute essential inputs
to characterize inferences.

Clearly, the more annotation, the better, but
large-scale expert annotation is slow and resource-
intensive. Using crowdsourcing, which permits
parallelizing (thus, speeding up) annotation, is
a possible mitigation. Fossati et al. (2013) and

Feizabadi and Padó (2014) demonstrated success
with crowdsourcing for frame-semantic annotation
when the task is narrowed down appropriately. Sub-
stantial promise exists to extract adverb annotation
automatically from comparable corpora (Roth and
Frank, 2015) and paraphrasing models (Wang et al.,
2019). Even for the core task of FrameNet analy-
sis, defining frames, Ustalov et al. (2018) proposed
automatic methods. Still, full automation remains
hard, given concerns of quality and consistency.

5 Conclusion

Conlon and Evens (1992) stated that adverbs are
under-researched in computational linguistics; this
statement is still true. Adverbs have received atten-
tion only in two applications: sentiment analysis
and hedging detection. The large language models
used here show systematic gaps in capturing adverb
meaning. The problem is not solved.

We propose that Frame Semantics, as embod-
ied in FrameNet, along with improved techniques
to mitigate the annotation effort to extend FN
with new frames and annotations, can capture the
meaning and implicatures of adverbs. Considering
frames as lexical constructions (Fillmore, 2008),
this proposal fits well with recent work to com-
bine language models and construction grammar
(Weissweiler et al., 2023).

Multiple ways exist for computational modeling
to use such a resource, e.g., by extending the cover-
age of semantic role labellers to a larger range of ad-
verbs, or by fine-tuning language models on large
annotated datasets for which our probing dataset
can serve as a blueprint.
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Limitations

We only used English data in the study, so we can-
not guarantee that the findings will generalize to
other languages (cf. Bender 2019). The English
NLI datasets are, as usual, larger than for other
languages, so we should expect models targeting
other languages to have worse performance. We
do, however, believe that the challenges of adverbs
are comparable in other languages, particularly in
typologically similar languages.

Ethics Statement

The paper argues for a new approach to the treat-
ment of adverbs in the development of resources
and applications in NLP. We consider better un-
derstanding of language by computational models
as not posing a significant societal risk in itself.
The dataset used for the computational experiment
in Section 3 was created based on the data con-
tained in the publicly available FrameNet corpus
and, as far as we are aware, does not contain sen-
sitive elements. Implementation of our proposed
methodology has the same risks as any data-driven
approach in computational linguistics, but we as-
sume that we cannot safeguard against its possible
misuse due to its very general nature.
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A Details on the Naturalistic Dataset

The probing dataset includes a series of template
classes. Each template class corresponds to an ad-
verb class and contains several NLI templates with
slots for adverbs and, when the structure permits
it, also for the subject. In testing, we used all pairs
of adverbs from the relevant class to instantiate the
premise and the hypothesis. When a variable for
subject exists in the premise, we used the same
subject in the hypotheses.

A.1 Likelihood Adverbs

Adverbs: undoubtedly, surely, positively, likely,
certainly, definitely, totally.

Fillers for the subject slot: Barbara, Charles,
David, Elizabeth, James, Jennifer, Jessica, John,
Joseph, Karen, Linda, Mary, Michael, Patricia,
Richard, Robert, Sarah, Susan, Thomas, William.

1. Premise: SUBJ is ADV gonna have to check
it tomorrow afternoon again.
Entailment: SUBJ is ADV going to have to
check it again.
Contradiction: SUBJ ADV won’t need to
check it again.

2. Premise: SUBJ can ADV find bargains in
Tunis.
Entailment: SUBJ will ADV find good deals
in Tunis.
Contradiction: SUBJ will ADV discover that
everything is expensive in Tunis.

3. Premise: His friend, SUBJ, is ADV a for-
eigner.
Entailment: SUBJ ADV is from another coun-
try.
Contradiction: SUBJ ADV is a native here.

A.2 Unattributed-information adverbs

Adverbs: reportedly, allegedly, supposedly, ap-
parently, ostensibly.

