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Abstract

Recent breakthroughs in Natural Language Pro-
cessing (NLP) largely increased the presence
of ASR systems in our daily lives. However,
for many low-resource languages, ASR models
still need to be improved due in part to the dif-
ficulty of acquiring pertinent data. This project
aims to help advance research in ASR mod-
els for Swiss German dialects, by providing
insights about the performance of state-of-the-
art ASR models on recently published Swiss
German speech datasets.

We propose a novel loss that takes into account
the semantic distance between the predicted
and the ground-truth labels. We outperform
current state-of-the-art results by fine-tuning
OpenAI’s Whisper model on Swiss German
datasets.

1 Introduction

Swiss German dialects are spoken by around 5 mil-
lion people in Switzerland and are used in day-to-
day life as a primary language of communication
in the country. However, due to the non-existence
of a standardized written form, standard German is
used as the primary form of written communication
outside of informal text messages. For this reason,
we focus on transcription from multi-dialect Swiss
German speech to standard German text, for which
an extensive offer of language processing tools al-
ready exists.

This paper presents the results of evaluations
we conducted on the recently available Swiss Ger-
man datasets SwissDial (Dogan-Schönberger et al.,
2021), SDS-200 (Plüss et al., 2022), and SPC
(Plüss et al., 2020). Two models were used to
conduct these evaluations: XLS-R (Babu et al.,
2021), and Whisper (Radford et al., 2022) models.
Both were evaluated and fine-tuned on Swiss Ger-
man audio data with standard German annotations
following transfer learning training strategies to

respond to the low-resource situation of the Swiss
German language.

Based on recent discussions1 about the relevance
of Word Error Rate (WER) (Wang et al., 2003), we
additionally implement a semantic distance metric
for evaluation by making use of language model
embedding. We also use this metric to define a
custom training loss to fine-tune Whisper model.

Our experiments show encouraging results for
Whisper model. They suggest a soon-to-come avail-
ability of Swiss German ASR services, in a sig-
nificant part due to the publication of annotated
Swiss German speech datasets since 2021. We ob-
serve impressive results in Zero-Shot evaluations
of Whisper models, and it even outperforms state-
of-the-art results after training on a limited number
of epochs. To the best of our knowledge, on the
multi-speaker-multi-dialect SDS-200 dataset, we
produce the current best results, with a WER of
20.6 and a BLEU of 66.6. We also achieve a bet-
ter BLEU on the SPC dataset, namely 61.6. The
model also offers high complexity in its outputs by
including capital letters, numbers and punctuation
with high accuracy.

2 Models & Methods

During our whole experiment, we extensively used
HuggingFace to host our datasets, training re-
sults and models in different training stages. We
also used multiple HuggingFace libraries to share
datasets and train on multiple GPUs.

2.1 Datasets

We conducted a series of experiments for this paper
with the four following datasets. Due to their re-
spective particularities, they were used to different
ends.

1https://www.speechmatics.
com/company/articles-and-news/
the-future-of-word-error-rate

https://www.speechmatics.com/company/articles-and-news/the-future-of-word-error-rate
https://www.speechmatics.com/company/articles-and-news/the-future-of-word-error-rate
https://www.speechmatics.com/company/articles-and-news/the-future-of-word-error-rate


SwissDial SDS-200 SPC Fleurs
Models WER CER BLEU WER CER BLEU WER CER BLEU WER CER BLEU

XLS-R 1B 69.3 33.8 12.3 76.6 40.4 8.8 73.6 39.9 12.7 10.2 5.6 71.3

Whisper Tiny 80.2 42.3 10.3 92.7 54.9 6.61 96.3 55.7 9.7 37.5 12.9 46.0
Whisper Base 66.8 33.2 19.0 78.0 43.4 13.8 70.4 37.8 20.3 25.6 8.4 60.2
Whisper Small 46.8 22.6 36.4 51.0 27.3 34.2 50.9 27.1 37.3 14.7 4.1 75.0
Whisper Medium 33.8 16.9 50.8 36.8 20.4 49.7 37.4 20.2 50.8 10.5 2.9 81.7
Whisper Large 29.4 14.8 56.2 31.7 18.0 55.6 33.2 18.2 55.6 8.7 2.3 84.7

