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Abstract

This paper investigates the problem of Named
Entity Recognition (NER) for extreme low-
resource languages with only a few hundred
tagged data samples. A critical enabler of most
of the progress in NER is the readily available,
large-scale training data for languages such as
English and French. However, NER for low-
resource languages remains relatively under-
explored, leaving much room for improvement.
We propose Mask Augmented Named Entity
Recognition (MANER), a simple yet effective
method that leverages the distributional hypoth-
esis of pre-trained masked language models
(MLMs) to improve NER performance for low-
resource languages significantly. MANER re-
purposes the [mask] token in MLMs, which
encodes valuable semantic contextual infor-
mation, for NER prediction. Specifically, we
prepend a [mask] token to every word in a
sentence and predict the named entity for each
word from its preceding [mask] token. We
demonstrate that MANER is well-suited for
NER in low-resource languages; our experi-
ments show that for 100 languages with as few
as 100 training examples, it improves on the
state-of-the-art by up to 48% and by 12% on
average on F1 score. We also perform detailed
analyses and ablation studies to understand the
scenarios that are best suited to MANER.

1 Introduction

Named Entity Recognition (NER) is a funda-
mental problem in natural language processing
(NLP) (Nadeau and Sekine, 2007). Given an un-
structured text, NER aims to label the named entity
of each word, be it a person, a location, an or-
ganization, and so on. NER is widely employed
as an important first step in many downstream
NLP applications, such as scientific information
retrieval (Krallinger and Valencia, 2005; Krallinger
et al., 2017), question answering (Mollá et al.,
2006), document classification (Guo et al., 2009),
and recommender systems (Jannach et al., 2022).

Recent advances in NER have mainly been
driven by deep learning-based approaches,
whose training relies heavily on large-scale
datasets (Rosenfeld, 2021). As a result, the most
significant progress in NER is for resource-rich
languages such as English (Wang et al., 2021),
French (Tedeschi et al., 2021), German (Schweter
and Akbik, 2020), and Chinese (Zhu and Li, 2022).
This reliance on large training datasets makes it
challenging to apply deep learning-based NER
approaches to low-resource languages where
training data is scarce. To illustrate the ubiquity
of low-resource languages, WikiANN (Rahimi
et al., 2019), one of the largest NER datasets, has
NER-labeled data for 176 languages, but 100 of
these languages have only 100 training examples.

Providing NER for low-resource languages is
critical to ensure the equitable, fair, and democ-
ratized utilization of NLP technologies that are
required to achieve the goal of making such tech-
nologies universally available for all (Magueresse
et al., 2020; King, 2015). Several research efforts
are pushing the frontiers of NER for low-resource
languages in two orthogonal and complementary
directions. The first direction aims to obtain larger
NER datasets to solve the data scarcity problem,
via either data collection or augmentation (Mal-
masi et al., 2022; Al-Rfou et al., 2014; Meng et al.,
2021a). The second direction aims to develop new
model architectures and training algorithms capa-
ble of handling scarce data. For example, ideas
from meta-learning (de Lichy et al., 2021), dis-
tant supervision (Meng et al., 2021b), and transfer
learning (Lee et al., 2017) leverage the few-shot
generalizability of language models for NER in
data-scarce settings.

Our Contributions. In this work, we pro-
pose Mask Augmented Named Entity Recognition
(MANER), a new NER approach for low-resource
languages that does not rely on additional data
and does not require modifications to existing, off-
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Figure 1: How MANER (b) differs from a standard
NER model (a). MANER 1) modifies the input to add
a [mask] token before each word and 2) predicts the
NER tag for a word from its preceding [mask] token.

the-shelf pre-trained models. The key intuition
of MANER is to exploit the semantic informa-
tion encoded in a pre-trained masked language
model (MLM), in particular, in the [mask] token.
Specifically, we reformat the input to the MLM by
prepending a [mask] token to every token in the
text to be annotated with NER tags. This reformat-
ted input is then used to fine-tune the MLM with a
randomly initialized NER prediction head on top
of the prepended mask tokens. Extensive experi-
ments on 100 extremely low-resource languages
(each with only 100 training examples) demon-
strate that MANER improves over state-of-the-art
approaches by up to 48% and by 12% on average
on F1 score. Detailed ablation and analyses of
MANER demonstrate the importance of using the
encoded semantic information and suggest scenar-
ios in which MANER is most applicable.