1. Premise: The German government ADV op-
posed the quotas.

Entailments: The German government ADV
was against the quotas; The German govern-
ment may have supported the quotas.
Contradiction: The German ADV supported
more quotas.

2. Premise: The celebration had been post-
poned, ADV because of the Gulf War.
Entailments: Someone said that the celebra-
tion was postponed because of the Gulf War;
The Gulf War may have had no effect on the
celebration.
Contradiction: The Gulf War ADV had no
effect on the celebration.

A.3 Degree Adverbs
Adverbs: at least, at a minimum, nearly, approx-
imately.

1. Premise: Lantau covers ADV twice the area
of Hong Kong Island.
Entailment: Lantau is at least as big as Hong
Kong Island.
Contradiction: Hong Kong Island is at least
as big as Lantau.

2. Premise: At the moment ADV 140 persons
are working to curtail the fire.
Entailment: Many people are fighting the
fire.
Contradiction: Nobody is fighting the fire.

A.4 Obviousness Adverbs
Adverbs: blatantly, obviously, clearly, ostenta-
tiously, noticeably, visibly, conspicuously.

1. Premise: Castro ADV backed the rebels.
Entailments: Castro helped the rebels; Cas-
tro tried to help the rebels.
Contradiction: Castro tried to stop the
rebels.

2. Premise: The students were ADV drunk.
Entailment: The students were surely drink-
ing too much.
Contradiction: The students renounced alco-
hol.

B Details on the Synthetic Dataset

B.1 Fillers for the human-subject slot
James, Mary, Robert, Patricia, John, Jennifer,
Michael, Linda, David, Elizabeth, William, Bar-
bara, Richard, Susan, Joseph, Jessica, Thomas,
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Sarah, Charles, Karen, Li, Wei, Fang, Xiuying, Na,
Priya, Rahul, Divya, Abhishek, Ishita, Melokuhle,
Omphile, Iminathi, Lisakhanya, Lethabo, Ivaana,
Malik, Pipaluk, Aputsiaq, Nivi.

B.2 Unattributed-information adverbs

Adverbs: reportedly, allegedly, supposedly, ap-
parently, ostensibly.

Actions: the wedding, the marriage, buying the
house, selling the car, moving away, staying in
Canberra, delaying the funeral, the arrangement,
the lawsuit.

Premise: SUBJ1 said that SUBJ2 ADV opposed
ACTION.

Entailments:

1. SUBJ1 said that SUBJ2 may have opposed
ACTION.

2. SUBJ1 is not sure that SUBJ2 opposed AC-
TION.

Contradictions:

1. SUBJ1 is sure that SUBJ2 opposed ACTION.

2. SUBJ1 is sure that SUBJ2 did not support
ACTION.

B.3 Degree adverbs

Adverbs: at least, at a minimum, nearly, approx-
imately.

B.3.1 Properties of people
Properties: net worth, knowledge, manners, fan
base, culpability.6

Adjectives:

• Adjective 1: rich, erudite, polite, popular,
guilty.

• Adjective 2: big, extensive, good, large, high.

Premise: SUBJ1 is ADV twice as ADJ1 as
SUBJ2.

Entailment: SUBJ1’s PROPERTY is/are at least
as ADJ2 as SUBJ2’s.

6Unlike in case with adverbs and subject-slot fillers, where
all combinations are used, properties and adjectives in this
and the next subclass are used in parallel. I.e., when the
i’th adjective from the first list is used in the premise, the
corresponding i’th property and adjective from the second list
will be used in the hypotheses.

Contradiction: SUBJ2’s PROPERTY is/are at
least as ADJ2 as SUBJ1’s.

B.3.2 Properties of objects
Subjects: the truck, the house, the hotel, the ship,
the wagon, the car, the tree.

Properties: age, weight, height, width, price.

Adjectives:

• Adjective 1: old, heavy, tall, wide, expensive.

• Adjective 2: great, big, big, big, high.

Premise: SUBJ1 is ADV twice as ADJ1 as
SUBJ2.

Entailment: The PROPERTY of SUBJ1 is at
least as ADJ2 as that of SUBJ2.

