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Abstract

Most previous work in music emotion recog-
nition assumes a single or a few song-level
labels for the whole song. While it is known
that different emotions can vary in intensity
within a song, annotated data for this setup is
scarce and difficult to obtain. In this work, we
propose a method to predict emotion dynam-
ics in song lyrics without song-level super-
vision. We frame each song as a time series
and employ a State Space Model (SSM), com-
bining a sentence-level emotion predictor with
an Expectation-Maximization (EM) procedure
to generate the full emotion dynamics. Our
experiments show that applying our method
consistently improves the performance of
sentence-level baselines without requiring any
annotated songs, making it ideal for lim-
ited training data scenarios. Further analysis
through case studies shows the benefits of our
method while also indicating the limitations
and pointing to future directions.

1 Introduction

Music and emotions are intimately connected,
with almost all music pieces being created to ex-
press and induce emotions (Juslin and Laukka,
2004). As a key factor of how music conveys
emotion, lyrics contain part of the semantic infor-
mation that the melodies cannot express (Besson
et al., 1998). Lyrics-based music emotion recog-
nition has attracted increasing attention driven
by the demand to process massive collections of
songs automatically, which is an important task
for streaming and media service providers (Kim
et al., 2010; Malheiro et al., 2016; Agrawal et al.,
2021).

Vanilla emotion recognition studies in Natu-
ral Language Processing (NLP) assume the text
instance expresses a static and single emotion

∗Work done when the first author was at The University
of Melbourne.

(Mohammad and Bravo-Márquez, 2017; Nozza
et al., 2017; Mohammad et al., 2018). How-
ever, emotion is non-static and highly correlated
with the contextual information, making the
single-label assumption too simplistic in dynamic
scenarios, not just in music (Schmidt and Kim,
2011) but also in other domains such as conver-
sations (Poria et al., 2019b). Figure 1 shows an
example of this dynamic behavior, where the in-
tensities of three different emotions vary within
a song. Accurate emotion recognition systems
should ideally generate the full emotional dynam-
ics for each song, as opposed to simply predicting
a single label.

A range of datasets and corpora for modeling
dynamic emotion transitions has been developed
in the literature (McKeown et al., 2011; Li et al.,
2017; Hsu et al., 2018; Poria et al., 2019a; Firdaus
et al., 2020), but most of them do not use song
lyrics as the domain and assume discrete, cat-
egorical labels for emotions (either the pres-
ence or absence of one emotion). To the best of
our knowledge, the dataset from Mihalcea and
Strapparava (2012) is the only one that provides
full fine-grained emotion intensity annotations for
song lyrics at the verse1 level. The lack of large-
scale datasets for this task poses a challenge for
traditional supervised methods. While previous
work proposed methods for the similar sequence-
based emotion recognition task, they all assume
the availability of some levels of annotated data
at training time, from full emotion dynamics
(Kim et al., 2015) to coarse, discrete document-
level labels (Täckström and McDonald, 2011b).

The data scarcity problem motivates our main
research question: ‘‘Can we predict emotion dy-
namics in song lyrics without requiring annotated
lyrics?’’ In this work, we claim that the an-
swer is affirmative. To show this, we propose

1According to Mihalcea and Strapparava (2012), a
‘‘verse’’ is defined as a sentence or a line of lyrics.
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Figure 1: An illustration of emotion dynamics of a
song in the LYRICSEMOTIONS dataset of Mihalcea and
Strapparava (2012). Note the intensities of each
emotion vary from verse to verse within the song.

a method consisting of two major stages: (1) a
sentence or verse-level regressor that leverages
existing emotion lexicons, pre-trained language
models and other sentence-level datasets, and (2)
a State Space Model (SSM) that constructs a
full song-level emotional dynamics given the ini-
tial verse-level scores. Intuitively, we treat each
verse as a time step and the emotional intensity
sequence as a latent time series that is inferred
without any song-level supervision, directly ad-
dressing the limited data problem. To the best
of our knowledge, this scenario was never ad-
dressed before either for song lyrics or other
domains.

To summarize, our main contributions are:

• We propose a hybrid approach for verse-level
emotion intensity prediction that combines
emotion lexicons with a pre-trained language
model (BERT [Devlin et al., 2019] used in
this work), which is trained on available
sentence-level data.

• We show that by using SSMs to model
song-level emotion dynamics, we can im-
prove the performance of the verse-level
approach without requiring any annotated
lyrics.

• We perform a qualitative analysis of our
best models, highlighting its limitations and
pointing to directions for future work.

2 Background and Related Work

Emotion Models. Human emotion is a long-
standing research field in psychology, with many

studies aiming at defining a taxonomy for emo-
tions. In NLP, emotion analysis mainly employs
the datasets which are annotated based on the
categorical or the dimensional model.

The categorical model assumes a fixed set of
discrete emotions that can vary in intensity. Emo-
tions can overlap but are assumed to be separate
‘‘entities’’ from each other, such as anger, joy, and
surprise. Taxonomies using the categorical model
include Ekman’s basic emotions (Ekman, 1993),
Plutchik’s wheel of emotions (Plutchik, 1980),
and the OCC model (Ortony et al., 1988). The di-
mensional models place emotions in a continuous
space: The VAD (Valence, Arousal, and Domi-
nance) taxonomy of Russell (1980) is the most
commonly used in NLP. In this work, we focus
on the Ekman taxonomy for purely experimental
purposes, as it is the one used in the available data
we employ. However, our approach is general and
could be applied to other taxonomies.

Dynamic Emotion Analysis. Emotion Recog-
nition in Conversation (ERC, Poria et al., 2019b),
which focuses on tracking dynamic shifts of emo-
tions, is the most similar task to our work. Within
a conversation, the emotional state of each utter-
ance is influenced by the previous state of the party
and the stimulation from other parties (Li et al.,
2020; Ghosal et al., 2021). Such an assumption
of the real-time dynamic emotional changes also
exists in music: The affective state of the cur-
rent lyrics verse is correlated with the state of the
previous verse(s) as a song progresses.

Contextual information in the ERC task is gen-
erally captured by deep learning models, which
can be roughly categorized into sequence-based,
graph-based and reinforcement learning-based
methods. Sequence-based methods encode con-
versational context features using established meth-
ods like Recurrent Neural Networks (Poria et al.,
2017; Hazarika et al., 2018a,b; Majumder et al.,
2019; Hu et al., 2021) and Transformer-based ar-
chitectures (Zhong et al., 2019; Li et al., 2020).
They also include more advanced and tailored
methods such as Hierarchical Memory Network
(Jiao et al., 2020), Emotion Interaction Network
(Lu et al., 2020), and Causal Aware Network (Zhao
et al., 2022). Graph-based methods apply spe-
cific graphical structures to model dependencies in
conversations (Ghosal et al., 2019; Zhang et al.,
2019; Lian et al., 2020; Ishiwatari et al., 2020;
Shen et al., 2021) using Graph Neural Networks
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(Kipf and Welling, 2017). Reinforcement Learn-
ing (RL)-based methods (Zhang et al., 2021;
Huang et al., 2021) model the influence of the
previous emotional state on current utterance’s
emotion by using agent-environment nature of
dialogue systems. In contrast to these methods,
we capture contextual information using a SSM,
mainly motivated by the need for a method that
can train without supervision. Extending and/or
combining an SSM with a deep learning model
is theoretically possible but non-trivial, and care
must be taken in a low-data situation such as ours.

The time-varying nature of music emotions
has been investigated in music information re-
trieval (Caetano et al., 2012). To link the human
emotions with the music acoustic signal, the
emotion distributions were modeled as 2D Gaus-
sian distributions in the Arousal-Valence (A-V)
space, which were used to predict A-V responses
through multi-label regression (Schmidt et al.,
2010; Schmidt and Kim, 2010). Building on pre-
vious studies, Schmidt and Kim (2011) applied
structured prediction methods to model complex
emotion-space distributions as an A-V heatmap.
These studies focus on the mapping between emo-
tions and acoustic features/signals, while our work
focuses on the lyrics component. Wu et al. (2014)
developed a hierarchical Bayesian model that uti-
lized both acoustic and textual features, but it was
only applied to predict emotions as discrete la-
bels (presence or absence) instead of fine-grained
emotion intensities as in our work.

