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Abstract

In this work, we provide an analysis on the
interactions of the effectiveness of decoding
with structural constraints and the amount of
available training data for structured predic-
tion tasks in NLP. Our exploration adopts a
simple protocol that enforces constraints upon
constraint-agnostic local models at testing time.
With evaluations on three typical structured
prediction tasks (named entity recognition, de-
pendency parsing, and event argument extrac-
tion), we find that models trained with less
data predict outputs with more structural vi-
olations in greedy decoding mode. Incorporat-
ing constraints provides consistent performance
improvements and such benefits are larger in
lower resource scenarios. Moreover, there are
similar patterns with regard to the model sizes
and more efficient models tend to enjoy more
benefits. Finally, we also investigate settings
with genre transfer and discover patterns that
are related to domain discrepancies.

1 Introduction

Recently, neural models, especially those based
on pre-trained contextualized representations, have
brought impressive improvements for a variety of
structured prediction tasks in NLP (Devlin et al.,
2019; Kulmizev et al., 2019; Shi and Lin, 2019; Li
et al., 2020a). More interestingly, the incorporation
of powerful neural models seems to decrease the po-
tential benefits brought by more complex structured
output modeling. For example, for sequence label-
ing, it has been shown that reasonably good perfor-
mance could be obtained even without any explicit
modeling of the interactions of the output tags (Tan
et al., 2018; Devlin et al., 2019). For dependency
parsing, models that ignore tree constraints and
cast the problem as head selection in training can
still obtain impressive results (Dozat and Manning,
2017). Most of these previous results are obtained
in fully supervised settings. While they show that

with abundant training signals, better input model-
ing and representation learning could shadow the
benefits brought by more complex structured mod-
eling, it remains unclear for the cases where data
resources are limited.

One of the most salient and important properties
of structured prediction is that the output objects
should follow specific structural constraints. For
example, the output of a syntactic parser should
be a well-formed tree and the output labels of an
information extraction system need to follow cer-
tain type restrictions. In this work, we focus on
the facet of structural constraints and explore its
influence on structured prediction problems under
scenarios with different amounts of training data.
On the one hand, since we know the target outputs
should conform to certain constraints, explicitly
enforcing these constraints will likely bring ben-
efits and sometimes even be a requirement. On
the other hand, as neural models are developed to
better represent input contexts, they might already
be able to implicitly capture the output constraints
by learning from the data. In particular, it would be
unsurprising that the model could directly produce
outputs that conform to constraints without explicit
enforcement, given enough training data, since the
training instances are presented as such.

Regarding the interactions between explicit in-
corporation of constraints and the amount of train-
ing data, we ask the following three research ques-
tions (RQs), which we aim to explore in this work:

RQ1: What is the influence of constraints with
different amounts of training data?
With powerful neural networks and abundant train-
ing data, the model can be trained to implicitly
capture structural constraints even without explicit
enforcement. Nevertheless, it still remains unclear
for the cases with limited data. We aim to explore
how the incorporation of constraints influences the
outputs and how such influences change with dif-
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ferent amounts of training data.

RQ2: What is the influence of constraints when
using more efficient models?
Although neural models can obtain impressive re-
sults, one shortcoming is that they are usually
computationally expensive. Recently, there have
been many works on improving model efficiency.
Knowledge distillation is one of the most widely-
utilized methods, learning a smaller student model
from a larger teacher model (Kim and Rush, 2016;
Sanh et al., 2019; Jiao et al., 2020). An interest-
ing question to explore is how these more efficient
models interact with the explicit incorporation of
structural constraints.

RQ3: What is the influence of constraints for
out-of-domain generalization?
We usually expect the model to be able to gener-
alize to scenarios that can be different from those
represented by the training data, for example, to dif-
ferent domains or text genres. It will be interesting
to explore how the constraints influence predictions
for these cases and especially whether there are
specific patterns with regard to the discrepancies
between the source and the target.

To answer these questions, we conduct extensive
experiments on three typical structured prediction
tasks, including named entity recognition (NER),
dependency parsing (DPAR) and an information
extraction task of event argument extraction (EAE).
We find that models trained with less training data
tend to produce outputs that contain more structural
violations when using constraint-agnostic greedy
decoding. Further applying constrained decoding
brings consistent performance improvements and
the benefits are more prominent in lower data sce-
narios (§3.2). A similar trend can be found with
regard to model size: Smaller models tend to output
more violations with greedy decoding and benefit
more from constrained decoding (§3.3). Finally, in
cross-genre settings, we find a weak pattern with
regard to genre discrepancies: More structural vio-
lations tend to be made with greedy decoding when
transferring to more distant genres (§3.4).

