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Abstract

The recently introduced FNet model (Lee-
Thorp et al., 2022) computes a two-dimensional
discrete Fourier transform (DFT) of a sequence-
length-by-hidden-dimension-sized representa-
tion of its input. Because it is equally effi-
cient to compute the DFT of any reshaping
of this input matrix, we investigate the extent
to which increasing the frequency resolution
in one dimension (at the expense of the other)
affects task performance. We consider the LRA
tasks (Tay et al., 2021) considered by Lee-
Thorpe et al., as well as the more practical set-
ting of using FNet as the encoder in a machine
translation (MT) model. We find that frequency
resolution has a marked task-dependent effect
on performance, allowing us to largely outper-
form standard FNet on our tasks, and suggest-
ing that resolution should be carefully tuned
before deploying FNet.

1 Introduction

The FNet model, recently introduced by Lee-
Thorp et al. (2022), is an encoder-only Transformer
(Vaswani et al., 2017) that takes a major devia-
tion from the Transformer’s standard architecture.
Mainly, FNet replaces the self-attention mechanism
in a Transformer with a 2D Discrete Fourier Trans-
form (DFT). The DFT is a deterministic operation
which transforms an input vector x to output vector
X , both of length N , by

Xk =

N−1∑

n=0

xn ∗ exp(−i2π

N
kn)

Notably, there are no learnable parameters
within this sub-layer. Additionally, FNet represents
an important innovation because the DFT scales
sub-quadratically in the sequence length, unlike
self-attention. FNet therefore offers the promise of
a more efficient general-purpose transformer-like
architecture.

We note that it is equally efficient to compute
the 2D DFT of any reshaping of this matrix (i.e.,
increasing the number of columns at the expense
of the rows, or vice-versa) and that reshaping will
change the frequency resolution of the DFT in each
dimension. We hypothesize that changing the fre-
quency resolution may yield a more efficient token
mixing than the standard input’s mixing, particu-
larly when flattening the input into a column of
embedded tokens. The purpose of this paper is to
explore whether there is any performance benefit to
increasing or decreasing the frequency resolution
in either dimension, a question not addressed by
Lee-Thorp et al. (2022).

In addition to changing resolution by reshaping,
which does not alter the number of elements in the
matrix, we consider transformations that do alter
the number of elements in the matrix, such as pro-
jecting up or down, or padding. We investigate
the effect of these transformations on the FNet ar-
chitecture as applied to the LRA tasks (Tay et al.,
2021) considered in the original paper, and as an
encoder in a standard transformer-based neural ma-
chine translation model. We find that reshaping
has a marked effect on the performance of FNet on
the tasks we consider, although no single reshaping
appears to be optimal for all tasks. As such, we
recommend that the reshaping be tuned per-task,
as a hyperparameter. We also find that padding can
improve performance for the Translation and short
IMDB tasks, whereas projection tends to harm per-
formance overall.

2 Methods

Below we outline several approaches to changing
the dimensionality of the matrix consumed by the
DFT in FNet, and thus the frequency resolution in
at least one dimension. Whereas we are interested
in changing the DFT’s frequency resolution, we
are not interested in changing the model’s hidden
dimension, which determines the size of the feed-
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forward layers that follow the DFT. Accordingly,
we always ensure that the DFT’s output is mapped
back to a sequence-length by hidden-dimension-
sized matrix before being consumed by a feed-
forward layer. Details are below.

Reshaping In FNet, the inputs to the DFT have
dimension (excluding batch-size) S × H , where
S and H are sequence- and hidden-dimension re-
spectively, and where S and H are powers of two.
To reshape, we multiply S by a power of 2 (includ-
ing negative powers), and divide H by that same
power. We then contiguously reshape the matrix
into one of dimension S · 2i ×H · 2−i. Note this
transformation is implemented by the JAX/PyTorch
library’s reshape function. We choose all possible
combinations of i such that S · 2i and H · 2−i are
both integers. We include both fully flattened com-
binations (where H or S = 1) for completeness,
although these transformations are equivalent.

