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Abstract
New drugs are risky and costly to develop.
“Drug repositioning” or “drug repurposing” de-
scribes the well-known practice in identifying
new uses for already existing drugs or active
compounds. Using a case study, this paper de-
scribes ongoing research about the exploration
of the potential in using NLP techniques on
publicly available data sources to identify drugs
for glioblastoma therapy not documented in es-
tablished standardized databases.

1 Introduction

Developing and discovering new drugs is risky,
costly and takes a long time. Many factors such as
poor drug-properties like high drug toxicity, lack of
effectiveness in their originally intended purpose
(Dowden and Munro, 2019; Hodos et al., 2016) as
well as bad absorption, distribution, metabolism,
or excretion (ADME) (Lipinski, 2000) contribute
to a rate below 10% for a new drug to successfully
enter approved world-wide markets. Identifying
and developing new uses for already known drugs
or active compounds can be summarized under the
concept often referred to as “drug repositioning”
or “drug repurposing” (Ashburn and Thor, 2004).
Drug development for rare diseases like some vari-
ants of cancer is especially devoid of commercial
interest (Alaimo and Pulvirenti, 2019), for this rea-
son the concept of “drug repositioning” plays a
key role in battling rare diseases. Utilizing the
results of previous research and existing knowl-
edge about drugs, e.g. on their target molecules
and mechanisms of action or their safety, com-
pletely new indications for drugs or active com-
pounds can be discovered (Wang et al., 2019). Es-
pecially the exploitation of side-effects for already
known drugs can be very lucrative, because many
otherwise necessary costly development steps for
market approval can be dispensed (Tanoli et al.,
2021). As a consequence of the high failure rates
for market entry of new medical compounds, a

high quantity of drugs and chemical compounds are
left abandoned. By utilizing “drug repositioning”
their development and trial costs can be “rescued”
(Langedijk et al., 2015). One example of such a
successful rescued drug is “azido-thymidine”, orig-
inally developed to treat cancer and shelved after
determined inert. This drug was later rescued for
the treatment of HIV and its prevention of vertical
transmission (Reed, 2016). Knowledge on these
drugs, mostly recorded in standardized databases,
is also progressively available in unstructured text
data. As a resulting problem of the constantly ex-
panding volume of medical data in recent years
as well as the rise in number of different reposi-
tories or databases, data from these databases or
repositories differ significantly in terms of quality
and reliability (Neumann et al., 2019; Tanoli et al.,
2021). This results in a challenge for researchers
in choosing the adequate database(s) containing
the required information. Additionally, copious
amounts of exclusive medical knowledge are hid-
den in scientific research documents or clinical
reports as unstructured text data. As solution to
these challenges, advances in the field of Natural
Language Processing (NLP) enable researchers to
identify possible relationships between many types
of biomedical entities, such as drugs, diseases and
genes within unstructured textual data to predict
new candidates for repositioning (Alaimo and Pul-
virenti, 2019; Andronis et al., 2011).

Glioblastoma (GBM), one of the most malignant
types of cancer, was selected for our case study due
to high clinical relevance. In a recent phase I clini-
cal study, an innovative treatment for GBM termed
CUSP9v3 was favorably tested for safety and tol-
erability (Halatsch et al., 2021). CUSP9v3 com-
prises a regimen of 9 repurposed non-oncological
drugs combined with metronomic temozolomide.
It demonstrated tumour growth inhibition ability
and exemplifies the successful discovery of drugs
for repurposing.



2 Related Research

2.1 Strategies for Drug Repositioning
To discover new “new target - known drug” pairs,
the majority of strategies for drug repositioning
use the theoretical foundations of network biol-
ogy, systems biology and genomics (Choudhury
et al., 2022). Alaimo and Pulvirenti (2019) outline
these strategies in four different categories based
on theory: Target-based approaches focus on the
biological role of molecular target structures (e.g.
genes, gene products, receptors, etc.) in diseases
by using overlapping drug-targets or drug-target in-
teractions to identify new repositioning candidates.
Side-effect-based methods observe side effects of
already developed drugs for possible alternative
therapeutic uses by exploiting unintentional off-
targets. This strategy however requires already
existing clinical drug data and is therefore not suit-
able for active substances are shelved before clini-
cal phases. Expression-based strategies utilize the
key concepts of “signature reversion” or “signature
matching” for genes. Using these concepts, new
repositioning candidates can be predicted through
quantitative molecular comparisons using gene ex-
pression profiles. If an associated drug-disease
pair has anti-correlated gene expression profiles,
thereby if a gene is disrupted through a disease, a
drug with positive effect on that gene could be a
potential therapeutic agent (Hodos et al., 2016; Issa
et al., 2021). Similarity-based strategies utilize
the idea that if two different diseases share at least
one drug for their respective treatment, the rest of
their not shared drugs could also be considered in
joint treatment. Expanding this idea, the similar-
ity between two different drugs can be predicted
based on the culmination of multiple similarities in
molecular target structures, side effects and chemi-
cal structure. Conversely, the similarities between
diseases can be determined through shared treat-
ment profiles or their semantic distance in ontolo-
gies (Chiang and Butte, 2009). Much knowledge
about drugs and chemical compounds provided in
biomedical texts is often only described by using
vague indications, which can be harnessed by ex-
ploiting the guilt-by-association (GBA) principle
proposed by Chiang and Butte (2009) to identify
new potential drug candidates for repositioning.

