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Abstract

It is well known that filtering low-quality data
before pretraining language models or selecting
suitable data from domains similar to down-
stream task datasets generally leads to im-
proved downstream performance. However,
the extent to which the quality of a corpus,
in particular its complexity, affects its down-
stream performance remains less explored. In
this work, we address the problem of creating
a suitable pretraining corpus given a fixed cor-
pus budget. Using metrics of text complexity
we propose a simple yet effective approach for
constructing a corpus with rich lexical varia-
tion. Our extensive set of empirical analyses
reveal that such a diverse and complex corpus
yields significant improvements over baselines
consisting of less diverse and less complex cor-
pora when evaluated in the context of general
language understanding tasks.

1 Introduction

The recent trend in training language models (LM)
has been to use increasingly larger text corpora
(Khandelwal et al., 2019; Kaplan et al., 2020;
Borgeaud et al., 2021). While this approach gen-
erally does improve downstream performance, it
comes at a substantial computational cost. An-
other line of research has found that increasing the
pretraining data does not always improve the per-
formance on downstream tasks (Martin et al., 2019;
Dai et al., 2019; Shin et al., 2022). In response,
numerous studies have explored approaches such
as utilizing pretraining corpora that are domain
specific or using data filtering to reduce the size
of the pretraining corpus, while improving down-
stream task performance (Beltagy et al., 2019; Lee
et al., 2020; Grave et al., 2018; Raffel et al., 2019;
Brown et al., 2020). The shortcoming of these
methods is that the pretrained LM may be very
specific to the selected tasks, and therefore, show
limited generalizability to other downstream tasks,

or require heuristic filtering techniques. In this re-
search, we explore a complementary approach and
investigate whether improving the complexity of
the pretraining corpus can yield improved model
performance. The implication is that rather than
arbitrarily increasing the size of a corpus as is done
today, increasing its complexity might yield higher
performance but at a lower computational cost.

Intuitively it is easy to compare a children’s book
with a college textbook and state that the latter is
more complex. Unfortunately, providing a general
formal definition is fraught because books of dif-
ferent genres are complex in different ways (e.g.,
post-modern novel vs. biography). However, at-
tempts have been made to characterize text com-
plexity using reasonable measures such as vocabu-
lary size, syntactic complexity, and semantic rich-
ness (Jensen, 2009). In this paper we use metrics
that derive from these linguistic measures includ-
ing types, type-token ratio, entropy, and Flesch
reading-ease to estimate corpus complexity.

First we construct five distinct corpora of equal
size but varying complexity to pretrain LMs. The re-
sulting models are then fine-tuned and evaluated on
downstream tasks from the GLUE benchmark. Our
results suggest that a corpus containing a breadth
of complexity from easy to hard but one that is
skewed towards hard makes an effective corpus as
evaluated in general language understanding tasks.

The key contributions of our paper are as follows:
(i) We propose a simple approach for constructing
a lexically rich and complex corpus for pretraining
of language models; (ii) We conduct an extensive
set of experiments by pretraining several language
models from scratch on corpora of differing com-
plexity, and then evaluating these models on a di-
verse set of downstream tasks; (iii) We analyze our
results to estimate the correlation between the com-
plexity of a corpus, its similarity to downstream
data, and its performance on various downstream
tasks.
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2 Related Work

Below, we briefly review two broadly related
threads of research.

Data selection. Ruder and Plank (2017) pro-
posed several similarity and diversity measures for
assessing the suitability of data for transfer learning.
Dai et al. (2019) studied the problem of selecting
appropriate corpus for pretraining in the context
of Named Entity Recognition (NER) downstream
tasks, and found that language models pretrained
on source text similar to the target task outperform
the ones pretrained on other sources (with one ex-
ception). Gururangan et al. (2020) compared the
vocabulary overlap between pretraining sources
and target domain corpora, and found that the pre-
trained model performs slightly better when target
domain is less distant than source domain, but not
in all the cases. Lange et al. (2021) studied the
selection of source data for transfer learning.

Selecting data from similar domains as down-
stream tasks for pretraining of domain-specific
language models has generally been shown to be
beneficial, e.g., SciBERT (Beltagy et al., 2019),
BioBERT (Lee et al., 2020). However, prior work
has also observed that this trend does not always
hold true (Martin et al., 2019; Shin et al., 2022).
Dai et al. (2020) found that models pretrained on
forums corpus (0.6B tokens) outperformed those
trained on tweets corpus (0.9B tokens) on both
forums- and tweets-related downstream tasks, as
well as a significantly larger generic BERT model
(3.3B tokens), highlighting the importance of do-
main similarity of corpus over its size.