Table 1: Baseline performances on a Zero-Shot evaluation

2.1.1 SwissDial
The SwissDial (Dogan-Schönberger et al., 2021)
dataset is an annotated parallel corpus of spoken
Swiss German across eight major dialects (AG, BE,
BS, GR, LU, SG, VS, ZH) with Swiss German
and High German transcripts. It includes around 3
hours of high-quality audio per dialect. However,
the dataset contains a class imbalance as it has
around three times more Grisons Swiss German
than any other dialect, which must be considered
when training and evaluating models.

We randomly selected 20% of the data to con-
stitute a test set. However, it must be noted that
there is a single speaker per dialect, and most of the
sentences are spoken across the eight dialects – for
this reason, the independence of the train and test
set is not perfect, and over-optimistic evaluation
results are expected.

2.1.2 Swiss Parlament Corpus
The Swiss Parliament Corpus (SPC) (Plüss et al.,
2020) is a dataset of transcriptions of parliamentary
speeches and proceedings from the Swiss National
Council and Council of States. It consists of 293
hours of data. The corpus contains automatically
aligned transcripts of speeches and proceedings
from various parliamentary sessions, mainly in the
dialect from Bern canton, with transcriptions in
standard German. However, because of its size and
the fact that there are almost only data points from
Bern, in a juridic context, the usage of this dataset
may introduce a bias in the training of a multi-
dialect Swiss German ASR model. Moreover, the
audio samples are often noisy, which brings addi-
tional difficulty for transcription – although Whis-
per is proved to be robust on noisy examples.

2.1.3 SDS-200
SDS-200 (Plüss et al., 2022) dataset consists of 200
hours of speech data in Swiss German and corre-
sponding transcriptions in standard German. The

speech data was recorded from approximately 4k
native speakers of Swiss German and covered vari-
ous topics and Swiss German dialects. The speech
data was recorded with a web tool open to the pub-
lic. It covers a large part of the Swiss German
dialect landscape. The dialect distribution roughly
follows the speaker distribution in Switzerland.

The samples have been partly validated by the
public and is mostly read-aloud data. Moreover, the
test set only contains speakers who are not present
in the train set, and for which the speech audio has
been sufficiently validated and is judged of high
quality by the authors. We, therefore, consider it
an essential set for model result evaluation.

2.1.4 Fleurs
Fleurs (Conneau et al., 2022) is a speech dataset
by Google which contains samples in 102 different
languages, with approximately 12 hours of speech
supervision per language. The dataset was built on
top of the machine translation FLoRes-101 bench-
mark (Goyal et al., 2021). We use the standard
German part of the dataset for evaluation.

2.1.5 ArchiMob
Another commonly referenced Swiss German au-
dio dataset is ArchiMob (Samardžić et al., 2016). It
consists of 43 interview recordings in 14 different
Swiss German dialects for around 70 hours of data.
However, we decided against using this dataset in
this project as it does not offer standard German
transcription.

2.2 Models

In this project, we establish a baseline using Face-
book’s XLS-R 1B (Babu et al., 2021) and further
train OpenAI’s Whisper (Radford et al., 2022) as
our primary focus. As Whisper’s medium version
has 769M parameters and its large version has 1.5B,
we believe that the comparison between the two ar-
chitectures is reasonable. Furthermore, to compute



SwissDial SDS-200 SPC Fleurs
Models WER CER BLEU WER CER BLEU WER CER BLEU WER CER BLEU

Plüss et al., 2022 (norm.) − − − 21.6 − 64.0 − − − − − −
Schraner et al., 2022 (norm.) − − − − − − 23.7 − 60.7 − − −

