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Abstract
The information retrieval community has made
significant progress in improving the efficiency
of Dual Encoder (DE) dense passage retrieval
systems, making them suitable for latency-
sensitive settings. However, many proposed
procedures are often too complex or resource-
intensive, which makes it difficult for practi-
tioners to adopt them or identify sources of
empirical gains. Therefore, in this work, we
propose a trivially simple recipe to serve as a
baseline method for boosting the efficiency of
DE retrievers leveraging an asymmetric archi-
tecture. Our results demonstrate that even a
2-layer, BERT-based query encoder can still
retain 92.5% of the full DE performance on the
BEIR benchmark via unsupervised distillation
and proper student initialization. We hope
that our findings will encourage the community
to re-evaluate the trade-offs between method
complexity and performance improvements.

1 Introduction

Recent advances in neural-based NLP techniques
have led to powerful neural encoders that can gen-
erate high-quality, semantic-rich, dense vector text
representations (Reimers and Gurevych, 2019; Cer
et al., 2018; Conneau et al., 2018; Schick et al.,
2023), making it possible to calculate the text rele-
vancy with simple vector operations like dot prod-
uct. Thus, the Dual Encoder (DE) neural Informa-
tion Retrieval (IR) architectures, combined with
optimized semantic search implementations (An-
doni et al., 2018; Johnson et al., 2019; Boytsov and
Nyberg, 2020), have achieved comparable or even
superior performances to their Cross Encoder (CE)
based predecessors (Thakur et al., 2021; Menon
et al., 2022; Ni et al., 2022; Yu et al., 2022) while
being significantly more efficient (Reimers and
Gurevych, 2019).

Despite the numerous proposed efficiency en-
hancements for making DE-based IR models suit-
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able for production settings, they may pose chal-
lenges for practitioners with limited resources in
terms of adoption and replication (Hooker, 2020).
However, by leveraging two key facts, we can sim-
plify model development while achieving higher ef-
ficiency. Firstly, documents, in contrast to queries,
are typically longer and more complex, necessitat-
ing specialized architectures (Zhang et al., 2019;
Dai et al., 2019; Beltagy et al., 2020; Zaheer et al.,
2020). Secondly, document embeddings remain
mostly static after indexing, allowing for a high-
quality and computationally expensive document
encoder without online overhead. Based on these
insights, we propose an asymmetric IR architecture
that pairs a lightweight query encoder with a robust
document encoder.

In this study, we present a minimalistic base-
line approach for constructing the aforementioned
asymmetric retriever using any existing query en-
coder. As depicted in Figure 1, by employing suit-
able initialization and simply minimizing the Eu-
clidean distance between student and teacher query
embeddings, even a 2-layer BERT-based query en-
coder (Devlin et al., 2018) can retain 92.5% of
the full DE performance on the BEIR benchmark
(Thakur et al., 2021). Similarly, the 4-layer en-
coder preserves 96.2% of the full performance,
which aligns with the supervised outcome (96.6%)
achieved by a 6-layer encoder (Kim et al., 2023).
We hope that these findings will motivate the re-
search community to reassess the trade-offs be-
tween method complexity and performance en-
hancements. Our code is publicly available in our
GitHub repository.

2 The Trivially Simple Distillation Recipe

2.1 Student Initialization

The initialization of student model weights is fre-
quently not given enough attention in the knowl-
edge distillation literature for IR. We find that a
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Figure 1: The dual encoder retriever performance with distilled query encoders of a varying number of layers. The
student models are initialized by extracting subsets of the teacher model (msmarco-bert-base-dot-v5) layers.
Variances in performances come from different layer subsets chosen, discussed in section 4.

"well-prepared" student model can considerably
alleviate distillation challenges. In this study, we
investigate two classes of initialization approaches.

Extract a Subset of Teacher Layers In this ini-
tialization method, we establish the student model
by taking a subset of the teacher model’s trans-
former layers while keeping the embedding and
pooling layers. By inheriting some of the teacher
model’s structural properties and knowledge, the
student model is intuitively better prepared for effi-
cient distillation in comparison to a randomly ini-
tialized student model. We conduct experiments
using various combinations of teacher model lay-
ers to assess their impact on both performance and
efficiency. Details would be discussed in subsec-
tion 3.2, section 4, and subsection A.1.