Contradiction: The PROPERTY of SUBJ2 is at
least as ADJ2 as that of SUBJ1.

B.3.3 Quantities
Times: at the moment, now, these days, this
month, this week.7

Numbers: two dozen, thirty, fifty, 140.

Related-person groups: friends, relatives, ac-
quaintances, coworkers.

Activities: working on this, helping with the
move, coming to visit us.

Premise: TIME ADV NUMBER of SUBJ’s RE-
LATED_PERSONS are ACTIVITY.

Entailment: Many people are ACTIVITY.

Contradiction: Nobody is ACTIVITY.

B.4 Obviousness adverbs
Adverbs: blatantly, obviously, clearly, ostenta-
tiously, noticeably, visibly, conspicuously.

Actions: 8

• Action 1: backed, supported, criticized, pro-
voked, brainwashed.

7Similarly to the two previous subclasses, times, numbers,
activities, and related-person groups in this subclass are used
in parallel. I.e., when the i’th time, number, related-person
group, and activity are used in the premise, the corresponding
i’th activity will be used in the hypotheses.

8Similarly to adjectives and properties in the case of degree
adverbs above, actions of different types are used in parallel.
I.e., when the i’th element from the first list is used in the
premise, corresponding i’th elements from other lists will be
used in the hypotheses.
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• Action 2, past: helped, encouraged, dispar-
aged, incited, indoctrinated.

• Action 2, infinitive: help, encourage, dispar-
age, incite, indoctrinate.

• Action 3, past: stopped, deterred, praised,
calmed, deprogrammed.

• Action 3, infinitive: stop, deter, praise, calm,
deprogram.

Premise: SUBJ1 ADV ACTION1 SUBJ2.

Entailments:

1. SUBJ1 ACTION2_PAST SUBJ2.

2. SUBJ1 tried to ACTION2_INF SUBJ2.

Contradictions:

1. SUBJ1 ACTION3_PAST SUBJ2.

2. SUBJ1 tried to ACTION3_INF SUBJ2.
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Abstract

While many real-life tasks require reasoning
over multi-step sequential instructions, collect-
ing fine-grained annotations for each interme-
diate step can be prohibitively expensive. In
this work, we study how general pretrained
sequence-to-sequence transformers perform un-
der varying types of annotation for sequen-
tial instruction understanding. We conduct ex-
periments using T5 (Raffel et al., 2020) on a
commonly-used multi-step instruction under-
standing dataset SCONE (Long et al., 2016)
that includes three sub-tasks. First, we show
that with only gold supervision for the final step
of a multi-step instruction sequence, depending
on the sequential properties of different tasks,
transformers may exhibit extremely bad perfor-
mance on intermediate steps, in stark contrast
with their performance on the final step. Next,
we explore two directions to relieve this prob-
lem. We show that with the same limited anno-
tation budget, using supervision uniformly dis-
tributed across different steps (instead of only
final-step supervision), we can greatly improve
the performance on intermediate steps with a
drop in final-step performance. Further, we
explore a contrastive learning approach to pro-
vide training signals on intermediate steps with
zero intermediate gold supervision. This, how-
ever, achieves mixed results. It significantly
improves the model’s bad intermediate-step
performance on one subtask, but also shows
decreased performance on another subtask.

1 Introduction

Transformer-based sequence-to-sequence mod-
els (Vaswani et al., 2017; Raffel et al., 2020) have
shown remarkable performance on many natural
language understanding tasks including seman-
tic parsing (Yu et al., 2018), dialog state track-
ing (Budzianowski et al., 2018), procedure text
understanding (Dalvi et al., 2018) etc. However,

∗∗Work partially conducted during an internship at Google.

much of this success relies on fine-grained anno-
tations. For example, many instruction-following
datasets (Long et al., 2016) contain the correspond-
ing parse or label for every single instruction show-
ing their immediate effects. However, such data can
be hard to collect in practice because even seem-
ingly simple and straightforward tasks can involve
multiple steps,1 making the collection of detailed
annotations expensive and time-consuming.

