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Abstract

We examine the effects of model size and pre-
finetuning in an active learning setting where
classifiers are trained from scratch on 14 binary
and 3 multi-class text classification tasks. We
make an important observation that, in realistic
active learning settings, where the human anno-
tator and the active learning system operate in
asynchronous mode, a compact pre-finetuned
1-layer transformer model with 4.2 million pa-
rameters is 30% more label efficient when com-
pared to the larger 24-layer 84 million param-
eter transformer model. Further, in line with
previous studies, we note that pre-finetuning
transformer models on related tasks improves
label efficiency of downstream tasks by 12%-
50%. The compact pre-finetuned model does
not require GPUs, making it a viable solution
for large-scale real-time inference with cheaper
CPU options.

1 Introduction

Active learning is a popular approach used to re-
duce the manual labeling effort required to train a
classifier. In active learning, we iteratively acquire
labels from an annotator and use them to train a
classifier.

Most existing academic literature (Huang and
Zhou, 2013; Shao et al., 2019) on active learning
assumes that manual labeling process can only hap-
pen after the model update is complete, making
the active learning loop ‘synchronous’. In practice,
this implies that human annotators have to wait un-
til an active learning iteration (training on labeled
data and inference on all unlabeled data) process
is complete before they can provide more labels.
As pointed out by (Huang et al., 2021), in realistic
production settings, ‘synchronous’ active learning
will significantly decrease annotators’ productiv-
ity. To this end, typical production systems such as
Sagemaker GT (sag) employ ‘asynchronous’ active
learning setup where the human annotators contin-

uously provide annotations while the training and
inference happen in the background.

Pre-finetuning proposed by Aghajanyan et al
(2021) is a stage after pre-training to further refine
representations before end-task finetuning. The
purpose of the pre-finetuning step is to increase
the similarity between data used for pre-training
and downstream finetuning tasks (Phang et al.,
2018; Pruksachatkun et al., 2020; Gururangan et al.,
2020). Aghajanyan et al pose pre-finetuning as a
Multi-task learning (MTL) problem on 47 tasks,
and their experiments show that incorporating pre-
finetuning to RoBERTa and BART models yields
consistent improvements in downstream task fine-
tuning, particularly in the low data regime.

In this work, we examine the effects of model
size and pre-finetuning in a realistic asynchronous
active learning setting on a diverse set of 14 bi-
nary and 3 multi-class text classification tasks. Our
contributions are three-fold:

1. We present evidence that a small transformer
model is ideal for use in large scale environ-
ments with asynchronous active learning set-
ting. With a given training and inference in-
frastructure, large models, counter-intuitively,
can increase the number of labeled data re-
quired to achieve precision/recall targets set
by customers because of their slow train-
ing/inference speeds.

2. We conduct an extensive study surrounding
the label efficiency of standard pre-trained rep-
resentations and their respective pre-finetuned
counterparts. We show empirical evidence
that pre-finetuning helps to reduce the number
of labeled data required to build transformer-
based classifiers.

3. We present evidence that pre-finetuning can
be formulated as a large-scale multi-label clas-
sification problem, which enables us to pre-
finetune on a large corpus of 2664 classifi-
cation tasks. This technique helps us learn
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Figure 1: Besides standard pre-training (Stage 1) and then finetuning (Stage 3), our training procedure includes an
intermediate pre-finetuning step (Stage 2) where we create ProdNet by training transformer model on data curated
from thousands of existing classifiers.

from thousands of tasks simultaneously. To
the best of our knowledge, this is the first work
to realize the gain of pre-finetuning under a
restricted latency budget in a large-scale asyn-
chronous active learning setting.