Adopt Other Pretrained Models We also ex-
plore initializing the student model from other effi-
cient pretrained models. Simultaneously, we inves-
tigate the influence of multiple factors, e.g., fine-
tuning tasks and distance functions, on achieving a
"well-prepared" initialization for the student model.
We take DistilBERT (Sanh et al., 2019) as our stu-
dent model candidate and experiment with different
DistilBERT models fine-tuned on diverse tasks. Ex-
amples include the distilbert-base-uncased
model and DistilBERT models fine-tuned on the
MS MARCO dataset (Bajaj et al., 2018) with dis-
tinct objectives from sentence-transformers on
HuggingFace (Wolf et al., 2019). This approach
enables us to evaluate the efficacy of using alterna-
tive pretrained models as starting points for student
model initialization. Student model cards are listed
in subsection A.2.

2.2 Embedding Alignment

DE-based IR systems often use vector similarity for
searching (Andoni et al., 2018), making it logical
to match student and teacher embedding spaces.

Contextualized Embedding Pooling Strategies
BERT-based encoders produce contextualized rep-
resentations for all tokens from the input text. Com-
mon ways to aggregate token embeddings are se-
lecting [CLS] embedding, computing mean values
across all token embeddings, concatenating mul-
tiple pooled embeddings together, etc. We stick
with the average pooling strategy for all presented
experiment results in this paper, as in Reimers and
Gurevych (2019).

Alignment Objective Let Encsθ(·) denote the stu-
dent query encoder parameterized by θ and Enct(·)
denote the teacher query encoder, we minimize the
expected Euclidean distance between the student
and teacher embeddings,

L(θ) = Eq∼Dq

[
∥Encsθ(q)− Enct(q)∥2

]

Thus, θ is found by minimizing the empirical loss,

θ = argmin
θ

1

|Q|
∑

qi∈Q
∥Encsθ(qi)− Enct(qi)∥2

where Q denotes a set of queries sampled from the
distillation domain. In our experiment, we set Q
to be the queries of the IR datasets used by teacher
query encoders. This simple optimization objec-
tive yields surprisingly performant student models
when paired with proper initialization.
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3 Experiments

3.1 Evaluation Datasets and Metrics

Retrieval Performance For in-domain evalua-
tion, we keep the dataset consistent with our teacher
models’ training corpus MS MARCO (Bajaj et al.,
2018). As for the out-of-domain (zero-shot) evalu-
ation, we use the BEIR benchmark (Thakur et al.,
2021) to evaluate our distillation method. It is a di-
verse collection of seven categories1 of IR-related
tasks. We report normalized Discounted Cumula-
tive Gain (nDCG@10) as the performance metric
and average the relative performance drops to com-
pare the distillation results.

Inference Efficiency We evaluate the efficiency
of our distilled query encoder by measuring the
wall-clock time required to process queries from
the NQ dataset (Kwiatkowski et al., 2019). We
simulate various scenarios, ranging from nearly on-
line settings to batched processing, by selecting
batch sizes of 4, 8, 16, 32, and 64. For each batch
size, we record the elapsed time to process approxi-
mately 4× 103 queries on a single Nvidia Tesla T4
GPU, repeating the process three times and taking
the median time to calculate the number of queries
processed per second as the evaluation result.

3.2 Teacher and Student Models

The Teacher Model In this work, we use a
siamese DE model msmarco-bert-base-dot-v5
hosted on the HuggingFace hub for its competitive
performance (Figure 3). The model was fine-tuned
on MS MARCO using the dot score as the rel-
evancy measurement and Margin Mean Squared
Error (MarginMSE) as the objective function.

Extractive Initialization We select a total of thir-
teen combinations, comprising five combinations
of 4-layer models, four combinations of 2-layer
models, and four combinations of 1-layer models.
The full combinations are listed in subsection A.1.

DistilBERT Initialization We explore six Dis-
tilBERT checkpoints. The students are initialized
from the full model without extracting subsets of
layers. Please refer to subsection A.2 for the Hug-
gingFace model cards. We discuss the potential
relationship between distillation performance and
model characteristics in section 4.

1The original publication presents nine categories, but the
news and tweet retrieval datasets are not publicly available.

3.3 Implementation Details

We use the first 80% of over eight million queries
from the MS MARCO training set as our training
data and the rest 20% for validation. We train
the student models using the AdamW optimizer
(Loshchilov and Hutter, 2017) for one epoch with
Mean Squared Error (MSE) loss, applying a batch
size of 128, a learning rate of 10−4 and 103 warm-
up steps.