Data engineering. A complementary line of
research suggests that engineering the corpus be-
fore pretraining through reordering (Agrawal et al.,
2021; Nagatsuka et al., 2021; Li et al., 2021; Wang
et al., 2023), preprocessing (Babanejad et al., 2023),
and filtering (Grave et al., 2018; Raffel et al., 2019;
Brown et al., 2020; Rae et al., 2021; Kreutzer et al.,
2022) can potentially enhance both the overall per-
formance and efficiency of language models.

Diverging from previous studies, our research fo-
cuses on examining the influence of the complexity
of a pretraining corpus on downstream tasks related
to general language understanding. To accomplish
this, we introduce a straightforward methodology
for constructing a corpus that embodies richness
and complexity.

3 Method

Let C be an unlabeled pretraining corpus of |C| to-
tal tokens, consisting of a vocabulary set VC , i.e.,
the unique tokens or types in C. Similarly, let D be
a labeled downstream dataset with total number of
tokens |D| and a vocabulary set VD. Given a fixed
corpus budget (e.g., number of tokens), we first
aim to construct distinct corpora of various com-
plexity. Then, the goal is to measure the similarity
between these corpora and downstream datasets,
and estimate the correlation between complexity,
similarity, and performance.

We present some metrics for assessing the com-
plexity of a corpus and for computing the similarity
between two collections of text – the pretraining
corpus and the downstream datasets in subsections
3.1 and 3.2, before describing the procedure for cre-
ating corpora of varying complexity in subsection
3.3.

3.1 Corpus Complexity

We consider three metrics for estimating the com-
plexity of a text corpus.

Types. This is the number of types or unique tokens
in a corpus (i.e., its vocabulary).

Type-Token Ratio (TTR). Lexical complexity can
also be indexed via TTR – the higher the ratio, the
greater the lexical diversity in the sample (Johnson,
1944). Although TTR is often sensitive to length
of the texts, for analyzing corpora of comparable
sizes, it can serve as a useful metric (Johansson,
2008), and is computed as TTR(C) = |VC |

|C| .

Entropy. Broadly speaking, entropy is a mea-
sure of randomness or disorder (Shannon, 1948;
Fano, 1961), and the greater the number of differ-
ent words in a text, the higher its entropy, or, con-
ceptually, its complexity. We calculate the unigram
entropy of C as follows:

H(C) = −
|VC |∑

i=1

p(wi) log2 p(wi)

where p(wi) is the probability of type wi in C.

3.2 Text Similarity

We adopt two well-defined measures to estimate
the similarity between two pieces of text, such as
the pretraining corpus C and a downstream dataset
D.
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Vocabulary Overlap Ratio (VOR). This computes
the percentage of word types that appear in both
the texts (VC and VD) where a higher ratio indicates
higher similarity, and is calculated as:

V OR(C,D) =
|VC ∩ VD|

|VD|
.

Jensen-Shannon divergence (JSD). This metric
measures the distance between two texts (Lin,
1991), and D(JS) is defined as:

D(JS)(P ||Q) = α1D
(KL)(P ||M)

+ α2D
(KL)(Q||M)

where M = α1P+α2Q, and P and Q are the prob-
ability distributions of two texts (e.g., a pretraining
corpus C and a downstream dataset D, in our case).
The values of α1 and α2 are set as 0.5 each. D(KL)

is Kullback-Leibler divergence, a measure for com-
paring the differences in two texts, and is defined
as, D(KL)(P ||Q) =

∑
i pi log

pi
qi

.

3.3 Constructing Corpora with Varying
Complexity

The complexity of a corpus can be summarized by
using metrics like number of types, type-token ra-
tio, and entropy (section 3.1). However, in order to
create a corpus according to varying complexity we
need a more fine-grained metric that can compute
complexity at document (or even paragraph) level.
One such metric is the Flesch reading ease (FRE)
score, commonly used to assess the difficulty of a
piece of text (Flesch, 1948).

For a document di ∈ C, its FRE score is com-
puted as:

FRE(di) = 206.835−1.015

(
#w

#s

)
−84.6

(
#l

#w

)

where #w, #s, and #l denote the number of
words, sentences, and syllables in di, respectively.
The word and sentence length serve as proxies for
semantic and syntactic complexity, respectively.
Note that texts with high FRE scores tend to display
lower complexity (e.g., children’s books), while an
editorial in the New York Times which has a much
greater complexity, shows lower FRE scores. Thus,
our approach for creating a more complex corpus is
to combine pieces (paragraphs or documents) from
existing corpora based on their FRE score.

