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Abstract

Recently, compressive text summarisation of-
fers a balance between the conciseness issue
of extractive summarisation and the factual
hallucination issue of abstractive summarisa-
tion. However, most existing compressive
summarisation methods are supervised, rely-
ing on the expensive effort of creating a new
training dataset with corresponding compres-
sive summaries. In this paper, we propose
an efficient and interpretable compressive sum-
marisation method that utilises unsupervised
dual-agent reinforcement learning to optimise
a summary’s semantic coverage and fluency
by simulating human judgment on summari-
sation quality. Our model consists of an ex-
tractor agent and a compressor agent, and both
agents have a multi-head attentional pointer-
based structure. The extractor agent first
chooses salient sentences from a document,
and then the compressor agent compresses
these extracted sentences by selecting salient
words to form a summary without using refer-
ence summaries to compute the summary re-
ward. To our best knowledge, this is the first
work on unsupervised compressive summari-
sation. Experimental results on three widely
used datasets (e.g., Newsroom, CNN/DM, and
XSum) show that our model achieves promis-
ing performance and a significant improve-
ment on Newsroom in terms of the ROUGE
metric, as well as interpretability of semantic
coverage of summarisation results. 1

1 Introduction

Most existing works on neural text summarisation
are extractive, abstractive, and compressive-based.
Extractive methods select salient sentences from
a document to form its summary and ensure the
production of grammatically and factually correct
summaries. These methods usually follow the sen-
tence ranking conceptualisation (Narayan et al.,

1Our source code is publicly available for research pur-
poses at https://github.com/peggypytang/URLComSum/

Figure 1: Illustration of our proposed URLComSum.

2018b; Liu and Lapata, 2019; Zhong et al., 2020).
The supervised models commonly rely on creating
proxy extractive training labels for training (Nalla-
pati et al., 2017; Jia et al., 2021; Mao et al., 2022;
Klaus et al., 2022), which can be noisy and may not
be reliant. Various unsupervised methods (Zheng
and Lapata, 2019; Xu et al., 2020; Padmakumar
and He, 2021; Liu et al., 2021) were proposed
to leverage pre-trained language models to com-
pute sentences similarities and select important
sentences. Although these methods have signif-
icantly improved summarisation performance, the
redundant information that appears in the salient
sentences may not be minimized effectively.

Abstractive methods formulate the task as a
sequence-to-sequence generation task, with the
document as the input sequence and the summary
as the output sequence (See et al., 2017; Zhang
et al., 2020; Wang et al., 2021; Liu et al., 2022) As
supervised learning with ground-truth summaries
may not provide useful insights on human judg-
ment approximation, reinforcement training was
proposed to optimise the ROUGE metric (Parnell
et al., 2021), and to fine-tune a pre-trained language
model (Laban et al., 2020). Prior studies showed
that these generative models are highly prone to
external hallucination (Maynez et al., 2020).

Compressive summarisation is a recent appraoch
which aims to select words, instead of sentences,
from an input document to form a summary, which
improves the factuality and conciseness of a sum-
mary. The formulation of compressive document
summarisation is usually a two-stage extract-then-
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compress approach (Zhang et al., 2018; Mendes
et al., 2019; Xu and Durrett, 2019; Desai et al.,
2020): it first extracts salient sentences from a doc-
ument, then compresses the extracted sentences
to form its summary. Most of these methods are
supervised, which require a parallel dataset with
document-summary pairs to train. However, the
ground-truth summaries of existing datasets are
usually abstractive-based and do not contain su-
pervision information needed for extractive sum-
marisation or compressive summarisation (Xu and
Durrett, 2019; Mendes et al., 2019; Desai et al.,
2020).