2 Tasks and Models

2.1 Named Entity Recognition
Our first task is named entity recognition (NER),
which aims to extract entity mentions from raw
texts and can be typically cast as a sequence la-
beling problem. We adopt a simple NER model

NER

TransportORG

O     I-MISC     I-MISC     O     O

DPAR
w1    w2     w3       w1   w2  w3  w4

EAE
Origin

Figure 1: Examples of structural violations (marked in
red). For NER, the tag transition from ‘O’ to ‘I-MISC’
is illegal. For DPAR, the left subtree contains a loop
while the right one has crossing edges. For EAE, the
ORIGIN role cannot be assigned to an ORG entity.

that utilizes a pre-trained BERT model as the en-
coder and a softmax layer to predict the output
tags. We adopt the typical BIO tagging scheme
(Ramshaw and Marcus, 1995), specifying tags for
the Beginning, the Inside and the Outside of an
entity span.

More specifically, for an input sequence of words
[w1, w2, · · · , wn], our model aims to assign a se-
quence of BIO tags [t1, t2, · · · , tn] for them. The
probability of each output tag is locally normalized
for each word:

p(ti|wi) =
exp score(ti|wi)∑

t′∈T exp score(t′|wi)

Here, the score(·) function is realized as a linear
layer stacked upon the word representations1 and
T denotes the output tag space.

With the BIO tagging scheme, there are hard con-
straints between tags of consecutive tokens: The
I tag must follow a B or I tag of the same entity
type. For example, the tagged sequence “O I-MISC
I-MISC O O” is erroneous because the transition
“O → I-MISC” is illegal. One solution to mitigate
this problem is to forbid such illegal transitions in
decoding. This can be achieved by incorporating a
transition matrix M ∈ R|T |×|T |, where the entries
corresponding to illegal tag transitions are filled
with −∞ and the legal ones are filled with 0. For
the decoding process, we define the score of a tag
sequence as:

s(t1, t2, · · · , tn) =
∑

i

log p(ti|wi)+
∑

i

Mti,ti+1

In this way, the highest scoring tag sequence will
not contain transition violations. This decoding

1If a word is split into multiple tokens, we simply take its
first sub-token.
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problem can be solved efficiently by the Viterbi
algorithm (Viterbi, 1967). If not enforcing these
constraints, the second term of the sequence score
can be dropped and the decoding will be greedily
finding the maximally-scored tag for each token
individually.

Notice that this treatment resembles conditional
random field (CRF) based models (Lafferty et al.,
2001), wherein the main difference is that we uti-
lize a locally normalized model and the transition
matrix is manually specified to exclude illegal tran-
sitions. In our preliminary experiments, we also
tried CRF models but did not find obvious benefits
compared to local models when adopting the same
underlying pre-trained model.

2.2 Dependency Parsing
We further consider dependency parsing (DPAR)
(Kübler et al., 2009), which aims to parse the in-
put sentence into well-formed tree structures. We
adopt the widely utilized first-order graph-based
parser (McDonald et al., 2005). Similar to NER, we
adopt the pre-trained BERT encoder to provide the
contextualized representations for the input tokens
and stack a biaffine scorer (Dozat and Manning,
2017) to assign scores for the dependency edges.
For training, we adopt a local model that views
the problem as a head-finding classification task
for each input token (Dozat and Manning, 2017;
Zhang et al., 2017). At testing time, we further
consider tree constraints with specific decoding
algorithms. Since we are mainly interested in struc-
tural tree constraints, we only perform unlabeled
parsing.

More specifically, for an input sequence of words
[w1, w2, · · · , wn], we aim to find the dependency
head words [h1, h2, · · · , hn] for the input word
sequence. With local normalization, this can be
viewed as a head classification problem:

p(hi|wi) =
exp score(hi|wi)∑

h′∈{R,w1,w2,··· ,wn} exp score(h′|wi)

Here we add an artificial target R to the output
space to cover the case of root nodes. The score(·)
function is realized with a biaffine module that
produces head-modifier scores for the input pair of
words.

