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Abstract

Interactive machine learning (IML) is a benefi-
cial learning paradigm in cases of limited data
availability, as human feedback is incremen-
tally integrated into the training process. In this
paper, we present an IML pipeline for image
captioning which allows us to incrementally
adapt a pre-trained image captioning model
to a new data distribution based on user in-
put. In order to incorporate user input into the
model, we explore the use of a combination of
simple data augmentation methods to obtain
larger data batches for each newly annotated
data instance and implement continual learn-
ing methods to prevent catastrophic forgetting
from repeated updates. For our experiments,
we split a domain-specific image captioning
dataset, namely VizWiz, into non-overlapping
parts to simulate an incremental input flow for
continually adapting the model to new data.
We find that, while data augmentation wors-
ens results, even when relatively small amounts
of data are available, episodic memory is an
effective strategy to retain knowledge from pre-
viously seen clusters.

1 Introduction

Image Captioning (IC) is the task of generating
a description in natural language for a given im-
age (Stefanini et al., 2021). For the training of
most state-of-the-art IC models, large amounts of
annotated training data are required (Zhou et al.,
2020). However, whenever models need to caption
user-specific images without large-scale annota-
tions, this is an impractical requirement. In this
case, a potential solution can be found in an in-
teractive framework, in which the model can be
efficiently adapted to new data based on user feed-
back (Ling and Fidler, 2017; Shen et al., 2019).
Additionally, interactivity renders AI/ML-systems
more user-friendly and trustworthy (Bussone et al.,
2015; Guo et al., 2022).

In interactive ML settings, training takes place

with small amounts of data, and often in an in-
cremental manner. These properties can lead to
overfitting, on the one hand, which is the lack
of generalization ability of the model, and catas-
trophic forgetting, on the other hand, which refers
to the drop in performance on older tasks, when
a model is trained on new data. For our interac-
tive approach, we tackle these problems using a
combination of methods previously proposed in
the literature. To tackle overfitting, we apply data
augmentation to each instance of user feedback to
obtain larger batches of data, which the model is
then updated on (Wang et al., 2021). Nevertheless,
we find that this strategy fails to improve results in
our image captioning task, indicating that the data
augmentation methods we used are not suitable for
this kind of task. In order to prevent catastrophic
forgetting, we rely on continual learning methods.
In the following, we present and test an IC pipeline
that can be used in an interactive setting. Our work
is guided by the following research questions:

1. How does data augmentation benefit a sys-
tem which is trained incrementally with (sim-
ulated) user feedback? How does this system
perform in few-shot scenarios?

2. How effective is an episodic memory replay
module (de Masson d'Autume et al., 2019) for
knowledge retention from previous trainings?

Our contributions are as follows:

• We propose a lightweight continual learning
IC pipeline that leverages data augmentation,
which can be used in an interactive machine
learning setting.

• We adapt a continual learning method, namely
sparse memory replay, proposed by de Mas-
son d'Autume et al. (2019), for IC.

• We test a combination of data augmentation
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Figure 1: Our pipeline. Following the pre-training/fine-tuning paradigm, we first train our IC model on the MS
COCO dataset. We then continue to train our model incrementally, by adding a new cluster each time from the
VizWiz dataset, after applying DA methods on it to obtain more training data. During training on the VizWiz data
for each cluster, an episodic memory module is activated, which is used to retrieve old data points from previously
seen clusters.

methods for interactive IC in both image and
text modalities.

• Since we report negative results for the system
using data augmentation methods on the user
feedback, we additionally investigate why
these methods do not work in our case, and
we offer some possible explanations for the
deteriorating performance.

• We propose a method based on nominal
phrase similarity between captions of differ-
ent images for splitting a dataset into different
tasks suitable for evaluating task-incremental
continual learning when only image captions
are given.

For our simulated user feedback, we use a
domain-specific dataset, namely VizWiz (Gurari
et al., 2020; Simons et al., 2020), which consists
of images taken by visually impaired people. We
choose this dataset exactly because of this prop-
erty: the quality of the images is lower than in most
general-use IC datasets, resembling the image qual-
ity of user images.