2.2 NLP in Drug Repositioning
To extract new information from unstructured text
data, complex information extraction algorithms,

like Named Entity Recognition (NER) make it pos-
sible to identify biomedical concepts or entities
such as drugs, chemical compounds, diseases and
genes. NER represents an important key method
in order to be able to keep up with the constant
growth of newly discovered and defined concepts
and entities from literature, such as new drugs or
experimental active substances (Gao et al., 2021).
NER systems such as “ScispaCy” (Neumann et al.,
2019), “SparkNLP” (Kocaman and Talby, 2021) or
“Stanza” (Zhang et al., 2021) enable the extraction
of bio-medical entities from texts. Their provided
annotation models are usually built through time-
consuming and data-dependent training using ML
or DL techniques. Their models are ready-to-use
and can be quickly deployed on new unstructured
texts or can even be trained via Transfer Learning
(TL) to further improve their accuracy and sensitiv-
ity. Similar recent examples of research utilizing
NER for drug repositioning range from identifying
low-cost therapeutics for cancer through scraping
PubMed abstracts (Subramanian et al., 2019) to
the use of Social Media Mining to extract possible
repositioning candidates for LONG-COVID (Koss
and Bohnet-Joschko, 2022).

3 Our Research and Results

In our previous research endeavours we aimed to
test and evaluate different approaches and meth-
ods to predict new drug repositioning candidates
using NLP on open and publicly available unstruc-
tured text data. Based on the concerns of Tanoli
et al. (2021) on the steadily growing data incon-
sistencies between the various available databases,
we analysed the potential of unstructured text data
to combat these database inconsistencies by fill-
ing possible data gaps. As case study, we se-
lected the rare and malicious cancer glioblastoma
(GBM). Our goal was to identify and predict new
unknown reposition-able therapeutic drugs, not
(yet) included in established databases. We em-
ployed two different methods on publicly avail-
able clinical and medical text data from PubMed
(nlm.nih.gov, 2022) and ClinicalTrials.gov (2022).
Especially ClinicalTrials is a valuable source for
new knowledge that is often not yet provided by
databases, e.g. on unknown side effects of indi-
vidual drugs or drug-drug interactions (Su, 2019).
As NER-system we chose ScispaCy v0.5.1 (Neu-
mann et al., 2019) which provides fast, easy-to-use
and robust biomedical NER-models. Despite hav-



ScispaCy Variations and used labels
NER Biomedical Genes, Diseases, Cell-
model Entities genomes, symptoms, types,

gene products side-effects lines,
components

en_core_sci_lg ENTITY
en_ner_craft_md GO, SO, CL

GGP
en_ner_jnlpba_md CELL_TYPE,

CELL_LINE
en_ner_bc5cdr_md DISEASE

en_ner_bionlp13cg_md GENE_OR_ CANCER, CELL,
GENE_PRO PATHO CELLULAR_

DUCT LOGICAL_COMPONENT
FORM
ATION

Table 1: Combined NER models and used labels of all
Method 1 variations

Association chain type Entity relation type and used databases
A-B-C-D A-B B-C

“disease-gene-drug” disease-gene
from OpenTargets

(Ochoa et al., 2022)
“disease-gene_variant-drug” disease-gene_variant

from DisGeNET
(Piñero et al., 2019)

“disease–symptom–drug” disease-symptom from
Human Phenotype
Ontology (HPO)

(Köhler et al., 2021)
“disease-drug-sideeffect-drug” disease-drug drug-sideeffect

from DrugBank from SIDER
(Wishart et al., 2006) (Letunic, 2022)

“disease-drug-cell_lines-drug” disease-drug drug-cell_lines
from DrugBank from Genomics of

(Wishart et al., 2006) Drug Sensitivity in
Cancer (GDSC)

(Yang et al., 2013)

Table 2: Chains of association, entity relation and used
databases of Method 2 variations

ing poorer performance compared to other NER-
systems, ScispaCy offers four different specialized
NER models with a wide subject-specific biomed-
ical scope. By using the controlled vocabulary
thesaurus MeSH (Medical Subject Headings) we
selected the broader concept to GBM “Neuroecto-
dermal tumours” as the narrowing search term for
our text data extraction. On July 12, 2022, 6,741
clinical studies from ClinicalTrials and the most
relevant 3,259 abstracts from PubMeD were ex-
tracted using our search terms. We normalized the
extracted text data using the stop word lists from
“NLTK” (Bird et al., 2009) and by removing line
breaks, multiple spaces, full stops, colons or com-
mas using a regular expression pattern. For further
supervision and improvements of the NER Tagger,
a supplementary stop word list was curated.