2 Pre-Finetuning

2.1 Transformer Models

The details of various transformer architectures
used in this study are shown in Table 2 in Appendix
A.1. We perform pre-finetuning on BERT-variants
models on e-commerce product classification tasks
to create ProdNet variants (ProdNet-1L, ProdNet-
2L, ProdNet-4L, ProdNet-6L, and ProdNet-24L-
P). For example, we pre-finetune BERT-6L to cre-
ate ProdNet-6L. The training process for creating
ProdNet-based classifiers is illustrated in Fig. 1.
We note the model parameters, training speed, and
inference latency of various transformer models
used in the study in Table 1. Note, the ProdNet vari-
ants have the same model architecture with the cor-
responding non-pre-finetuned counterparts (BERT
variants). One major difference between BERT-
24L-P model and the other BERT variants is that
BERT-24L-P is unsupervised pre-trained using in-
ternal e-commerce product data while other BERT
variants are pre-trained using public datasets. For
the sake of readability, most of experiment results
only include the results of 3 model pairs (under-
scored in Table 1), and we have verified that our
conclusions hold for all 5 model pairs.

2.2 Pre-finetuning Datasets

To pre-finetune transformers, we selected 2664 pro-
prietary binary classifiers created from Feb’20 to
Sep’21 to classify the e-commerce products. We
leverage human labeled training data from the se-
lected binary classifiers, and aggregate all training
samples from 2664 binary classifiers. Note that one
instance may be a member of multiple binary clas-
sifiers. For e.g., a bundle instance with an ‘eraser’
and a ‘ruler’ may be a member of both ‘eraser’ and
‘ruler’ classifiers. Appendix A.2 shows the details
of data used for pre-finetuning.

For each instance (product data), we use the
item_name and product_description both for pre-
finetuning and finetuning. We focused on the text
attributes in this work, and the idea of creating
ProdNet is readily generalized to image and multi-
modal attributes.

2.3 Methodology

In the existing literature, a common approach for
pre-finetuning is multi-task learning (MTL), and
the number of tasks used has been fairly limited,
e.g., 49 tasks were used in (Aghajanyan et al.,
2021). Even at this scale, scientists have reported
‘negative transfer’, where the learning from up-
stream tasks can reduce accuracy of downstream
tasks. Since we aim to learn from a large set
of 2664 binary classification tasks, the traditional
MTL approach does not scale. To this end, we for-
mulate the pre-finetuning as a large multi-label clas-
sification problem using multi-label softmax loss
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Models→ BERT-1L BERT-2L BERT-4L BERT-6L BERT-24L-P
Parameters ↓ ProdNet- 1L ProdNet- 2L ProdNet-4L ProdNet-6L ProdNet- 24L-P

# Trans. layers 1 2 4 6 24
Hidden layer size 128 128 312 768 256
# Attention head 2 2 12 12 16
Parameters (MM) 4.2 4.4 14.5 66 84
CPU infer. latency 1.09 2.02 15.3 86 100
GPU infer. latency 0.16 0.18 0.4 8.6 10.6
GPU training time 28 32 54 197 233

Table 1: Inference latency (reported in milli-seconds) is the inference latency per instance computed on CPU
(ml.c5.2xlarge) and GPU (ml.g4dn.xlarge) instances with batch size as 32 and max sequence length as 128. Training
time is reported in seconds on a GPU (ml.g4dn.xlarge) instance with 2000 labeled data. We focus on three model
pairs (underscored) for most of our experiments: BERT-1L vs. ProdNet-1L, BERT-2L vs. ProdNet-2L, and
BERT-24L-P vs. ProdNet-24L-P.

function recommended by Mahajan et al (2018).
While the solution is not generic to all multi-task
problems with heterogeneous tasks, it is ideal for
our use case since all our tasks of interest are bi-
nary classification tasks, which can be combined
to create a multi-label dataset. The details about
multi-label softmax loss and our experiments are
shown in Appendix A.3.

3 Finetuning

We perform asynchronous active learning experi-
ments on the selected finetuning tasks to examine
the effects of model size and pre-finetuning in an
active learning setting.

3.1 Active Learning

To measure the label efficiency of a classifier, we
employ pool-based active learning setting (detailed
in Appendix A.4) (Lewis and Gale, 1994; Settles,
2009; Gal et al., 2017). In each active learning it-
eration, we perform two operations: 1) judiciously
select a subset of unlabeled instances for the data
pool and send them to the annotator, and 2) train
a classifier using new and the previously labeled
instances. We continue active learning until con-
vergence criteria are achieved. We use two con-
vergence criteria for experiments which exactly
mimics a production setup: 1) the estimated re-
call/precision for each class-of-interest should be
no smaller than the business-specified targets, and
2) predictions on unlabeled data should have stabi-
lized (Bloodgood and Vijay-Shanker, 2014).

