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Abstract
For many languages and applications, even
though enough data is available for training
Named Entity Disambiguation (NED) systems,
few off-the-shelf models are available for use
in practice. This is due to both the large size
of state-of-the-art models, and to the computa-
tional requirements for recreating them from
scratch. However, we observe that in practice,
acceptable models can be trained and run with
far fewer resources. In this work, we intro-
duce MiniNED, a framework for creating small
NED models from medium-sized datasets. The
resulting models can be tuned for application-
specific objectives and trade-offs, depending on
practitioners’ requirements concerning model
size, frequency bias, and out-of-domain gener-
alization. We evaluate the framework in nine
languages, and achieve reasonable performance
using models that are a fraction of the size of
recent work.

1 Introduction

Motivation and Problem. Named Entity Dis-
ambiguation (NED), is the task of linking pre-
identified entity names to their corresponding en-
tries in a knowledge base, such as Wikipedia. As a
crucial component of Entity Linking (EL) applica-
tions, it has been extensively studied for almost two
decades. Presently, powerful state-of-the-art EL
systems are available based on (English or multilin-
gual) Neural Language Models (Botha et al., 2020;
Wu et al., 2020; van Hulst et al., 2020; De Cao
et al., 2022). Unfortunately, for many languages
and applications there are few off-the-shelf models
that are easy to distribute, customize, or use in con-
strained practical settings. This is due to the large
size of trained models, as well as the computational
requirements for creating them from scratch. As
a result, EL systems are often unavailable or too
large to run for many applications.

Approach. In this work, we focus on mid-
resource languages (e.g. Persian, Japanese, and

Tamil), which have some linguistic resources and
tools available but not many (Ortiz Suárez et al.,
2020). We claim that for many of these lan-
guages, simpler and smaller models can perform
well enough with careful trade-off analyses. Our
main observation is that here the range of reason-
able NED performance is quite narrow. In other
words, the lower bound (i.e. simply predicting the
most commonly linked entity for a given name)
and the non-zero-shot upper bound (i.e. perfectly
disambiguating all names that are seen in training)
are very close together. Based on this insight, we
demonstrate that small NED models can achieve
acceptable performance with limited resources. We
examine the trade-offs between model size and per-
formance for different configurations and highlight
the importance of language-specific phenomena,
such as morphological differences, in determin-
ing optimal parameter settings. We argue that the
tuning of NED models for mid-resource languages
requires careful consideration and can only be done
sustainably on small models.

Contribution. We introduce and evaluate
MiniNED1, a Python library for creating NED mod-
els from Wikipedia data in many languages. We
show that much simpler models than state-of-the-
art systems can achieve acceptable performance in
practice. We also show how our framework allows
practitioners to control model complexity and
adjust for specific use-cases, while maintaining
performance.

2 Observations

Examining the Mewsli-9 benchmark (Botha et al.,
2020), we can make several observations about the
distribution of data that is available in Wikipedia2

for training NED models.
1https://github.com/bennokr/miniNED
2All experiments were performed on Wikipedia dumps

from 2022-03-01. In Mewsli-9, we replace English by Dutch
due to our focus on mid-resource languages.
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Figure 1: Distribution of entity hyperlink frequencies in
Wikipedia, for names from Mewsli-9.

In Figure 1, we show the distribution of how
often entities from the benchmark data are hyper-
linked on Wikipedia. While we observe a typical
long-tailed distribution, most entities can still be
observed between 10-1000 times. For these lan-
guages, this provides enough training data to learn
to disambiguate entity mentions from their context.

In Figure 2, however, we observe that the base-
line performance of simply predicting the top most
commonly linked entity for a given ambiguous
name (combined with straightforwardly linking un-
ambiguous names) can already achieve relatively
high performance. Additionally, many entity-name
pairs (which we will refer to as mentions) in the
benchmark data cannot be observed in training at
all; such unseen cases would require zero-shot gen-
eralization. Consequently, the upper and lower
bound for simple models are very close together.
Thus, we may comclude that the main challenge
lies in predicting shadowed entity mentions (Prova-
torova et al., 2021), which share a surface form with
more popular entities. Due to the overwhelming im-
balance of training instances for shadowed entities,
particular attention should be given to selecting ap-
propriate training data and to the assumptions that
underly the model.