Therefore, to address these limitations, we pro-
pose a novel unsupervised compressive summarisa-
tion method with dual-agent reinforcement learning
strategy to mimic human judgment, namely URL-
ComSum. As illustrated in Figure 1, URLComSum
consists of two modules, an extractor agent and a
compressor agent. We model the sentence and
word representations using a efficient Bi-LSTM
(Graves and Schmidhuber, 2005) with multi-head
attention (Vaswani et al., 2017) to capture both
the long-range dependencies and the relationship
between each word and each sentence. We use a
pointer network (Vinyals et al., 2015) to find the
optimal subset of sentences and words to be ex-
tracted since the Pointer Network is well-known
for tackling combinatorial optimization problems.
The extractor agent uses a hierarchical multi-head
attentional Bi-LSTM model for learning the sen-
tence representation of the input document and a
pointer network for extracting the salient sentences
of a document given a length budget. To further
compress these extracted sentences all together, the
compressor agent uses a multi-head attentional Bi-
LSTM model for learning the word representation
and a pointer network for selecting the words to
assemble a summary.

As an unsupervised method, URLComSum does
not require a parallel training dataset.We propose
an unsupervised reinforcement learning training
procedure to mimic human judgment: to reward
the model that achieves high summary quality in
terms of semantic coverage and language fluency.
Inspired by Word Mover’s Distance (Kusner et al.,
2015), the semantic coverage rewardis measured
by Wasserstein distance (Peyré et al., 2019) be-
tween the semantic distribution of the document
and that of the summary. The fluency reward is
measured by Syntactic Log-Odds Ratio (SLOR)

(Pauls and Klein, 2012). SLOR is a referenceless
fluency evaluation metric, which is effective in sen-
tence compression (Kann et al., 2018) and has bet-
ter correlation to human acceptability judgments
(Lau et al., 2017).

The key contributions of this paper are:

• We propose the first unsupervised compres-
sive summarisation method with dual-agent re-
inforcement learning, namely URLComSum.

• We design an efficient and interpretable multi-
head attentional pointer-based neural network
for learning the representation and for extract-
ing salient sentences and words.

• We propose to mimic human judgment by op-
timising summary quality in terms of the se-
mantic coverage reward, measured by Wasser-
stein distance, and the fluency reward, mea-
sured by Syntactic Log-Odds Ratio (SLOR).

• Comprehensive experimental results on three
widely used datasets, including CNN/DM,
XSum, Newsroom, demonstrate that URL-
ComSum achieves great performance.

2 Related Work

Most of the existing works on neural text summari-
sation are extractive, abstractive, and compressive-
based.

2.1 Extractive Methods
Extractive methods usually follow the sentence
ranking conceptualisation, and an encoder-decoder
scheme is generally adopted. An encoder formu-
lates document or sentence representations, and
a decoder predicts extraction classification labels.
The supervised models commonly rely on creat-
ing proxy extractive training labels for training
(Cheng and Lapata, 2016; Nallapati et al., 2017;
Jia et al., 2021), which can be noisy and may not
be reliant. Some methods were proposed to tackle
this issue by training with reinforcement learning
(Narayan et al., 2018b; Luo et al., 2019) to opti-
mise the ROUGE metric directly. Various unsuper-
vised methods (Zheng and Lapata, 2019; Xu et al.,
2020; Padmakumar and He, 2021) were also pro-
posed to leverage pre-trained language models to
compute sentences similarities and select important
sentences. Although these methods have signifi-
cantly improved summarisation performance, since
the entire sentences are extracted individually, the
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redundant information that appears in the salient
sentences may not be minimized effectively.

2.2 Abstractive Methods
Abstractive methods formulate text summarisation
as a sequence-to-sequence generation task, with the
source document as the input sequence and the sum-
mary as the output sequence. Most existing meth-
ods follow the supervised RNN-based encoder-
decoder framework (See et al., 2017; Zhang et al.,
2020; Wang et al., 2021; Liu et al., 2022). As super-
vised learning with ground-truth summaries may
not provide useful insights on human judgment ap-
proximation, reinforcement training was proposed
to optimise the ROUGE metric (Paulus et al., 2018;
Parnell et al., 2021), and to fine-tune a pre-trained
language model (Laban et al., 2020). These mod-
els naturally learn to integrate knowledge from the
training data while generating an abstractive sum-
mary. Prior studies showed that these generative
models are highly prone to external hallucination,
thus may generate contents that are unfaithful to
the original document (Maynez et al., 2020).

