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Abstract

Semantic parsing maps natural language ques-
tions into logical forms, which can be executed
against a knowledge base for answers. In
real-world applications, the performance of
a parser is often limited by the lack of
training data. To facilitate zero-shot learn-
ing, data synthesis has been widely studied
to automatically generate paired questions and
logical forms. However, data synthesis meth-
ods can hardly cover the diverse structures
in natural languages, leading to a large gap
in sentence structure between synthetic and
natural questions. In this paper, we propose
a decomposition-based method to unify the
sentence structures of questions, which ben-
efits the generalization to natural questions.
Experiments demonstrate that our method sig-
nificantly improves the semantic parser trained
on synthetic data (+7.9% on KQA and +8.9%
on ComplexWebQuestions in terms of exact
match accuracy). Extensive analysis demon-
strates that our method can better generalize to
natural questions with novel text expressions
compared with baselines. Besides semantic
parsing, our idea potentially benefits other se-
mantic understanding tasks by mitigating the
distracting structure features. To illustrate this,
we extend our method to the task of sentence
embedding learning, and observe substantial
improvements on sentence retrieval (+13.1%
for Hit@1).

1 Introduction

Semantic parsing is a task of mapping natural lan-
guage questions into logical forms, which serves
as a backbone in knowledge base question answer-
ing (Talmor and Berant, 2018; Gu et al., 2021;
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Cao et al., 2022) and task-oriented dialogue (Li
et al., 2021a). Traditionally, learning a powerful
semantic parser relies on large-scale annotated
data, which is laborious to collect. To reduce the
budget of annotation, some recent efforts have
been dedicated into low-resource training methods,
among which data synthesis is widely used.

Data synthesis can efficiently generate large
amounts of training data by means of templates
and rules (Wang et al., 2015; Xu et al., 2020b), but
the templated expressions of synthetic questions
hinder the generalization to natural questions.
The gap between synthetic and natural questions
mainly derives from two kinds of textual fea-
tures, phrase-level expression and sentence-level
structure. The former refers to the myriad ways
in which predicates, relations, and entities can
be expressed (Berant and Liang, 2014), such as
‘‘the human whose date of birth is 2000’’ and
‘‘the person born in 2000’’. The latter usually
manifests itself as the global rearrangement of
content (see Figure 1 for an example). To allevi-
ate the problem, paraphrasing is commonly used
for increasing language diversity of synthetic data
(Xu et al., 2020c; Weir et al., 2020). Although
the paraphrasing methods successfully introduce
diverse phrase-level expressions, they are still
weak in generating sentences with diverse struc-
tures (Niu et al., 2021); this is because the
generation models tend to assign significantly
higher generative probability to the sentences with
similar structures, making it challenging to con-
trol or diversify the structures of the generated
sentences.

In contrast to the paraphrase approaches that
bridge the gap by augmenting the synthetic data,
we propose to unify the sentence-level struc-
ture by decomposing the questions into several
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Figure 1: The motivation of our method. Left: synthetic
and natural questions are distributed differently in terms
of sentence structures. Right: we propose to decompose
the questions into simple facts that fall into similar text
spaces with lower structure gap.

simple facts (see Figure 1). Intuitively, the ques-
tion decomposition maps the natural and synthetic
questions into a smaller text space that only con-
tains simple sentences, which is more controllable
than generating diverse synthetic questions to
cover possible sentence structures. Specifically,
we decompose the questions with an in-context
learning method, where the prompt is composed
of several (about 10) synthetic questions as well
as their decomposition results. Then we conduct
semantic parsing with the decomposed facts as
inputs, instead of the original questions. The
decomposing-then-parsing process takes place
during both the training with synthetic data and
the inference for natural questions. In this way,
synthetic and natural data share the similar dis-
tributions of input structures, leading to better
generalization to natural questions.

We conduct a comprehensive evaluation of
our method on two semantic parsing datasets,
KQA (Cao et al., 2022) and ComplexWebQues-
tion (CWQ) (Talmor and Berant, 2018). Our
method achieves a 76.7% and 51.0% exact match
accuracy on KQA and CWQ, respectively—a
7.9% and 8.9% improvement compared to the
best baselines. Moreover, although only synthetic
data is used for training, our method has ap-
proached the performance of the semantic parser
trained with full natural data on CWQ. Exten-
sive analysis demonstrates that the improvements
mainly derive from the generalization to the natu-
ral questions with novel text expressions. Besides
semantic parsing, our idea can be applied to other
semantic understanding tasks to mitigate distract-
ing structure features. When extended for the
task of sentence embedding learning, our method

achieves a substantial improvement on sentence
retrieval (+13.1% in terms of Hit@1).