For these scenarios, many earlier works applied
task-specific methods to provide additional induc-
tive biases about the sequential nature of these in-
structions (Suhr and Artzi, 2018; Muhlgay et al.,
2019). These methods need substantial prior knowl-
edge and can be harder to generalize to new do-
mains.2 In this work, first, we provide a case study
to explore whether transformer-based seq2seq mod-
els trained only using end-step supervision (i.e.,
gold supervision is given only at the very end of
the entire sequence) can naturally handle these se-
quential instructions without task-aware specific
architecture changes. We conduct experiments on
the SCONE dataset (Long et al., 2016) including
three different subtasks. The input of each exam-
ple contains a sequence of instructions. During
training, the model only observes the final state
(label) after executing all the instructions, while
for evaluation, the model needs to predict both the
final states and all the intermediate states. We use
T5 (Raffel et al., 2020) as our baseline model. In-
terestingly, we observe mixed trends on the three
different subtasks of SCONE depending on their
different sequential properties. On two out of three
tasks (SCENE and TANGRAMS), T5 models demon-
strate good performance on the intermediate steps.

1For example, map instructions for how to reach the closest
supermarket may involve a number of turns, cooking instruc-
tions may involve adding multiple different spices, etc.

2The prior knowledge is usually injected by either knowing
the exact parses or grounded actions of each instruction, or by
using a world simulator that can execute the instructions and
facilitates RL-based approaches.
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On ALCHEMY, however, the performance on in-
termediate steps is extremely bad, in stark contrast
with their decent performance on final steps. Such
behavior reveals that the model does not learn to
understand the instructions sequentially and is not
maintaining a correct intermediate state. Therefore,
while these models may do well on instructions
similar to the training examples, they can also fail
miserably on instructions shorter or longer than the
instructions they are trained on.

Hence, we next explore two potential mitigations
to this problem. We first study an alternative label-
ing schema. We find that if the same amount of
labels are uniformly sampled across multiple steps
instead of only coming from the last step, the model
can have substantially better performance at inter-
mediate steps, despite a drop of the performance
on the final step. This can be a favorable behavior
if the target application has more focus on inter-
mediate steps. However, re-collecting labels may
not always be practical. Therefore, for scenarios
where only final-step labels are accessible, we also
explore a contrastive learning based approach to
improve the intermediate-state performance with-
out additional gold labels. Specifically, we use a
contrastive learning loss to encourage an alignment
between the change in the predicted states and the
most recent instruction, and provide useful training
signals on the intermediate steps. However, we
see mixed results from this approach. While it can
significantly improve the low intermediate-step per-
formance on ALCHEMY, it decreases performance
on SCENE and does not further improve other mod-
els that already have decent performance. Finally,
we discuss the limitation of this approach and point
out that the lack of precise regularization to capture
the fine-grained state differences may be the reason
behind the mixed results, which makes it hard to
further improve strong baselines already showing
sequential understanding abilities (as in SCENE).

2 Background and Baseline Performances

Problem and Evaluation Setup. We focus on
sequential instruction following tasks, more specif-
ically, state tracking or state prediction with multi-
step instructions. Given an initial state and a se-
quence of instructions, the model needs to pre-
dict the states after the execution of each in-
struction. Formally, the training set Dtrain =
{(inst ij=1..m, state

i
0, state

i
m)|ni=1} contains n ex-

amples. Each example consists of a sequence of m

instructions and two states, the initial state state0,
and the final state statem after executing all the
m instructions. The training objective is to pre-
dict the final state statem given the initial state and
all the previous instructions. The evaluation sets
Deval = {(inst ij=1..m, state

i
j=0..m)|n′

i=1} contain
not only the initial and the final state, but also all
the intermediate states statej after every instruc-
tion inst j . This allows us to evaluate the models’
performance in two ways: (1) the exact-match ac-
curacy at the final state (accfinal), similar to the
training setup; and (2) the exact-match accuracy at
all the states from state1 to statem (accall).

Dataset. We use the SCONE dataset as it con-
tains three different subtasks: ALCHEMY, SCENE

and TANGRAMS (Long et al., 2016), and covers a
diverse set of different states and instructions. For
every example in these three subtasks, the instruc-
tion contains 5 steps. See Appendix A for examples
and a detailed dataset introduction.