2 Related work

Image captioning (IC) Deep-learning based IC
models (Xu et al., 2015; Anderson et al., 2018) tra-
ditionally consist of two parts: an encoder and a de-
coder. The visual encoder breaks the image down
into features or creates an intermediate representa-
tion. The decoder is a language model, which takes
the encoder output as input and generates a cap-
tion. For grounded approaches, more supervision

is required: image features, such as regions, are ad-
ditionally inserted into the visual encoder (Lu et al.,
2018). Following the trend in other deep learn-
ing tasks, recent approaches include large-scale
vision-language pre-training, as well as general-
ized models that work for a variety of computer
vision and vision-language tasks, including image
retrieval, referring segmentation, and visual ques-
tion answering (Zou et al., 2022; Li et al., 2022).

Interactive IC Interactive IC has not gained as
much attention as other ML tasks. Jia and Li (2020)
involve the human-in-the-loop by providing incom-
plete sequences as input, in addition to each image,
during inference time. Biswas et al. (2020) extend
the Show, Attend, and Tell architecture by combin-
ing high-level and low-level features, which pro-
vide explainability, as well as beam search during
decoding time.

Data augmentation Data augmentation (DA) is
widely applied to multiple tasks which include
learning from large data, whenever there is a lack
of annotated instances. It can additionally be used
as a regularization technique to avoid overfitting by
introducing noise into the dataset. In Computer Vi-
sion, transformations like cropping, warping, and
horizontal/vertical flipping are often applied (Taka-
hashi et al., 2019; Katiyar and Borgohain, 2021).

For text, augmentation methods need to be more
elaborate, since image-inspired techniques often
change the semantics of the text drastically. Popu-
lar methods include, but are not restricted to, EDA
(Wei and Zou, 2019) (including random insertion,
deletion, word swap), back-translation (Sennrich
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et al., 2016; Turkerud and Mengshoel, 2021), syn-
onym replacement and contextual augmentation
(Kobayashi, 2018; Atliha and Šešok, 2020), often
using a pre-trained language model (Devlin et al.,
2019). For both modalities, retrieval-based aug-
mentation from additional resources is possible as
well (Li et al., 2021).

Continual Learning In cases where a model is
trained repeatedly on new data, catastrophic forget-
ting (Kirkpatrick et al., 2017) can be observed. This
refers to the degradation of model performance on
older tasks when it is trained on new ones. In
order to overcome this, continual learning meth-
ods are often applied. Methods such as weight
regularization, encoder/decoder freezing, pseudo-
labeling, and knowledge distillation, have been
previously applied to IC models (Nguyen et al.,
2019; Del Chiaro et al., 2020). In the natural lan-
guage processing domain, de Masson d'Autume
et al. (2019) use a combination of episodic memory
replay during training and local adaptation of the
model during inference.

3 Method

In this section, we describe the approach followed,
including our benchmark strategy, our DA meth-
ods, as well as the episodic memory module. Our
pipeline is illustrated in Figure 1.

3.1 Interactive IC pipeline

Architecture We experiment with a concrete im-
plementation of the interactive approach outlined
in Hartmann et al. (2022). We use a PyTorch imple-
mentation of Show, Attend and Tell (Xu et al., 2015).
This architecture consists of a convolutional neural
network (CNN) encoder, which is used to extract
feature vectors from images, and a long-short-term
memory (LSTM) decoder, which generates a cap-
tion conditioned on these vectors, with the use of
attention. Following Dognin et al. (2022), we re-
place the ResNet encoder with a ResNext network
(Xie et al., 2016).

For the decoder, an LSTM network is used. A
problem arising from incremental training here
is the expansion of the vocabulary. In order to
tackle this problem, we rely on the subword vo-
cabulary given by the BERT (Devlin et al., 2019)
tokenizer provided by Huggingface1. By using a
pre-trained subword tokenizer, we account for new

1We use bert-base-uncased.

original captions: 
a. ‘a bottle of Hawthorne food supplement or drug’,
b. ‘Foreign currency is sitting on the table and it looks kind of 

exotic.’
c. ‘White t-shirt with black line drawings of Mt Rushmore,  

motorcycles, rose and beer, with text.’

paws:
a. ‘a bottle of Hawthorne food supplement or drug combination’,
b. ‘foreign currency sitting on the table and it looks sort of 

exotic.’,
c. ‘White tee with black line drawings by Mt Rushmore, 

motorcycles, roses and beer, with text.’

pegasus:
a. ‘There is a bottle of Hawthorne food supplement.’,
b. ‘The table has foreign currency on it.’,
c. ‘The t-shirt has black line drawings of Mt Rushmore, 

motorcycles, rose and beer.’
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Figure 2: Generated data points generated based on the
DA methods described in subsection 3.1. Top: image
DA (combination of several DA methods). Bottom: text
DA.

words learned incrementally, without the need to
expand the model size. The training strategy used
is cross-entropy loss.