Projection Reshaping maintains the same total
number of elements in the input matrix, making it
impossible to change the resolution in only one di-
mension. Projection, on the other hand, allows us to
hold the resolution in one dimension constant while
changing the the other’s. In our experiments, we
take the optimal power-of-2 reshaping as described
in the previous paragraph, and then project one
of its hidden or sequence dimension up or down.
Specifically, we linearly project the pre-DFT input
and then reshape it into the desired dimension. Af-
ter taking the DFT, we undo the prior reshaping
and project back to the original dimension. See
Appendix A for more details.

Padding Rather than projecting, we may also
pad the input matrix with zeros, along either the
sequence or hidden dimension. In the case of
padding the hidden dimension, we pad before tak-
ing the DFT and simply discard the extra columns
after taking the DFT and before the subsequent
feed-forward layer. In the case of padding the
sequence-length, we simply pad the encoder in-
put directly. See Appendix C for a discussion on
time-complexities from padding.

3 Experiments

We evaluate on the Long Range Arena (LRA) tasks
(Tay et al., 2021), also used in Lee-Thorp et al.
(2022). Due to training instability, we only report
on image-classification (CIFAR), text-classification
(IMDB), and document matching (Matching). We

report all LRA results as an average over three ran-
dom seeds. In order to evaluate FNet in a more
conventional NLP setting, we evaluate it as an en-
coder on the IWSLT14 English to German trans-
lation benchmark (Cettolo et al., 2014), and on
a ‘short’ IMDB task. We modify the standard
IWSLT14 task to only include examples shorter
than 64 tokens, and pad all remaining examples
to 64 tokens. See Appendix C for a discussion
on time-complexity. To construct the short-IMDB
task, we use the LRA’s IMDB codebase but lever-
age the non-byte tokenization scheme, where each
word is enumerated and is represented by its in-
dex. We also truncate and pad examples to have
input length of 500 tokens. For IWSLT14 and the
Short-IMDB tasks, we run experiments on a single
seed and report the results directly. All results are
reported as the optimal validation scores obtained
during training.

Proj. dim. scale D-Model Seq-Length
Scale 1

4 0.344 0.325
Scale 1

2 0.390 0.318
Base (8, 4096) 0.422 0.322
Scale 2 0.409 0.314
Scale 4 0.419 0.313

(a) CIFAR projection experiments

Proj. dim. scale D-Model Seq-Length
Scale 1

4 0.691 0.569
Scale 1

2 0.702 0.575
Base (2048, 128) 0.693 0.568
Scale 2 0.566 0.572
Scale 4 0.567 0.593

(b) IMDB projection experiments

Proj. dim. scale D-Model Seq-Length
Scale 1

4 0.624 0.623
Scale 1

2 0.625 0.616
Base (2048, 256) 0.623 0.630
Scale 2 0.618 0.619
Scale 4 0.612 0.622

(c) Matching projection experiments

Table 1: Projection of highest performing reshaping
from the reshaping survey on LRA. Base dimensions
are [D-model, Sequence length].

4 Results

4.1 LRA

Figure 1 outlines the results of our reshaping survey
across the LRA tasks IMDB, CIFAR, and Match-

240



0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

1,
 3

27
68

2,
 1

63
84

8,
 4

09
6

16
, 2

04
8

32
, 1

02
4

64
, 5

12

12
8,

 2
56

51
2,

 6
4

40
96

, 8

32
76

8,
 1

(a) CIFAR

0.5

0.55

0.6

0.65

0.7

0.75

1,
 2

62
14

4

8,
 3

27
68

12
8,

 2
04

8

25
6,

 1
02

4

51
2,

 5
12

10
24

, 2
56

20
48

, 1
28

40
96

, 6
4

32
76

8,
 8

26
21

44
, 1

(b) IMDB

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

1,
 5

24
28

8

4,
 1

31
07

2

16
, 3

27
68

64
, 8

19
2

12
8,

 4
09

6

25
6,

 2
04

8

10
24

, 5
12

20
48

, 2
56

40
96

, 1
28

32
76

8,
 1

6

52
42

88
, 1

(c) Matching

Figure 1: Results of reshaping survey on LRA tasks. Orange bars denote the unchanged dimensions. The first
dimension is the reshaped hidden dimension, second dimension is the sequence length. Flattened reshapings should
be computationally equivalent and are included for completeness.

ing. See Appendix B.1 for results on all tasks
and reshapings. We observe optimal ‘aspect-ratios’
which are distinct from the unaltered ratios. For
CIFAR, reshaping to have a larger sequence-length
improves performance by a number of percentage
points. IMDB and Matching also show local op-
tima at either end of the spectrum, which provides
the largest resolution to a single dimension.