3.1 Our Methods and Evaluation

For our first method we employed the “GBA prin-
ciple” by Chiang and Butte (2009). Applying
this “similarity-based” approach we carried out a
co-occurrence analysis while utilizing NER. All
biomedical entities not identified by the NER-
models were removed from each document so that
only entities such as drugs, diseases, symptoms,
genes, etc. were used for the co-occurrence anal-
ysis. For this step we used different NER models
from ScispaCy in multiple variations. After cal-
culating and merging the texts of the most similar
document pairs, we applied Chiang and Butte’s
“GBA principle” to predict our “drug reposition-
ing” candidates by utilizing ScispaCy and its spe-
cialized NER models “BC5CDR” (Li et al., 2016)
(for diseases, chemicals and drugs) and the model
“BIONLP13CG” (Pyysalo et al., 2015) (for simple
chemicals). Based on the theory of overlapping
treatment profiles with regard to the “GBA princi-
ple”, the assumption now applies for the merged
texts that every drug tagged by the NER tagged is
a potential drug for treatment or a “repositioning
candidate” for each tagged disease. Related to the
mentioned repurposing strategies, we tested four
variations for this method utilizing the models and
labels in combination shown in Table 1.

Our second method combined existing knowl-
edge from state-of-the-art public available
databases with the integrated knowledge of NER
systems. By utilizing the open discovery process
according to the ABC model by Swanson (1986),
(A-B) starting association pairs were extracted
from databases using available relations between
biomedical entities. By using NER, we determined
the biomedical entity pairs (B-C) in unstructured
text data in order to predict new repositioning
candidates with the transitive relation (A-C). While
using this method, entity types of A, B and C as
well as the length of the utilized association chains
were varied in order to explore the potential the
different repositioning approaches. After designat-
ing the biomedical entity types of A&B as starting
pairs, we chose the most suitable database on the
recommendations based on previous research by
Tanoli et al. (2021). All available B-type entities of
the (A-B) relations were extracted as search terms
for a full-text search to determine all documents
that contain at least one of these B-terms. At the
final step, while using the available specialized
NER models, all sought-after entities of type C



were extracted from the hit documents. Depending
on the type and length of the association chain
used, C represented repositioning candidate for A
as a result. Table 2 shows all variations of chains
of association we tested in our research.

For our case-study, we evaluated the approxi-
mate quality of our predicted repositioning can-
didates from Method 1 & 2 using the database
DrugBank (Wishart et al., 2006) as core reference.
DrugBank provides the most comprehensive state-
of-the-art collection of drugs and chemical sub-
stances with reference to their possible uses and
their current status in clinical studies (Jin et al.,
2021). For our evaluation, all 346 individual drugs
or chemical compounds, which are associated with
GBM for therapy, were extracted on the 11th of
January 2023 (go.drugbank.com, 2023). To further
improve our results, all extracted drug reposition-
ing candidates from both methods were matched
against the external Unified Medical Language
System (UMLS) (Bodenreider, 2004) knowledge
base via the available ScispaCy concept matching
pipeline “Entity Linker”. We devised three cat-
egories to approximately evaluate the quality of
our results: For a drug repositioning candidate to
be classified as valid, it had to be either a chemi-
cal element or compound, generic or brand name
of a drug, a possible treatment method like TT-
Fields, experimental vaccine or drug-specific an-
tibody. The “Invalid” category comprised of all
candidates which were deemed as invalid, e.g. un-
specific generic terms like “antibody” or “acid”.
All candidates which were also confirmed to be
possible therapeutics by DrugBank, either by be-
ing approved drugs or drugs in current ongoing
drug trials for GBM, were assigned to the category

“Known in DrugBank”. Other valid candidates,
which were not found in DrugBank, were allocated
to “Unknown candidates” and represent the body
of knowledge which could supplement the database.
The size of the “Invalid” category demonstrates the
general ability to extract valid drugs or chemical
compounds via our overall methodological efforts.
“Known in DrugBank” together with “Unknown
candidates” embody all possible repurposing candi-
dates for GBM. To estimate the quality of our drug
candidates for repositioning, the ratio between the
categories “Known in DrugBank” and “Unknown
candidates” can be used an approximate indication
on how realistically truthful our results are. The
smaller the ratio from “Known in DrugBank” to