4 Results and Discussions

Initializing from Subsets of Teacher Layers
Figure 1 illustrates the performance of the distilled
query encoders. We observe that different initial-
ization strategies can lead to up to 6% variability
in performance, even with the same number of
layers. However, we find that initializing the
students with the first and last few layers consis-
tently yields preferable results, which aligns with
previous findings (Fan et al., 2019; Sajjad et al.,
2020; Dong et al., 2022). For instance, consider-
ing the 1-layer student encoder (Figure 5), initial-
izing from the last layer yields the best outcomes
across all datasets except for ArguAna (Wachsmuth
et al., 2018) and Touché-2020 (Bondarenko et al.,
2021), preserving an average relative performance
of 86.1%. This observation applies similarly to
the 2-layer (retaining the first and last layers) and
4-layer (retaining the first and last two layers) stu-
dents, which exhibit performance preservation rates
of 92.5% and 96.2% respectively, aligning closely
with the performance of the supervised distilled
6-layer encoder at 96.6% (Kim et al., 2023).

Initializing from DistilBERTs The results in Ta-
ble 1 reveal the within-group performance compar-
ison. Since all student models undergo the same
embedding-alignment distillation process, the fi-
nal performance preservation rate can serve as
a proxy for the "well-preparedness" of students.
msmarco-dot performs the best. Its tuning config-
uration is the same as its teacher’s, i.e., the same
dataset, distance function, and objective function.
msmarco-tas-b, tuned with the balanced topic-
aware sampling technique (Hofstätter et al., 2021b),
closely follows. Such a variation poses a slightly
greater challenge in embedding alignment. On the
other side of the spectrum, changing a distance
measurement alone makes alignment drastically
harder, as shown from msmarco-cos. Interestingly,
using a different objective function (msmarco-base
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Fine-tune Dataset MS MARCO MS MARCO - MS MARCO NLI + STS MS MARCO
Fine-tune Objective MarginMSE MarginMSE - MultiNegRanking CosineSimilarity MarginMSE
Similarity Function Dot Dot - Cosine Cosine Cosine
Dataset (↓) Ckpt (→) msmarco-dot msmarco-tas-b base-uncased msmarco-base nli-stb msmarco-cos

MS MARCO (In-domain) .415 (- 6.58%) .412 (- 7.17%) .406 (- 8.60%) .389 (-12.40%) .389 (-12.39%) .346 (-22.04%)
TREC-COVID .689 (- 7.58%) .676 (- 9.30%) .634 (-14.86%) .575 (-22.78%) .573 (-23.03%) .512 (-31.31%)
NFCorpus .290 (- 7.84%) .297 (- 5.87%) .283 (-10.04%) .271 (-14.06%) .269 (-14.56%) .230 (-27.04%)
NQ .481 (- 7.94%) .480 (- 8.04%) .463 (-11.42%) .433 (-17.09%) .440 (-15.75%) .404 (-22.67%)
HotpotQA .441 (-25.06%) .421 (-28.38%) .394 (-33.06%) .352 (-40.12%) .348 (-40.87%) .287 (-51.15%)
FiQA-2018 .291 (- 9.84%) .289 (-10.61%) .282 (-12.81%) .269 (-16.59%) .271 (-16.15%) .232 (-28.18%)
ArguAna .426 ( 14.33%) .417 ( 12.12%) .392 ( 5.40%) .408 ( 9.68%) .368 (- 1.07%) .402 ( 8.09%)
Touché-2020 .232 (- 2.22%) .238 ( 0.59%) .245 ( 3.36%) .247 ( 4.22%) .244 ( 3.17%) .234 (- 1.43%)
SCIDOCS .121 (-17.02%) .119 (-18.93%) .110 (-25.10%) .099 (-32.29%) .100 (-31.29%) .086 (-41.18%)
CQADupStack .218 (-15.54%) .212 (-17.63%) .204 (-21.08%) .180 (-30.10%) .185 (-28.26%) .148 (-42.58%)
Quora .812 (- 3.59%) .809 (- 3.98%) .806 (- 4.31%) .799 (- 5.23%) .792 (- 6.04%) .751 (-10.88%)
FEVER .620 (-18.06%) .616 (-18.64%) .568 (-25.00%) .535 (-29.39%) .519 (-31.40%) .446 (-41.05%)
Climate-FEVER .182 (-19.77%) .175 (-22.64%) .163 (-28.12%) .156 (-30.89%) .150 (-33.70%) .145 (-35.77%)
SciFact .541 (-11.09%) .546 (-10.29%) .522 (-14.23%) .492 (-19.14%) .493 (-19.02%) .439 (-27.76%)
DBpedia-Entity .337 (-12.41%) .329 (-14.50%) .314 (-18.45%) .287 (-25.54%) .302 (-21.46%) .265 (-31.08%)
Avg. ∆ Performance -10.01% -10.88% -14.55% -18.78% -19.45% -27.07%