For experiments, we use a bot (in lieu of a human
annotator) to do the labeling job. To simulate real-
istic production scenario, we adopt asynchronous

active-learning and labeling i.e., the bot keeps pro-
viding labels regardless of the progress of training
/inference/query acquisition process in the active
learning loop. Throughout our experiments, the bot
provides 3000 labels per day to mimic the labeling
speed of a human annotator.

3.2 Finetuning Datasets

The finetuning datasets were sourced from propri-
etary binary and multi-class e-commerce product
classification tasks created from Oct’21 to Mar’22.
We deliberately selected classification tasks cre-
ated after Oct’21 to 1) simulate real-world scenario
where the pre-finetuned model will be used for new
classification tasks, and 2) avoid any overlap with
the datasets used for pre-finetuning. We selected 14
diverse binary classification tasks with the positive
class prevalence ranging from 0.13 to 0.88. We
also selected 3 multi-class classification datasets
with class cardinalities 10, 8, and 3, respectively.
The datasets have a long-tail distribution in terms
of class sizes. Since we use a bot for the label-
ing job to avoid the human-in-the-loop, we need
fully-labeled datasets of the finetuning tasks as the
source of labels used by the bot, and we also need
to compute metrics on data pool, which acts as the
test data for active learning experiments. To curate
fully-labeled datasets, we employed trained human
annotators to manually label all instances in data
pool. Note the data pool size of the 17 selected
finetuning tasks are ranging from 8M to 17K.

3.3 Metrics

The key metric of interest is the number of labeled
data required for the active learning process to
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converge, since our goal is to require as few hu-
man annotations as possible to build a classifier
which satisfies precision/recall targets set by cus-
tomers. For each active learning experiment, we
track the progression of class-level recall, and pre-
cision computed on data pool. We summarize the
class-level metrics by reporting macro-recall and
macro-precision. We choose macro over micro
averaging because performance of each class is
equally important for our use-case.

4 Experiments Results

Results on binary and multi-class classification
tasks: Fig. 2 (a), and (b) show the relative number
of labeled data required for active learning experi-
ments to converge averaged across 14 binary classi-
fication tasks and 3 multi-class classification tasks,
respectively. The results of individual task (includ-
ing the targeted/achieved precision/recall and num-
ber of required labels) are reported in Table 7 and
8 in Appendix A.7. We observed that

(a)

(b)

Figure 2: Average relative number of labeled data re-
quired for active learning experiments to converge (a)
14 binary classification tasks, and (b) 3 multi-class clas-
sification tasks.

• On average ProdNet-1L requires the least
number of labeled data for model convergence
among all the benchmarking models, increas-
ing the label efficiency by 40% and 30% com-
pared with ProdNet-2L and ProdNet-24L-P,

respectively.
• The pre-finetuned models (ProdNet) consis-

tently reduces the number of labeled data re-
quired for model convergence compared to the
non-pre-finetuned counterparts. On average,
ProdNet-1L requires 51% of labels required
by BERT-1L classifier. Similarly, ProdNet-
2L requires 50% of the labels that BERT-2L
needs, and ProdNet-24L-P requires 88% of
labels that BERT-24L-P model takes.

• The gain of pre-finetuning BERT-24L-P
model is smaller when compared with the
gain of pre-finetuning BERT-1L and BERT-
2L. This is intuitive as BERT-24L-P model
is unsupervised pre-trained using our internal
product data, and it has already learnt inter-
nal product related information. In contrast,
BERT-1L and BERT-2L are pre-trained using
public corpora without the product specific
information.

• Interestingly, even without the effect of pre-
finetuning, BERT-1L is more label efficient
than BERT-2L, which demonstrates the im-
portance of smaller model size in the asyn-
chronous active learning setting.