2.3 Compressive Methods
Compressive methods select words from a given
document to assemble a summary. Due to the
lack of training dataset, not until recently there
have emerged works for compressive summarisa-
tion (Zhang et al., 2018; Mendes et al., 2019; Xu
and Durrett, 2019; Desai et al., 2020). The for-
mulation of compressive document summarisation
is usually a two-stage extract-then-compress ap-
proach: it first extracts salient sentences from a
document, then compresses the extracted sentences
to form its summary. Most of these methods are
supervised, which require a parallel dataset with
document-summary pairs to train. However, the
ground-truth summaries of existing datasets are
usually abstractive-based and do not contain su-
pervision information needed for extractive sum-
marisation or compressive summarisation. Sev-
eral reinforcement learning based methods (Zhang
et al., 2018) use existing abstractive-based datasets
for training, which is not aligned for compression.
Note that existing compressors often perform com-
pression sentence by sentence. As a result, the
duplicated information among multiple sentences
could be overlooked. Therefore, to address these
limitations, we propose a novel unsupervised com-
pressive method by exploring the dual-agent rein-
forcement learning strategy to mimic human judg-

ment and perform text compression instead of sen-
tence compression.

3 Methodology

As shown in Figure 1, our proposed compres-
sive summarisation method, namely URLComSum,
consists of two components, an extractor agent
and a compressor agent. Specifically, the extractor
agent selects salient sentences from a document
D to form an extractive summary SE, and then
the compressor agent compresses SE by selecting
words to assemble a compressive summary SC.

3.1 Extractor Agent
Given a document D consisting of a sequence of
M sentences {si|i = 1, ...,M}, and each sen-
tence si consisting of a sequence of N words
{weij |j = 1, ..., N}2, the extractor agent aims
to produce an extractive summary SE by learning
sentence representation and selecting LE sentences
from D. As illustrated in Figure 2, we design a hi-
erarchical multi-head attentional sequential model
for learning the sentence representations of the doc-
ument and using a Pointer Network to extract sen-
tences based on their representations.

Figure 2: Illustration of the extractor agent.

3.1.1 Hierarchical Sentence Representation
To model the local context of each sentence and
the global context between sentences, we use two-
levels Bi-LSTMs to model this hierarchical struc-
ture, one at the word level to encode the word se-
quence of each sentence, one at the sentence level
to encode the sentence sequence of the document.
To model the context-dependency of the impor-
tance of words and sentences, we apply two levels
of multi-head attention mechanism (Vaswani et al.,
2017), one at each of the two-level Bi-LSTMs.

2We have pre-fixed the length of each sentence and each
document by padding.
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Given a sentence si, we encode its words into
word embeddings xei = {xeij |j = 1, ..., N} by
xeij = Enc(weij), where Enc() denotes a word
embedding lookup table. Then the sequence of
word embeddings are fed into the word-level Bi-
LSTM to produce an output representation of the
words lew:

lewij =
←−−→
LSTM(xeij), j ∈ [1, N ] . (1)

To utilize the multi-head attention mechanism to
obtain aewi = {aewi1, ...,aewiN} at word level, we
define Qi = lewi , Ki = Vi = xei,

aewi = MultiHead(Qi,Ki, Vi) . (2)

The concatenation of lewi and aewi of the words are
fed into a Bi-LSTM and the output is concatenated
to obtain the local context representation hews

i for
each sentence si:

hewij =
←−−→
LSTM(

[
lewij ;ae

w
ij

]
), j ∈ [1, N ] ,

hews
i = [hewi1, ...,he

w
iN ] .

(3)

To further model the global context between sen-
tences, we apply a similar structure at sentence
level. hews = {hews

i |i = 1, ...,M} are fed into
the sentence-level Bi-LSTM to produce output rep-
resentation of the sentences les:

lesi =
←−−→
LSTM(hews

i ), i ∈ [1,M ] . (4)

To utilize the multi-head attention mechanism to
obtain aes = {aes1, ...,aesM} at sentence level, we
define Q = les, K = V = hews,

aes = MultiHead(Q,K, V ). (5)

The concatenation of the Bi-LSTM output les and
the multi-head attention output aes of the sentences
are fed into a Bi-LSTM to obtain the final represen-
tations of sentences hes = {hes1, ...,hesM}:

hesi =
←−−→
LSTM([lesi ;ae

s
i ]), i ∈ [1,M ] . (6)

3.1.2 Sentence-Level Extraction
Similar to (Chen and Bansal, 2018), we use an
LSTM-based Pointer Network to decode the above
sentence representations hes = {hes1, ...,hesM}
and extract sentences recurrently to form an extrac-
tive summary SE = {A1, ..., Ak, ..., ALE

} with
LE sentences, where Ak denotes the k-th sentence
extracted.