XLS-R 1B 17.7 10.3 62.9 25.2 16.4 53.6 40.2 24.0 37.9 47.9 25.8 25.0

Whisper (LCE) 14.3 7.5 77.7 21.2 12.9 65.4 28.9 16.0 61.6 16.6 5.4 72.9
Whisper (LSemantiX) 21.2 9.8 65.3 20.6 13.0 66.6 30.4 18.6 56.7 16.6 5.5 73.0

Table 2: Performance of our models on a post-training evaluation

our custom loss LSemantiX, which requires the use
of a LLM, we use a pre-trained XLM-RoBERTa
(Conneau et al., 2019) for multilingual sentence
embeddings (Reimers and Gurevych, 2020). How-
ever, as this model is not the main focus of this
research, we do not present it in detail here.

2.2.1 Facebook’s XLS-R 1B

XLS-R (Babu et al., 2021) is a multilingual speech
representation learning model. It is based on
Wav2Vec2 (Baevski et al., 2020) self-supervised
learning framework and was pre-trained on 436k of
unlabelled speech from 128 languages. No Swiss
German data was used for training. The most re-
cent publications on Swiss German ASR (Plüss
et al., 2022) (Schraner et al., 2022) showed XLS-R
capacity for Swiss German speech to standard Ger-
man transcription. Following these publications,
we similarly focused on the 1B parameters model
(XLS-R 1B).

We implemented this model to offer a basis for
comparison to Whisper results when trained in a
similar setting. Moreover, results on the SwissDial
dataset have yet to be published. For this reason,
the training and evaluation of the XLS-R 1B model
allowed us to set a first benchmark and provide a
better perspective on our results.

To respond to the low-resource setting of Swiss
German and the limited scope of this research, we
use a model that has already been fine-tuned on
multiple German speech datasets (Grosman, 2022).
It also offers a CTC (Graves et al., 2006) beam
search decoder language model, which improved
our overall results. The output vocabulary consists
of lowercase letters and a limited number of special
characters. This model reached a WER (Wang
et al., 2003) of 8.13, and a CER (Morris et al., 2004)
of 2.18 on the Common Voice 8 (Ardila et al., 2020)
test set when combined with its language model
decoder.

2.2.2 OpenAI’s Whisper

OpenAI’s Whisper (Radford et al., 2022) archi-
tecture is a collection of multiple sizes of a sin-
gle model designed to bridge the gap between
small supervised models trained on limited data
and large unsupervised models that require precise
fine-tuning to perform specific tasks. For example,
Whisper models were trained on speech recognition
tasks, such as speech-to-text and language identi-
fication. Using a large amount of weakly-labelled
data, the models can learn from various speech
patterns and variations, resulting in improved ro-
bustness and generalization.

The training process for Whisper is scaled to
680k hours of multilingual and multitask supervi-
sion, resulting in models that can generalize well
to standard benchmarks and are often competitive
with fully supervised models without the need for
fine-tuning. For example, on the Common Voice
(Ardila et al., 2020) benchmark, Whisper models
achieved a word error rate of 4.5%, which signifi-
cantly improved over the previous state-of-the-art.

Of the 680k hours of audio used for training,
117k hours cover 96 different languages, and the
dataset also includes 125k hours of language-to-
English translation data. The model’s capabilities
and results on multiple datasets suggest that Whis-
per could be the next state-of-the-art in Swiss Ger-
man ASR tasks. With access to a growing number
of high-quality Swiss-German datasets, there is po-
tential to create a new baseline for future Swiss
German ASR tasks.

Additionally, as OpenAI’s Whisper architecture
includes model sizes ranging from tiny (39M pa-
rameters) to large (1.5B parameters), exploring
how the different model sizes perform on the same
tasks is an exciting way to explore.
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Figure 1: Flowchart of training pipeline – the blue elements of the flowchart are needed for LSemantiX. The black
elements are needed for training with the initial cross-entropy loss.