Another observation is that language-specific
phenomena make a big difference. The distribu-
tion of observed ambiguity changes when names
are stemmed. Stemming removes word inflections,
which increases the ambiguity of names. We can
see that due to morphological differences, the ef-
fect of stemming is very different per language.
Overall, stemming decreases the number of unseen
mentions, but also widens the range of ambiguous
names.

Finally, Wikipedia hyperlink data is noisy (Ger-
lach et al., 2021), as it includes links to disambigua-
tion pages and incorrect entity links. This becomes
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Figure 2: Proportion of benchmark mention instances
per ambiguity category, Mewsli-9 dataset. Hatched bars
indicates the stemming of names, which decreases un-
seen cases, but increases ambiguity.

a larger problem when less data is available (as
for low-resource languages and domains). We ar-
gue that optimally tuning the training pipeline to
overcome this noise (by fixing this data or patching
the model) can only be done sustainably when the
model itself is simple.

3 Approach

We train multinomial logistic regression classi-
fiers with hashed Bag-of-Word features, which are
trained to rank candidate entities using Vowpal
Wabbit (vw, Langford et al., 2007). The candidates
are created by filtering entity mention counts from
Wikipedia dumps using heuristics. These heuristics
identify valid surface forms based on their appear-
ance on disambiguation pages, their string similar-
ity to the entity labels, and the entropy of the prior
probability distribution of hyperlink targets. Re-
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Figure 3: Maximum attainable recall of observed am-
biguous mentions given filtering thresholds. When keep-
ing the top 25% most frequent mention-entity instances,
the maximum attainable recall on ambiguous bench-
mark instances is 55-85% .
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Figure 4: Distribution (mean and 95% confidence interval) of normalized micro F1-scores. Per-language scores are
transformed w.r.t. the baseline (most frequent target of entity labels) and the upper bound on observed mentions
(Section 2). Subplots: Performance improves logistically with model size, with strongly diminishing returns.
Colors: Using a fallback to the baseline for unobserved names recovers most lost performance for stemmed and
quantile-filtered models. Rows: Stemmed models have higher variety in performance between languages, and may
overfit when large. Columns: Quantile-filtered models require fewer parameters. Raw results in Appendix A.

garding the entropy, a cutoff threshold determines
when a long, flat prior distribution is discarded (e.g.
specific villages for the anchor text “village”). This
also leads to anchor texts with flat distributions
of very similarly frequent targets to be discarded
entirely (e.g. for strings such as “click here”).

The candidate set can be further filtered by only
selecting a percentage (i.e. quantile) of most fre-
quently observed ambiguous mentions. In Fig-
ure 3, we show the tradeoff between candidate
mention filtering and the maximum recall that a
model trained to disambiguate between these can-
didates could achieve. We observe that selecting
only the most frequently mentioned entities results
in quick gains with only a fraction of the candi-
date set size. However, we also observe that our
pre-processing heuristics discard valid mentions
for some languages, so that even on the full set of
candidates, perfect recall cannot be attained.

The vw model size is controlled by the number
of bits of the feature hash, which also works as
regularisation to prevent overfitting. By exchang-
ing single coefficients per mention-feature pair for
smaller models with more hash collisions, we are
able to find the optimal tradeoff between model
size and accuracy using a hyperparameter sweep.
Although the features are hashed, the model can
still be audited by keeping track of feature hashes
for specific analyses. This can be useful for explain-
ing individual predictions (showing which context
words have a strong influence), or examining the

coefficients that are used to disambiguate a single
surface form.

Baseline Fallback Best Modelbits Upper Bound
Arabic .87 .87/.88 .8228/.8928 .93/.91
Dutch .63 .77/.77 .7728/.7828 .84/.83

German .80 .85/.84 .8428/.8528 .90/.88
Japanese .80 .83/.84 .8128/.8328 .91/.89

Persian .85 .86/.86 .8828/.8824 .91/.90
Serbian .76 .84/.80 .8328/.8028 .89/.83
Spanish .71 .80/.80 .7828/.8128 .89/.88

Tamil .61 .74/.62 .7524/.6324 .77/.64
Turkish .80 .84/.81 .8028/.8128 .91/.87

Table 1: Micro F1-scores (stemmed / unstemmed). Base-
line: most frequent target of entity labels. Fallback:
most frequent target of pre-processed hyperlinks. Best
Model: score & bits of highest-scoring model configura-
tion. Upper Bound: Perfect performance on observed
mentions.