Table 1 outlines the results of Projection on the
LRA tasks. For CIFAR, IMDB, and Matching, we
set the optimal reshaped dimension to [8, 4096],
[2048, 128], and [2048, 256], respectively. We then
project either the hidden or sequence dimension by
a fixed scale, denoted by the "Projection dimension
scale". For example, a scale of 1

2 on CIFAR pro-
duces a DFT input shape of [4, 4096] when project-
ing D-Model, while the same scale has a DFT input
shape of [8, 2048] when projecting Seq-Length.

We see that projecting before taking the DFT
reduces model performance. Further, projecting
the sequence length almost always results in lower
performance than projecting the hidden dimension.

Experiments on the padding dimension are in
Table 2. As with the projection experiments, we
see that padding along both the sequence and the
hidden dimension typically lowers model perfor-
mance. However, increasing the resolution with
padding can improve performance on the IMDB
task for certain padding amounts.

4.2 Translation

The results of the reshaping survey on the transla-
tion task are given in Figure 2. In contrast to the
LRA experiments, we observe that the performance
of the base DFT input shape is greater than every

Padded dim. scale D-Model Seq-Length
8, 4096 (no pad) 0.425 0.425
Scale 2 0.408 0.426
Scale 4 0.386 0.403

(a) CIFAR padding experiments

Padded dim. scale D-Model Seq-Length
2048, 128 (no pad) 0.726 0.726
Scale 2 0.738 0.737
Scale 4 0.730 0.708

(b) IMDB padding experiments

Padded dim. scale D-Model Seq-Length
2048, 256 (no pad) 0.638 0.638
Scale 2 0.621 0.621
Scale 4 0.626 0.624

(c) Matching padding experiments

Table 2: Padded of strongest dimensions in LRA.

tested reshaping. Notably, FNet is nearly compara-
ble to Transformer after fixing input length.

Table 3 shows the results of the projection ex-
periment. We do not project the sequence length
due to its low performance on LRA. We again se-
lect the optimal reshaping, which for translation is
[512, 64]. Here we see the original shape outper-
forms all projections on the hidden dimension.

Table 4a shows the results of padding along the
sequence length dimension. Here, we observe mod-
est increases when padding along the sequence
length, although there is a point at which increas-
ing the length hinders performance. Table 4b shows
the results of padding along the hidden dimension.
We do not observe any hidden-dimension padding
that surpasses the baseline model performance.
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Figure 2: Results of reshaping survey on the Translation
task. Orange bars denote the unchanged dimensions.
The first dimension is the reshaped hidden dimension,
second dimension is the sequence length. Flattened
reshapings should be computationally equivalent and
are included for completeness.

Projected dim. size BLEU
128, 64 27.84
256, 64 28.85
512, 64 (base shape) 30.11
1024, 64 30.03
2048, 64 25.92

Table 3: Projection of strongest dimensions in transla-
tion.

4.3 Short IMDB

Figure 6 displays the results of the reshaping sur-
vey on the Short-IMDB task. Like the Translation
results, the model using unaltered DFT input has
higher accuracy than the other tested models. Inter-
estingly, reshapings that had high accuracy in the
long-IMDB task do not appear to transfer to the
short-IMDB task.

5 Conclusion

It is clear that tuning the FNet’s DFT input dimen-
sion can affect model performance. In LRA, be-
tween optimal and base input dimensions, we see
that CIFAR, IMDB, and Matching all increase per-
formance by 9%, 15%, and 2%, respectively. How-
ever, altering does not appear to help for all tasks.
In Translation and short IMDB, altering the input
dimension to the DFT layer lowers overall perfor-
mance. There could be several reasons for this
performance degradation.