2.3 Inviting Semantics to Traditional ASR
Metrics and Losses

To evaluate our results, we use Word Error Rate
(WER) (Wang et al., 2003) and Character Error
Rate (CER) (Morris et al., 2004) metrics. Similarly
to recent Swiss German ASR literature, we also
compute the BLEU (Papineni et al., 2002) metric,
which is standard in the automatic evaluation of
machine translation. Indeed, our task is, to some
extent, a translation task due to the particularities
of Swiss German with respect to standard German,
such as differences in verb conjugation, vocabulary
or morphology. Examples of these differences can
be found in the result section.

2.3.1 Motivation to Involve Semantics
Error-rate metrics are predominant metrics in the
world of ASR. However, as described by Kim et
al.(Kim et al., 2021), only using WER can be mis-
leading, as it only takes into account literal correct-
ness instead of semantic correctness. As shown in
the paper, their proposed metric SemDist takes into
account the semantics of the predicted sentence by
leveraging the power of LLMs. It also inspired the
creation of a new custom loss, LSemantiX, which
we will describe in 2.3.3. Let us first introduce
semantic distance as a metric and then explain how
we used it to derive a new loss.

2.3.2 Semantic Distance as a Metric
Semantic distance uses the fact that LLMs can cre-
ate word/sentence embeddings, which can be seen
as point encoding in a latent semantic space. One
can then compute the "distance" between those
points using a score like cosine similarity. Face-
book AI’s paper by Kim et al. (Kim et al., 2021)
does precisely that by introducing SemDist. It is
defined as follows, with x and y two sentence em-

beddings encoded by a sentence encoder (Cer et al.,
2018).

SemDist(x,y) = 1− x⊤y

||x|| · ||y||
(1)

A result closer to zero indicates a higher se-
mantic similarity and vice versa. We compute
SemDist(·, ·) during evaluation to add a level of
comprehension to our results.

From this sample metric, we also derive a loss
LSD on a batch of size N , with y = {yn}Nn=1 and
ŷ = {ŷn}Nn=1 respectively batches of labels and
predictions as the mean of the respective distances:

LSD(y, ŷ) ≜
1

N

N∑
n=1

SemDist {enc(yn), enc(ŷn)}

(2)
In our setup, enc(·) corresponds to the sentence

encoded by XLM-RoBERTa (Conneau et al., 2019)
(Cer et al., 2018).

2.3.3 SemantiX Loss
By default, Whisper uses a cross-entropy loss be-
tween the undecoded outputs of the model and the
tokenized ground truth labels to quantify error. It
is defined as follows, with C the set of all possible
tokens that the model can output:

LCE(y, ŷ) = − 1

N

N∑
n=1

∑
c∈C

wc log
exp(ŷn,c)∑
c′∈C yn,c′

(3)
We introduce a new loss LSemantiX, which uses

both the well-known cross-entropy loss for literal
correctness but also LSD for semantic correctness.
The loss takes two hyperparameters α, β ∈ R+.
Combined, it gives the following function:

LSemantiX(y, ŷ) ≜ α ∗LSD(y, ŷ)+β ∗LCE(y, ŷ)
(4)



It enables us to weigh the importance of the mean-
ing of the prediction in addition to outputting the
right tokens. In our experiments, we also used a
variant of it with a product instead of a sum:

L′
SemantiX(y, ŷ) ≜ (γ + LSD(y, ŷ)) ∗ LCE(y, ŷ)

(5)
Both implementations use
CosineEmbeddingLoss from PyTorch
(Paszke et al., 2019).

2.4 Training Setup

2.4.1 XLS-R

A Zero-Shot evaluation was first performed with
the German pretrained XLS-R 1B model on the
following datasets: SwissDial, SDS-200, SPC and
Fleurs. In a second time, we fine-tuned the model
on the SwissDial and SDS-200 datasets, following
the procedure suggested by the authors2. We used
the described hyper-parameters with a learning rate
of 1e− 4 and trained for 5 epochs.

2.4.2 Whisper

Similarly to XLS-R 1B, we evaluated Whisper us-
ing a Zero-Shot approach on the following datasets:
SwissDial, SDS-200, SPC and Fleurs. The first
three datasets were used to baseline Whisper’s
initial performance on Swiss German. The last
dataset was used as a control dataset to see how
well our Whisper implementation’s results aligned
with Whisper’s paper’s results. Moreover, we eval-
uated all the different sizes of Whisper to compare
them against each other.