Baseline Performances with Final-Step Super-
vision. We use T5-base (Raffel et al., 2020) as
our main model.3 At each step, to get the predic-
tion of statei, the model will receive an input con-
taining the concatenation of the initial state state0
and all the instructions from inst1 till inst i. More
hyperparameter and preprocessing details are in
Appendix A and B. The performance is shown in
Table 1. First, if we follow the traditional setup
for previous papers to use gold labels across all the
steps (the first row), fine-tuned T5 models without
any task-specific tricks can already achieve strong
performance on accfinal, reaching competitive per-
formance on all three subtasks compared to all
previous methods (including Shi et al. (2022) who
also uses pre-trained Transformer-based models)
using similar supervision, and the performance on
ALCHEMY is even higher. By using all the gold
labels across steps, the performances are substan-
tially higher than the results only using final-step
supervision. This observation is also connected to
the observation in Wies et al. (2023) and Yu et al.
(2023), where they notice the decomposition of
complex tasks makes learning easier. When we
only use final-step supervision (the second row),
both accall and accfinal decrease substantially. How-
ever, the trends on different subtasks are different.
On SCENE and TANGRAMS, the accall is equal or

3Preliminarily, we also conduct our experiments on other
scales of T5 (i.e., T5-small and T5-large), but they do not
show better performance on our tasks.
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Models Supervision ALCHEMY SCENE TANGRAMS
accfinal accall accfinal accall accfinal accall

T5-base All steps 77.0±0.9 86.6±0.5 72.9±1.8 84.9±0.7 60.1±2.4 79.0±0.8

T5-base Final step 70.0±1.7 58.0±3.8 60.5±2.9 71.7±3.8 14.2±4.5 22.3±6.2

+CL Final step 70.7±2.4 72.4±4.4 62.5±2.3 60.8±2.0 14.7±6.7 29.0±12.1

T5-base Uniformly sampled steps 62.8±3.0 80.0±1.3 54.3±1.5 75.2±0.8 23.7±3.2 60.2±2.5

Shi et al. (2022) All steps 75.4 - 72.3 - 60.0 -
Suhr and Artzi (2018) All steps 62.7 - 62.0 - 62.4 -
Yeh and Chen (2019) All steps+Annotated programs 76.1 - 75.1 - 72.5 -

Table 1: Model performance on the SCONE dataset. The numbers in this table are mean and std over 10 runs.

Task Instructions

ALCHEMY Instruction i: throw out the right most
orange chemical
Instruction i+1: throw out 2 units of the
purple chemical

SCENE Instruction i: he disappears
Instruction i+1: the person in all orange
moves one step right

TANGRAMS Instruction i: remove the first figure
Instruction i+1: swap the first and third
figures

Table 2: Example instructions from the three subsets in
SCONE. Due to the heavy use of coreference, changing
the order of instructions in SCENE and TANGRAMS
can lead to different results, while a larger number of
examples in ALCHEMY are interchangeable as they may
refer to independent actions for different beakers.

higher than accfinal, showing that the models al-
ready have a tendency to track the semantics on
intermediate steps and early steps are easier than
later steps. On the contrary, the accall performance
on ALCHEMY is substantially lower than accfinal.
Such low performance indicates that after training
on the ALCHEMY, despite the decent accfinal, the
model does not always maintain a correct state in
the intermediate steps.

Why are the trends different across subtasks?
The three subtasks in SCONE are designed to fo-
cus on different linguistic phenomena (Long et al.,
2016). Here, we argue these different designs cause
T5 to correctly understand the sequential nature of
the instructions on SCENE and TANGRAMS and
achieve good accall, but not on ALCHEMY. Due
to the focus on the coreference across steps (see
Table 2 and dataset descriptions in Appendix A),
instructions in SCENE and TANGRAMS are more
sensitive in their order, because switching the or-
der of instructions can break the coreference and
lead to different outcomes. Specifically, only 39%
of the instruction pairs in ALCHEMY are non-
interchangeable in their orders, compared to 62%