4 Evaluation

Our analysis compares models of different sizes
and candidate filtering thresholds, and the effect
of stemming in different languages. We modify
the Mewsli-9 benchmark to discard links to dis-
ambiguation pages and list pages (statistics in Ap-
pendix B), and we generate the Dutch data using
the scripts provided by Botha et al. (2020). We
train on lowercased mentions that occur more than
once, which are filtered by discarding names which
both (1) have less than 10% of tokens appear in an
entity label on Wikidata and (2) have a high candi-
date entropy (> 1 nat), except if they are used as
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Figure 5: Inspecting strongest feature coefficients in the Dutch model for the name “Utrecht”, which among others
may refer to a city, province, town in South Africa, university, or football club.

main links on disambiguation pages. For stemming,
we use PersianStemmer (Taghi-Zadeh et al., 2015),
MeCab for Japanese (Kudo, 2006), and Snowball
for other languages (Porter, 2001).

In Figure 4, we report normalized disambigua-
tion micro-F1 scores, where per-language scores
are transformed with respect to the baseline (the
most frequent target of entity labels) and the up-
per bound (on observed mentions). Unnormal-
ized results are presented per language for best-
performing models in Table 1 and in Appendix A.

We observe that the effect of stemming and the
trade-off between model size and performance is
different per language, but clear trends are visible,
with diminishing returns of model sizes above a
few hundred MB.

Explainability and Denoising. By keeping track
of which features hash to which parameters for a
set of example instances, we can visualize which
context words have a strong influence on model
predictions (Figure 5). This is useful for improv-
ing models for which the training data may have
been noisy, allowing practitioners to modify pre-
processing pipelines or employ data re-labeling
efforts.

5 Related Work

Mewsli-9 was introduced by Botha et al. (2020) and
used for evaluation by De Cao et al. (2022). Our
evaluation results are not directly comparable to
theirs because we remove links to disambiguation
pages and list pages.

Some EL systems for mid-resource languages ex-
ist. Most prominently, DBpedia Spotlight (Daiber
et al., 2013) publish EL models for some languages,
but these are not tunable for size. Tsai and Roth
(2016) perform cross-lingual wikification using
multilingual embeddings; we plan to replace our
BoW features by such embeddings in future work.

Pappu et al. (2017) train lightweight multilingual
entity linking models, but not for mid-resource lan-
guages. Gerlach et al. (2021) focus on precision,
while we focus on F1-scores and model size.

Modern EL models often combine Mention De-
tection (MD) and NED end-to-end. Hachey et al.
(2013) describe the interplay of MD and NED in
English EL. Ling et al. (2015) extend this descrip-
tion, and make similar observations to ours about
NED baselines. Kolitsas et al. (2018) are the first
to train end-to-end neural EL models, improved
later by De Cao et al. (2021). These efforts were
extended to multilingual models by Botha et al.
(2020) and De Cao et al. (2022). Such end-to-end
neural models require many GPU-hours to train,
making it impossible to tune them sustainably for
specific applications. In contrast, we focus on the
smallest possible NED models, because small MD
models can be achieved with the use of gazetteers
and their interplay may be optimized by tuning.

6 Conclusion and Future Work

We introduce and evaluate MiniNED, a Python li-
brary for creating NED models from Wikipedia
data in many languages. We show that much
simpler models than state-of-the-art systems can
achieve acceptable performance in practice. We
also show how our framework allows practitioners
to control model complexity and adjust for specific
use-cases, while maintaining performance.

For future research, we expect this approach
to also be useful when incorporating more back-
ground knowledge about the entities with richer
feature representations and using weak supervi-
sion (Orr et al., 2021). Also, the tradeoffs that this
work analyses are strongly related to the difficulty
of determining the appropriate granularity of EL
systems (Van Erp and Groth, 2020). For example,
the knowledge base that the mentions are linked to
may distinguish between municipalities as admin-
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istrative entities and the cities within them, while
for many applications this distinction is not rele-
vant. In the future we aim to add support for tuning
models to the desired levels of granularity.
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Appendix

A Evaluation Results
Micro-F1 scores per
model size. Line width:
Candidate selection
filtering quantile. Color:
Use of fallback to
baseline (most frequent
target).
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B Mewsli-9 Modification

Disambig Listpage Total
Arabic 201 4 5964
Dutch 562 16 11924
German 1907 76 64807
Japanese 605 54 34214
Persian 5 0 515
Serbian 773 7 35536
Spanish 1923 105 55431
Tamil 28 1 2683
Turkish 164 5 5661

Table 2: Statistics on discarded Mewsli-9 links out of
the total original dataset
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