While current state-of-the-art architectures
achieve better scores, we adapt this particular ar-
chitecture because of its simplicity, and because
its inputs are raw images, as opposed to image fea-
tures like bounding boxes and labels from object
recognition models, which further decreases pre-
processing time. The pipeline can potentially be
adapted to any IC model that takes images as input,
rather than image regions and classes.

Data augmentation methods For our experi-
ments, we use DA on Image (IMG), Text (TXT),
and both modalities simultaneously (BOTH). For
IMG, we use the Albumentations (Buslaev et al.,
2020) library. We create a pipeline of different
operations, including CLAHE, optical and grid dis-
tortion, blur, flip, and rotation. Our goal here is to
introduce noise to the input data, in order to help
the model generalize better to unseen data. For the
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train val test all WT

1 3,332 954 2,476 6,762 10,047
2 1,535 302 488 2,325 4,988
3 5,668 1,402 2,199 9,269 13,497
4 333 83 113 529 2,931
5 6,160 1,516 2,474 10,150 12,407

all 17,028 4,257 7,750 29,035 21,955

Table 1: VizWiz cluster (task) statistics after filtering
out bad quality images (according to the procedure men-
tioned in subsection 3.3). WT stands for word types.

TXT modality, we aim at generating meaningful
captions. For this reason, we employ two para-
phrasing models provided by Huggingface, namely
pegasus_paraphrase, a PEGASUS (Zhang et al.,
2019a) model fine-tuned for paraphrasing, and
paws_paraphrase, a T5 (Raffel et al., 2020) model
trained on the PAWS (Zhang et al., 2019b; Yang
et al., 2019) dataset. The reason we use two dif-
ferent paraphrasing tools is that we found out that
the quality of the generated samples is different. In
addition, paraphrasing quality drops in each tool
when the number of paraphrases increases. In order
to introduce more variety without compromising
the quality, we decide to utilize two paraphrasing
tools. In the case of combined (BOTH) DA, IMG

augmented images are combined with synthetically
generated captions. In every case, we generate
batches that are 10 times bigger than the initial
ones. Examples of generated data points can be
found in Figure 2.

Episodic memory for lifelong learning In order
to help the model retain old knowledge when be-
ing adapted to new data, we implement a continual
learning method, more specifically a sparse mem-
ory replay that operates during training. We adapt
the method described by de Masson d'Autume et al.
(2019): During training, some samples/experiences
are written into the memory. Every training sample
has a certain probability to be selected for mem-
ory writing. These experiences are then sparsely
replayed (i.e. 1 sample from memory for every
200 new data points, see subsection 3.2) while the
model is trained on new data. This way, the model
retains information from previous training itera-
tions with very low additional computational effort.

3.2 Procedure and training details

We follow the pre-training/fine-tuning paradigm,
where we first train the model on a supervised pre-
training task using a large, generic dataset, namely
MS COCO (Lin et al., 2014) (details below). Dur-
ing (supervised) pre-training, we do not use any
DA or continual learning method. After obtaining
the best model, we continue with our incremental
model adaptation, during which we apply DA and
continual learning.

Training details For the supervised pre-training
step, we train our model on MS COCO in two
stages: during the first training, we freeze the en-
coder and only train the decoder. The encoder is
then trained in the second stage. For the adaptation
step, we train our models on each task once.

We train with a batch size of 32 and a learn-
ing rate of 4e-4 for the decoder. For our memory
module, the replay frequency is 200, as mentioned
in subsection 3.1; that means that for every 200
batches, one batch is drawn from the memory and
added to the current training batch. The memory
writing probability is 20%.