Combining Pre-trained Language Models with
External Knowledge. Pre-trained language
models (LMs) including BERT (Devlin et al.,
2019), XLNet (Yang et al., 2019), and GPT
(Brown et al., 2020) have achieved state-of-
the-art performance in numerous NLP tasks.
Considerable effort has been made towards com-
bining context-sensitive features of LMs with
factual or commonsense knowledge from struc-
tured sources, including commonsense knowl-
edge (Zhong et al., 2019; Ghosal et al., 2020),
domain-specific knowledge (Ying et al., 2019),
structured semantic information (Zhang et al.,
2020), language-specific knowledge (Alghanmi
et al., 2020; De Bruyne et al., 2021), and
linguistic features (Koufakou et al., 2020; Mehta
et al., 2020). This auxiliary knowledge is usually
infused into the architecture by concatenating
them with the Transformer-based representation

before the prediction layer for downstream tasks.
Our method proposes to utilize the rule-based rep-
resentations derived from a collection of affective
lexicons to improve the performance of BERT
by incorporating task-specific knowledge. The
motivation for our proposal is the hypothesis that
the extension of lexicon-based information will
compensate for BERT’s lack of proper represen-
tations of semantic and world knowledge (Rogers
et al., 2021), making the model more stable across
domains.

State Space Models. In NLP tasks such as
Part-of-Speech (POS) tagging and Named En-
tity Recognition, contextual information is widely
acknowledged to play an important role in predic-
tion. This led to the adoption of structured pre-
diction approaches such as Hidden Markov Model
(HMM, Rabiner and Juang, 1986), Maximum
Entropy Markov Model (MEMM, McCallum
et al., 2000), and Conditional Random Field
(CRF, Lafferty et al., 2001), which relate a set
of observable variables to a set of latent variables
(e.g., words and their POS tags). State Space Mod-
els are similar to HMMs but assume continuous
variables. The Linear Gaussian SSM (LG-SSM) is
a particular case of SSM in which the conditional
probability distributions are Gaussian.

Following the notation from Murphy (2012,
Chap. 18), we briefly introduce the LG-SSM that
we employ in our work. LG-SSMs assume a se-
quence of observed variablesy1:T as input, and the
goal is to draw inferences about the corresponding
hidden states z1:T , where T is the length of the
sequence. Their relationship is given at each step
t by the equations as:

zt = Azt−1 + εt, εt ∼ N (0,Q)

yt = Czt + δt, δt ∼ N (0,R)

where Θ = (A,C,Q,R) are the model parame-
ters, εt is the system noise and δt is the observation
noise. The equations above are also referred to
as transition2 and observation equations, respec-
tively. Given Θ and a sequence y1:T , the goal is
to obtain the posteriors p(zt) for each step t. In
an LG-SSM, this posterior is Gaussian and can be
obtained in closed form by applying the celebrated
Kalman Filter (Kalman, 1960).

2We omit control matrix B and control vector ut in the
transition equation, assuming no external influence.
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There are other latent variable models to es-
timate temporal dynamics of emotions and senti-
ments in product reviews (McDonald et al., 2007;
Täckström and McDonald, 2011a,b) and blogs
(Kim et al., 2015). McDonald et al. (2007) and
Täckström and McDonald (2011a,b) combined
document-level and sentence-level supervision as
the observed variables to condition on the latent
sentence-level sentiment. Kim et al. (2015) intro-
duced a continuous variable yt to solely determine
the sentiment polarity zt, while zt is conditioned
on both yt and zt−1 for each t in the LG-SSM.

3 Method

We propose a two-stage method to predict emotion
dynamics without requiring annotated song lyrics.
The first stage is a verse-level model that predicts
initial scores for each verse, where we use a hybrid
approach combining lexicons and sentence-level
annotated data from a different domain (§ 3.1).
The second stage contextualizes these scores in the
entire song, incorporating them into an LG-SSM
trained in an unsupervised way (§ 3.2).

Task Formalization. Let dyx indicate the real-
valued intensity of emotion y for sentence/verse
x, where x ∈ X and y ∈ Y . Note that Y =
{y1, y2, . . . , yc} is a set of c labels, each of which
represents one of the basic emotions (c = 6 for
the datasets we used). Given a source dataset Ds

= {(x1, E1), (x2, E2), . . . , (xM , EM )}, where xi
is a sentence, Ei = {dy1xi , d

y2
xi , . . . , d

yc
xi} and M =

|Ds|. The target dataset isDt = {S1, S2, . . . , S|Dt|},
where |Dt| is the number of sequences (i.e.,
songs) and Si = {(v1, E1), (v2, E2), . . . , (v|Si|,
E|Si|)} is a song consisting of |Si| verses. In the
song Si, the j-th verse vj is also associated with
c emotion intensities as Ej = {dy1vj , d

y2
vj , . . . , d

yc
vj}.

Given the homogeneity of label spaces of Ds

and Dt, the model trained by using Ds can be
applied to predict Dt directly. The output of
verse-level model is the emotion intensity predic-
tions Ŷ ∈ R

N×c, where N is the total number of
verses in Dt. Finally, we use Ŷ as the input se-
quences of the song-level model to produce opti-
mized emotion intensity sequences Ẑ ∈ R

|Dt|×c.

3.1 Verse-Level Model
Emotion lexicons provide information on associa-
tions between words and emotions (Ramachandran
and de Melo, 2020), which are beneficial in recog-
nizing textual emotions (Mohammad et al., 2018;

Zhou et al., 2020). Given that we would like to
acquire accurate initial predictions at the verse
level, we opted for a hybrid methodology that
combines learning-based and lexicon-based ap-
proaches to enhance feature representation.

Overview. The verse-level model architecture
is called BERTLex, as illustrated in Figure 2. It
consists of three phases: (1) the embedding phase,
(2) the integration phase, and (3) the prediction
phase. In the embedding phase, the input sequence
is represented as both contextualized embeddings
from BERT and static word embeddings from
lexicons. In the integration phase, contextualized
and static word embeddings are concatenated at
the sentence level by taking the pooling opera-
tions on the two embeddings separately. The pre-
diction phase encodes the integrated sequence of
feature vectors and performs the verse-level emo-
tion intensity regression by using the Ds as the
training/development set and the Dt as the test set.

Embedding Phase. The input sentence S is to-
kenized in two ways: one for the pre-trained lan-
guage model and the other for the lexicon-based
word embedding. These two tokenized sequences
are denoted as T cxt and T lex, respectively. Then,
T cxt is fed into the pre-trained language model
to produce a sequence of contextualized word
embeddings Ecxt = {e1, e2, . . . , e|T cxt|}, where
Ecxt ∈ R

|T cxt|×Dcxt and Dcxt is the embedding
vector dimension.

To capture task-specific information, a lexicon
embedding layer encodes a sequence of emo-
tion and sentiment word associations for T lex,
generating a sequence of lexicon-based embed-
dings Elex = {�1, �2, . . . , �|T lex|}, where Elex ∈
R

|T lex|×Dlex and Dlex is the lexical embedding
vector dimension. We first build the vocabulary
V from the text of Ds and Dt. For each word vi

in V of T lex, we use d lexicons to generate the
rule-based feature vectors �i = {�i1 , �i2 , . . . , �id},
where �ij is the lexical feature vector for word
vi derived from the j-th lexicon and Dlex = |�i|.
Additionally, we perform a degree-p polynomial
expansion on the feature vector �ij .

Integration Phase. As BERT uses the Word-
Piece tokenizer (Wu et al., 2016) to split a num-
ber of words into a sequence of subwords, the
contextualized embedding cannot be directly con-
catenated with the different-size static word em-
bedding. Inspired by Alghanmi et al. (2020), we
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Figure 2: BERTLex architecture used for the verse-level model.

combine contextualized embeddings and static
word embeddings at the sentence level by pooling
the two embeddings Ecxt and Elex separately. To
perform initial feature extraction from the raw
embeddings, we apply a single-layer 1D Convo-
lutional Neural Network (Kim, 2014, CNN) with
ReLU activation (Nair and Hinton, 2010) on each
embedding as:

e′i = ReLU(W1[ei, ei+1, . . . , ei+k−1] + b1)

�′i = ReLU(W2[�i, �i+1, . . . , �i+k−1] + b2)

where W1, b1, W2 and b2 are trainable param-
eters and k is the kernel size. We then apply the
average pooling and max pooling on the feature
maps, respectively:

Ẽcxt = AvgPool(e′1, e
′
2, . . . , e

′
|T cxt|−k+1).