Our method starts by adopting two text corpora
widely used for pretraining of language models:

Figure 1: FRE distribution of the corpora. Lower FRE
indicates higher complexity. wikibooks spans the
full spectrum of complexity, consisting of both low and
high complexity, but mostly skewed towards the latter.

wiki-103, a subset of English Wikipedia (Merity
et al., 2016) and BookCorpus, a large collection of
books (Zhu et al., 2015). From these, we construct
the following five corpora:

• wiki: This is the original wiki-103 corpus
consisting of around 100 million tokens.

• books-small, books-easy,
books-hard: Next, we create a
comparably-sized corpus of ∼100M to-
kens, called books-small, by randomly
sampling books from BookCorpus. Then, for
each book in BookCorpus, we compute its
FRE score and create two relevant baselines:
books-easy by combining books of lowest
complexity (i.e., the highest FRE scores), and
conversely, books-hard by using books
with the highest complexity (i.e., the lowest
FRE scores).

• wikibooks: Finally, we hypothesize that a
complex and diverse corpus contains a blend
of texts with different levels of complexity,
albeit with a focus on more complex ones. We
speculate that this composition would allow
it to capture the nuanced linguistic aspects
present in a wide range of texts. To create
such a corpus, which we call wikibooks,
we first sample some articles from wiki-103
and books from BookCorpus of varying com-
plexity (i.e., FRE scores ranging from high
to low), and then use up the remaining cor-
pus quota by sampling texts of mostly high
complexity (low FRE scores).

Figure 1 plots the FRE distribution of each of
the five corpora. As we can see, books-easy,
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Corpus Tokens Types TTR (%) Entropy

wiki 104M 267K 0.26 7.375
books-easy 120M 258K 0.22 6.294
books-hard 111M 417K 0.38 6.826
books-small 116M 346K 0.29 6.483
wikibooks 109M 436K 0.40 7.179

Table 1: Characteristics of different pretraining corpora.

books-hard, and books-small span a nar-
row range of complexity all skewing towards less
complex; wiki has moderate to high complex-
ity; and wikibooks is the only one to show the
broadest range of complexity, with most of the
mass concentrated in the highest complexity range,
but also some in the lowest complexity range.

3.4 Downstream Datasets and
Implementation

We use eight datasets from the General Language
Understanding Evaluation (GLUE) benchmark in
our experiments, which includes CoLA, MNLI,
MRPC, QNLI, QQP, RTE, SST-2 and STS-B
(Wang et al., 2018).

Text tokenization is done using NLTK1, and
FRE scores are computed using Readability pack-
age2. Using the different corpora, we pretrain from
scratch different versions of BERT-base model3

(Devlin et al., 2019). The training continues for
at most 30K steps. Checkpoints saved after 10K,
20K, and 30K steps are then fine-tuned over the
downstream datasets for two epochs each.

4 Discussion

Our work investigates: (i) whether document-level
metric such as FRE can be used to construct cor-
pora of varying complexity, (ii) whether corpora of
higher complexity lead to improvements in down-
stream performance, (iii) whether a complex cor-
pus is more similar to downstream data, and (iv)
the correlation between complexity, similarity, and
performance.

1We use NLTK tokenizer: https://www.nltk.org/
api/nltk.tokenize.html.

2We use Readability package: https://pypi.org/
project/readability/ To account for the length-
based differences in Wikipedia articles and Books, we ran-
domly but sequentially select a subset of 1000 sentences for
each book when computing its FRE.

3We use the uncased version, with 12 transformer layers,
batch size set to 8, maximum length of the input sequence set
to 512, and all other settings set as default. All pretraining and
fine-tuning experiments are performed using HuggingFace
library (Wolf et al., 2019).

Figure 2: Comparison of (unweighted) average GLUE
score, across five different pretraining corpora under
varying number of training steps (10K, 20K, 30K).

Whether FRE can help create suitably complex
corpus. Table 1 summarizes the details of the five
distinct corpora, where we find that wikibooks,
which contains a mix of low and high complex-
ity text, has the highest number of types and TTR,
and second highest entropy. This demonstrates the
effectiveness of using a computationally simple
metric such as FRE in creating corpora of a wide
range of complexity. Moreover, we also notice that
there is no corpus in our sample with a unigram
entropy of less than six bits/word, which is in line
with information-theoretic models of communica-
tion (Bentz et al., 2017).