We consider two constraints for the output struc-
tures. First, there should not be any cycles in the
output graphs, otherwise, they will not be trees.

Moreover, we consider the projectivity constraint,2

which specifies that there are no edges that cross
each other. We adopt Eisner’s algorithm (Eisner,
1996) for the constrained decoding, which is a dy-
namic programming algorithm that searches the
highest scored trees in the constrained output space.
If not considering any of these constraints, we
greedily predict the head word for each token based
on the head classification probabilities.

2.3 Event Argument Extraction
Finally, we consider event argument extraction
(EAE), an information extraction task that aims
to extract arguments for the event mentions from
the texts (Ahn, 2006). For a pair of event trigger
and entity mention, this task aims to link them with
an argument role indicating that the entity can play
such a role in the event frame. If no such role is
possible, then no links are added. We again adopt a
pre-trained BERT encoder for encoding and further
stack a task-specific predictor, which is a biaffine
scorer, similar to dependency parsing. The main
difference is that here we perform local normaliza-
tion for each event-entity pair since there are no
constraints on how many other mentions that one
mention can be linked to for event argument extrac-
tion. To better explore real application scenarios,
we train an extra sequence labeler to extract event
and entity mentions rather than using gold men-
tions. This mention detection model is the same as
the one described in our NER experiments.

More specifically, our model takes a pair of event
trigger and entity mention (mt and me) and assigns
the probabilities of argument roles to them:

p(r|mt,me) =
exp score(r|mt,me)∑

r′∈R∪{ϵ} exp score(r′|mt,me)

Here, R denotes the role labeling space and we
further include an option of ϵ to denote there are no
argument relations between the event trigger and
entity mention. The score function is realized with
a biaffine module that produces argument scores
for the input mention pair. Since a mention may
contain multiple words, we concatenate the word
representations of the starting and ending words to
form the mention’s input vector.

In event extraction, there are constraints on the
mention (event and entity) types and argument role

2We only perform experiments on English, which is a
highly projective language. Extensions to non-projective lan-
guages are left to future work.
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Data Split #Sent. #Token #Event #Entity #Argument #Relation

CoNLL03
train 14.0K 203.6K - 23.5K - -
dev 3.3K 51.4K - 5.9K - -
test 3.5K 46.4K - 5.6K - -

UD-EWT
train 12.5K 204.6K - - - -
dev 2.0K 25.1K - - - -
test 2.1K 25.1K - - - -

ACE05
train 14.4K 215.2K 3.7K 38.0K 5.7K 6.2K
dev 2.5K 34.5K 0.5K 6.0K 0.7K 0.8K
test 4.0K 61.5K 1.1K 10.8K 1.7K 1.7K

Table 1: Data statistics of the datasets utilized in our main experiments.

labels. For example, the PERSON role of a MARRY

event should have the entity type of PER, while the
DESTINATION or ORIGIN roles of a TRANSPORT

should have entity types denoting places (GPE,
LOC or FAC). We adopt a simple method to in-
corporate such constraints in decoding by ignoring
(masking out) the roles that are not possible ac-
cording to the event and entity types. The role
constraints are manually collected according to the
event annotation guideline (LDC, 2005). If not
considering these role constraints, we simply adopt
greedy prediction for each event-entity pair.

3 Experiments

3.1 Settings
Data. Our experiments are conducted on widely
utilized English datasets. In our main experiments,
we adopt the CoNLL-2003 English dataset3 (Tjong
Kim Sang and De Meulder, 2003) for NER and the
English Web Treebank (EWT) from Universal De-
pendencies4 v2.10 (Nivre et al., 2020) for DPAR. In
the genre transfer experiments for NER and DPAR,
we utilize OntoNotes 5.0 dataset5 (Weischedel
et al., 2013) and split the data according to text
genres. For the event task, we adopt the ACE05
dataset6 (Walker et al., 2006), using the scripts
from Lin et al. (2020) for the pre-processing.7 Ta-
ble 1 shows the data statistics.