Ẽlex = MaxPool(�′1, �
′
2, . . . , �

′
|T lex|−k+1).

Finally, the contextualized embedding and the
lexicon-based embedding are merged via a con-
catenation layer as Ẽcxt ⊕ Ẽlex.

Prediction Phase. The prediction phase outputs
the emotion intensity predictions Ŷ = {ŷ1, ŷ2,
. . . , ŷN} by using a single dropout (Srivastava
et al., 2014) layer and a linear regression layer.
During training, the mean squared error loss
is computed and backpropagated to update the
model parameters.

3.2 Song-Level Model

After obtaining initial verse-level predictions,
the next step involves incorporating these into
a song-level model using an LG-SSM. We take
one emotion as an example. Specifically, we con-
sider the predicted scores of this emotion of each
song as an observed sequence ŷi. That is, we
group the N predictions of Ŷ as |Dt| sequences
of predictions as {ŷ1, ŷ2, . . . , ŷ|Dt|}. For the i-th
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Algorithm 1: Kalman Filter
Input : yt, ẑt−1,Σt−1,A,C,Q,R
Output: ẑt,Σt

PREDICTION:
ẑt|t−1 = Aẑt−1;
Σt|t−1 = AΣt−1A

T +Q;
MEASUREMENT:

r̃t = yt −Cẑt|t−1;
St = CΣt|t−1C

T +R ;
Kt = Σt|t−1C

TS−1
t ;

ẑt = ẑt|t−1 +Ktr̃t;
Σt = (I−KtC)Σt|t−1 ;

return ẑt,Σt

song, the observed sequence ŷi = y1:T is then
used in an LG-SSM to obtain the latent sequence
ẑ1:T that represents the song-level emotional
dynamics, where T is the number of verses in
the song.

Standard applications of LG-SSM assume a
temporal ordering in the sequence. This means
that estimates of p(ẑt) should only depend on the
observed values up to the verse step t (i.e., y1:t),
which is the central assumption of the Kalman
Filter algorithm. Given the sequence of observa-
tions, we recursively apply the Kalman Filter to
calculate the mean and variance of the hidden
states, whose computation steps are displayed in
Algorithm 1.

Since we have obtained initial predictions for
all verses in a song, we can assume that observed
emotion scores are available for the sequence of an
entire song a priori. In other words, we can include
the ‘‘future’’ data (i.e., yt+1:T ) to estimate the
latent posteriors p(ẑt). This is achieved by using
the Kalman smoothing algorithm, also known as
RTS smoother (Rauch et al., 1965), shown in
Algorithm 2.

As opposed to most other algorithms, the
Kalman Filter and Kalman Smoother algorithms
are used with already known parameters. Hence,
learning the SSM involves estimating the pa-
rameters Θ. If a set of ground truth values
for the complete z1:T is available, they can be
learned using a Maximum Likelihood Estimation
(MLE). If only the noisy, observed sequences
y1:T are present, the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) provides
an iterative method for finding the MLEs of Θ
by successively maximizing the conditional ex-

Algorithm 2: Kalman Smoother
Input : y1:T ,A,C,Q,R
Output: ẑt|T ,Σt|T
for t ← 1 to T by 1 do

Apply the Kalman Filter (refer to
Algorithm 1);

end
return ẑT |T ,ΣT |T ;
for t ← T to 1 by 1 do

Jt = Σt|tA
TΣ−1

t+1|t ;
ẑt|T = ẑt|t + Jt(ẑt+1|T − ẑt+1|t) ;
Σt|T = Σt|t + Jt(Σt+1|T −Σt+1|t)J

T
t ;

end
return ẑT :1|T ,ΣT :1|T ,JT :1 ;

pectation of the complete data likelihood until
convergence.

4 Experiments

Our experiments aim to evaluate the method pro-
posed to predict the emotional dynamics of song
lyrics without utilizing any annotated lyrics data.
We introduce datasets, lexicon resources, and the
evaluation metric used (§4.1), and discuss the im-
plementation details and experiment settings of
the verse-level model (§4.2) and the song-level
model (§4.3).

4.1 Datasets and Evaluation

LyricsEmotions. This corpus was developed by
Mihalcea and Strapparava (2012), consisting of
100 popular English songs with 4,975 verses in
total. The number of verses for each song varies
from 14 to 110. The LYRICSEMOTIONS dataset was
constructed by extracting the parallel alignment
of musical features and lyrics from MIDI tracks.
These lyrics were annotated using Mechanical
Turk at verse level with real-valued intensity
scores ranging from 0 to 10 of six Ekman’s emo-
tions (Ekman, 1993): ANGER, DISGUST, FEAR,
JOY, SADNESS, and SURPRISE. Given that
our goal is to predict emotions without relying
on song-level dynamics, we use this dataset for
evaluation purposes only.

NewsHeadlines. To train the verse-level
model, we employ the NEWSHEADLINES3 dataset

3http://web.eecs.umich.edu/ mihalcea
/affectivetext/.
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Scope Size (PT) Label Reference

NRC-Emo-Int Emotion 1 (4) Numerical Mohammad (2018)
SentiWordNet Sentiment 2 (10) Numerical Esuli and Sebastiani (2007)
NRC-Emo-Lex Emotion 1 (4) Nominal Mohammad and Turney (2013)
NRC-Hash-Emo Emotion 1 (4) Numerical Mohammad and Kiritchenko (2015)
Sentiment140 Sentiment 3 (20) Numerical Mohammad et al. (2013)
Emo-Aff-Neg Sentiment 3 (20) Numerical Zhu et al. (2014)
Hash-Aff-Neg Sentiment 3 (20) Numerical Mohammad et al. (2013)
Hash-Senti Sentiment 3 (20) Numerical Kiritchenko et al. (2014)
DepecheMood Emotion 8 (165) Numerical Staiano and Guerini (2014)

Table 1: Lexicons used to build lexicon-based feature vectors: PT is the size of feature vector after
polynomial feature expansion.

(Strapparava and Mihalcea, 2007), which is a
collection of 1,250 news headlines. Each head-
line is annotated with six scores ranging from 0
to 100 for each of Ekman’s emotions and one
score ranging from −100 to 100 for valence.

Lexicons. Following Goel et al. (2017) and
Meisheri and Dey (2018), we use nine emotion
and sentiment related lexicons to obtain the fea-
ture vectors from the text in NEWSHEADLINES and
LYRICSEMOTIONS, summarized in Table 1.

Evaluation. In line with Mihalcea and
Strapparava (2012), we use the Pearson corre-
lation coefficient (r) as the evaluation metric to
measure the correlation between the predictions
and ground truth emotion intensities. To assess
statistical significance, we conduct the Williams
test (Williams, 1959) in the differences between
the Pearson correlations of each pair of models.

For baselines, our method is unsupervised at
the song level, and we are not aware of previ-
ous work that tackles similar cases. Therefore, we
use the results of the verse-level model as our
main baseline. We argue that this is a fair base-
line since the SSM-based model does not require
additional data.

4.2 Verse-level Experiments

Setup. For the pre-trained model, we choose
the BERTbase uncased model in English with
all parameters frozen during training. All models
are trained on an NVIDIA T4 Tensor Core GPU
with CUDA (version 11.2).

BERTLex. The sequence of token embed-
dings, including [CLS] and [SEP] at the output

of the last layer of the BERTbase model, is fed
into a Conv1D layer with 128 filters and a kernel
size of 3, followed by a 1D global average pool-
ing layer.

We concatenate nine vector representations for
every word in the established vocabulary by using
the lexicons in Table 1 in the identical order
to form a united feature vector. As a result, the
whole word embedding has shape (3309, 25),
where 3309 is the vocabulary size and 25 is the
number of lexicon-based features. To validate the
benefit of adding polynomial features, we also
perform a polynomial expansion with a degree of
3, extending the shape of vector representations
to (3309, 267). Then, static word embeddings are
fed a Conv1D layer with 128 filters and a kernel
size of 3, followed by a global max-pooling layer.

The two pooled vectors are then concatenated
through a Concatenate layer. The verse-level emo-
tion intensities are predicted by using a Linear
layer with a single neuron4 for regression.

Training. Instead of using the standard
train/dev/test split of the NEWSHEADLINES dataset,
we apply 10-fold cross-validation to tune
the hyperparameters of BERT-based models.
Empirically tuned hyperparameters are listed
in Table 2 and are adopted in the subsequent
experiments. After tuning, the final models using
this set of hyperparameters are trained on the full
NEWSHEADLINES data. We use an ensemble of five
runs, taking the mean of the predictions as the
final output.