We use early stopping. During our initial exper-
iments, we trained with higher (p=10) and lower
(p=2) patience values for early stopping. During
our initial experiments, lower patience seems to
produce better results, hence we adopt this value
for our adaptation training. During supervised pre-
training, we used 20 as the default patience value.

3.3 Datasets

Supervised pre-training step We first train our
model on the MS COCO dataset (Lin et al., 2014).
It contains 328k images, and it is broadly used as a
pre-training dataset for vision tasks, including ob-
ject recognition, object segmentation, and IC. We
use the 2014 release, which contains 82,783 train-
ing and 40,504 validation images. Each image is
annotated with five captions, describing the content
of each image. We make use of the Karpathy splits
(Karpathy and Fei-Fei, 2017).

Adaptation After obtaining the best possible cap-
tioning model trained on MS COCO, we train our
model incrementally using VizWiz (Gurari et al.,
2020; Simons et al., 2020), a dataset consisting of
images taken by visually impaired people. Since
there are no test captions available, we use the val-
idation set as our test set. A part of the training
samples is used as our validation set.
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+ cluster 1 [3332] + cluster 2 [1535] + cluster 3 [5668] + cluster 4 [333] + cluster 5 [6160]
DA NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH

1 18.8 6.4 15.8 15.3 12.4 2.2 11.3 4.4 15.9 2.4 13.0 7.3 12.7 1.9 9.8 3.9 11.8 2.8 9.7 7.1
2 26.0 6.9 19.8 16.4 25.0 5.5 18.7 11.3 18.7 4.6 13.0 7.2 22.6 3.5 14.9 13.8
3 27.7 4.2 24.5 16.3 21.1 2.3 16.4 4.9 22.4 2.9 16.9 11.9
4 26.7 4.6 20.5 13.1 20.4 3.4 15.4 10.6
5 25.9 3.7 19.2 15.3

all 18.8 6.4 15.8 15.3 16.4 3.4 14.6 7.4 23.6 3.6 19.9 12.2 18.4 2.4 14.2 5.0 21.2 3.3 16.2 12.1

Table 2: CIDEr results on our experiments on VizWiz data clustered according to the procedure described in
subsection 3.3. We start with the model resulting from the supervised pre-training step on MS COCO and continue
to train this model incrementally on the VizWiz clusters (+cluster ...). We include the amount of (original) training
data in brackets. DA: Data augmentation, NO: no DA, IMG: image DA, TXT: text DA, BOTH: image and text DA.
The numbers in the left column stand for clusters evaluated on. ’all’ refers to the micro avg.

Dataset processing We want to simulate a contin-
ual learning setting where we incrementally adapt
the IC model to new sets of user-specific data. For
this, we split VizWiz into non-overlapping clus-
ters representing user-specific datasets. We follow
the procedure for other continual learning datasets,
where data is split according to classes/concepts,
and each new class/concept represents a new task
(Del Chiaro et al., 2020). As the VizWiz dataset
does not contain object annotations for its images,
we resort to splitting the data according to the ob-
jects mentioned in the captions, using the procedure
described below. The resulting clusters resemble
the user-specific data we might expect to receive
from different users in a real-world setup: Whereas
one user might be more interested in captioning
screenshots or images of IT-related concepts, an-
other user might be interested in captioning images
of containers of food and drinks, etc. Example NPs
for each cluster can be found in Appendix A.

We follow the steps below:

1. We collect all nominal phrases (NPs) in the
entire caption corpus. We use TextBlob2 for
the extraction of the NPs.

2. From all the NPs, we choose so-called key-
words, namely phrases that appear at least 15
times in the dataset.

3. Using GloVe (Pennington et al., 2014) embed-
dings, we extract word embeddings for each
keyword. In case a keyword is phrasal, we av-
erage between individual word embeddings.

4. We cluster the keyword embeddings in 5 clus-
ters, using K-means clustering (Hartigan and
Wong, 1979).

2https://textblob.readthedocs.io/en/dev/

5. We iterate over all captions for each image,
looking for relevant keywords, and assigning
them to clusters. In case one image corre-
sponds to more than one cluster according to
its keywords, we favor the smaller cluster.