At the k-th time step, the pointer network re-
ceives the sentence representation of the previous

extracted sentence and has hidden state dek. It first
obtains a context vector de′k by attending to hes:

ueki = vT tanh(W1he
s
i +W2dek), i ∈ (1, ...,M) ,

aeki = softmax(ueki ), i ∈ (1, ...,M) ,

de′k =
M∑

i=1

aeki he
s
i ,

(7)
where v,W1,W2 are learnable parameters of the
pointer network. Then it predicts the extraction
probability p(Ak) of a sentence:

dek ←
[
dek, de

′
k

]
,

ueki = vT tanh(W1he
s
i +W2dek), i ∈ (1, ...,M) ,

p(Ak|A1, ..., Ak−1) = softmax(uek) .
(8)

Decoding iterates until LE sentences are selected
to form SE .

Figure 3: Illustration of the compressor agent.

3.2 Compressor Agent
Given an extractive summary SE consisting of a
sequence of words wc = {wci|i = 1, ..., N}, the
compressor agent aims to produce a compressive
summary SC by selecting LC words from SE. As
illustrated in Figure 3, it has a multi-head atten-
tional Bi-LSTM model to learn the word represen-
tations. It uses a pointer network to extract words
based on their representations.

3.2.1 Word Representation
Given a sequence of words wc, we encode the
words into word embeddings xc = {xci|i =
1, ..., N} by xci = Enc(wci). Then the sequence
of word embeddings are fed into a Bi-LSTM to
produce the words’ output representation lcw:

lcwi =
←−−→
LSTM(xci), i ∈ [1, N ] . (9)

To utilise the multi-head attention mechanism to
obtain acw = {acw1 , ...,acwN}, we define Q = lcw,
K = V = xc,

acw = MultiHead(Q,K, V ). (10)
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The concatenation of lcw and acw of the words are
fed into a Bi-LSTM to obtain the representation
hcwi for each word wci:

hcwi =
←−−→
LSTM([lcwi ;ac

w
i ]), i ∈ [1, N ] . (11)

3.2.2 Word-Level Extraction
The word extractor of the compressor agent
shares the same structure as that of the extrac-
tor agent’s sentence extractor. To select the
words based on the above word representations
hcw = {hcw1 , ...,hcwN}, the word extractor de-
codes and extracts words recurrently to produce
{B1, ..., Bk, ..., BLC

}, where Bk denotes the word
extracted at the k-th time step. The selected words
are reordered by their locations in the input docu-
ment and assembled to form the compressive sum-
mary SC.

3.3 Reward in Reinforcement Learning
We use the compressive summary SC to compute
the reward of reinforcement learning and denote
Reward(D,SC) as Reward(D,S) for simplicity.
Reward(D,S) is a weighted sum of the semantic
coverage award Rewardcov(D,S) and the fluency
reward Rewardflu(S):

Reward(D,S) = wcovRewardcov(D,S)

+wfluRewardflu(S) ,
(12)

where wcov and wflu denote the weights of two re-
wards.

3.3.1 Semantic Coverage Reward
We compute Rewardcov with the Wasserstein dis-
tance between the corresponding semantic distribu-
tions of the document D and the summary S, which
is the minimum cost required to transport the se-
mantics from D to S. We denote D = {di|i =
1, ..., N} to represent a document, where di in-
dicates the count of the i-th token (i.e., word or
phrase in a vocabulary of size N ). Similarly, for
a summary S = {sj |j = 1, ..., N}, sj is respect
to the count of the j-th token . The semantic dis-
tribution of a document is characterized in terms
of normalised term frequency without the stop-
words. The term frequency of the i-th token in
the document D and the j-th token in the sum-
mary S are denoted as TFD(i) and TFS(j), respec-
tively. By defining TFD = {TFD(i)} ∈ RN and
TFS = {TFS(j)} ∈ RN , we have the semantic
distributions within D and S respectively.