Furthermore, we mostly fine-tuned the
medium size of Whisper as it offered the best
performance/training-time ratio. In addition, we
fine-tuned Whisper on multiple combinations of
three Swiss German datasets (see 2). As Whisper
training time is consequent and we only fine-tuned
it, we kept the number of training epochs close to
one for each dataset. The different outcomes and
conclusions are described in 3.1. Furthermore, we
also fine-tuned Whisper using our innovative loss,
described in 2.2.2 (see Fig. 2). Our fine-tuning
method was heavily inspired by the procedure
described by Sanchit Ghandi3.

3 Results

3.1 Baselines

Our first experiment was a Zero-shot evaluation on
the SwissDial test set using the dialectal transcripts.
As shown in Figure 2, the results are quite bad.
This can be explained by the lack of a standardized
written form of the Swiss German language and
the fact that Whisper has not been introduced to
any sort of Swiss German transcript, which ren-
ders it close to impossible to produce a correct
output. These results and a secondary evaluation
with standard German transcripts reported in Table
1 confirmed our decision to use those for the rest
of the experiments.
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Figure 2: Zero-Shot evaluation results of different Whis-
per sizes on the SwissDial dataset, with dialectal tran-
scripts,

In a second time, we evaluated XLS-R and every
size of Whisper, in a similar Zero-Shot (Snell et al.,
2017) fashion, on each of our datasets with standard
German transcripts. We include the Fleurs dataset
to assess how well each of the model performs on
standard German. All these results are reported
in Table 1. Even though Whisper Large performs
slightly better on SDS-200 and Fleurs, we decided
to focus on Whisper Medium model for further
fine-tuning and for computational reasons. A huge
improvement is still noticeable between different
sizes of Whisper, and XLS-R seems to perform
worse on Zero-Shot evaluation. The well known
ability of Whisper to generalize to unknown data
and regional accents might explain these results.

2https://huggingface.co/blog/
wav2vec2-with-ngram

3https://huggingface.co/blog/
fine-tune-whisper

https://huggingface.co/blog/wav2vec2-with-ngram
https://huggingface.co/blog/wav2vec2-with-ngram
https://huggingface.co/blog/fine-tune-whisper
https://huggingface.co/blog/fine-tune-whisper


Ground Truth Prediction WER CER BLEU SemDist

Andererseits seien strategische
Entscheide für den Rückgang verant-
wortlich.

Andererseits sei ein strategischer
Entscheid für den Rückgang verant-
wortlich.

50.0 5.3 41.1 1.0

Boeing lehnte eine Stellungnahme ab. Boeing hat den Stellungnahme
abgelehnt.

60.0 38.9 0.0 1.1

Wegen des Brandes war die
Dorfstrasse für mehrere Stun-
den gesperrt.

Wegen des Brandes war die Dorfstrafe
mehrere Stunden gesperrt.

20.0 10.0 59.5 23.3

Aus Syrien stammten im Mai 52
Asylbewerber.

Aus Syrien stammten im Mai 52
Asylwerber.

14.3 4.7 70.7 0.2

Inzwischen ist es kurz vor 22 Uhr. Mittlerweile ist es kurz vor 10 Uhr. 28.6 38.2 41.1 23.4

Table 3: Selected examples of predictions. It highlights the quality of SemDist as a metric

3.2 Our Models

Based on the baseline results, we decided to fine-
tune Whisper Medium on our datasets, leveraging
the semantic losses (Table 2). Whisper (LSemantiX)
has been trained first on a shuffled concatenation
of SwissDial and 20% of SPC (to have roughly as
many samples from both) using cross-entropy loss
for 1 epoch over the whole train dataset (≈ 60k
samples), then trained for another round on SDS-
200 for 2 epochs on the full train dataset (≈ 37k
samples), this time using LSemantiX. Whisper (LCE)
has been trained in the same setting but sticking to
LCE the whole training. Both models were trained
with a batch size of 10 and 2 gradient accumulation
steps – depending on the runs, on NVIDIA A100
and RTX Quadro 6000 GPUs. In this setup, we
obtain better results than state-of-the-art on SDS-
200 with Whisper (LCE) for CER and with Whisper
(LSemantiX) for BLEU and WER.