Do bigger models mean fewer labels? Fig.
3 illustrates the relative number of labeled data
required for active learning experiments to con-
verge versus number of parameters in the model
on FEE dataset. The results show an interest-
ing phenomenon that the number of labeled data
required for active learning experiments to con-
verge increases with the rising model parameter
size. This is counter-intuitive, as larger models
are usually better than smaller models for cases
where the training and test datasets are fixed in
academic settings. However, in an asynchronous
active learning setting, larger models take longer
to train and infer (e.g., ProdNet-24L-P is ∼ 100
times slower than ProdNet-1L in CPU inference),
thereby forcing human annotators to label ‘stale’
data. As such, larger models miss the opportu-
nity to assist query acquisition module to select
unlabeled instances effectively, and unnecessarily
accumulate excessive labeled data from annotators.
Smaller models, especially when pre-finetuned on
1000s of previously authored classifiers, provide a
viable alternative with fast classifier authoring-time
and low inference-cost. In addition, the compact
pre-finetuned model does not require GPUs for in-
ference, making it a viable solution for real-time

113



Figure 3: Relative number of labeled data required for
active learning experiments to converge with model
sizes on FEE dataset. e.g., ProdNet-1L classifier re-
quires x labels to converge while ProdNet-2L needs
1.06x labels to converge.

large-scale inference with cheaper CPU options.
Why does ProdNet learn faster than the non-

pre-finetuned counterpart? Although researchers
have cautioned against using attention as a reli-
able means of model interpretability (Serrano and
Smith, 2019; Jain and Wallace, 2019), several re-
cent works use attention weights to partially ex-
plain what words/tokens that are most influential to
the model (Galassi et al., 2019; Letarte et al., 2018;
Vashishth et al., 2019; Clark et al., 2019). To get
an intuitive understanding if pre-finetuning helps,
we illustrate attention weights1 of the [CLS] token
in the last layer for pre-finetuned (ProdNet-2L) and
non-pre-finetuned (BERT-2L) models as shown in
Fig.4. We choose to visualize [CLS] token since
in downstream task finetuning, we pass the last
layer [CLS] representation to a task-specific feed-
forward layer and train the classifier end-to-end. It
is worth mentioning that we visualize the attention
of [CLS] token in the original ProdNet-2L (Stage
2 in Fig 1) and BERT-2L (Stage 1 in Fig 1) models
without downstream tasks finetuning. Our rationale
is that if a model is able to pay attention to the key
information in downstream tasks before finetuning,
then the model might learn faster when finetuned
with the downstream task data (few-shot learning).
The input text Veterinary Formula Flea and
Tick Spray for Dogs is from the downstream task
PetCare which aims to classify pet-care products
designed to treat fleas, ticks, ringworm, or other
parasites. The orange and blue color demonstrate
the 2 attention heads of ProdNet-2L and BERT-2L.
The darker color indicates more attention. In this
example, we can observe that ProdNet-2L is able

1We used BertViz for attention visualization
https://github.com/jessevig/bertviz.

(a)

(b)

Figure 4: Attention visualization of (a) ProdNet-2L, and
(b) BERT-2L

to pay more attention to flea and tick compared
with BERT-2L. We hypothesize that pre-finetuning
on relevant e-commerce product classification data
helps the model understand potentially important
words for the downstream task, thereby allowing
the model to learn the downstream task faster.

Appendix A.8 shows additional results on the
attention analysis.

5 Conclusion

In this paper, we present empirical evidence on 14
binary and 3 multi-class text classification tasks
that compact transformer models consistently re-
duce number of labeled data required to build new
classifiers in realistic asynchronous active learning
settings when compared to larger models. Smaller
models take less time for training and inference,
and allow active learning query acquisition module
to select next batch of informative instances more
frequently, thereby allowing the classifier to learn
fast. Further, we conclude that pre-finetuning helps
compact models to learn even faster.
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A Appendix

A.1 Transformer models in study
Table 2 introduces the transformer models used in
this study. We choose the BERT based models in
our study as they are well-established models, and
we focus on investigating the impact of different
model sizes in the asynchronous active learning
settings. The study can be easily extended to other
transformer based models (e.g, RoBERTa)

A.2 Pre-finetuning dataset
Table 3 illustrates the dataset that we used to pre-
finetune transformers.