The transportation cost matrix C is obtained by
measuring the semantic similarity between each
of the tokens. Given a pre-trained tokeniser and
token embedding model with N tokens, define vi

to represent the feature embedding of the i-th token.
Then the transport cost cij from the i-th to the j-th
token is computed based on the cosine similarity:
cij = 1 − <vi,vj>

‖vi‖2‖vj‖2
. An optimal transport plan

T∗ = {t∗i,j} ∈ RN×N in pursuit of minimizing the
transportation cost can be obtained by solving the
optimal transportation and resources allocation op-
timization problem (Peyré et al., 2019). Note that
the transport plan can be used to interpret the trans-
portation of tokens from document to summary,
which brings interpretability to our URLComSum
method.

Wasserstein distance measuring the distance be-
tween the two semantic distributions TFD and
TFS with the optimal transport plan is com-
puted by: dW (TFD,TFS|C) =

∑
i,j t
∗
ijcij .

Rewardcov(D,S) can be further defined as:

Rewardcov(D,S) = 1− dW (TFD,TFS|C) .
(13)

3.3.2 Fluency Reward
We utilise Syntactic Log-Odds Ratio (SLOR)
(Pauls and Klein, 2012) to measure Rewardflu(S),
which is defined as: Rewardflu(S) =
1
|S|(log(PLM (S)) − log(PU (S))) , where
PLM (S) denotes the probability of the summary
assigned by a pre-trained language model LM ,
pU (S) =

∏
t∈S P (t) denotes the unigram proba-

bility for rare word adjustment, and |S| denotes
the sentence length.

We use the Self-Critical Sequence Training
(SCST) method (Rennie et al., 2017), since this
training algorithm has demonstrated promising re-
sults in text summarisation (Paulus et al., 2018; La-
ban et al., 2020). For a given input document, the
model produces two separate output summaries:
the sampled summary Ss, obtained by sampling
the next pointer ti from the probability distribution
at each time step i, and the baseline summary Ŝ,
obtained by always picking the most likely next
pointer t at each i. The training objective is to
minimise the following loss:

Loss = −(Reward(D,Ss)− Reward(D, Ŝ))

· 1
N

N∑

i=1

log p(tsi |ts1, ..., tsi−1,D) ,

(14)
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where N denotes the length of the pointer sequence,
which is the number of extracted sentences for the
extractor agent and the number of extracted words
for the compressor agent.

Minimising the loss is equivalent to maximis-
ing the conditional likelihood of Ss if the sampled
summary Ss outperforms the baseline summary
Ŝ, i.e. Reward(D,Ss)− Reward(D, Ŝ) > 0, thus
increasing the expected reward of the model.

4 Experiments

4.1 Experimental Settings
We conducted comprehensive experiments on three
widely used datasets: Newsroom (Grusky et al.,
2018), CNN/DailyMail (CNN/DM) (Hermann et al.,
2015), and XSum (Narayan et al., 2018a). We
set the LSTM hidden size to 150 and the num-
ber of recurrent layers to 3. We performed hy-
perparameter searching for wcov and wflu and de-
cided to set wcov = 1 , wflu = 2 in all our ex-
periments since it provides more balanced results
across the datasets. We trained the URLComSum
with AdamW (Loshchilov and Hutter, 2018) with
learning rate 0.01 with a batch size of 3. We ob-
tained the word embedding from the pre-trained
GloVe (Pennington et al., 2014). We used BERT
for the pre-trained embedding models used for com-
puting semantic coverage reward. We chose GPT2
for the trained language model used for comput-
ing the fluency reward due to strong representation
capacity.

As shown in Table 1, we followed (Mendes et al.,
2019) to set LE for Newsroom and (Zhong et al.,
2020) to set LE for CNN/DM and XSum. We also
followed their protocols to set LC by matching the
average number of words in summaries.