We observe that after training Whisper on any of
our datasets, it tends to suffer from catastrophic for-
getting, as we see, for instance, in the performance
decrease for the Fleurs dataset, between fine-tuned
models results and the Zero-Shot ones. To avoid
this, the models should probably have been trained
on all the datasets altogether for 2 to 3 epochs in a
similar fashion as in the Whisper paper (Radford
et al., 2022).

Note that Whisper – as opposed to XLS-R 1B
– works with unnormalized text – namely, it pre-
serves punctuation, casing, digits, onomatopoeia,
etc – for both input and output. To our understand-
ing, evaluation metrics in Swiss German ASR liter-
ature, namely WER and BLEU, were computed in
a normalized setting. The transcription contained
the characters a-z, ä, ö, ü, and spaces, with no

punctuation, casing, and numbers spelt out. We
computed our metrics on normalized predictions
and ground truth but observed only minor differ-
ences, suggesting that Whisper interpolates punc-
tuation and casing very well. In some examples
presented in Table 3, we observe that Whisper en-
counters difficulties in transposing verb tenses from
the Swiss German conjugation to Standard German.
Probably due to such differences – WER results
might be too pessimistic. The 2nd sentence is a
good example, where we observe a high WER but a
low SemDist, because the meaning of the predicted
sentence remains very close. Therefore, we find
that even though WER might seem discouraging,
the overall LSemDist is very low on our models for
all of our datasets (Fig. 4) and suggests good tran-
scription capacities by our model. We performed
a p-value test between the standard metrics and
SemDist on our model predictions and observed
no significant correlation. Hence, SemDist seems
to be an interesting new metric that could bring a
new level of understanding in ASR transcription
tasks.
We believe that semantic distance could signifi-
cantly improve ASR task evaluation when com-
bined with error-rate measures. Additional exam-
ples can be found in Table 3.

4 Discussion

Using the large version of Whisper for Zero-Shot
evaluation on our datasets also showed promising
results. Therefore, one should try our experiments
with the large version of Whisper if one has the
computing capacities.

Nevertheless, an observed downside of the Whis-
per fine-tuning is the catastrophic forgetting of our



Whisper Medium Whisper (LCE) Whisper (LSemantiX)

SwissDial 9.2% 5.0% 4.4%
SDS-200 11.0% 4.9% 4.2%
SPC 8.8% 8.1% 6.7%
Fleurs 2.5% 5.7% 5.3%

Table 4: Average semantic distance LSemDist, as a metric, during evaluation on our fine-tuned models

model. Indeed, after training, one can see that the
models perform worse even in German. We be-
lieve however that, with enough computing capaci-
ties, this catastrophic forgetting could be attenuated
while conserving the encouraging training results
presented in this paper.

Another important finding of this study is that tra-
ditional metrics might not be sufficiently extensive
to capture all the intrinsics of the "Swiss German
audio to High German text" task. The shortcom-
ings of traditional metrics and losses opened the
possibility to have predicted sentences to be further
processed, using for instance a LLM to match the
conjugation rules.

Summary

This study shows that the newly released Whisper
model is able to impressively generalize its knowl-
edge to unseen languages such as Swiss German di-
alects, despite important disparities between speech
and transcription. Moreover, fine-tuning Whisper
on a diverse set of Swiss German datasets can sig-
nificantly improve its overall performance. As pre-
sented before, we were able to fine-tune Whisper
and outperform state-of-the-art using SwissDial,
SDS-200, and to a limited extent SPC. These re-
sults were obtained with minimal hyperparameters
tuning and a small number of epochs. We used
SemDist to offer additional insight into our results
and to define a custom loss function LSemantiXfor
training. However, we did not get consistently
better results in traditional metrics such as WER,
BLEU and CER. Nevertheless, our custom loss
function helped reduce the semantic distance be-
tween our predictions and transcripts on Swiss Ger-
man datasets.