VizWiz contains some images of bad quality: in
some cases, the caption reads ’Quality issues are
too severe to recognize visual content’. In order
to avoid the generation of these captions during
inference, they can be removed from the training
set (Çaylı et al., 2022). In our work, we exclude an
image from training, if at least 3 out of the five cap-
tions in the image contain this caption; that means
that more than 50% of the annotators could not
describe the content of the image. If Quality Is-
sues are brought up only once or twice, we remove
this caption and duplicate one or two of the other
captions, so that, in the end, each image is anno-
tated with five captions. We do not remove Quality
Issues images and captions from our test set. We
exclude a total of 2,146 images.

While we technically do not use the complete
dataset provided, it is justified by the fact that we
test our pipeline in a low-resource scenario. Table 1
includes statistics over our tasks, including word
type counts.

4 Evaluation & Results

In this section, we present the evaluation metrics
we used, our procedure, as well as the results from
our core experiments.

4.1 Evaluation metrics & splits
Since IC is a natural language generation task, re-
sults are evaluated using standard metrics for eval-
uating text generation tasks. These metrics mea-
sure similarity to the ground truths. The metrics
most commonly used are BLEU (Papineni et al.,
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gold: I see a red wine bottle 
with writing on it
no: a bottle of alcohol is on 
top of a table
txt: there is a bottle of wine.

gold: a can of progresso light 
soup sitting on a counter
no: a can of campbell’s 
cream of mushroom soup
txt: there is a can of soup on 
the counter.

gold: a package containing 
sugar free Hawaiian punch 
singles
no: a single packet of kool - aid 
drink mix
txt: there is a package of food.

gold: A computer screen wanting 
the user to fill a captcha field 
no: a computer screen with a 
captcha on it
txt: there is a text on the screen.

Figure 3: Generated captions without DA and with TXT DA, compared with one of the gold captions.

2002), ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), CIDEr (Vedantam et al., 2015),
and SPICE (Anderson et al., 2016). For our hy-
perparameter tuning on the validation set, we use
the BLEU metric. We report CIDEr scores in the
main paper for brevity, scores for the other evalua-
tion metrics can be found in Appendix B. We use
the Pycocoevalcap3 library for evaluation. In order
to evaluate the continual learning abilities of our
IC model, we report scores per cluster, as well as
micro-averages over the clusters trained so far.

4.2 Results
We present our results in Table 2. The use of our
DA methods does not improve the results. Es-
pecially when IMG DA is involved, performance
drops dramatically compared to the NO DA base-
line. This leads us to the conclusion that the DA
operations we applied to the images were not suit-
able. Unexpectedly, we observe that TXT DA does
not improve results compared to the NO DA base-
line, which is in contrast to findings of previous
work showing that caption augmentation is benefi-
cial for low-resource IC (Atliha and Šešok, 2020).
We analyze this in more detail in section 5.

5 Analysis

In this section, we take a closer look into the qual-
ity of the captions generated by our models. We
focus on the NO and TXT models since they pro-
duce better results. We also conduct two ablation
studies: one considers training without the use of
the memory module, and the other one tests our
method in a low-resource scenario.

3https://github.com/salaniz/pycocoevalcap.git

NO IMG TXT BOTH

no. of types 1,383 2,418 1,397 1,053
I (median) 10.0 10.0 8.0 10.0
I (mean) 10.229 10.464 7.949 9.894

Table 3: Statistics over captions generated with our
models. I : average caption length.

5.1 Caption quality

In order to gain a better insight into our results,
in particular the observation that TXT DA wors-
ens results compared to the NO DA baseline, we
compare the generated captions based on their av-
erage length and the number of unique word types
contained in the captions. One aspect that strikes
immediately when comparing captions generated
with TXT DA vs NO DA is variation. While we find
that NO captions and TXT captions share a similar
amount of unique word types, their average length
is different, with TXT captions being more than 2
words shorter than NO captions.