Table 4 shows dataset statistics for the super-
vised pre-finetuning.

A.3 multi-label softmax
Due to the multi-label property of the pre-
finetuning data, we formulate the pre-finetuning
as a multi-label classification problem using multi-
label softmax loss function recommended by Ma-
hajan et al (Mahajan et al., 2018). multi-label soft-
max loss computes probabilities over all labels in
the label space using a softmax activation and is
trained to minimize the cross-entropy between the
predicted softmax distribution and the target distri-
bution of each instance. The target is a vector with
k non-zero entries, each set to 1/k corresponding
to the k ≥ 1 labels for the instance. We exper-
imented both the conventional per-class sigmoid
outputs with binary cross entropy loss and multi-
label softmax. Results show using multi-label soft-
max loss function improves the top-1 accuracy by
20% compared with the model using per-class sig-
moid outputs with binary cross entropy loss.

A.4 Active learning strategy
To measure the label efficiency of a classifier
M, we employ pool-based active learning set-
ting (Algorithm 1) (Lewis and Gale, 1994)(Settles,
2009)(Gal et al., 2017), consisting of a seed set of
labeled instances (x, y) ∈ Dseed (|Dseed| = 100) to
initialize the classifierM in the first iteration, an
unlabeled pool of data Dpool, and a query acquisi-
tion function A(x,M) that ranks the next set of
unlabeled instance x ∈ Dpool to be sent to the anno-
tator. In each active learning iteration, we perform
two operations: 1) judiciously select a subset of
unlabeled instances and send them to the annotator,
and 2) train a classifier using new and the previ-
ously labeled instances. To pick the next set of unla-

Algorithm 1: Active learning setup used in
production and for experiments.

1 Input: Pool of unlabeled data Dpool, Batch
size B, Initial labeled dataset S (could be
empty), Business targets on precision and
recall

2 Output: Trained classifierM that meets
business targets

3 while convergence criteria are not met do
4 Rank instances from Dpool using query

strategy A(x,M).
5 Label top-ranked B instances, add them

to S . (Comment: In production, human
annotators provide labels, while in
experiments a bot does the labeling
job)

6 Remove S from unlabeled data
Dpool ← Dpool \ S .

7 (asynchronous process) Train the
classifierM on S.

8 (asynchronous process) Predict Dpool
using the classifier.

9 (asynchronous process) Estimate current
precision/recall using out-of-fold
scores (k-fold cross validation)

10 end

beled instances for annotation, we take the trained
classifier to perform inference on all instances in
unlabeled data pool, rank them based on entropy
score (calculated from the model prediction score)
and select instances which have high entropy score
(these are confusing instances that are most likely
to increase the accuracy of the classifier in the next
active learning iteration). We continue active learn-
ing until convergence criteria are achieved. We use
two convergence criteria for experiments which ex-
actly mimics a production setup: 1) the estimated
recall/precision for each class-of-interest should be
equal to or greater than the corresponding business-
specified targets, and 2) predictions on unlabeled
data should have stabilized (Bloodgood and Vijay-
Shanker, 2014).

A.5 Data distribution in multi-class datasets

Table 5 presents the data distribution of the three
multi-class datasets.
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Architecture Description

BERT-
24L-P

It is a internal BERT-based language model (84 million parameters). It is pre-trained on
multilingual, multi-locale and multimodal (text + structured fields) e-commerce product
data, and then pre-finetuned using the multi-task soft labels generated from the previously
pre-trained teacher model with 500 million parameters.

BERT-6L It is widely known as DistilBERT (Sanh et al., 2019), which is a 6-layer transformer model
unsupervised pre-trained using English Wikipedia and Toronto Book Corpus.

BERT-4L It is known as TinyBERT (Jiao et al., 2019). We used the 4 layer TinyBERT, which is
distilled from the 12-layer BERT teacher model unsupervised pre-trained using English
Wikipedia and Toronto Book Corpus.