First, performance variance could be due to input
length. The translation task uses a max sequence
length of 64, which is significantly shorter than the
LRA tasks, which had a minimum of 1024. If true,

Padded dim. size - seq len BLEU
64 (unpadded) 32.77
128 33.23
256 33.28
512 29.43

(a) Sequence length

Padded dim. size - hidden dim. BLEU
256 (unpadded) 32.77
512 32.02
700 32.64
1024 32.04

(b) Hidden dimension

Table 4: Padded of strongest dimensions in LRA.
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Figure 3: Results of reshaping survey on the ‘short
IMDB’ task. Orange bars denote the unchanged di-
mensions. The first dimension is the reshaped hidden
dimension, second dimension is the sequence length.

it may be harder to tune DFT input shapes with
shorter sequence-lengths.

Second, certain tokenization methods may be
more amenable to tuning the DFT input dimen-
sion. We observe a performance boost through the
reshape survey on IMDB and Matching, both of
which use byte-level tokenization. Therefore, re-
shaping may be more potent on tasks that use a
byte-level tokenization.

We have not yet characterized the mechanism
for why FNet performance can be affected by al-
tering the input dimension to the DFT. We believe
that future work on tokenization techniques, base-
sequence-length, and testing on additional tasks
could be ideal routes to further explore why adjust-
ing the input shape to the DFT can alter the model’s
overall performance.
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A Example of projection methodology

Suppose we wish to project an input of reshaped
size [32, 1024] to [32, 2048]. Let’s suppose the
original input had [64, 512]. Before taking the DFT,
we take the following steps:

• Project the original input’s hidden dimension
by 2, yielding [64, 1024]

• Reshape to [32, 2048]

• Take DFT

• Un-reshape back to [64, 1024]

• Project back down to [64, 512]

In the case that we would like to reshape to [64,
1024], we now project the sequence length. Before
and after each projection, we transpose the input to
[H,S].

In the case of padding the hidden dimension,
replace the Projection layers with padding/cropping
operations. We pad initially, then crop back down
at the end.

Model Time complexity
BERT 2n2dh + 4nd2h

FNet (matrix) n2dh + nd2h
FNet (FFT) ndh[log(n) + log(dh)]

Table 5: Number of mixing layer operations (forward
pass). n is the sequence length and dh is the model
hidden dimension.

B Additional results

B.1 LRA Survey
See Figure 4 for the full results on the Survey
task across all LRA tasks. Again, Pathfinder and
PathfinderX models tended to have relatively un-
stable models (some models not finding strong per-
formance, at 50% accuracy), so we excluded them
from further testing. Additionally, ListOps does
not appear to improve performance based on alter-
ing the hidden-seq ratio, so it was also excluded
from further testing.

B.2 Translation survey
Figure 5 shows the full results of altering the aspect
ratio into the DFT for the Translation task.

B.3 Short IMDB Survey
Figure 6 shows the full results of altering the aspect
ratio into the DFT for the short-IMDB task.

C Time complexity of reshaping and
padding

Lee-Thorp et al. (2022) assembled the rough time
complexity of FNet compared to standard the stan-
dard transformer, which is listed in 5.

Suppose that for some reshaping we have
sequence-length l and hidden dimension dh.
The time-complexity in the FFT case would be
dhl(log(l) + log(dh)) = dhl log(dhl). We can see
here that the no reshaping would be more time-
intensive than another if the product of l and dh is
fixed.

However, we can see that increasing the se-
quence length (or hidden dimension) by padding
has time complexity of n log n for padded length
n. Padding will also increase the time complexity
by n2 in decoders, where the attention-mechanism
is still present.
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(f) PathfinderX

Figure 4: Results of varying hidden dimension and sequence length dimensions into the Fourier Transform. Orange
lines denote the unchanged dimensions. First dimension is hidden dimension, second dimension is the sequence
length. Each run is the average of the maximum validation BLUE score, taken as an average over 3 random seeds.
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