References
R. Ardila, M. Branson, K. Davis, M. Henretty,

M. Kohler, J. Meyer, R. Morais, L. Saunders, F. M.
Tyers, and G. Weber. 2020. Common voice: A
massively-multilingual speech corpus. In Proceed-
ings of the 12th Conference on Language Resources
and Evaluation (LREC 2020), pages 4211–4215.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal
Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh,
Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei
Baevski, Alexis Conneau, and Michael Auli. 2021.
XLS-R: Self-supervised cross-lingual speech repre-
sentation learning at scale.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A frame-
work for self-supervised learning of speech represen-
tations.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal sentence encoder.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale.

Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang,
Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara
Rivera, and Ankur Bapna. 2022. Fleurs: Few-shot
learning evaluation of universal representations of
speech.

Pelin Dogan-Schönberger, Julian Mäder, and Thomas
Hofmann. 2021. SwissDial: Parallel Multidi-
alectal Corpus of Spoken Swiss German. CoRR,
abs/2103.11401.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzman,
and Angela Fan. 2021. The flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation.

Alex Graves, Santiago Fernández, Faustino J. Gomez,
and Jürgen Schmidhuber. 2006. Connectionist tem-
poral classification: labelling unsegmented sequence
data with recurrent neural networks. Proceedings of
the 23rd international conference on Machine learn-
ing.

https://doi.org/10.48550/ARXIV.2111.09296
https://doi.org/10.48550/ARXIV.2111.09296
https://doi.org/10.48550/ARXIV.2006.11477
https://doi.org/10.48550/ARXIV.2006.11477
https://doi.org/10.48550/ARXIV.2006.11477
https://doi.org/10.48550/ARXIV.1803.11175
https://doi.org/10.48550/ARXIV.1911.02116
https://doi.org/10.48550/ARXIV.1911.02116
https://doi.org/10.48550/ARXIV.2205.12446
https://doi.org/10.48550/ARXIV.2205.12446
https://doi.org/10.48550/ARXIV.2205.12446
http://arxiv.org/abs/2103.11401
http://arxiv.org/abs/2103.11401
https://doi.org/10.48550/ARXIV.2106.03193
https://doi.org/10.48550/ARXIV.2106.03193
https://doi.org/10.48550/ARXIV.2106.03193


Jonatas Grosman. 2022. Fine-tuned XLS-R 1B
model for speech recognition in German. https:
//huggingface.co/jonatasgrosman/
wav2vec2-xls-r-1b-german.

Suyoun Kim, Abhinav Arora, Duc Le, Ching-Feng Yeh,
Christian Fuegen, Ozlem Kalinli, and Michael L.
Seltzer. 2021. Semantic distance: A new metric for
asr performance analysis towards spoken language
understanding.

Andrew Morris, Viktoria Maier, and Phil Green. 2004.
From wer and ril to mer and wil: improved evaluation
measures for connected speech recognition.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Michel Plüss, Manuela Hürlimann, Marc Cuny, Alla
Stöckli, Nikolaos Kapotis, Julia Hartmann, Mal-
gorzata Anna Ulasik, Christian Scheller, Yanick
Schraner, Amit Jain, Jan Deriu, Mark Cieliebak, and
Manfred Vogel. 2022. SDS-200: A Swiss German
speech to standard German text corpus. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 3250–3256, Marseille,
France. European Language Resources Association.

Michel Plüss, Lukas Neukom, and Manfred Vogel. 2020.
Swiss parliaments corpus, an automatically aligned
swiss german speech to standard german text corpus.
CoRR, abs/2010.02810.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust Speech Recognition via Large-Scale Weak
Supervision. Technical report, OpenAI.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.
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