BERT-2L It is a 2-layer transformer model (Turc et al., 2019) unsupervised pre-trained with a masked
language modeling objective on Book Corpus and English Wikipedia.

BERT-1L In order to minimize the model size and investigate the impact of small transformer model,
we extracted the first transformer layer from the BERT-2L and made it as a BERT-1L
model.

Table 2: Various transformer models under study (The model artifacts of BERT-6L, BERT-4L, BERT-2L used in
this study are available in HuggingFace.).

Classifier→ C1 C2 C3 . . . C2664
product
instance↓
A1 1 0 0 . . . 0
A2 0 1 1 . . . 0
. . . . . . . . . . . . . . . . . .
An 1 0 0 . . . 0

Table 3: Illustration of dataset used to pre-finetune transformers. The rows of the table represent product instances,
and the columns represent the 2664 binary classifiers used in our pre-finetuning. Each cell represents the membership
of an product instance to a class. For example, if the class “C1” was created to identify “Face Masks”, then product
instance A1 was classified as a FaceMask and product instance A2 was not.
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L ntrn nval ntst n̄ L̄

2664 4,607,904 918,894 820,839 2,383 2.62

Table 4: Statistics of the supervised pre-finetuning dataset. L is number of classification tasks. ntrn, nval, and ntst

refer to number of instances in training, validation and test dataset, respectively. n̄ is average number of instances
per classification task and L̄ is average number of labeled data per instance (product data)

Table 5: Multi-class datasets (HS, FEE, and AB) have
long-tail distribution in terms of class sizes. S denotes
the relative size of each class. E.g., the class HS-2 has
41.88% of 1.15M products in HS dataset.

HS (1.15M) FEE (750K) AB (8.4M)

Class S(%) Class S(%) Class S(%)

HS-0 0.52 T-0 50.56 A-0 18.39
HS-1 0.36 T-1 6.36 A-1 46.58
HS-2 41.88 T-2 30.84 - -
HS-3 25.81 T-3 10.69 - -
HS-4 0.30 T-4 0.53 - -
HS-5 0.44 T-5 0.62 - -
HS-6 2.36 T-6 0.28 - -
HS-7 11.10 - - - -
HS-8 14.65 - - - -
not-in-
k

2.59 not-in-
k

0.12 not-in-
k

35.03

A.6 Hyperparameters
Table 6 is the hyperparameters used in pre-
finetuning and finetuning various transformer mod-
els.

A.7 Per-task experiment results
Table 7 and Table 8 shows 1) the relative number of
labeled data required for various active learning ex-
periments to converge, and 2) the relative (macro)
recall/(macro) precision of the models measured on
data poolDpool, in the 14 binary classification tasks
and 3 multi-class classification tasks, respectively.

A.8 Why does ProdNet learn faster than the
non-pre-finetuned counterpart?

To obtain a global understanding if pre-finetuning
helps, we aggregate attention weights computed on
500 positive examples for four classification tasks
(listed in Table 7). Specifically, we calculate the
average attention for the key phrases a human ex-
pert deemed most critical to the classification task.
For example, for PetCare products, the key phrases
identified are flea, tick, worm, and parasites. The
results are shown in Table 9. We observe that in

Hyperparameters Pre-
finetuning

Finetuning

Loss function Multi-label
softmax

Softmax

Train batch size 32 32
Val batch size 32 -
Dropout factor 0.1 0.3
Max seq length 128 128
Optimizer AdamW AdamW
Learning rate 2e−5 2e−5 /1e−4

Weight decay 0.01 0.01
Early stopping True False
Max training epoch 10 5

Table 6: Hyperparameters we used in the pre-finetuning
and finetuning stages to train various transformer mod-
els. In downstream task finetuning, we use learning rate
2e−5 for BERT-6L and ProdNet-6L, and learning rate
1e−4 for rest of benchmarking transformer models. In
order to fully utilize the labeled data for training, we do
not use validation dataset in downstream task finetun-
ing.