4We experimented with a multi-task model that predicted
all six emotions jointly, but preliminary results showed that
building separate models for each emotion performed better.
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Parameters Value

Dropout rate 0.1
Optimizer Adam
Learning rate 2e-5
β1 / β2 0.9 / 0.999
Batch size 32

Table 2: Hyperparameter settings
of BERT and CNN models.

4.3 Song-Level Experiments

We apply the library pykalman (version
0.9.2),5 which implements the Kalman Filter,
the Kalman Smoother, and the EM algorithm to
train SSMs. We fix the initial state mean as the
first observed value in the sequence (i.e., each
song’s first verse-level prediction) and the ini-
tial state covariance as 2. We then conduct
experiments with several groups of parameters
transition matrices A, transition covariance Q,
observation matrices C, and observation covari-
ance R to initialize the Kalman Filter and Kal-
man Smoother. For parameter optimization, we
experiment n iter = {1,3,5,7,10} to control the
number of EM algorithm iterations. Additionally,
we apply 10-fold cross-validation when optimiz-
ing parameters via EM, which means each fold
(containing 10 songs) is processed by a Kalman
Filter or Kalman Smoother defined by the opti-
mal parameters that we obtained from training
on the other folds (containing 90 songs).

5 Results and Analysis

In this section, we first compare the results of
our lexicon-based, learning-based and hybrid
methods at the verse level (§ 5.1). We then pro-
vide the results of the song-level models and
investigate the impact of the initial predictions
from verse-level models, SSM parameters, and
parameter optimization (§ 5.2). We addition-
ally show the qualitative case analysis results
to understand our model’s abilities and short-
comings (§ 5.3). Finally, we compare the results
of supervised and unsupervised methods on
LYRICSEMOTIONS (§ 5.4).

5https://github.com/pykalman/pykalman.

5.1 Results of Verse-level Models

Table 3 shows the results of verse-level mod-
els on NEWSHEADLINES (average of 10-fold cross-
validation) and LYRICSEMOTIONS (as a test set).6

The domain difference is significant in news
and lyrics, as we can observe from the different
performance of the BERT-based models on the
two datasets. Overall, our BERTLex method out-
performs the lexicon-only and BERT-only base-
lines and reaches the highest Pearson score (0.503,
BERTLexpoly for JOY) in LYRICSEMOTIONS.

Having a closer look at the results of LYRICS-
EMOTIONS, we also observe the following:

• The addition of lexicons for incorporating
external knowledge consistently promotes
the performance of BERT-based models.

• BERTLex models that add polynomial fea-
ture expansion are better than those that do
not, when using LYRICSEMOTIONS as a test
set (except for DISGUST). However, in the
cross-validation of NEWSHEADLINES, the mod-
els without polynomial features outperform
those with.

5.2 Results of Song-level Models

Extensive experiments confirm that our song-level
models utilizing the Kalman Filter and Kalman
Smoother can improve the initial predictions from
verse-level models (see Table 4 and Table 5).
The LG-SSMs with EM-optimized parameters al-
ways perform better than those without using
EM. Furthermore, the performance improvements
of the strongest SSMs from their corresponding
verse-level baselines are statistically significant
at 0.05 confidence (marked with *), except for
SURPRISE.

Theoretically, the Kalman Smoother is sup-
posed to perform better than the Kalman Filter,
since the former uses all observations in the whole
sequence. According to our experimental results,
however, the best-performing algorithm depends
on emotion. Furthermore, applying EM consis-
tently improves the results of SSMs that use the
initial values, except for SURPRISE.

6We perform five runs with different random seeds, using
the mean, median, maximum or minimum to pool the results.
Here we show the result of the best pooling method, but in
practice we did not see any significant difference compared
to the mean pooling.
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Dataset ANG DIS FEA JOY SAD SUR

Lexicon only NHcv 0.197 0.106 0.231 0.219 0.112 0.056
LEcv 0.212 0.091 0.185 0.209 0.175 0.031

BERT only NHcv 0.740 0.651 0.792 0.719 0.808 0.469
LEtest 0.311 0.261 0.314 0.492 0.306 0.071

BERTLex NHcv 0.865 0.828 0.840 0.858 0.906 0.771
LEtest 0.340 0.287 0.336 0.472 0.338 0.066

BERTLexpoly NHcv 0.838 0.788 0.833 0.840 0.885 0.742
LEtest 0.345 0.268 0.350 0.503 0.350 0.089

Table 3: Pearson correlations between ground truth labels and predictions of the verse-level models
in the NEWSHEADLINES (NH) and LYRICSEMOTIONS (LE) datasets: The subscript cv means the average
results of the 10-fold cross-validation experiments, and the subscript test means the results of using
the dataset as the test set.

ANG DIS FEA JOY SAD SUR

BERTLex 0.338 0.280 0.336 0.468 0.338 0.066

Filter 0.359∗ 0.287∗ 0.352∗ 0.498∗ 0.361∗ 0.069
Smoother 0.362∗ 0.282 0.352∗ 0.501∗ 0.366∗ 0.064
Filter-EM 0.396∗ 0.293∗ 0.357∗ 0.522∗ 0.387∗ 0.069
Smoother-EM 0.405∗ 0.280 0.339 0.522∗ 0.385∗ 0.060

BERTLexpoly 0.315 0.261 0.350 0.503 0.347 0.083

Filter 0.334∗ 0.267 0.367∗ 0.538∗ 0.374∗ 0.088
Smoother 0.332∗ 0.258 0.368∗ 0.542∗ 0.380∗ 0.082
Filter-EM 0.358∗ 0.270∗ 0.371∗ 0.568∗ 0.405∗ 0.087
Smoother-EM 0.356∗ 0.251 0.355 0.570∗ 0.405∗ 0.079

Table 4: Pearson correlations between ground truth emotion intensities and predictions of BERTLex
models and SSMs, respectively. The default parameters in pykalman are used: A = 1, Q = 1, C = 1,
R = 5, and n iter = 10.

Combining the results in Table 3, Table 4,
and Table 5, we observe that all models perform
poorly when predicting the emotion intensities of
SURPRISE (r < 0.1). The overall worst results
for SURPRISE can also be observed from other
work in LYRICSEMOTIONS and NEWSHEADLINES as
well as similar work in different datasets anno-
tated with the Ekman taxonomy. SURPRISE has
significantly lower inter-annotator agreement than
other emotions (Strapparava and Mihalcea, 2007;
Schuff et al., 2017; Buechel and Hahn, 2017; Dang
et al., 2021; Edmonds and Sedoc, 2021), which
implies that SURPRISE is especially difficult to
model and occurs less frequently (Mohammad
et al., 2018; Bostan and Klinger, 2018). This
might indicate the underlying problems in the

definition of SURPRISE as an emotion category
(Schuff et al., 2017).

Impact of Verse-level Predictions. The per-
formance of applying Kalman Filter, Kalman
Smoother, and EM algorithm are associated with
the initial scores predicted by verse-level models.
For the same emotion, we compare the results
based on the mean predictions of the BERTLex
models with and without polynomial expansion on
lexical features, respectively (shown in Table 4).
We observe that the higher the Pearson correla-
tion between the ground truth and the verse-level
predictions, the more accurate the estimates ob-
tained after using LG-SSMs accordingly. The
strongest SSMs also differ with the different types
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ANG DIS FEA JOY SAD SUR

A = 0.5
Filter 0.265 0.223 0.350 0.455 0.351 0.074
Smoother 0.277 0.223 0.351 0.471 0.362∗ 0.071
Filter-EM 0.357∗ 0.273∗ 0.373∗ 0.563∗ 0.397∗ 0.089
Smoother-EM 0.360∗ 0.262 0.364∗ 0.569∗ 0.402∗ 0.083

A = 2
Filter 0.354∗ 0.270 0.369∗ 0.560∗ 0.393∗ 0.085
Smoother 0.075 0.055 0.160 0.205 0.174 0.003
Filter-EM 0.355∗ 0.272∗ 0.375∗ 0.562∗ 0.399∗ 0.089
Smoother-EM 0.358∗ 0.260 0.364∗ 0.568∗ 0.403∗ 0.083

Table 5: Pearson correlations between ground truth and SSMs with different values of transition matri-
ces A, based on BERTLexpoly models (as listed in the bottom half of Table 4). The other parameters
are fixed as Q = 1, C = 1, R = 5, and n iter = 5.

of emotions and initial predictions, as denoted
in boldface.