2 Methodology

We now introduce MANER in detail and describe
how it functions differently from a standard NER
model (henceforth referred to as SNER).

SNER takes a sentence as input, passes the sen-
tence through a transformer encoder model to ob-
tain contextualized word embeddings, and applies
a NER classifier layer on top of each word embed-
ding to get the word’s NER class.

MANER, in contrast, repurposes the [mask]
token for the NER task. Two key differences that
MANER implements as compared to SNER are 1)
instead of giving the model the input sentence as
is, MANER modifies the input sentence to append
a [mask] token in front of each word and passes
this modified sentence through the transformer en-
coder; and 2) instead of predicting the NER tag
directly from the word embedding itself, MANER
predicts the NER tag from the [mask] token em-
bedding prepended to each word in the modified
input sentence. These differences are illustrated
in figure 1. We hypothesize that in such a setting,

MANER will be better able to use the [mask]
token to weigh the relative relevance of the neigh-
boring word vs. the rest of the context when deter-
mining the label to assign to the neighboring word.
Below, we expand on the above differences and
introduce the two key components in MANER.

Modified input sentence. Let the set of NER
labels be denoted by N . Let the sequence of NER
labels for a sentence S = {w0, w1, .., wn−1} con-
sisting of n words be L = {c0, c1, .., cn−1} where
ci ∈ N , 0 ≤ i < n. To obtain the input that
MANER requires we append a [mask] token to
the beginning of each word in sentence S. The
new sentence is S′ = {m,w0,m,w1, ..,m,wn−1}
where m is the [mask] token. The modified la-
bels L′ are {c0, ∅, c1, ∅, .., cn−1, ∅}. The original
NER label of each word is assigned to the [mask]
token to the immediate left of the word.

MANER’s classifier design. MANER uses a
pre-trained, masked language model as the back-
bone with an NER classifier head on top. The
transformer model takes a sentence as input and
outputs embeddings for each token in the sentence.
The NER classifier uses the token embeddings to
output the most probable NER class for each token.

Denote the MANER model by M.
The transformer model is given by T ,
T (S′) = T ({m,w0,m,w1, ..,m,wn−1}) =
{e0, e1, .., e2n−1}, where ei ∈ RD , 0 ≤ i <
2n − 1 is the token embedding, and D is its
dimension. The NER classifier is modeled using
a weight matrix M ∈ RD×|N| that takes the
computed token embeddings as input. Using
these token embeddings, the classifier outputs
scores for all NER labels for each token in the
sentence. Passing these scores through a softmax
nonlinearity provides probabilities pi ∈ R|N | for
all NER classes in N for a given token i in S:

pi = softmax
(
M

(
ei
))

.

Summing up, we have
M(T,M, S′, i) = pi, 0 ≤ i < 2n.

MANER training and inference. During train-
ing, the weights of M and T are learned/fine-tuned
by minimizing cross-entropy loss. Note that the
loss is not calculated for labels marked ∅ in the
modified label set L′. The NER label of the word
is given by the NER label of the [mask] token
preceding it. During inference, each word in the
sentence is prepended with the [mask] token, and
the NER class of each word is the most probable
NER class of its prepended [mask] token.
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Figure 2: F1 scores comparing MANER against SNER for a subset of 50 low-resource languages in the WikiANN
dataset that only have 100 training samples. The x-axis represents the languages. Overall, MANER improves NER
performance for 88 of the 100 languages over SNER; performance improvement is up to 48% and on average 12%.

3 Experiments

We perform various empirical studies on MANER
to 1) demonstrate its superior performance in low-
resource language NER tasks and 2) provide in-
sights into its performance and scenarios in which
it will work well.