Dataset Newsroom CNN/DM XSum

#Sentences in Doc. 27 39 19

#Tokens in Doc. 659 766 367

LE 2 3 2

LC 26 58 24

Train 995,041 287,113 204,045

Test 108,862 11,490 11,334

Table 1: Overview of the three datasets. #Sentences in
Doc. and #Tokens in Doc. denote the average number
of sentences and words in the documents respectively.
LE denotes the number of sentences to be selected by
the extractor agent. LC denotes the number of words
to be selected by the compressor agent. Train and Test
denote the size of train and test sets.

Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD 33.9 23.2 30.7

LEAD-WORD 34.9 23.1 30.7

Supervised Methods

EXCONSUMM (Ext.)* 31.9 16.3 26.9

EXCONSUMM (Ext.+Com.)* 25.5 11.0 21.1

Unsupervised Methods

SumLoop (Abs.) 27.0 9.6 26.4

TextRank (Ext.) 24.5 10.1 20.1

URLComSum (Ext.) 33.9 23.2 30.0

URLComSum (Ext.+Com.) 34.6 22.9 30.5

Table 2: Comparisons on the Newsroom test set. The
symbol * indicates that the model is not directly com-
parable to ours as it is based on a subset (the "Mixed" )
of the dataset.

Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD 40.0 17.5 32.9

LEAD-WORD 39.7 16.6 32.5

Supervised Methods

LATENTCOM (Ext.) 41.1 18.8 37.5

LATENTCOM (Ext.+Com.) 36.7 15.4 34.3

JECS (Ext.) 40.7 18.0 36.8

JECS (Ext.+Com.) 41.7 18.5 37.9

EXCONSUMM (Ext.) 41.7 18.6 37.8

EXCONSUMM (Ext.+Com.) 40.9 18.0 37.4

CUPS (Ext.) 43.7 20.6 40.0

CUPS (Ext.+Com.) 44.0 20.6 40.4

Unsupervised Methods

SumLoop (Abs.) 37.7 14.8 34.7

TextRank (Ext.) 34.1 12.8 22.5

PacSum (Ext.) 40.3 17.6 24.9

PMI (Ext.) 36.7 14.5 23.3

URLComSum (Ext.) 40.0 17.5 32.9

URLComSum (Ext.+Com.) 39.3 16.0 32.2

Table 3: Comparisons between our URLComSum and
the state-of-the-art methods on the CNN/DM test set.
(Ext.), (Abs.), and (Com.) denote the method is extrac-
tive, abstractive, and compressive respectively.

We compare our model with existing compres-
sive methods which are all supervised, including
LATENTCOM (Zhang et al., 2018), EXCONSUMM
(Mendes et al., 2019), JECS (Xu and Durrett, 2019),
CUPS (Desai et al., 2020). Since our method is
unsupervised, we also compare it with unsuper-
vised extractive and abstractive methods, includ-
ing TextRank (Mihalcea and Tarau, 2004), PacSum
(Zheng and Lapata, 2019), PMI (Padmakumar and
He, 2021), and SumLoop (Laban et al., 2020). To
better evaluate compressive methods, we followed
a similar concept as LEAD baseline (See et al.,
2017) and created LEAD-WORD baseline which
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Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD 19.4 2.4 12.9

LEAD-WORD 18.3 1.9 12.8

Supervised Methods

CUPS (Ext.) 24.2 5.0 18.3

CUPS (Ext.+Com.) 26.0 5.4 19.9

Unsupervised Methods

TextRank (Ext.) 19.0 3.1 12.6

PacSum (Ext.) 19.4 2.7 12.4

PMI (Ext.) 19.1 3.2 12.5

URLComSum (Ext.) 19.4 2.4 12.9

URLComSum (Ext.+Com.) 18.0 1.8 12.7

Table 4: Comparisons on the XSum test
set.URLComSum (Ext.) denotes the extractive
summary produced by our extractor agent. URLCom-
Sum (Ext.+Com.) denotes the compressive summary
produced further by our compressor agent.

extracts the first several words of a document as
a summary. The commonly used ROUGE metric
(Lin, 2004) is adopted.