Impact of Initial Parameters. The results of
Kalman Filter and Kalman Smoother are sensitive
to the initial model parameters. As displayed in
Table 5, when we only change the value of tran-
sition matrices A and fix the other parameters,
running either the Filter or Smoother can actually
decrease the performance. Fortunately, this kind
of diminished performance can be diluted by op-
timizing the parameters with an EM algorithm.

Impact of Parameter Optimization. For either
Kalman Filter or Kalman Smoother, using EM
to optimize the parameters increases Pearson’s r
in most cases. Through experiments, the number
of iterations does not significantly influence the
performance of the EM algorithm, and 5 ∼ 10
iterations usually produce the strongest results.

5.3 Qualitative Case Studies

Domain Discrepancy. As displayed in Sec-
tion 5.2, the Pearson scores between the ground-
truth labels and estimates of SURPRISE are
lower than 0.1, which means our verse-level and
song-level models both underperform in predict-
ing this emotion. Upon closer inspection, we
observe that there are a great number of zeros
in the ground-truth annotations of SURPRISE in
the target domain dataset. For example, Figure 3
shows the emotion curves of If You Love Some-
body Set Them Free by Sting, where all the
ground-truth labels of SURPRISE are zeros in
the whole song. Statistically, there are 1,933 zeros

Figure 3: The SURPRISE emotion intensities of
ground truth (all zeros), BERTLex model, and SSM
in an example song.

out of 4,975 (38.85%) SURPRISE ground truth
labels in LYRICSEMOTIONS but only 148 of 1,250
(11.84%) zeros in NEWSHEADLINES. The models
trained on NEWSHEADLINES would not assume such
a large absences of SURPRISE when predicting
for LYRICSEMOTIONS. This domain discrepancy
clearly affects the performance of our method.

Characteristics of Kalman Filter and Kalman
Smoother. Our experiments indicate that ini-
tial predictions of at least 50 to 70 of 100 songs
have been enhanced after modeling them with
LG-SSMs. We summarize two trending types
from the emotional dynamics of the songs whose
predictions are weakened by LG-SSMs. One is
that the ground truth emotional dynamics fluc-
tuate more sharply than those of the verse-level
predictions, as displayed in the first and the second
sub-figures in Figure 4. The other is the opposite
that verse-level models produce an emotion in-
tensity curve with more sudden changes than the
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Figure 4: Emotional dynamics of ANGER, DISGUST
and SURPRISE in Bad Romance by Lady Gaga:
Pearson’s r between ground truth and predictions of
BERTLexpoly , estimates of Kalman Filter, are reported,
respectively.

ground truth (see the third sub-figure in Figure 4).
The emotional dynamics trend of estimates by
song-level models is similar to verse-level mod-
els. Due to the Gaussian assumption, Kalman
Filter and Kalman Smoother tend to flatten or
smooth the curves of verse-level predictions. This
means that applying LG-SSMs can somewhat
reduce errors in the second type of emotion dy-
namic curves. For the first type, however, the
Kalman Filter and Kalman Smoother make the
results worse, as smoother estimations are not
desirable in this situation.

Using Text Solely. The lyrics in LYRICSEMO-
TIONS are synchronized with acoustic features,
where some verses with identical text are labeled
as different emotional intensities. For instance,
in Table 6, the verse ‘‘When it rain and rain,
it rain and rain’’ repeats multiple times in the
song Rain by Mika, and their ground truth SAD-
NESS labels differ in different verses due to the
melody. However, the verse-level models can
only produce the same predictions since these
verses contain the same text, and the models do
not consider the context of the whole song. Con-
sequently, the emotion scores of different verses

Verse ID Truth BERTLex Smoother-EM

s55v15 4.33 8.65 1.68
s55v31 7.66 8.65 1.68
s55v32 7.33 8.65 1.63

Table 6: SADNESS scores of verses with the
same lyrics verse ‘‘When it rain and rain, it rain
and rain’’ but different ground truth labels in
the song.

ANG DIS FEA

BERTLex 0.837 0.736 0.790
SSM 0.405 0.293 0.375

JOY SAD SUR

BERTLex 0.879 0.831 0.739
SSM 0.570 0.405 0.089

Table 7: Pearson correlations of predictions
from supervised BERTLex models (10-fold cross
validation) and predictions of the best SSMs.

predicted by LG-SSMs are close, as the results
of song-level models are highly related to the
initial predictions from BERTLex.

5.4 Comparison with a Supervised Model

Our last experiment aims to understand the
degree of difficulty in solving the task by training
a supervised model, which serves as a perfor-
mance upper bound. We keep the same 10-fold
cross-validation splits, but now use the training
folds to fine-tune a BERTLex model at the verse
level.

We compare the results of the supervised model
with our best results of song-level models in
Table 7, showing there is still a substantial per-
formance gap in all emotions. In particular, the
supervised model shows strong numbers forSUR-
PRISE, the most challenging emotion to predict
in our experiments. While our SSM models have
the benefit of being readily applicable to new do-
mains (such as songs in genres other than pop and
languages other than English), this result demon-
strates that practical systems could benefit with
some level of annotations for SURPRISE. More
generally, it also motivates extending SSMs to
a semi-supervised setting, which we leave for
future work.

167



6 Conclusion and Future Work

This paper presents a two-stage BERTLex-SSM
framework for sequence-labeling emotion inten-
sity recognition tasks, especially in label-scarce
scenarios. Combining the contextualized em-
beddings with static word embeddings and then
modeling the initial predicted intensity scores as
a State Space Model, our method can utilize
context-sensitive features with external knowl-
edge and capture the emotional dynamic transi-
tions. Experimental results show that our proposed
BERTLex-SSM effectively predicts emotion in-
tensities in the lyrics without requiring annotated
lyrics data.

Our findings and analysis point to a range of
directions for future work:

Domain Adaptation. While our method could
apply any general verse-level model, including a
pure lexicon-based one, in practice, we obtained
the best results by leveraging annotated sentence-
level datasets. This naturally leads a domain dis-
crepancy: in our particular case, between news
and lyrics domains. Given that unlabeled song
lyrics are relatively easy to obtain, one direction
is to incorporate unsupervised domain adaptation
techniques (Ramponi and Plank, 2020) to im-
prove the performance of the verse-level model.
Semi-supervised learning (similar to Täckström
and McDonald, 2011b) is another promising di-
rection, although methods would need to be mod-
ified to incorporate the continuous nature of the
emotion labels.

SSM Extensions. Despite being able to opti-
mize the estimates through Kalman Filter and
Kalman Smoother, the simplicity of the LG-SSM
makes it difficult to deal with the wide variations
in emotion space dynamics, given that it is a lin-
ear model. We hypothesize that non-linear SSM
extensions (Julier and Uhlmann, 1997; Ito and
Xiong, 2000; Julier and Uhlmann, 2004) might
be a better fit for modeling emotion dynamics.

Multimodal Grounding. Since the LYRICSEMO-
TIONS dataset is annotated on parallel acoustic and
text features, using lyrics solely as the feature
can cause inconsistencies in the model. Extend-
ing our method to a multi-modal setting would
remedy this issue when the identical lyrics are
companions with different musical features to
appear in various verses. Taking the knowledge

of song structure (e.g., Intro - Verse - Bridge -
Chorus) into account has the potential to advance
the modeling of emotion dynamics, assuming
the way (up or down) that emotion intensities
change is correlated with which part of the song
the verses locate.

Acknowledgments

The authors would like to thank Rada Mihalcea
for sharing the LYRICSEMOTIONS dataset with us
and the anonymous reviewers and editors for
their constructive and helpful comments.