Dataset. We use the WikiANN multilingual NER
dataset (Pan et al., 2017; Rahimi et al., 2019),
which provides three named entities (person, lo-
cation, organization) for Wikipedia articles across
176 languages. Therefore, our NER tag set N has
four elements, with an additional null tag. To the
best of our knowledge, WikiANN is by far the most
comprehensive dataset for multilingual NER. Other
multilingual datasets exist but they cover a few pop-
ular languages. For example, CoNLL (Kim Sang
and De Meulder, 2003) contains only English, Ger-
man, Dutch, and Spanish. We focus our main study
on extreme low-resource settings by experimenting
on the 100 languages in WikiANN that each has
only 100 examples for train and test splits. Further
details on the WikiANN dataset are in Appendix B.

MANER implementation and baselines. We
use XLM-RoBERTa-large (Conneau et al., 2019) as
the backbone model for MANER and all baselines.
XLM-RoBERTa-large is a multilingual version of
the RoBERTa (Liu et al., 2019) model, pre-trained
with the MLM objective on 2.5TB of filtered Com-
monCrawl data containing 100 languages (Con-
neau et al., 2020). We compare MANER against
two baselines 1) SNER , which stands for a stan-
dard NER model and 2) MLM-NER , which is
another strategy to use the [mask] token for NER
inspired by the masked language modeling (MLM)
loss. MLM-NER masks a small percentage of
words and predicts the NER tag for both the masked
and unmasked words, thus leveraging the [mask]
token. More details on the above models and their
training setup are in Appendix A.

3.1 Main results

Metric SNER MLM-NER MANER
F1 0.649 0.643 (-0.5%) 0.715 (12%)

Table 1: Average F1 scores for the 100 languages in
the WikiANN dataset with only 100 samples comparing
MANER to baselines. In this extreme low-resource
setting, MANER achieves an average improvement of
12% over baselines.

In Table 1, we report the average of F1 score
for the 100 languages in WikiANN that we con-
sider. MANER provides a significant 12% av-
erage improvement in our low-resource language
settings. The MLM inspired NER-model MLM-
NER , in contrast, performs only similarly to SNER.
We also plot, in Figure 2, the F1 score of 50 ran-
domly sampled low-resource languages comparing
SNER against MANER (the plot for the remaining
languages is in Appendix D). MANER offers up
to 48% performance improvements compared to
SNER, and there are only a few languages (12 out
of 100) in which the SNER outperforms MANER.

We believe the reason that MANER outperforms
MLM-NER is that MANER uses the [mask] to-
ken for NER prediction in both training and infer-
ence, whereas MLM-NER does not. Therefore,
MANER learns to give more importance to the
context in the case of out-of-distribution test labels
using the [mask] token during inference. We will
revisit and empirically support the above reasoning
in Section 3.2. Additionally, in MLM-NER train-
ing, we mask out certain words with the [mask]
token, which introduces noise and makes training
and the NER task more difficult.

3.2 Analysis: Importance of the[mask]token

We now conduct two analyses to demonstrate
the importance of using the [mask] token in
MANER. Intuitively, the [mask] token can be
helpful because it learns to encode the semantics
of the context during pre-training and, thereby, the
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Figure 3: Measure effect of training samples to performance in MANER. MANER can give a boost in performance
till 400 samples and then both MANER and SNER model perform similarly. This demonstrates that MANER is
best suited for extreme low resource languages and rapid prototyping since it is easy and cost-effective to obtain
very few human annotations to achieve large performance improvements (just 100 annotations are required).

Metric SNER MANER
(w/ [mask])

MANER
(w/ [rand])

F1 0.649 0.715 (12%) 0.679 (6%)

Table 2: Average F1 scores for 100 languages for
MANER using the [mask] token and the [rand]
token. Replacing the [mask] token with the [rand]
token diminishes the improvements.

word that needs to be tagged (by distributional hy-
pothesis in Harris (1954) which states the meaning
of a word can be inferred from its context).

In the first analysis, we replace the [mask] to-
ken in MANER with a control token, namely, the
random token [rand]. Note that the [rand]
token is not learned during the XLM-RoBERTa
model pre-training; thus, it will not encode any
contextual information. As we see in Table 2,
if we replace the [mask] token with [rand] ,
MANER achieves only a 6% improvement in F1
performance over the SNER baseline. This result
illustrates the power of the context: even when the
[rand] token does not contain contextual infor-
mation during pre-training, MANER can still use
the [rand] token to predict how much weight
to assign the context and the word immediately
adjacent to it depending on the test sample.