Model and training. Unless otherwise specified,
we adopt the pre-trained BERTbase as the contex-
tualized encoder for our models. The encoder is
fined-tuned with the task-specific decoders in all
the experiments. The number of model parame-
ters is around 110M. We follow common practices

3
https://www.clips.uantwerpen.be/conll2003/ner/

4
https://universaldependencies.org/

5
https://catalog.ldc.upenn.edu/LDC2013T19

6
https://catalog.ldc.upenn.edu/LDC2006T06

7
http://blender.cs.illinois.edu/software/oneie/

Task Model 5K 20K 100K

NER Local 84.270.8 88.910.6 91.240.3

Global 84.730.1 88.920.4 91.380.2

DPAR Local 84.570.1 89.460.2 91.950.1

Global 82.650.3 88.920.3 91.650.2

Table 2: Comparisons between local and global models
for NER (F1%) and DPAR (UAS%). Numbers in the
subscripts denote standard deviation.

for the settings of other hyper-parameters. Adam
(Kingma and Ba, 2014) is utilized as the optimizer.
The learning rate is initially set to 1e-5 for NER
and 2e-5 for DPAR and EAE. It is further linearly
decayed to 10% of the initial value throughout the
training process. The models are trained for 20K
steps with a batch size of around 512 tokens. We
pick final models by the performance on the devel-
opment set of each task. The original development
sets are also down-sampled accordingly as the train-
ing sets to simulate scenarios with different data
amounts. All the reported results are averaged over
five runs with different random seeds.

Local normalization. In our main experiments,
we choose locally normalized models instead of
more complex global models. Table 2 provides
comparisons between the local and global models
for NER and DPAR. For the global models, we use
a standard linear-chain CRF (Lafferty et al., 2001)
for NER and tree-CRF (Paskin, 2001) for DPAR.
For these results, constrained decoding is applied
since it is found to be helpful for both local and
global models. The results show that there are no
clear benefits of using global models over the sim-
pler local models, probably due to the strong input
context modeling capabilities of the underlying pre-
trained encoders. Therefore, we simply adopt local
models in our main experiments.
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Figure 2: Illustrations of constraint violations and re-
lated error rates. Here, “Violation%” denotes the per-
centages of predicted items that violates structural con-
straints in the greedy decoding mode, and “Err%” de-
notes the percentages of the predicted items that violate
the constraints and are incorrect at the same time.

Evaluation. We adopt standard evaluation met-
rics for the tasks: Labeled F1 score for NER, unla-
beled attachment score (UAS) for DPAR, labeled
argument F1 score for EAE (Lin et al., 2020).

3.2 RQ1: On Training Data
We first investigate the effectiveness of incorpo-
rating constraints in decoding, plotting the rates
of structural violations and related errors in Fig-
ure 2. For all the predicted items (all non-‘O’ tags
for NER, all dependency edges for DPAR and all
predicted argument links for EAE), we calculate
the percentage of items that violate the structural
constraints when using greedy decoding (“Viola-
tion%”). For NER, we analyze at the tag level and
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Figure 3: Test results with or without applying con-
straints against different training sizes. Here, x-axis
denotes the training size (measured by the number of to-
kens). The left y-axis denotes the performance (F1% for
NER, UAS% for DPAR and F1% for EAE). The right
y-axis denotes the performance differences between the
methods with or without constraints.

count the illegal tag transitions. For DPAR, we
include the edges that are inside a loop (violating
the acyclic constraint) or go across another edge
(violating the projective constraint). For EAE, we
count the argument links whose role does not com-
ply with the types of the event and the entity that it
connects. We further calculate “Err%”, which de-
notes the percentage of the items that contain viola-
tions in greedy decoding and are wrongly predicted
at the same time. Such error rates are calculated
for both greedy (w/o cons.) and constrained (w/
cons.) modes, and the comparisons between these
two can illustrate the amount of error reduction that
constrained decoding can bring.
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Figure 4: “Violation%” (percentages of predicted items that violates constraints with greedy decoding) with different
models and amounts of training data. Here, x-axis denotes the underlying model while y-axis denotes training sizes.
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Figure 5: Performance improvements brought by constrained decoding with different models and amounts of
training data. Here, x-axis denotes the underlying model while y-axis denotes training sizes.

The overall trends are consistent on all the tasks.
As we have more training data, there are fewer
structural violations without explicitly enforcing
constraints, which indicates that the model can im-
plicitly learn the constraints if given enough train-
ing data. Moreover, although constrained decoding
can eliminate such violations, they do not always
lead to the correct predictions; only a small portion
of incorrect items can be corrected with constrained
decoding, and such improvements are more promi-
nent with less training data.