References

Yudhik Agrawal, Ramaguru Guru Ravi Shanker,
and Vinoo Alluri. 2021. Transformer-based
approach towards music emotion recognition
from lyrics. In Advances in Information Re-
trieval, 43rd European Conference on IR
Research (ECIR 2021), pages 167–175, Cham,
Switzerland. Springer. https://doi.org
/10.1007/978-3-030-72240-1_12

Israa Alghanmi, Luis Espinosa Anke, and Steven
Schockaert. 2020. Combining BERT with static
word embeddings for categorizing social me-
dia. In Proceedings of the Sixth Workshop
on Noisy User-generated Text (W-NUT 2020),
pages 28–33, Online. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/2020.wnut-1.5

Mireille Besson, Frederique Faita, Isabelle Peretz,
A.-M. Bonnel, and Jean Requin. 1998. Sing-
ing in the brain: Independence of lyrics and
tunes. Psychological Science, 9(6):494–498.
https://doi.org/10.1111/1467-9280
.00091

Laura-Ana-Maria Bostan and Roman Klinger.
2018. An analysis of annotated corpora for
emotion classification in text. In Proceed-
ings of the 27th International Conference on
Computational Linguistics, pages 2104–2119,
Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared D. Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini

168

https://doi.org/10.1007/978-3-030-72240-1_12
https://doi.org/10.1007/978-3-030-72240-1_12
https://doi.org/10.18653/v1/2020.wnut-1.5
https://doi.org/10.18653/v1/2020.wnut-1.5
https://doi.org/10.1111/1467-9280.00091
https://doi.org/10.1111/1467-9280.00091


Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-
shot learners. In Advances in Neural Infor-
mation Processing Systems, volume 33,
pages 1877–1901. Curran Associates, Inc.

Sven Buechel and Udo Hahn. 2017. EmoBank:
Studying the impact of annotation perspec-
tive and representation format on dimensional
emotion analysis. In Proceedings of the 15th
Conference of the European Chapter of the
Association for Computational Linguistics:
Volume 2, Short Papers, pages 578–585,
Valencia, Spain. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/E17-2092

Marcelo Caetano, Athanasios Mouchtaris, and
Frans Wiering. 2012. The role of time in music
emotion recognition: Modeling musical emo-
tions from time-varying music features. In
International Symposium on Computer Mu-
sic Modeling and Retrieval, pages 171–196.
Springer. https://doi.org/10.1007
/978-3-642-41248-6_10

Bao Minh Doan Dang, Laura Oberländer,
and Roman Klinger. 2021. Emotion stimu-
lus detection in German news headlines. In
Proceedings of the 17th Conference on Natu-
ral Language Processing (KONVENS 2021),
pages 73–85, Düsseldorf, Germany. KON-
VENS 2021 Organizers.

Luna De Bruyne, Orphee De Clercq, and
Veronique Hoste. 2021. Emotional RobBERT
and insensitive BERTje: Combining trans-
formers and affect lexica for Dutch emotion
detection. In Proceedings of the Eleventh Work-
shop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis,
pages 257–263, Online. Association for Com-
putational Linguistics.

Arthur P. Dempster, Nan M. Laird, and Donald
B. Rubin. 1977. Maximum likelihood from in-
complete data via the em algorithm. Journal of

the Royal Statistical Society: Series B (Meth-
odological), 39(1):1–22. https://doi.org
/10.1111/j.2517-6161.1977.tb01600.x

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter
of the Association for Computational Linguis-
tics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Darren Edmonds and João Sedoc. 2021.
Multi-emotion classification for song lyrics.
In Proceedings of the Eleventh Workshop
on Computational Approaches to Subjectiv-
ity, Sentiment and Social Media Analysis,
pages 221–235, Online. Association for Com-
putational Linguistics.

Paul Ekman. 1993. Facial expression and emotion.
American Psychologist, 48(4):384. https://
doi.org/10.1037/0003-066X.48.4.384,
PubMed: 8512154

Andrea Esuli and Fabrizio Sebastiani. 2007.
Sentiwordnet: A high-coverage lexical resource
for opinion mining. Evaluation, 17(1):26.

Mauajama Firdaus, Hardik Chauhan, Asif Ekbal,
and Pushpak Bhattacharyya. 2020. MEISD:
A multimodal multi-label emotion, intensity
and sentiment dialogue dataset for emo-
tion recognition and sentiment analysis in
conversations. In Proceedings of the 28th In-
ternational Conference on Computational Lin-
guistics, pages 4441–4453, Barcelona, Spain
(Online). International Committee on Compu-
tational Linguistics.https://doi.org/10
.18653/v1/2020.coling-main.393

Deepanway Ghosal, Navonil Majumder,
Alexander Gelbukh, Rada Mihalcea, and
Soujanya Poria. 2020. COSMIC: COmmon-
Sense knowledge for eMotion identification
in conversations. In Findings of the Associa-
tion for Computational Linguistics: EMNLP
2020, pages 2470–2481, Online. Association
for Computational Linguistics. https://
doi.org/10.18653/v1/2020.findings
-emnlp.224

169

https://doi.org/10.18653/v1/E17-2092
https://doi.org/10.18653/v1/E17-2092
https://doi.org/10.1007/978-3-642-41248-6_10
https://doi.org/10.1007/978-3-642-41248-6_10
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1037/0003-066X.48.4.384
https://doi.org/10.1037/0003-066X.48.4.384
https://pubmed.ncbi.nlm.nih.gov/8512154
https://doi.org/10.18653/v1/2020.coling-main.393
https://doi.org/10.18653/v1/2020.coling-main.393
https://doi.org/10.18653/v1/2020.findings-emnlp.224
https://doi.org/10.18653/v1/2020.findings-emnlp.224
https://doi.org/10.18653/v1/2020.findings-emnlp.224


Deepanway Ghosal, Navonil Majumder, Rada
Mihalcea, and Soujanya Poria. 2021. Explor-
ing the role of context in utterance-level
emotion, act and intent classification in con-
versations: An empirical study. In Findings
of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 1435–1449,
Online. Association for Computational Lin-
guistics. https://doi.org/10.18653
/v1/2021.findings-acl.124

Deepanway Ghosal, Navonil Majumder, Soujanya
Poria, Niyati Chhaya, and Alexander Gelbukh.
2019. DialogueGCN: A graph convolutional
neural network for emotion recognition in con-
versation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 154–164,
Hong Kong, China. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/D19-1015

Pranav Goel, Devang Kulshreshtha, Prayas Jain,
and Kaushal Kumar Shukla. 2017. Prayas at
EmoInt 2017: An ensemble of deep neural
architectures for emotion intensity prediction
in tweets. In Proceedings of the 8th Workshop
on Computational Approaches to Subjectiv-
ity, Sentiment and Social Media Analysis,
pages 58–65, Copenhagen, Denmark. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/W17-5207

Devamanyu Hazarika, Soujanya Poria, Rada
Mihalcea, Erik Cambria, and Roger
Zimmermann. 2018a. ICON: Interactive con-
versational memory network for multimodal
emotion detection. In Proceedings of the 2018
Conference on Empirical Methods in Natu-
ral Language Processing, pages 2594–2604,
Brussels, Belgium. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/D18-1280

Devamanyu Hazarika, Soujanya Poria, Amir
Zadeh, Erik Cambria, Louis-Philippe Morency,
and Roger Zimmermann. 2018b. Conversa-
tional memory network for emotion recogni-
tion in dyadic dialogue videos. In Proceedings
of the 2018 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,

Volume 1 (Long Papers), pages 2122–2132,
New Orleans, Louisiana. Association for Com-
putational Linguistics. https://doi.org/10
.18653/v1/N18-1193, PubMed: 32219222

Chao-Chun Hsu, Sheng-Yeh Chen, Chuan-Chun
Kuo, Ting-Hao Huang, and Lun-Wei Ku.
2018. EmotionLines: An emotion corpus of
multi-party conversations. In Proceedings of
the Eleventh International Conference on
Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Dou Hu, Lingwei Wei, and Xiaoyong Huai.
2021. DialogueCRN: Contextual reasoning
networks for emotion recognition in conver-
sations. In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7042–7052,
Online. Association for Computational Lin-
guistics. https://doi.org/10.18653
/v1/2021.acl-long.547

Xiangdong Huang, Minjie Ren, Qiankun
Han, Xiaoqi Shi, Jie Nie, Weizhi Nie, and
An-An Liu. 2021. Emotion detection for con-
versations based on reinforcement learning
framework. IEEE MultiMedia, 28(2):76–85.
https://doi.org/10.1109/MMUL.2021
.3065678

Taichi Ishiwatari, Yuki Yasuda, Taro Miyazaki,
and Jun Goto. 2020. Relation-aware graph
attention networks with relational position en-
codings for emotion recognition in conversa-
tions. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 7360–7370, Online.
Association for Computational Linguistics.