Analyzing corpus complexity and downstream
performance. Figure 2 plots the average scores
across eight downstream tasks obtained using mod-
els pretrained with the five different corpora un-
der varying number of training steps. Three out
of five corpora yield increasingly better results as
the training progresses, except books-easy and
books-small which show the opposite trend.
On the one hand, this suggests that simply training
for longer time does not always guarantee a mono-
tonically increasing performance score. On the
other hand, this also indicates that pretraining on
fairly less complex corpora (cf. Fig. 1) is generally
less effective.

In connecting the results of Figure 2 with com-
plexity metrics reported in Table 1, we observe
that wikibooks, a corpus with a comparatively
higher degree of complexity characterized by a
larger number of word types and a higher TTR,
consistently outperforms all other corpora across
the three model checkpoints. On the opposite end is
the poorest performing corpus books-easy with
the fewest types, lowest TTR, and lowest entropy.

Analyzing similarity between pretraining corpus
and downstream datasets. Now, we assess the
similarity between these corpora and downstream
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(a) Similarity (VOR) between pretraining corpus and down-
stream dataset (darker shades indicate higher similarity)

(b) Correlation between similarity (VOR) and performance (pos-
itive correlation is better)

Figure 3: (top) Similarity (VOR) between pretraining
corpora and downstream datasets (train). (bottom) Pear-
son’s correlation analysis (similarity and performance).

datasets to examine whether a more complex cor-
pus provides greater alignment with the down-
stream data. Figure 3a shows that wikibooks
is more similar to all the downstream datasets in
comparison to the other corpora, aligning with the
intuition that a corpus with richer vocabulary subse-
quently has increased similarity with downstream
data. As a further analysis, Figure 3b shows a mod-
erate to high correlation between the similarity of
the corpus to downstream datasets and the corre-
sponding performance across most datasets, which
strengthens as training progress. Similar trends
hold for JSD (included in Appendix A). These find-
ings indicate that pretraining using a corpus that
is similar to the downstream datasets is generally
beneficial, and VOR provides a computationally
simple way of estimating this similarity.

Analyzing complexity, similarity, and perfor-
mance. Figure 4 presents Kendall’s Tau correlation
analysis for all three factors: complexity, similar-
ity, and performance. In looking at the last row in
particular (i.e., performance of the ‘30K’ model)
we observe that performance is strongly correlated
with VOR, which in turn is strongly correlated with

Figure 4: Kendall’s Tau analysis comparing perfor-
mance, complexity, and similarity. Darker shades indi-
cate better correlation except for JSD, where a lighter
shade (negative correlation) is desirable.

metrics of complexity (types, TTR, and entropy).
Taken together, these results suggest that a more
complex corpus leads to better downstream evalua-
tion performance.

5 Conclusions

We investigate whether pretraining on a corpus with
higher complexity subsequently yields improved
performance in downstream evaluations. Within
this study, we construct corpora of diverse complex-
ities by using straightforward metrics like Flesch
reading ease, and estimate corpus-level complex-
ity using metrics such as unique word types, type-
token ratio, or unigram entropy. The results of
our extensive empirical analysis, which involves
training language models from scratch using five
distinct corpora of varying text complexity and eval-
uating their performance across eight downstream
tasks, suggest a strong correlation between cor-
pus complexity, its similarity to downstream data,
and the resulting performance on these tasks. One
interesting direction for future research involves
exploring the findings of this study in the context
of generative language models.

Limitations

One limitation of our study is that, due to computa-
tional constraints, we use what are now considered
as relatively “small-sized” models and corpora, ex-
clusively focusing on the English language and
generic domains such as Wikipedia articles and
books. The generalizability of our findings to larger
corpora, other languages, or specific domains such
as medical texts warrants further investigation.
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A Similarity Analysis

Figure 5 presents the results of similarity analysis
and Pearson’s correlation analysis using Jensen-
Shannon divergence.

(a) JSD (lighter shades indicate higher similarity)

(b) JSD (negative correlation is better)

Figure 5: (top) Similarity between pretraining corpora
and downstream datasets (train set) using JSD. The last
column ‘average’ presents the average results of all
the datasets. (bottom) Pearson’s correlation analysis
between JSD and performance at 10K, 20K, and 30K
step checkpoints.
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