in SCENE and 85% in TANGRAMS.4 These non-
interchangeable instructions encourage the model
to keep tracking the state change in a correct se-
quential way. Otherwise, as in ALCHEMY, the
model may not have a strong incentive to follow
the order of the instructions and understand them
sequentially. Nonetheless, our finding here is not a
dataset design problem, as many real-life instruc-
tions can have the same property, but more about
analyzing the effect of differing dataset proper-
ties. Additionally, these results can be seen as em-
pirical evidence about how or whether fine-tuned
seq2seq models form internal meaning represen-
tations when only final-supervision is given, com-
plementing the study by Li et al. (2021). Models
with internal meaning representations should have
higher accall than accfinal as representations at later
steps are built on representations at earlier steps
so they will be more error-prone. Therefore, our
experiments imply that the exact behavior may de-
pend on the nature of the fine-tuning tasks. On
ALCHEMY, the model shows no significant evi-
dence of maintaining a reliable meaning representa-
tion, while on the other two tasks, the model shows
hints of maintaining a meaning representation even
with final step supervision.

3 Intermediate State Prediction with
Uniformly Sampled Annotations

One of the major reasons behind the poor perfor-
mance in Sec. 2 is that all the gold labels are at the
final step, so for the intermediate steps, there is no
strong supervision to ensure a desirable behavior.
While for many applications, final-step labels are
indeed more natural to collect, in this section, we
explore if a better annotation strategy can improve
the performance with the same amount of labeling
budget. Specifically, we replace the final-step-only
supervision with the same amount of supervision

4These statistics are manually estimated by the authors
from 100 randomly-sampled instruction pairs from each task.
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distributed uniformly across different steps. Such
labels can reduce the gap between training and eval-
uation, and the model can receive supervision at
intermediate steps. The results with such uniformly
sampled labels are shown in the fourth row of Ta-
ble 1. Compared to the final-step supervision re-
sults, we notice a substantial improvement on accall
on all three subtasks, but there is a drop on accfinal
on two subtasks (ALCHEMY and SCENE). There-
fore, the preference between uniformly-distributed
labels and end-step only labels depends on the final
target. Additionally, there still exist many applica-
tions where the intermediate labels are difficult to
collect or there is no budget to re-annotate labels.
For those cases, we next describe our exploration
to improve accall without additional gold labels.

4 Intermediate State Prediction with
Contrastive Learning

Method. In Sec. 2, our baseline T5 predicts all
the intermediate states independently, similar to the
re-translation strategy (Arivazhagan et al., 2020) in
streaming MT. However, it ignores the strong cor-
relation of predictions over different steps, which
partially leads to weak intermediate-step results.
Next, we use contrastive learning to leverage such
correlation without gold labels.

We first introduce the notations. We denote the
function learned by the seq2seq transformer as
f(state0, inst1, . . . , inst i) = pstatei . Here statei
and inst i are input tokens representing the state
representation at step i and the instruction at step i
respectively. pstatei is the model prediction of the
state at step i, which is a sequence of categorical
distributions. The length of the sequence is the
total number of tokens of the state representation,
and each categorical distribution is over the vocabu-
lary. For two consecutive steps, the seq2seq model
produces two predictions pstatei and pstatei+1 .

Our main intuition is to leverage the observa-
tion that “There is a strong correlation between
the change in two consecutive states and the in-
struction of that step.” To implement this idea,
we compute two sets of vectors, one for the dif-
ference in consecutive states, and the other to rep-
resent the instruction. Then we use contrastive
learning to encourage matching between these
two sets of embeddings. Concretely, we start
from the model predicted distribution pstatei . We
map the distribution back to the embedding space
by computing estatei = Epstatei where E is the

Step i Step i+1

T5

Transformer-Style SelfAttention
Sentence-T5 

 (frozen)

...
Other embeddings

...
Other embeddings

Contrastive Loss

T5

Transformer-Style SelfAttention

Figure 1: Contrastive learning encourages matching be-
tween state differences and corresponding instructions.