Table 1: The DistilBERT-based students’ nDCG@10 and percentage change compared to the teacher model across
BEIR evaluation datasets. The models are ordered (left to right) according to their average performance degradation.

and nli-stsb) appears to alleviate misalignment,
suggesting the potential interaction between objec-
tive and distance functions. Additionally, a clean,
pretrained-only student (base-uncased) performs
better when a perfect replication of the teacher’s
fine-tuning setting is not present. Notably, all
DistilBERT-based students perform worse than
the top-performing extractive students. The 2-
layer extractive student outperforms the 6-layer
msmarco-dot with a performance gap of 2.5%.

Where are the Well-prepared Students? Stu-
dent pretraining has been demonstrated to be cru-
cial for knowledge distillation in language under-
standing tasks (Turc et al., 2019). However, in our
asymmetric DE system, the student encoder op-
erates in conjunction with the document encoder
of the teacher system, deviating from the conven-
tional distillation procedure. In this case, the ef-
fectiveness of student models lies not in their
sheer capability but rather in their compatibil-
ity. Dong et al. (2022) employed t-SNE (van der
Maaten and Hinton, 2008) to visualize the embed-
ding spaces of DE encoders in the context of QA
tasks. They observed that the two encoders of an
asymmetric system tend to map questions and an-
swers onto distinct parameter spaces, even when
trained jointly. This observation elucidates the rea-
son why extractive initialization significantly re-
duces the difficulty of knowledge distillation in our
scenario. Furthermore, we extend these findings by
demonstrating that aligning the training objectives,
similarity measures, and fine-tuning datasets with
those of the teacher model can enhance embedding

space compatibility. Note that fine-tuning on simi-
lar tasks without aligning other elements, e.g., the
distance function, may undermine compatibility.
Our findings, in conjunction with the results from
Kim et al. (2023), suggest that supervision signals
play a crucial role in alignment while parameter-
sharing inherently addresses this issue.

Inference Efficiency Figure 2 shows that student
models initialized from a subset of teacher layers
have significantly improved inference speed com-
pared to the teacher model, even with small batch
sizes. Considering the marginal performance loss,
query encoder distillation provides substantial ben-
efits over the siamese DE encoder.

Figure 2: Inference speeds of the distilled query en-
coders compared to that of the full teacher model. The
improvements in inference efficiencies become more
drastic as batch size increases.

5 Related Work

Efficient Methods for DE-based IR Systems
Various techniques have been proposed to enhance
encoder performance in IR systems, including
knowledge distillation (Hofstätter et al., 2021a;
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Zeng et al., 2022; Lin et al., 2023b; Kim et al.,
2023), improved pretraining objectives (Lee et al.,
2019; Chang et al., 2020; Gao and Callan, 2021;
Izacard et al., 2021), data augmentation (Oguz
et al., 2021), better sampling techniques (Lin et al.,
2021; Zhang et al., 2021), ensembles (Hofstätter
et al., 2021b; Lin et al., 2023a; Ren et al., 2021).
However, most of these methods focus on siamese
architectures, as asymmetric DE pairs are prone to
representation collapse (Leonhardt et al., 2022) or
misalignment of embedding spaces (Dong et al.,
2022), making them challenging to train. Due to
the shared parameters between query and docu-
ment encoders, practitioners often need to constrain
model size for practicality in production settings,
despite the significance of larger models for better
retrieval and generalization performance (Ni et al.,
2022; Yu et al., 2022). Consequently, this con-
straint often leads to complex training procedures.
In contrast, our simple recipe adopts the train-large-
distill-small paradigm, offering a straightforward
and effective approach to model development and
can be adopted out of the box for existing systems.

Embedding Alignment for IR Concurrently,
Kim et al. (2023) propose incorporating embed-
ding alignment loss into the supervised distillation
pipeline. However, they initialized models from
other checkpoints without recognizing the impor-
tance of using teacher weights as initialization. Ad-
ditionally, Campos et al. (2023) suggest minimiz-
ing the KL divergence between student and teacher
embeddings in an unsupervised manner. Yet, to
the best of our knowledge, they do not explore
the impact of different layer subsets, whereas our
work demonstrates the significant variance caused
by such choices.