Kazufumi Ito and Kaiqi Xiong. 2000. Gaus-
sian filters for nonlinear filtering problems.
IEEE Transactions on Automatic Control,
45(5):910–927. https://doi.org/10.1109
/9.855552

Wenxiang Jiao, Michael Lyu, and Irwin
King. 2020. Real-time emotion recogni-
tion via attention gated hierarchical mem-
ory network. In Proceedings of the AAAI
Conference on Artificial Intelligence, 05,
pages 8002–8009. https://doi.org/10
.1609/aaai.v34i05.6309

170

https://doi.org/10.18653/v1/2021.findings-acl.124
https://doi.org/10.18653/v1/2021.findings-acl.124
https://doi.org/10.18653/v1/D19-1015
https://doi.org/10.18653/v1/D19-1015
https://doi.org/10.18653/v1/W17-5207
https://doi.org/10.18653/v1/W17-5207
https://doi.org/10.18653/v1/D18-1280
https://doi.org/10.18653/v1/D18-1280
https://doi.org/10.18653/v1/N18-1193
https://doi.org/10.18653/v1/N18-1193
https://pubmed.ncbi.nlm.nih.gov/32219222
https://doi.org/10.18653/v1/2021.acl-long.547
https://doi.org/10.18653/v1/2021.acl-long.547
https://doi.org/10.1109/MMUL.2021.3065678
https://doi.org/10.1109/MMUL.2021.3065678
https://doi.org/10.1109/9.855552
https://doi.org/10.1109/9.855552
https://doi.org/10.1609/aaai.v34i05.6309
https://doi.org/10.1609/aaai.v34i05.6309


Simon J. Julier and Jeffrey K. Uhlmann. 1997.
New extension of the kalman filter to nonlin-
ear systems. In Signal Processing, Sensor Fu-
sion, and Target Recognition VI, volume 3068,
pages 182–193. International Society for
Optics and Photonics.

Simon J. Julier and Jeffrey K. Uhlmann. 2004.
Unscented filtering and nonlinear estimation.
Proceedings of the IEEE, 92(3):401–422.
https://doi.org/10.1109/JPROC.2003
.823141

Patrik N. Juslin and Petri Laukka. 2004. Ex-
pression, perception, and induction of musical
emotions: A review and a questionnaire study
of everyday listening. Journal of New Music
Research, 33(3):217–238. https://doi.org
/10.1080/0929821042000317813

Rudolph Emil Kalman. 1960. A new approach
to linear filtering and prediction problems.
Journal of Basic Engineering, 82(1):35–45.
https://doi.org/10.1115/1.3662552

Seungyeon Kim, Joonseok Lee, Guy Lebanon,
and Haesun Park. 2015. Estimating temporal
dynamics of human emotions. In Proceed-
ings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25–30, 2015,
Austin, Texas, USA, pages 168–174. AAAI
Press.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP),
pages 1746–1751, Doha, Qatar. Association
for Computational Linguistics.

Youngmoo E. Kim, Erik M. Schmidt, Raymond
Migneco, Brandon G. Morton, Patrick
Richardson, Jeffrey Scott, Jacquelin A. Speck,
and Douglas Turnbull. 2010. Music emotion
recognition: A state of the art review. In 11th In-
ternational Society for Music Information Re-
trieval Conference (ISMIR 2010), volume 86,
pages 255–266.

Thomas N. Kipf and Max Welling. 2017.
Semi-supervised classification with graph con-
volutional networks. In 5th International Con-
ference on Learning Representations, ICLR

2017, Toulon, France, April 24–26, 2017,
Conference Track Proceedings.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M.
Mohammad. 2014. Sentiment analysis of short
informal texts. Journal of Artificial Intelligence
Research, 50:723–762. https://doi.org
/10.1613/jair.4272

Anna Koufakou, Endang Wahyu Pamungkas,
Valerio Basile, and Viviana Patti. 2020.
HurtBERT: Incorporating lexical features with
BERT for the detection of abusive language.
In Proceedings of the Fourth Workshop on
Online Abuse and Harms, pages 34–43, Online.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/2020
.alw-1.5

John D. Lafferty, Andrew McCallum, and
Fernando C. N. Pereira. 2001. Conditional
random fields: Probabilistic models for seg-
menting and labeling sequence data. In
Proceedings of the Eighteenth International
Conference on Machine Learning (ICML 2001),
Williams College, Williamstown, MA, USA,
June 28 – July 1, 2001, pages 282–289. Morgan
Kaufmann.

Jingye Li, Donghong Ji, Fei Li, Meishan
Zhang, and Yijiang Liu. 2020. HiTrans:
A transformer-based context- and speaker-
sensitive model for emotion detection in
conversations. In Proceedings of the 28th
International Conference on Computational
Linguistics, pages 4190–4200, Barcelona,
Spain (Online). International Committee on
Computational Linguistics.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li,
Ziqiang Cao, and Shuzi Niu. 2017. DailyDialog:
A manually labeled multi-turn dialogue
dataset. In Proceedings of the Eighth Interna-
tional Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers),
pages 986–995, Taipei, Taiwan. Asian Federa-
tion of Natural Language Processing.

Zheng Lian, Jianhua Tao, Bin Liu, Jian Huang,
Zhanlei Yang, and Rongjun Li. 2020. Conversa-
tional emotion recognition using self-attention
mechanisms and graph neural networks. In
Interspeech 2020, 21st Annual Conference
of the International Speech Communication
Association, Virtual Event, Shanghai, China,

171

https://doi.org/10.1109/JPROC.2003.823141
https://doi.org/10.1109/JPROC.2003.823141
https://doi.org/10.1080/0929821042000317813
https://doi.org/10.1080/0929821042000317813
https://doi.org/10.1115/1.3662552
https://doi.org/10.1613/jair.4272
https://doi.org/10.1613/jair.4272
https://doi.org/10.18653/v1/2020.alw-1.5
https://doi.org/10.18653/v1/2020.alw-1.5


25–29 October 2020, pages 2347–2351. ISCA.
https://doi.org/10.21437/Interspeech
.2020-1703

Xin Lu, Yanyan Zhao, Yang Wu, Yijian
Tian, Huipeng Chen, and Bing Qin. 2020.
An iterative emotion interaction network
for emotion recognition in conversations.
In Proceedings of the 28th International
Conference on Computational Linguistics,
pages 4078–4088, Barcelona, Spain (On-
line). International Committee on Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2020.coling-main.360

Navonil Majumder, Soujanya Poria, Devamanyu
Hazarika, Rada Mihalcea, Alexander Gelbukh,
and Erik Cambria. 2019. Dialoguernn: An
attentive RNN for emotion detection in
conversations. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33,
pages 6818–6825. https://doi.org/10
.1609/aaai.v33i01.33016818

Ricardo Malheiro, Renato Panda, Paulo Gomes,
and Rui Pedro Paiva. 2016. Emotionally-
relevant features for classification and regres-
sion of music lyrics. IEEE Transactions on
Affective Computing, 9(2):240–254. https://
doi.org/10.1109/TAFFC.2016.2598569

Andrew McCallum, Dayne Freitag, and Fernando
C. N. Pereira. 2000. Maximum entropy
Markov models for information extraction and
segmentation. In Proceedings of the Seven-
teenth International Conference on Machine
Learning (ICML 2000), Stanford University,
Stanford, CA, USA, June 29 – July 2, 2000,
pages 591–598. Morgan Kaufmann.

Ryan McDonald, Kerry Hannan, Tyler Neylon,
Mike Wells, and Jeff Reynar. 2007. Structured
models for fine-to-coarse sentiment analysis.
In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguis-
tics, pages 432–439, Prague, Czech Republic.
Association for Computational Linguistics.

Gary McKeown, Michel Valstar, Roddy Cowie,
Maja Pantic, and Marc Schroder. 2011. The se-
maine database: Annotated multimodal records
of emotionally colored conversations between
a person and a limited agent. IEEE Trans-
actions on Affective Computing, 3(1):5–17.
https://doi.org/10.1109/T-AFFC
.2011.20

Yash Mehta, Samin Fatehi, Amirmohammad
Kazameini, Clemens Stachl, Erik Cambria,
and Sauleh Eetemadi. 2020. Bottom-up and
top-down: Predicting personality with psy-
cholinguistic and language model features. In
2020 IEEE International Conference on Data
Mining (ICDM), pages 1184–1189. IEEE.
https://doi.org/10.1109/ICDM50108
.2020.00146

Hardik Meisheri and Lipika Dey. 2018. TCS
research at SemEval-2018 task 1: Learning
robust representations using multi-attention
architecture. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation,
pages 291–299, New Orleans, Louisiana.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/S18
-1043

Rada Mihalcea and Carlo Strapparava. 2012.
Lyrics, music, and emotions. In Proceedings
of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning,
pages 590–599.