In the second analysis, we report in Table 3
the averaged F1 score of only those languages on
which the XLM-RoBERTa model was pre-trained
with at least 0.5GB of training data per language.
The rationale behind this experiment design is that
the [mask] token will encode the context seman-
tics of a language only if the language was seen
during the pre-training stage of XLM-RoBERTa
model. As we see in Table 3, in this case, MANER
provides a whooping 18% improvement in F1 score
(as compared to the 12% gain in Table 1) if the lan-
guage was seen in the pre-training stage. This ex-
periment again highlights the importance of using
[mask] token in MANER.

Metric SNER MANER
F1 0.603 0.705 (18%)

Table 3: F1 scores comparing MANER against SNER,
averaged on a subset of languages on which XLM-
RoBERTa was pre-trained. The improvement over
SNER is 18% compared to 12% improvement in the
previous study that included all 100 languages.

3.3 Analysis: Effect of training set size

We measure the effectiveness of MANER in situ-
ations where more training data is available. For
this purpose, we select 4 languages from WikiANN
dataset that have 1000 training data samples each.
From Figure 3, we see that MANER boosts F1 per-
formance over the SNER baseline until about 400
samples and then both methods perform similarly.
This result demonstrates that MANER is best suited
for extreme low resource languages and rapid pro-
totyping because it is easy and cost-effective to ob-
tain very few human annotations to achieve large
performance improvements (e.g., just 100 annota-
tions are required).

4 Conclusions

In this paper, we have proposed Mask Augmented
Named Entity Recognition (MANER) for NER in
extreme low-resource language settings. MANER
exploits the information encoded in pre-trained
masked language models (inside [mask] token
specifically) and outperforms existing approaches
for extreme low-resource languages with as few as
only 100 training examples by up to 48% and by
12% on average on F1 score. Analyses and abla-
tion studies show that using semantics encoded in
[mask] token is integral to MANER. Future work
will exploit MANER’s effectiveness for highly
resource-constraint and human-in-the-loop settings,
such as rapid prototyping in an active learning setup
and few-shot learning with human annotators.
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5 Limitations

Our proposed method MANER for improving NER
is best suited for low-resource settings. As dis-
cussed in Section 3.3, we measured the effective-
ness of MANER in situations where more training
data is available and found that MANER boosts F1
performance over the SNER baseline until about
400 training examples, and then both methods
perform similarly. The result demonstrated that
MANER is best suited for extreme low-resource
languages and rapid prototyping because it is easy
and cost-effective to obtain very few human anno-
tations to achieve significant performance improve-
ments.

We base the experiments in this paper on
a widely adopted model, XLM-RoBERTa, pre-
trained on multiple languages. It is possible that
the empirical conclusions we draw from the ob-
servations do not generalize to other pre-trained
models.

6 Ethics Statement

We believe providing NER for low-resource lan-
guages is critical to ensure the equitable, fair, and
democratized utilization of NLP technologies that
are required to achieve the goal of making such
technologies universally available for all. Our work
contributes to this direction by proposing MANER,
which boosts performance for 100 languages with
only 100 training samples each.
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A Implementation details on baselines

A.1 SNER

Similar to MANER design, current standard NER
systems (SNER) built upon transformer models
also simply add a NER classifier to the top of a
transformer model. The classifier predicts the NER
class of each token of an unmodified sentence S:

Mbase(T,M, S, i) = softmax
(
M

(
ei
))

= pi,

0 ≤ i < n,

where Mbase is an NER model built on a trans-
former model T using classifier weight matrix M.
This baseline method remains the de-facto method
for training NER models for most languages (es-
pecially low-resource languages) to the best of our
knowledge, though specialized models have been
built for popular languages like English.

Inference: Similar to training during inference,
the NER class of each word in the sentence is the
most probable NER tag assigned to the classified
word embedding.

A.2 MLM-NER

Our MANER methodology in Section 2 is one way
to change the input phrase using the mask token.
In this baseline, we introduce yet another way to
repurpose the [mask] token for NER that is in-
spired by the masked language modeling (MLM)
framework that is used for pre-training transformer
models which we refer as MLM-NER. In MLM, a
word is predicted using the words surrounding it in
the sentence. Since the NER category of a word is
also a semantic property of the word, we use the
philosophy of MLM for NER fine-tuning.