Total number 3 most extracted 3 most extracted
Variation of extracted entities candidates as candidates as

as candidates “Known in DrugBank” “Unknown candidates”
“Biomedical “temozolomide” “arsenic trioxide”

Entities” 2734 “carmustine” “arsenic”
“cyclophosphamide” “selumetinib”

“Genes, “Camptothecin-11” “cisplatin”
genomes, 6865 “Avastin” “anthracyclines”

gene products” “Temodar” “Maleic acid”
“Diseases, “temozolomide” “adrenal cortex hormones”
symptoms, 3898 “bevacizumab” “tremelimumab”

side-effects” “nivolumab” “ict-107”
“Cell-types, “temozolomide” “cisplatin”

lines, 22025 “irinotecan” “tremelimumab”
components” “vincristine” “vasopressin”

Table 3: Results of all variations of Method 1

Total number 3 most extracted 3 most extracted
Variation of extracted entities candidates as candidates as

as candidates “Known in DrugBank”“Unknown candidates”
“disease- “temozolomide” “cisplatin”

gene- 2226 “erlotinib” “octreotide”
drug” “vincristine” “dacarbazine”

“disease- “amifostine”
gene_variant- 8 No results “cisplatin”

drug” “glutathione”
“disease- “temozolomide” “steroids”
symptom- 975 “vincristine” “2,6-dinitrotoluene”

drug” “etoposide” “cisplatin”
“disease- “Camptothecin-11” “cisplatin”

drug-sideeffect- 7021 “Avastin” “ifosfamide”
drug” “Temodar” “melphalan”

“disease- “temozolomide” “cisplatin”
drug-cell_line- 47 “docetaxel” “baccatin III”

drug” “interferon alfa-2b” “calcitonin”

Table 4: Results of all variations of Method 2

“Unknown candidates”, presumably the higher the
number of false positive repurposing candidates in
the “Unknown candidates” category.

3.2 Results & Discussion

In our results for GBM, all valid extracted can-
didates for repositioning are either chemical el-
ements, chemical compounds, experimental vac-
cines, hormones or other various therapeutics. Ta-
ble 3 and Table 4 show an excerpt of the results
for each tested method and variation, with the total
number of extracted entities with the three most
occurring repurposing candidates known and un-
known to DrugBank.

In the summarized results of all used variations
for Method 1, 43.9% of extracted entities are cate-
gorized as “Known in DrugBank”, 18.2% as “Un-
known candidates” and 38.0% as “Invalid”. For
Method 2 and its variations, 39.4% are allocated
to the “Known in DrugBank”, 25.2% to the “Un-
known candidates” and 35.5% to the “Invalid” cat-
egory. The smallest difference in the results of
both methods is observed in the “Invalid” ratio
which suggests that our utilized NER-models per-
form similar in accuracy. The biggest difference
is noticed between the ratios of “Unknown candi-



dates”, which could imply a lesser quality of the
provided drug repositioning candidates of Method
2, but also a higher proportion of previously un-
known candidates with a possible high potential to
combat existing inconsistencies in DrugBank. In
summary, both methods prove to be able to iden-
tify new drug repositioning candidates while still
upholding a representative amount of candidates
known to DrugBank. The successful extraction of
recent trial therapeutics for GBM, e.g. tasadeno-
turev (dnatrix.com, 2022), shows the great potential
of unstructured text data for filling potential gaps
in databases. Contrary, some candidates known
to DrugBank are missing in our results, e.g. the
anti-tumor agent abemaciclib.

4 Limitations & further Research

One great limitation of our research is that we used
mostly unspecified association relationships be-
tween the entities from text data, with the exception
of the start association pairs of Method 2, to predict
our repositioning candidates. Most associations are
not analyzed based on their exact semantic con-
nections, such as their possible causalities as well
as their positive or negative relationships. Thus,
many of the candidates identified can also have an
effect in promoting the tumor being false positives.
Also, ScispaCy only provides a limited number of
specialized NER models with lower accuracy than
other available models from e.g. “Stanza” (Zhang
et al., 2021) or “SparkNLP” (Kocaman and Talby,
2021).

In our future reserach we will employ our meth-
ods on clinical or medical full-texts from PubMed
Central in addition to clinical studies from Clin-
icalTrials using a much more expanded data set.
To enhance the quality of our methods, more so-
phisticated NER models from SparkNLP will be
considered. Furthermore, an additional evaluation
of our results by experts will be included.
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