We include some examples of generated cap-
tions in Figure 3. While we see that the captions
generated are not necessarily erroneous, captions
generated with the models trained with TXT DA
are less informative than the gold captions and cap-
tions generated without DA. Automated evaluation
metrics often penalize changes in the length of the
output. Captions generated by the TXT DA model
tend to be more similar to the paraphrases gener-
ated by the PEGASUS paraphrasing model (which
was used to generate data for the training of the TXT

DA model), which are shorter and less informative.
Hence, this paraphrasing tool is not suitable for this
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+ cluster 1 + cluster 2 + cluster 3 + cluster 4 + cluster 5

DA NO TXT NO TXT NO TXT NO TXT NO TXT

MEM + - + - + - + - + - + - + - + - + - + -

1 27.1 27.1 20.9 20.8 16.5 15.6 14.3 9.7 22.8 22.9 17.7 16.3 19.3 20.8 13.1 15.2 17.6 19.0 13.3 13.5
2 26.0 27.0 22.2 20.1 25.2 24.9 18.7 17.2 19.3 17.2 16.0 15.3 23.3 23.0 18.3 15.2
3 32.4 31.3 28.1 24.1 24.2 23.8 17.9 18.4 25.1 24.2 18.1 19.1
4 25.3 23.7 17.5 20.9 18.5 18.9 13.5 12.2
5 27.1 25.6 19.9 19.0

all 27.1 27.1 20.9 20.8 21.0 20.4 18.5 14.3 29.7 29.1 24.8 22.0 23.4 23.5 17.2 18.1 24.9 24.3 18.6 18.4

Table 4: CIDEr results on the validation set for NO and TXT augmentation with (+) and without (-) episodic memory
replay. We mark in bold the cases in which episodic memory contributes to an improvement, and in red the cases in
which it does not.

Figure 4: CIDEr results on the validation set for each task training with 10%, 20%, 50%, and 100% of the data.

particular task. In the future, we plan to compare
more paraphrasing tools for DA on IC tasks.

To confirm our qualitative observations in a quan-
titative manner, we carried out a small manual anal-
ysis. We randomly sampled 100 captions gener-
ated with the TXT models and compared them to
the gold captions. Our criterion was informative-
ness: we ranked each generated caption as non-
informative, partially informative, or very informa-
tive. We find that 46 of them are very or partially
informative, while for some of the rest, the lack of
informativeness comes from the fact that the image
quality is low (since seven of them contain severe
quality issues).

5.2 Ablation study: Training without episodic
memory replay

In order to investigate the effect of the sparse
episodic memory replay on the continual learn-
ing abilities of the model, we train models in the

same settings as in our core experiments, except for
the use of sparse episodic memory replay. Results
for these experiments are shown in Table 4. We
observe that, in general, there is an improvement
in performance in almost all cases, both in models
trained with NO DA and in models trained with TXT

DA. The only exception is the model after training
with cluster 4, which is significantly smaller than
the rest of the other clusters (approx. 1/3 the size of
the next smaller cluster). This shows that, while the
episodic memory module positively influences per-
formance when at least 1000 samples are present,
it is not as effective with very few samples.

5.3 Ablation study: Training with parts of the
dataset

In an interactive setup, we cannot assume large
amounts of annotated data provided by the user,
hence we evaluate our models after training on
only 10%, 20%, and 50% of the data of each clus-
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ter. Training data points for each cluster are cho-
sen randomly - for this reason, we present average
scores over 3 trainings with the same settings. Our
training takes place without memory since in most
cases, the amount of data is too small for the mem-
ory to be activated. The results for models trained
on reduced amounts of data for each cluster are
shown in Figure 4.

It seems that TXT DA does not improve results
even in a low-resource scenario - the curves for NO

and TXT DA are similar for the larger clusters (1,
3, 5). For task 2, a slight improvement in perfor-
mance can be observed when training with 50%
of the data. This, in turn, leads to an additional
observation, namely the fact that almost all our NO

DA models deter when trained with half of the data
of each cluster. This might be attributed to the data
distribution of the clusters with which we trained.

6 Conclusion

We have presented a pipeline for interactive IC,
which combines simple methods for incremental
model improvement. This framework allows in-
cremental adaptation of a pre-trained IC model to
new data that is entered by users. The user input
is transformed into a larger data batch using var-
ious data augmentation methods (for image, text,
and both modalities). We additionally adapted a
continual learning method for IC, which prevents
catastrophic forgetting after repeated updates. In or-
der to simulate incremental user input, we split the
relatively small, domain-specific VizWiz dataset
into non-overlapping clusters based on nouns men-
tioned in the image captions. VizWiz is a good
test bed for our pipeline, as it contains real-world
images with varying quality.