Saif Mohammad. 2018. Word affect intensities.
In Proceedings of the Eleventh International
Conference on Language Resources and Evalu-
ation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Saif Mohammad, Felipe Bravo-Marquez,
Mohammad Salameh, and Svetlana
Kiritchenko. 2018. SemEval-2018 task 1:
Affect in tweets. In Proceedings of The 12th
International Workshop on Semantic Evalu-
ation, pages 1–17, New Orleans, Louisiana.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/S18
-1001

Saif Mohammad, Svetlana Kiritchenko, and
Xiaodan Zhu. 2013. NRC-Canada: Building
the state-of-the-art in sentiment analysis of
tweets. In Second Joint Conference on Lexical
and Computational Semantics (* SEM), Volume
2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval
2013), pages 321–327.

Saif M. Mohammad and Felipe Bravo-Márquez.
2017. WASSA-2017 shared task on emotion
intensity. In 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and

172

https://doi.org/10.21437/Interspeech.2020-1703
https://doi.org/10.21437/Interspeech.2020-1703
https://doi.org/10.18653/v1/2020.coling-main.360
https://doi.org/10.18653/v1/2020.coling-main.360
https://doi.org/10.1609/aaai.v33i01.33016818
https://doi.org/10.1609/aaai.v33i01.33016818
https://doi.org/10.1109/TAFFC.2016.2598569
https://doi.org/10.1109/TAFFC.2016.2598569
https://doi.org/10.1109/T-AFFC.2011.20
https://doi.org/10.1109/T-AFFC.2011.20
https://doi.org/10.1109/ICDM50108.2020.00146
https://doi.org/10.1109/ICDM50108.2020.00146
https://doi.org/10.18653/v1/S18-1043
https://doi.org/10.18653/v1/S18-1043
https://doi.org/10.18653/v1/S18-1001
https://doi.org/10.18653/v1/S18-1001


Social Media Analysis WASSA 2017: Pro-
ceedings of the Workshop, pages 34–49. The
Association for Computational Linguistics.
https://doi.org/10.18653/v1/W17
-5205

Saif M. Mohammad and Svetlana Kiritchenko.
2015. Using hashtags to capture fine emotion
categories from tweets. Computational Intel-
ligence, 31(2):301–326. https://doi.org
/10.1111/coin.12024

Saif M. Mohammad and Peter D. Turney.
2013. Crowdsourcing a word–emotion asso-
ciation lexicon. Computational Intelligence,
29(3):436–465. https://doi.org/10.1111
/j.1467-8640.2012.00460.x

Kevin P. Murphy. 2012. Machine Learning: A
Probabilistic Perspective. MIT Press.

Vinod Nair and Geoffrey E. Hinton. 2010. Rec-
tified linear units improve restricted boltzmann
machines. In Proceedings of the 27th Interna-
tional Conference on International Conference
on Machine Learning, pages 807–814.

Debora Nozza, Elisabetta Fersini, and Enza
Messina. 2017. A multi-view sentiment cor-
pus. In Proceedings of the 15th Conference
of the European Chapter of the Association
for Computational Linguistics: Volume 1,
Long Papers, pages 273–280, Valencia, Spain.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/E17
-1026

Andrew Ortony, Gerald L. Clore, and Allan
Collins. 1988. The cognitive structure of
emotions. https://doi.org/10.1017
/CBO9780511571299

Robert Plutchik. 1980. A general psychoevolu-
tionary theory of emotion. Theories of Emo-
tion, pages 3–33. Elsevier.

Soujanya Poria, Erik Cambria, Devamanyu
Hazarika, Navonil Majumder, Amir Zadeh,
and Louis-Philippe Morency. 2017. Context-
dependent sentiment analysis in user-generated
videos. In Proceedings of the 55th Annual
Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers),
pages 873–883, Vancouver, Canada. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/P17-1081

Soujanya Poria, Devamanyu Hazarika, Navonil
Majumder, Gautam Naik, Erik Cambria, and
Rada Mihalcea. 2019a. MELD: A multimodal
multi-party dataset for emotion recognition
in conversations. In Proceedings of the
57th Annual Meeting of the Association for
Computational Linguistics, pages 527–536,
Florence, Italy. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/P19-1050

Soujanya Poria, Navonil Majumder, Rada
Mihalcea, and Eduard Hovy. 2019b. Emotion
recognition in conversation: Research chal-
lenges, datasets, and recent advances. IEEE Ac-
cess, 7:100943–100953. https://doi.org
/10.1109/ACCESS.2019.2929050

Lawrence Rabiner and Biinghwang Juang. 1986.
An introduction to hidden Markov models.
IEEE ASSP Magazine, 3(1):4–16. https://
doi.org/10.1109/MASSP.1986.1165342

Arun Ramachandran and Gerard de Melo. 2020.
Cross-lingual emotion lexicon induction us-
ing representation alignment in low-resource
settings. In Proceedings of the 28th Inter-
national Conference on Computational Lin-
guistics, pages 5879–5890, Barcelona, Spain
(Online). International Committee on Compu-
tational Linguistics.https://doi.org/10
.18653/v1/2020.coling-main.517

Alan Ramponi and Barbara Plank. 2020. Neural
unsupervised domain adaptation in NLP—A
survey. In Proceedings of the 28th International
Conference on Computational Linguistics,
pages 6838–6855, Barcelona, Spain (Online).
International Committee on Computational
Linguistics.

Herbert E. Rauch, F. Tung, and Charlotte T.
Striebel. 1965. Maximum likelihood estimates
of linear dynamic systems. AIAA Journal,
3(8):1445–1450. https://doi.org/10
.2514/3.3166

Anna Rogers, Olga Kovaleva, and Anna
Rumshisky. 2021. A primer in BERTology:
What we know about how BERT works. Trans-
actions of the Association for Computational
Linguistics, 8:842–866. https://doi.org
/10.1162/tacl_a_00349

173

https://doi.org/10.18653/v1/W17-5205
https://doi.org/10.18653/v1/W17-5205
https://doi.org/10.1111/coin.12024
https://doi.org/10.1111/coin.12024
https://doi.org/10.1111/j.1467-8640.2012.00460.x
https://doi.org/10.1111/j.1467-8640.2012.00460.x
https://doi.org/10.18653/v1/E17-1026
https://doi.org/10.18653/v1/E17-1026
https://doi.org/10.1017/CBO9780511571299
https://doi.org/10.1017/CBO9780511571299
https://doi.org/10.18653/v1/P17-1081
https://doi.org/10.18653/v1/P17-1081
https://doi.org/10.18653/v1/P19-1050
https://doi.org/10.18653/v1/P19-1050
https://doi.org/10.1109/ACCESS.2019.2929050
https://doi.org/10.1109/ACCESS.2019.2929050
https://doi.org/10.1109/MASSP.1986.1165342
https://doi.org/10.1109/MASSP.1986.1165342
https://doi.org/10.18653/v1/2020.coling-main.517
https://doi.org/10.18653/v1/2020.coling-main.517
https://doi.org/10.2514/3.3166
https://doi.org/10.2514/3.3166
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349


James A. Russell. 1980. A circumplex model
of affect. Journal of Personality and So-
cial Psychology, 39(6):1161–1178. https://
doi.org/10.1037/h0077714

Erik M. Schmidt and Youngmoo E. Kim.
2010. Prediction of time-varying musical
mood distributions using kalman filtering.
In 2010 Ninth International Conference
on Machine Learning and Applications,
pages 655–660. IEEE. https://doi.org
/10.1109/ICMLA.2010.101

Erik M. Schmidt and Youngmoo E. Kim. 2011.
Modeling musical emotion dynamics with
conditional random fields. In Proceedings
of the 12th International Society for Mu-
sic Information Retrieval Conference, ISMIR,
pages 777–782. Miami (Florida), USA.

Erik M. Schmidt, Douglas Turnbull, and
Youngmoo E. Kim. 2010. Feature selec-
tion for content-based, time-varying musical
emotion regression. In Proceedings of the
11th ACM SIGMM International Confer-
ence on Multimedia Information Retrieval,
pages 267–274. https://doi.org/10
.1145/1743384.1743431

Hendrik Schuff, Jeremy Barnes, Julian Mohme,
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