We further show the main test results in Figure 3.
The general trends are again similar for all three
tasks: Constraints provide consistent benefits for
the model performance, and such benefits are larger
as we have less training data. This corresponds
well to the violation analysis in Figure 2: with
enough training data, the model implicitly learns
the structural constraints from the data and further
enhancement of constrained decoding will make
little difference; however, with less training data,
explicitly enforcing constraints can help.

RQ1 Takeaways: Without incorporating con-
straints, there are more constraint violations from
the predictions of the models trained with less data.
By enforcing constraints in decoding, there can be
consistent benefits for model performance and such

improvements are greater with models learned with
less training data.

3.3 RQ2: On Efficient Models
We further explore the influence of using more effi-
cient models. We take the distilled versions of the
BERT models from Turc et al. (2019) and repeat
our previous experiments. Specifically, we con-
sider five models (L=Layer Number, H=Dimension
Size): Tiny (L=2, H=128), Mini (L=4, H=256),
Small (L=4, H=512), Medium (L=8, H=512), and
Base (L=12, H=768). We plot “Violation%” and
performance differences in Figure 4 and Figure 5,
respectively.

First, if looking at the axis of the training data
size, the overall trends are similar to previous find-
ings: There are more violations with less training
data, and enforcing constraints helps more in lower-
resource scenarios. This trend is generally consis-
tent across all the underlying models. Moreover,
comparing across the model axis brings more inter-
esting findings. Overall, the smaller models tend
to output predictions with more violations if adopt-
ing greedy decoding and incorporating constraints
generally bring more performance improvements
for smaller models. The reason for this trend might
be that smaller models contain fewer parameters
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Figure 6: “Violation%” (percentages of predicted items that violates structural constraints) on different testing
genres with different amounts of source training data (“nw” as the training source). Here, x-axis denotes the testing
genres (which are sorted with the similarities to the source genre) while y-axis denotes training sizes.
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Figure 7: Performance improvements brought by constrained decoding on different testing genres with different
amounts of source training data (“nw” as the training source). Here, x-axis denotes the testing genres (which are
sorted with the similarities to the source genre) while y-axis denotes training sizes.

Tiny Mini Small Medium Base

NERw/o 0.29 0.32 0.36 0.53 1.19
NERw/ 0.56 0.59 0.64 0.80 1.45

DPARw/o 0.23 0.26 0.33 0.47 1.07
DPARw/ 0.28 0.31 0.36 0.50 1.10

Table 3: Decoding speed (ms per sentence) without
(w/o) or with (w/) constraints.

to learn all the patterns in the training data and
such under-parameterization may bring difficulties
in implicitly capturing the constraints.

Another interesting question is how decoding
speed is influenced by the underlying model and the
decoding algorithm. Table 3 presents the time re-
quired to decode one sentence for NER and DPAR.
Here, we do not analyze the EAE task, since there
are no complex algorithms involved for our con-
strained decoding for EAE and we did not find ob-
vious speed differences between decoding methods
with or without constraints. Generally, constrained
decoding requires more computational cost com-
pared with the constraint-agnostic greedy methods.
This is not surprising since the constraint-agnostic
decoding method simply predicts the locally max-

imally scored items while constrained decoding
needs to invoke algorithms with higher complex-
ity. With smaller models, constrained decoding
brings relatively more cost because there are less
intense computational requirements for the under-
lying encoder. This trend is especially obvious for
the NER task, where constrained decoding costs
nearly twice the time as greedy decoding when us-
ing the Tiny model. When adopting larger models,
the encoder starts to require more computations and
thus the relative extra cost brought by constrained
decoding takes a smaller proportion.

RQ2 Takeaways: Smaller and more efficient
models such as distilled versions of BERT tend to
output predictions with more structural violations
with greedy decoding, and constrained decoding
generally brings more benefits.

3.4 RQ3: On Genre Transfer
Finally, we explore a transfer-learning scenario
where there are discrepancies between the train-
ing and testing data distributions. Specifically, we
consider transferring across different text genres.
For these experiments, we utilize OntoNotes for
NER and DPAR, and ACE05 for EAE. We take the
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newswire (nw) portion as the source for training
and directly test the source-trained model on the
test sets of other genres (in a zero-shot manner).

The results are shown in Figure 6 and 7, where
the notations are similar to those in §3.3. In these
results, similar patterns along the data size axis
can be found: Incorporating constraints is more
helpful in the cases with less training data and such
trends generally hold for out-of-distribution testing
scenarios (target genres that are not “nw”) as well.