We analyzed the effectiveness of DA in our ex-
periments, and we noticed a lower performance of
our models when trained with augmented data. The
drop in performance resulting from the application
of DA methods was evident in our low-resource
experiments as well. We concluded that, especially
for IC, IMG DA must be applied carefully. The
same applies to TXT DA: since brevity is penalized
in this task, the DA outputs should be of similar
length and descriptiveness as the gold captions. We
confirmed that sparse memory replay does enable
the models to retain knowledge learned from previ-
ous datasets while adapting to new data.

In the future, we plan to experiment with more
elaborate joint DA methods for IC. Apart from

evaluating the approach with respect to model per-
formance using automated performance metrics,
we intend to evaluate its usefulness and usability
for end-users in a human study. Since prompting
using large models is a popular paradigm recently,
we intend to experiment with models like CLIP
(Radford et al., 2021) as well, additionally assess-
ing the trade-off between initial training cost and
adaptation cost. Last but not least, applying ac-
tive learning methods to select the best sample(s)
for the episodic memory module can potentially
increase the effectiveness of the continual learning
method used in our pipeline.

Limitations

Despite the promising results of our IML pipeline
for image captioning, our work has some limita-
tions. Firstly, the experiments were conducted on a
domain-specific dataset, VizWiz, and may not gen-
eralize to other datasets or domains. Secondly, our
approach may not be suitable for scenarios where
user feedback is sparse or unreliable, as the effec-
tiveness of IML heavily depends on the quality
and quantity of the feedback. Thirdly, our use of
episodic memory to retain knowledge from previ-
ously seen clusters may not scale well to smaller
datasets and other methods may be required. Lastly,
our approach does not address the challenge of bias
in the data, which can lead to biased models.

Ethical Statement

As of now, we do not see ethical concerns with the
study presented in this paper. We used a dataset
that is publicly available. The study is currently
not applied to human subjects with personal data;
in this case, the use of user feedback in the train-
ing process could potentially introduce biases if
the feedback is not diverse or representative of
the population. Lastly, our approach may be used
to develop image captioning models that generate
harmful or inappropriate content, such as captions
that perpetuate harmful stereotypes or stigmatize
certain groups of people.
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A Example NPs for VizWiz clustering

We include example nominal phrases (NPs) from
our VizWiz clustering. We follow the procedure
described in the main body of the paper. For each
cluster, we include 20 NPs. While there is no per-
fect separation in object categories, we do notice
certain semantic similarities between the NPs in
most clusters:

B Results for BLEU-4, METEOR,
ROUGE, SPICE metrics

In the main paper, we only include CIDEr scores
for our main experiments. Here we present results
in four additional metrics: BLEU-4 (Table 6), ME-
TEOR (Table 7), ROUGE-L (Table 8), and SPICE
(Table 9). The tables can be found on the next page.

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

gift card ac kitchen counter top ingredients dark surface
button labrador top portion small packet glass cup

camera lens quaker small dog crock pot light fixture
nutrition information stouffer bottom large bottle wooden countertop

apple dr left side nutritional beige carpet
video games packet small kitchen appliance black

electrical outlet screenshot eye drops ingredients label lamp
tv screen sainsbury math problems lotion bottle wire
cable box barcode paper money milk chocolate concrete floor

computer tower coke led liter bottle interior
tv nokia person ’s knee dark chocolate plastic container

cd case samsung ’s chicken medicine bottle marble counter
silver device tan brand name frozen dinner box glass container

keys unopened side view dinner table shorts
image quality container/ box / bottle counter top water bottle styrofoam

design sprite sunny day small jar couch cushion
entertainment center the/this remote control spice plastic wrapping

book page roni body coffee pod glass door
background k-cup room area brownie mix clear plastic bag

laptop monitor upc left side ice cream flat horizontal surface

Table 5: First 20 NPs for each cluster from the VizWiz Dataset
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+ cluster 1 + cluster 2 + cluster 3 + cluster 4 + cluster 5