general ProdNet-2L is able to pay more attention
to the key tokens than BERT-2L. We hypothesize
that pre-finetuning on relevant e-commerce prod-
uct data helps the model understand potentially
important words for the downstream task, thereby
allowing the model to learn the downstream task
faster.
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Models→ ProdNet-1L BERT-1L ProdNet-2L BERT-2L ProdNet-24L-P BERT-24L-P

Tasks ↓ Top: relative number of labeled data
(R/P target) Bottom: relative recall(R)/precision(P) computed on data pool

Speakers x 2.56x 2.33x 2.57x 1.76x 2.7x
(r/p) 1.11r/p 1.10r/1.02p 1.11r/1.01p 1.07r/p 1.11r/1.02p 1.11r/1.03p

Pillows x 1.43x 1.09x 2.05x 1.08x 1.74x
(r/p) 1.09r/1.01p 1.1r/1.01p 1.07r/1.01p 1.02r/1.02p 1.11r/1.02p 1.11r/1.03p

Plants x 1.80x 2.12x 5.87x 1.32x 1.47x
(r/p) 1.01r/1.02p r/1.03p r/1.03p r/1.04p r/1.03p 1.01r/1.03p

Bottle x 1.74x 1.52x 2.94x 1.10x 1.28x
(r/p) 1.34r/1.01p 1.38r/1.01p 1.28r/p 1.32r/1.01p 1.32r/p 1.3r/1.03p

Jackets x 1.32x 1.79x 2.40x 0.99x 1.20x
(r/p) 1.07r/1.02p 1.06r/1.04p 1.08r/1.02p 1.08r/p 1.1r/p 1.13r/1.01p

Belt x 1.34x 2.01x 3.85x 1.66x 1.75x
(r/p) 1.06r/1.01p 1.05r/1.02p 1.06r/1.02p 1.05r/1.02p 1.06r/1.04p 1.06r/1.03p

Postcard x 1.37x 2.10x 3.10x 1.47x 1.55x
(r/p) 1.16r/1.01p 1.16r/1.01p 1.17r/p 1.15r/1.02p 1.16r/1.02p 1.16r/1.03p

PetCare x 1.57x 1.25x 2.12x 1.74x 2.17x
(r/p) 1.12r/1.02p 1.12r/1.03p 1.12r/1.01p 1.12r/1.02p 1.12r/1.04p 1.12r/1.04p

T39253 x 2.21x 1.45x 2.31x 1.72x 1.78x
(r/p) 1.06r/p 1.07r/1.01p 1.04r/p 1.05r/p 1.08r/1.01p 1.08r/1.02p

FireStarter x 2.98x 1.22x 2.01x 1.89x 2.32x
(r/p) 1.08r/1.02p 1.08r/1.03p 1.08r/1.01p 1.08r/1.02p 1.08r/1.03p 1.08r/1.04p

Batteries x 1.65x 0.92x 5.15x 0.81x 1.52x
(r/p) 1.25r/p 1.24r/1.01p 1.14r/1.01p 1.24r/1.01p 1.28r/1.01p 1.28r/1.03p

Radio x 1.95x 1.55x 2.55x 1.34x 1.40x
(r/p) 1.04r/1.04p 1.01r/1.04p 1.03r/1.04p r/1.04p 1.02r/1.04p 1.03r/1.04p

GDevices x 2.02x 0.96x 2.40x 1.29x 1.45x
(r/p) 1.12r/1.01p 1.13r/1.02p 1.09r/1.01p 1.13r/1.01p 1.13r/1.02p 1.13r/1.02p

Extg x 2.37x 1.27x 3.51x 1.34x 1.46x
(r/p) 1.06r/1.01p 1.07r/1.03p 1.02r/1.01p 1.05r/1.02p 1.07r/1.03p 1.07r/1.03p