Another interesting dimension is the pattern
along the axis of genres. In the figures, we sort the
testing genres according to their similarities to the
source (nw). To calculate the similarities between
genres, we use the overlapping rate of vocabularies
since lexical overlaps can be one important factor
for the effectiveness of transfer. Overall, there is a
weak trend that when transferring to more distant
genres, greedy decoding tends to produce outputs
with more structural violations. However, such a
pattern is not consistent across all cases, and one
potential reason might be the instability of model
transfer. Moreover, there can be more appropriate
measurements than our simple lexicon-based simi-
larity that may better reflect how the predictions are
influenced by constrained decoding across genres.
We leave more explorations to future work.

RQ3 Takeaways: The previous patterns still gen-
erally hold for testing on out-of-domain instances
with genre discrepancies: Models trained with less
data tend to make more violations with greedy de-
coding and benefit more from constrained decod-
ing. There is also a weak pattern when transferring
to more distant genres, wherein greedy decoding
tends to produce more violations.

4 Related Work

For structured prediction tasks, one important prop-
erty is that the prediction outputs are complex ob-
jects with multiple interdependent variables. How
to model such inter-dependencies is an important
question for traditional NLP research. Classical
algorithms for decoding and learning have been
developed for various structured prediction tasks,
including the Viterbi algorithm (Viterbi, 1967)
and forward-backward algorithm (Baum et al.,
1970) for sequence labeling, maximum spanning
tree algorithm (Chu and Liu, 1965; Edmonds,
1967), Inside-Outside algorithm (Paskin, 2001) and
Matrix-Tree Theorem (Koo et al., 2007; Smith and
Smith, 2007; McDonald and Satta, 2007) for de-

pendency parsing, as well as more complex algo-
rithms for tasks involving more complicated graph
structures (Rush and Collins, 2012; Burkett and
Klein, 2013; Martins et al., 2015; Gormley and
Eisner, 2015). Though recent developments in neu-
ral models and pre-trained language models have
boosted the performance of simple local models,
better modeling of the structured outputs have still
been shown effective for various structured predic-
tion tasks (Wang et al., 2019; Fonseca and Martins,
2020; Zhang et al., 2020; Wei et al., 2021).

For the output modeling of structured prediction
tasks, the hard structural constraint is a key factor
for the development of decoding and learning algo-
rithms. To enhance general explicitly stated con-
straints, Roth and Yih (2004) tackle the decoding
problem with Integer Linear Programming (ILP)
and such paradigm has been applied to a range of
structured NLP tasks (Denis and Baldridge, 2007;
Roth and Yih, 2007; Clarke and Lapata, 2008; Pun-
yakanok et al., 2008). In addition to enforcing well-
formed output structures for decoding, constraints
can be also incorporated to enhance model learn-
ing (Chang et al., 2008; Li et al., 2020b; Pan et al.,
2020; Wang et al., 2020, 2021). While we mainly
focus on simply applying constrained decoding
with local models trained with different amounts
of data, it would be interesting to explore the in-
fluences when further incorporating constraints at
model training time.

5 Conclusion

In this work, we explore the interactions of
constraint-based decoding algorithms and the
amounts of training data for typical structured pre-
diction tasks in NLP. Specifically, we train local
models with different amounts of training data and
analyze the influence of whether to adopt con-
strained decoding or not. The results show that
when the model is trained with less data, the predic-
tions contain more structural violations with greedy
decoding and there are more benefits on model per-
formance by further applying constrained decod-
ing. Such patterns also generally hold with more
efficient models and when transferring across text
genres, where there are further interesting patterns
with regard to model sizes and genre distances.
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Limitations

This work has several limitations. First, we only
experiment on English datasets. It would be inter-
esting to explore whether the general patterns hold
for non-English languages with different structural
properties. Moreover, we only explore incorporat-
ing hard constraints for decoding with local models
at testing time. Exploring more applications of
structural constraints, such as learning with con-
straints, or incorporating other types of constraints,
such as soft ones, would be promising future di-
rections. Finally, we only explore three simple
sentence-level structured prediction tasks, while
extentions can be made to more complex tasks
with larger output space, such as text generation
or document-level information extraction, where
constraints may play more interesting roles.
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