6 Conclusion

In this work, we leverage the characteristics of typ-
ical production DE-based IR systems to propose a
minimalistic baseline method for improving online
efficiency through embedding-alignment distilla-
tion. We explore the significance of student initial-
ization for asymmetric DEs and demonstrate that a
"well-prepared" student can achieve over five times
improvement in efficiency with only 7.5% average
performance degradation. We also observe that
"well-prepared" students generally have aligned
embedding spaces with their teachers, and a simple
approach to construct such students is by extracting
the first and last few layers from the teacher mod-

els. Our findings aim to enhance the accessibility of
neural IR systems and encourage the research com-
munity to reassess the trade-offs between method
complexity and performance improvements.

Limitations

Limited Experimental Scope Our study’s exper-
imental scope was limited to testing distilled stu-
dent models against a single teacher model. A more
comprehensive evaluation would involve multiple
teacher models of varying sizes, fine-tuning tasks,
and datasets. Additionally, in our experiment with
DistilBERT-based student models, incorporating
more checkpoints would enable a more thorough
comparison across different factors.

Unexplored Embedding Size Variations We
kept the embedding size (768) consistent across
student models to maintain variable consistency.
Future research could investigate student models
with different embedding sizes to determine if the
observed trends hold true across models of varying
widths.

Lack of Error Analysis A common distillation
limitation, as noted by Hooker et al. (2020), is the
considerable performance decline for certain data
subsets. In our study, we couldn’t conduct a thor-
ough error analysis due to the lack of appropriate
tools for comparing individual data points in re-
trieval tasks.

Ethics Statement

Although our method improves accessibility for
IR systems, it is essential to evaluate whether the
proposed approach might introduce biases or un-
fairness in the retrieval results. As our work lacks
extensive error analysis, we cannot entirely rule out
the possibility that distilled query encoders may
discard certain hard-to-process cases critical for en-
suring fairness across various query topics and user
groups. A comprehensive error analysis would be
beneficial in future research to identify and address
potential biases in the distilled query encoders, ulti-
mately fostering fair and unbiased retrieval results
for all users.
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A Technical Details

A.1 Layer-subtraction Schemes

The 4-layer models were initialized using the fol-
lowing schemes: [1,4,7,10], [0,1,10,11], [0,1,2,3],
[4,5,6,7], and [8,9,10,11]. The first two schemes
were inspired by the results from Fan et al. (2019),
which suggested that the input and output layers
are often more influential in embedding represen-
tations than the middle layers. The latter three
schemes were used to validate this intuition and
guide our selection schemes for 2-layer and 1-layer
initialization. Combinations of 2-layer include [0,
10], [0, 11], [1, 10], and [1, 11]. Layers extracted
to make 1-layer models are [0], [1], [10], and [11].

A.2 DistilBERT-based Student Checkpoints

The HuggingFace model cards of the DistilBERT
checkpoints adopted in the experiments are listed
below. Except for distilbert-base-uncased,
all other models have sentence-transformers/
prefix. The same order also maps to Table 1.

1. msmarco-distilbert-dot-v5
2. msmarco-distilbert-base-tas-b
3. distilbert-base-uncased
4. msmarco-distilbert-base-v3
5. distilbert-base-nli-stsb-mean-tokens
6. msmarco-distilbert-cos-v5

B Additional Results

B.1 Other Visualizations

Figure 3 shows the performances of various
teachers provided by SentenceTransformers on
a subset of BEIR benchmarks. We select the

teacher with the highest retrieval performance
msmarco-bert-base-dot-v5. Figure 4 shows the
performances of the student models initialized from
other DistilBERT checkpoints. In general, students
initialized from pretrained models perform worse
than direct layer extraction. Figure 5 and Figure 6
demonstrate that The first few layers and last few
layers are more preferable in terms of initialization
strategy.

Figure 3: The performances of various teachers provided by SentenceTransformers on a subset of BEIR benchmarks.
We select the teacher with the highest retrieval performance.
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Figure 4: In general, students initialized from pretrained models perform worse than direct layer extraction.

Figure 5: Deeper layers are more preferable than the shallower layers in terms of initialization strategy.

Figure 6: The first few layers and last few layers are more preferable in terms of initialization strategy.
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