input embedding matrix of the seq2seq model.
Then, we compute a vector hstatei to represent each
state by computing the transformer-style multi-
layer self-attention between the embeddings estatei

and an additional learnable vector hs. hstatei =
SelfAtt([hs, estatei ]). Now, with two state em-
beddings for two consecutive steps, we can com-
pute a difference vector that captures the differ-
ence in consecutive states following Conneau et al.
(2017): hdiffi = MLP(hstatei , hstatei+1 , |hstatei −
hstatei+1 |, hstatei ⊙ hstatei+1 ). For the instruction vec-
tor, we directly feed the latest instruction inst i+1

to an off-the-shelf sentence-T5 model (Ni et al.,
2022).5 With these two set of embeddings, we com-
pute a contrastive matching loss (Gao et al., 2021):

Lcont = exp(sim(hdiff
i ,hinst

i+1 ))
∑

all inst in the batch

exp(sim(hdiff
i ,hinst))

, where

sim is the similarity function, and we use all the
other in-batch examples as negative examples. An
illustration of this idea is at Fig. 1. The total train-
ing loss will be the sum of both standard MLE loss
and the contrastive loss, Ltotal = LMLE + Lcont.

Results. The results for our contrastive learning
method are in the “+CL” row of Table 1. We see
opposite trends on ALCHEMY and SCENE. On
ALCHEMY, we can see a substantial increase on
accall, improving it from the extremely low ac-
curacy of 58.0% to 72.4%, which is comparable
to its accfinal, and making its behavior similar to
other tasks. We can also observe a small improve-
ment on the TANGRAMS subtask. However, such
improvement does not translate to other settings
where the accall performance is already decent and
is comparable to accfinal. For instance, on SCENE,
adding our contrastive learning method does not im-
prove either accfinal or accall, and leads to a drop on
accfinal. We also do not observe additional gain by
combining contrastive learning with the uniformly
sampled annotation described in Sec. 3. We conjec-

5Preliminarily, we tried to extract embeddings from our
model itself, but observe no substantial improvement.
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ture such mixed results may result from a lack of
more fine-grained control on hdiffi , as the current
implementation may allow hdiffi to encode irrel-
evant features from one of the consecutive steps.
This lack of more precise regularization makes it
hard to further improve strong baselines already
showing sequential understanding abilities (e.g., on
SCENE). See Appendix C for more discussions.

5 Related Works

Our work focuses on sequential instruction un-
derstanding. Many earlier works in this direc-
tion rely on a pre-defined action set or a world
simulator that facilitates the inference of the se-
mantics of each sentence (Long et al., 2016; Guu
et al., 2017; Suhr and Artzi, 2018; Muhlgay et al.,
2019). Neural models can bring additional im-
provement, especially with specifically designed
architectures (Huang et al., 2018; Yeh and Chen,
2019) or training methods (Fried et al., 2018; Shi
et al., 2022). Our work advances this direction by
examining transformer seq2seq models in limited
supervision settings, and providing solutions for un-
desirable behaviors. Many other tasks (Anderson
et al., 2018; Dalvi et al., 2018; Kiddon et al., 2015)
also require understanding the sequential relation-
ship between sentences. The contrastive learning
component can also be viewed as a way to relieve
the reward sparsity problem, similar to the effect of
forward modeling (Pathak et al., 2017). Pretrained
transformers have been applied to many different
tasks. However, it is unclear how they process se-
quences inherently. Li et al. (2021) study whether
language models implicitly build meaning repre-
sentations. Our empirical results provide evidence
of different behaviors in different datasets.

6 Conclusion

We study seq2seq transformers for sequential in-
struction following. Depending on data properties,
if only final-supervision is given, transformers may
naturally perform well on intermediate steps, but
can also fail miserably. We explore two potential
remedies, one with uniformly sampled supervision,
and the other with contrastive learning.
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A Dataset