4.2 Experimental Results
The experimental results of URLComSum on dif-
ferent datasets are shown in Table 2, Table 3 and
Table 4 in terms of ROUGE-1, ROUGE-2 and
ROUGE-L F-scores. (Ext.), (Abs.), and (Com.)
denote that the method is extractive, abstractive,
and compressive, respectively. Note that on the
three datasets, LEAD and LEAD-WORD baseline
are considered strong baselines in the literature and
sometimes perform better than the state-of-the-art
supervised and unsupervised models. As also dis-
cussed in (See et al., 2017; Padmakumar and He,
2021), it could be due to the Inverted Pyramid writ-
ing structure (Pöttker, 2003) of news articles, in
which important information is often located at the
beginning of an article and a paragraph.

Our URLComSum method significantly outper-
forms all the unsupervised and supervised ones
on Newsroom. This demonstrates the effective-
ness of our proposed method. Note that, unlike
supervised EXCONSUMM, our reward strategy
contributes to performance improvement when the
compressor agent is utilised. For example, in
terms of ROUGE-L, EXCONSUMM(Ext.+Com.)
does not outperform EXCONSUMM(Ext.), while
URLComSum(Ext.+Com.) outperforms URLCom-
Sum(Ext.). Similarly, our URLComSum method
achieves the best performance among all the unsu-
pervised methods on XSum, in terms of ROUGE-1
and -L. URLComSum underperforms in ROUGE-

2, which may be due to the trade-off between in-
formativeness and fluency. The improvement on
Newsroom is greater than those on CNN/DM and
XSum, which could be because the larger size of
Newsroom is more helpful for training our model.

Our URLComSum method achieves compara-
ble performance with other unsupervised methods
on CNN/DM. Note that URLComSum does not
explicitly take position information into account
while some extractive methods take advantage of
the lead bias of CNN/DM, such as PacSum and
LEAD. Nevertheless, we observe that URLCom-
Sum(Ext.) achieves the same result as LEAD .
Even though URLComSum is unsupervised, even-
tually the extractor agent learns to select the first
few sentences of the documents, which follows the
principle of the aforementioned Inverted Pyramid
writing structure.

4.2.1 Ablation Studies
Effect of Compression. We observed that the ex-
tractive and compressive methods usually obtain
better results than the abstractive ones in terms of
ROUGE scores on CNN/DM and Newsroom, and
vice versa on XSum. It may be that CNN/DM
and Newsroom contain summaries that are usu-
ally more extractive, whereas XSum’s summaries
are highly abstractive. We noticed that URL-
ComSum(Ext.+Com.) generally achieves higher
ROUGE-1 and -L scores than its extractive ver-
sion on Newsroom. Meanwhile, on CNN/DM and
XSum, the compressive version has slightly lower
ROUGE scores than the extractive version. We
observe similar behaviour in the literature of com-
pressive summarisation, which may be that the sen-
tences of news articles have dense information and
compression does not help much to further con-
dense the content.

Effect of Transformer. Note that we inves-
tigated the popular transformer model (Vaswani
et al., 2017) in our proposed framework to replace
Bi-LSTM for learning the sentence and word rep-
resentations. However, we noticed the transformer-
based agents do not perform as well as the Bi-
LSTM-based ones while training from scratch with
the same training procedure. The difficulties of
training a transformer model have also been dis-
cussed in (Popel and Bojar, 2018; Liu et al., 2020).
Besides, the commonly used pre-trained trans-
former models, such as BERT (Devlin et al., 2019)
and BART (Lewis et al., 2020), require high compu-
tational resources and usually use subword-based
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tokenizers. They are not suitable for URLComSum
since our compressor agent points to words instead
of subwords. Therefore, at this stage Bi-LSTM is
a simpler and more efficient choice. Nevertheless,
the transformer is a module that can be included in
our framework and is worth further investigation in
the future.

Comparison of Extraction, Abstraction and
Compression Approaches. We observed that the
extraction and compressive approaches usually ob-
tain better results than the abstractive in terms of
ROUGE scores on CNN/DM and Newsroom, and
vice versa on XSum. It may be because CNN/DM
and Newsroom contain summaries that are usu-
ally more extractive, whereas XSum’s summaries
are highly abstractive. Since the ROUGE metric
reflects lexical matching only and overlooks the
linguistic quality and factuality of the summary, it
is difficult to conclude the superiority of one ap-
proach over the others solely based on the ROUGE
scores. Automatic linguistic quality and factual-
ity metrics would be essential to provide further
insights and more meaningful comparisons.