DA NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH

eval on 1 14.4 6.0 11.1 12.4 9.1 2.6 8.7 4.6 11.6 2.8 9.2 6.3 10.5 2.6 7.5 4.5 7.6 2.9 6.0 6.1
eval on 2 16.9 7.4 15.1 13.7 17.8 5.6 15.9 10.6 16.6 5.7 12.5 9.7 16.2 4.8 12.5 13.6
eval on 3 16.0 4.9 13.8 11.3 13.7 3.5 10.5 6.4 13.8 3.8 10.8 10.6
eval on 4 16.9 4.6 13.5 9.1 12.4 3.3 9.8 8.4
eval on 5 15.1 4.4 11.3 12.1

micro avg 14.4 6.0 11.1 12.4 10.4 3.5 9.8 6.3 14.0 4.0 11.8 8.9 12.5 3.4 9.4 6.0 12.4 3.8 9.6 9.9

Table 6: BLEU-4 results on our experiments on VizWiz data clustered according to the procedure described in our
main paper. We start with the model resulting from the supervised pre-training step on MS COCO and continue to
train this model incrementally on the VizWiz clusters (+cluster ...). We include the amount of (original) training
data in brackets. DA: Data augmentation, NO: no DA, IMG: image DA, TXT: text DA, BOTH: image and text DA.
The numbers in the left column stand for clusters evaluated on. ’all’ refers to the micro average score.

+ cluster 1 + cluster 2 + cluster 3 + cluster 4 + cluster 5

DA NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH

eval on 1 13.5 9.3 12.4 12.9 10.8 6.7 10.5 7.8 12.4 6.8 10.7 8.8 11.2 6.5 9.7 7.7 10.8 7.3 9.4 9.3
eval on 2 15.8 10.3 15.0 13.7 16.0 9.3 14.6 11.9 14.8 9.4 13.3 11.2 15.8 8.9 13.7 13.8
eval on 3 15.2 8.6 13.7 12.0 13.9 7.7 12.0 9.4 14.1 8.5 12.2 11.9
eval on 4 15.1 9.0 13.0 11.5 13.8 8.0 12.0 11.4
eval on 5 15.4 9.3 13.3 13.0

micro avg 13.5 9.3 12.4 12.9 11.6 7.3 11.2 8.7 13.9 7.8 12.3 10.5 12.8 7.3 11.0 8.8 13.6 8.4 11.7 11.5

Table 7: METEOR results, as above.

+ cluster 1 + cluster 2 + cluster 3 + cluster 4 + cluster 5

DA NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH

eval on 1 34.0 26.0 31.0 31.5 28.3 21.0 28.8 23.1 31.3 22.2 29.0 26.9 30.8 21.6 26.9 24.8 29.9 23.6 27.0 28.4
eval on 2 39.0 30.8 39.1 36.1 42.4 29.3 39.5 34.9 39.7 29.7 35.8 33.6 42.3 29.8 37.2 39.9
eval on 3 39.8 27.2 37.2 34.3 37.4 25.6 33.2 29.8 38.7 27.8 34.5 35.3
eval on 4 38.0 27.1 34.4 32.2 36.4 26.8 34.0 33.7
eval on 5 40.7 29.3 35.7 37.5

micro avg 34.0 26.0 31.0 31.5 30.1 22.6 30.5 25.3 35.9 25.0 33.5 30.8 34.5 24.1 30.5 27.8 36.7 27.0 32.6 34.1

Table 8: ROUGE-L results, as above.

+ cluster 1 + cluster 2 + cluster 3 + cluster 4 + cluster 5

DA NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH NO IMG TXT BOTH

eval on 1 7.5 5.3 7.2 7.2 5.0 1.7 5.0 2.1 6.2 1.5 5.1 3.1 5.0 1.5 4.6 1.8 4.6 1.5 4.0 3.3
eval on 2 9.6 3.8 8.8 6.6 8.8 2.5 8.2 5.1 7.9 3.2 7.4 4.5 8.6 2.2 7.6 6.6
eval on 3 8.3 2.4 7.3 5.6 6.8 1.7 5.7 2.7 7.0 1.9 5.8 4.8
eval on 4 8.0 2.9 7.1 4.5 7.0 1.7 6.1 5.3
eval on 5 8.5 2.6 7.5 6.2

micro avg 7.5 5.3 7.2 7.2 5.8 2.0 5.6 2.9 7.3 1.9 6.3 4.3 6.1 1.8 5.4 2.5 6.8 2.0 5.9 4.9

Table 9: SPICE results, as above.
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