In MLM pre-training, the dataset is prepared
by masking random words in a sentence with
a [mask] token with a fixed probability pmlm.
Then, the masked words are predicted using the
context information.

Analogous to MLM pre-training, for NER fine-
tuning, we randomly replace words in sentence S
with the [mask] token with the fixed probability
pner. However, instead of predicting the missing
words, as with MLM, we predict the NER labels L
for each word w in S irrespective of whether the
word was replaced by a [mask] token or not. In
the case the word was replaced with the [mask]
token, the transformer outputs the [mask] token
embedding for that word.

Thus the modified input to the transformer is
S′ = mask(S), where

mask(wi) =

{
[mask] , if pi ≤ pner,

wi, otherwise
(1)

with pi a random number between 0 and 1 gener-
ated for wi. Then, we use the first baseline NER
model design Mbase for training, but now it is is
fine-tuned on S′ and L (note we predict the label
of the [mask] tokens as well). Inference with this
model remains same as the first baseline model.

A.3 MANER Classifier Input Embedding

The NER prediction for each word in MANER is
based on the embedding of the first token of the
word. This is a common practice in NER with
Transformer-based models where a word may be
tokenized into multiple tokens.

A.4 Training procedures

For each language in our experiment, we train
MANER and baselines for 30 epochs with a learn-
ing rate of 5e−6 and the loss optimized using Adam
(Loshchilov and Hutter, 2019). Training takes 3
minutes on a single 11 GB GeForce GTX 1080 Ti
GPU for a single language. We run MANER for
following five random seeds for each language -
12345, 23451, 34512, 45123, 51234. The standard
deviation in performance for SNER averaged over
100 languages for 5 runs is 0.649± 0.005 and for
MANER is 0.715± 0.007.

B WikiANN dataset details

The NER labels in WikiANN are in IOB2 (In-
side–outside–beginning) format (Ramshaw and
Marcus, 1995) comprising PER (person), LOC (lo-
cation), and ORG (organization) tags. An instance
of NER tagged sentence: UNICEF(B-ORG) is a
nonprofit organization, founded by Ludwik(B-PER)
Rajchman(I-PER) headquartered at New(B-LOC)
York(I-LOC), United(B-LOC) States(I-LOC).

In addition, language names corresponding to
abbreviations used in figure 2 can be found in the
Appendix section of Conneau et al. (2020).

C Comments on catastrophic forgetting
in MANER

The catastrophic forgetting (Kirkpatrick et al.,
2017) phenomenon that masked language models
undergo during any kind of fine-tuning is one of the
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Figure 4: F1 scores comparing MANER against SNER for the remaining 50 low-resource languages in the WikiANN
dataset that only have 100 training samples each. Similar to the results in Figure 2, MANER gives a significant
improvement of 12% on F1 score compared to SNER .
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Figure 5: F1 score comparing MANER against SNER
on a subset of languages on which the backbone of both
models, XLM-RoBERTa-large, has been pre-trained.
MANER improves upon SNER for each of these lan-
guages, with F1 score improvement of up to 22% and
18% on average.

reasons we think MANER does not provide gains
when more training data is available (of course
more training data also implies less reliance on spe-
cialized techniques like ours). Catastrophic forget-
ting causes the loss of useful context semantics en-
coded in the [mask] token during the fine-tuning
stage that MANER heavily relies on. Adding an
additional masked language modeling loss to the
NER loss during fine-tuning may help to circum-
vent catastrophic forgetting; we leave this investi-
gation as a valuable venue for future work.

D Additional experiment results

Figure 4 shows the performance comparing
MANER and SNER on the remaining 50 low-
resource languages in the WikiANN dataset.
The results here align with that in the main
text: MANER provides performance improvement,
sometimes significantly, over SNER.

Figure 5 shows the performance comparing
MANER and SNER on a subset of languages
on which the backbone of both models, XLM-
RoBERTa-large, has been pre-trained. The results
corroborate with those in the main text: MANER

improves upon SNER for each of these languages,
with F1 score improvement of up to 22% and 18%
on average.
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