Table 7: For each classification task in the first column, we report the relative number of labeled data required to
converge the active learning process by various classifiers. We also report the relative recall and precision measured
on data pool Dpool as “recall/precision”. For each classification task, we denoted the recall/precision targets set by
customers as (r/p), and the number of labeled data required to converge with ProdNet-1L classifier as x. (Note:
different classification tasks may have different recall/precision targets, and they require different number of labeled
data to converge the experiments with ProdNet-1L classifier. Since we do not compare performance across different
classification tasks, we use the same letters for the denotation of different tasks.) For example, on Speakers dataset
the recall/precision targets are set as (r/p), the ProdNet-1L classifier achieved 1.11r recall at p precision when
the active learning experiment converged at x labels, while the BERT-1L classifier achieved 1.10r recall at 1.02p
precision when the active learning experiments converged at 2.56x labels. For each classification task, we highlight
the least number of labeled data required for convergence in bold.
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Models→ ProdNet-1L BERT-1L ProdNet-2L BERT-2L ProdNet-24L-P BERT-24L-P

Tasks ↓ Top: relative number of labeled data
(R/P
target)

Bottom: relative macro-recall/macro-precision computed on data pool

HS x 2.71x 2.30x 3.48x 1.08x 1.09x
(r/p) 1.15r/1.13p 1.16r/1.17p 1.13r/1.12p 1.13r/1.11p 1.16r/1.17p 1.16r/1.17p

FEE x 1.84x 1.06x 3.12x 1.32x 1.35x
(r/p) 1.06r/1.07p 1.05r/1.08p 1.05r/1.07p 1.05r/1.06p 1.06r/1.07p 1.05r/1.08p

AB x 1.60x 2.39x 3.89x 2.44x 2.73x
(r/p) 1.08r/p 1.12r/p 1.04r/p 1.08r/p 1.08r/1.01p 1.05r/1.02p

Table 8: For each multi-class classification task in the first column, we report the relative number of labeled data
required to converge the active learning process by various classifiers. We also report relative macro-recall and
macro-precision measured on data pool Dpool. For example, on HS dataset the macro-recall/macro-precision targets
are set as (r/p), the ProdNet-1L classifier achieved 1.15r (macro-recall) at 1.13p (macro-precision) when the active
learning experiment converged at x labels, while the BERT-1L classifier achieved 1.16r (macro-recall) at 1.17p
(macro-precision) when the active learning experiment converged at 2.71x labels. For each classification task, we
highlight the least number of labeled data required for convergence in bold.

Models→ ProdNet-2L BERT-2L

Class rationale ↓ Key token Average
attention

Token
ranking

Average
attention

Token
ranking

Task: PetCare

To classify pet-care products
designed to prevent fleas, ticks,
ringworm, or other parasites.

flea 0.45 15% 0.36 50%
worm 0.44 16.7% 0.42 37.7%
tick 0.43 17.4% 0.39 44.3%
parasites 0.38 24.2% 0.33 56.2%

Task: Speakers

To classify wireless battery
operated portable speakers.

blue 0.70 4.9% 0.39 52.6%
portable 0.60 11.2% 0.37 57.2%
speaker 0.40 35.3% 0.30 69.7%
wireless 0.29 52.1% 0.48 34.7%

Task: Pillow

To classify pillows and cushions
with feather fillings or inserts.

cushion 0.42 23.1% 0.25 68.4%
pillow 0.60 24.0% 0.25 65.9%
feather 0.13 75.1% 0.45 32.0%

Task: Seed

To classify seeds which are
used for growing plants.

seed 0.61 13.0% 0.31 50.4%
plant 0.60 13.6% 0.47 19.6%
fruits 0.42 36.0% 0.38 36.1%
vegetable 0.27 63.4% 0.24 64.8%

Table 9: Global aggregation of attention values for key phrases of a classification task. We take 500 positive samples
to the original ProdNet-2L and BERT-2L models without downstream task finetuning. We calculate the average
attention of each token that the [CLS] token pays to in the last transformer layer. The average attention (higher the
better) received by the identified key tokens is noted in the column Avg. attention. We also rank all the tokens in
the 500 positive samples based on their average received attention, and calculate the rank of identified key tokens
(smaller the better). Key tokens were identified by a trained expert who provided the labeled data required to train
the classifiers.
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