In this section, we provide a detailed descrip-
tion of the dataset we use in our experiments
and the preprocessing steps. The experiment in
this paper focuses on the SCONE (Long et al.,
2016) dataset. The SCONE dataset contains three
subtasks: ALCHEMY, SCENE, and TANGRAMS.
Each subtask focuses on a different domain and
highlights different linguistic properties. The
ALCHEMY task includes instructions about mixing
colored chemicals in 7 beakers, and focuses on the
ellipsis phenomenon. The SCENE task includes de-
scriptions about people’s movement in a scene, and
focuses on object coreference. The TANGRAMS

task includes instructions to manipulate tangram
pieces, and focuses on action coreference. Table 3
shows the dataset statistics of all three datasets.
The only data filtering we used in this work is that
we removed a few examples from the TANGRAMS

Task Train Dev Test

ALCHEMY 3567 245 899
SCENE 3352 198 1035
TANGRAMS 4159 198 990

Table 3: Dataset statistics for the SCONE (Long et al.,
2016) dataset. The numbers in this Table are the number
of examples. Each example will contain 5 steps.

task where it does not contain 5 complete instruc-
tions. Other than that, we use all the examples in
the original dataset.

State Representation Linearization Pretrained
Transformers, including T5s used in this paper,
are shown to be sensitive to the output format.
Therefore, we convert the original output format in
SCONE into a more readable text description. An
example for each subtask can be seen in Table 4.

B Implementation Details

All the models used in this work are imple-
mented using JAX (Bradbury et al., 2018) and the
T5x (Roberts et al., 2022) framework. For all the
experiments, we finetune the T5-v1.1-base model.
We use a batch size of 128, a constant learning
rate of 0.0001, and a dropout rate of 0.1. For the
ALCHEMY task, we finetune for 100k steps. For the
SCENE and TANGRAMS tasks, we notice the model
converges faster, so we finetune for 50k steps. For
the contrastive learning experiments, the instruc-
tion embeddings are extracted using sentence-T5-
base (Ni et al., 2022) models. We use cosine sim-
ilarity as the similarity function in the contrastive
loss. All our experiments are conducted on Google
v3 TPUs.

C More Discussions about Contrastive
Learning Results

In Sec. 4, we notice that while our contrastive
learning approach can improve the low accall on
ALCHEMY, it fails to consistently improve in other
settings, especially when the baseline performance
is already decent on the SCENE subtask. One of
our observations that may prevent contrastive learn-
ing from further improvement is the tendency for
the contrastive loss to overfit during the training.
In our experiments, we often observe a significant
gap between the contrastive matching accuracy on
the training set and on the development set. This
problem is very likely to be caused by the lack of
regularization in the current implementation of the
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Task Example state Example instructions

ALCHEMY 1: empty empty empty empty, 2: empty empty
empty empty, 3: empty empty empty empty, 4:
empty empty empty empty, 5: orange empty empty
empty, 6: orange orange orange empty, 7: green
green green green

Instruction 1: pour the last orange beaker into
beaker two
Instruction 2: then into the first
...

SCENE 1: red empty, 2: empty empty, 3: empty empty, 4:
empty empty, 5: green empty, 6: green orange, 7:
yellow orange, 8: empty empty, 9: yellow empty,
10: empty empty

Instruction 1: the man in the red hat takes a step to
the right
Instruction 2: he’s joined on his left by a person
wearing a blue shirt
...

TANGRAMS 1: two, 2: one, 3: four, 4: zero, 5: three Instruction 1: delete the second object from the left
Instruction 2: undo that
...

Table 4: Example linearized states and instructions used in this work for three subtasks of SCONE. For graphic
demonstrations of these states and instructions, please visit https://nlp.stanford.edu/projects/
scone/

difference vector. In our current implementation,
the only constraint the difference vector have is that
it needs to be a function of consecutive states, i.e.
hdiffi = f(hstatei , hstatei+1 ). While this implementa-
tion can capture the difference between the states,
and can help when the model’s performance is bad
(as empirically verified on ALCHEMY), it can also
capture many irrelevant features, which helps re-
duce the contrastive matching loss, but does not
help the model to correct its prediction on interme-
diate steps. In our experiments, we have also tried
several approaches to resolve this problem, includ-
ing having hard negatives in contrastive learning,
having an auto-encoder style reconstruction loss,
etc. But none of these methods solves this prob-
lem effectively. Hence, we leave a more in-depth
exploration of this direction for future work.
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