4.3 Qualitative Analysis
In Figure 5, 6, 7 in Appendix A, summaries pro-
duced by URLComSum are shown together with
the reference summaries of the sample documents
in the CNN/DM, XSum, and Newsroom datasets.
This demonstrates that our proposed URLComSum
method is able to identify salient sentences and
words and produce reasonably fluent summaries
even without supervision information.

4.4 Interpretable Visualisation of Semantic
Coverage

URLComSum is able to provide an interpretable
visualisation of the semantic coverage on the sum-
marisation results through the transportation ma-
trix. Figure 4 illustrates the transport plan heatmap,
which associated with a resulting summary is illus-
trated. A heatmap indicates the transportation of
semantic contents between tokens in the document
and its resulting summary. The higher the inten-
sity, the more the semantic content of a particular
document token is covered by a summary token.
Red line highlights the transportation from the doc-
ument to the summary of semantic content of token
“country”, which appears in both the document and
the summary. Purple line highlights how the se-
mantic content of token “debt”, which appears in
the document only but not the summary, are trans-

Figure 4: Interpretable visualisation of the OT plan.
from a source document to a resulting summary on the
CNN/DM dataset. The higher the intensity, the more
the semantic content of a particular document token is
covered by a summary token. Red line highlights the
transportation from the document to the summary of
semantic content of token “country”, which appears in
both the document and the summary. Purple line high-
lights how the semantic content of token “debt”, which
appears in the document only but not the summary, are
transported to token “bankruptcy” and “loans”, which
are semantically closer and have lower transport cost,
and thus achieve a minimum transportation cost in the
OT plan.

ported to token “bankruptcy” and “loans”, which
are semantically closer and have lower transport
cost, and thus achieve a minimum transportation
cost in the OT plan.

5 Conclusion

In this paper, we have presented URLComSum, the
first unsupervised and an efficient method for com-
pressive text summarisation. Our model consists of
dual agents: an extractor agent and a compressor
agent. The extractor agent first chooses salient sen-
tences from a document, and the compressor agent
further select salient words from these extracted
sentences to form a summary. To achieve unsu-
pervised training of the extractor and compressor
agents, we devise a reinforcement learning strategy
to simulate human judgement on summary quality
and optimize the summary’s semantic coverage and
fluency reward. Comprehensive experiments on
three widely used benchmark datasets demonstrate
the effectiveness of our proposed URLComSum
and the great potential of unsupervised compres-
sive summarisation. Our method provides inter-
pretability of semantic coverage of summarisation
results.
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A Sample Summaries
The following shows the sample summaries generated by URLComSum on the CNN/DM, XSum,
and Newsroom datasets. Sentences extracted by the URLComSum extractor agent are highlighted.
Words selected by the URLComSum compressor agent are underlined in red. Our unsupervised method
URLComSum can identify salient sentences and words to produce a summary with reasonable semantic
coverage and fluency.

Figure 5: A sample summary produced by URLComSum on the CNN/DM dataset. The summary generated
by URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores of 68.8, 52.7, and 62.4 respectively, with
semantic coverage reward 0.76 and fluency reward 0.64, while the reference summary has semantic coverage
reward 0.80 and fluency reward 0.62.

Figure 6: A sample summary produced by URLComSum on the XSum dataset. The summary generated by
URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores of 38.1, 20.0, and 33.3 respectively, with
semantic coverage reward 0.77 and fluency reward 0.56, while the reference summary has semantic coverage
reward 0.73 and fluency reward 0.59.

Figure 7: A sample summary produced by URLComSum on the Newsroom dataset. The summary generated
by URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores of 76.6, 62.2, and 76.6 respectively, with
semantic coverage reward 0.79 and fluency reward 0.61, while the reference summary has semantic coverage
reward 0.76 and fluency reward 0.65.
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