Our contributions are summarized as follows:

• We propose a decomposition-based method
to bridge the gap between synthetic and nat-
ural data, so that the semantic parser trained
on synthetic data can better generalize to the
natural questions with novel text expressions.

• Experiments on two semantic parsing
datasets of different logical systems shows
that our method largely outperforms previous
strong baselines trained on synthetic data.

• Our method can be extended to other se-
mantic understanding tasks, for example,
sentence embedding learning, where we
show its effectiveness in retrieving sentences
from the candidates with divergent structures.

2 Related Work

2.1 Data Synthesis for Semantic Parsing

Data synthesis plays an important role in semantic
parsing, especially in dataset construction and
model training. Many datasets are constructed
by first generating synthetic data by rules and
then manually rewriting the questions for diverse
expressions (Wang et al., 2015; Cao et al., 2022;
Gu et al., 2021). Since the generation of synthetic
data is controllable, researchers can restrict the
distribution of logical forms in order to examine
or improve various generalization capabilities of
models, such as compositional generalization and
scalability (Lake and Baroni, 2018; Gu et al.,
2021; Oren et al., 2021).

In many scenarios, where manually rewriting is
laborious or unavailable, training on synthetic data
can also alleviate the problems of cold-start and
privacy (Yang et al., 2022b; Yu et al., 2021). Lim-
ited by stereotyped expressions, semantic parsers
trained with only synthetic data are difficult
to generalize to diverse natural questions. Wu
et al. (2021a) and Xu et al. (2020c) automatically
rewrite synthetic questions with paraphrasing
models, which introduces various phrase-level ex-
pressions but change little in sentence structures.
Instead of rule-based synthesis, Zhong et al. (2020)
and Yang et al. (2021) train a neural data synthe-
sizer with natural data from other domains, and
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then generate training data for the target domain in
a way of domain transfer. Such methods heavily
rely on multi-domain resources, and thus their ap-
plicability is limited. There are some other studies
attempting to bridge the data gap through mapping
synthetic and natural questions into a common
embedding space. Berant and Liang (2014) and
Marzoev et al. (2020) leverage sentence embed-
dings or other paraphrase detection technologies to
measure the semantic similarity between the input
question and candidate logical forms. However,
existing sentence embedding methods are poor
at accurately capturing the semantic meanings of
complex sentences, making them unsuitable for
some challenging semantic parsing tasks (e.g.,
KQA [Cao et al., 2022]).

2.2 Other Low-Resource Semantic Parsing
Methods

In addition to data synthesis, other low-resource
semantic parsing methods have also attracted
attention. If there exist abundant resources of
other domains, cross-domain transfer learning is
an effective method to boost the semantic parser
for the target domain (Givoli and Reichart, 2019;
Dadashkarimi et al., 2018; Herzig and Berant,
2018). Cross-lingual transfer learning performs in
a similar way for low-resource languages (Liu
et al., 2021; Xia and Monti, 2021; Sherborne
and Lapata, 2022). When numerous unlabeled
data (i.e., natural questions without logical forms)
is available, self-training can carry out weakly
supervised learning by generating pseudo-labels
(Wang et al., 2020; Rongali et al., 2022). However,
even the unlabeled questions might be not readily
available in many scenarios (Yang et al., 2021).
Compared with transfer learning and self-training,
prompt-based methods are not restricted by exter-
nal resources. These methods take advantage of
the remarkable capabilities of few-shot learning
(Schucher et al., 2022) and in-context learning
(Shin and Van Durme, 2022; Pasupat et al.,
2021; Gupta et al., 2022) of large-scale pre-trained
language models. Grammar-constrained decoding
is sometimes employed to guarantee grammat-
ical logical forms (Cao et al., 2020; Shin et al.,
2021). Additionally, meta-learning (Li et al.,
2021b; Wang et al., 2021; Sun et al., 2020) and
pre-training (Xu et al., 2020a; Jiang et al., 2021)
have been investigated to provide a better start
point of training.

2.3 Sentence Decomposition

Sentence decomposition is a fundamental technol-
ogy for understanding complex sentences (Gao
et al., 2021b). Previous work has experimen-
tally showed that decomposing complex questions
into sub-questions, and then answering the
sub-questions one by one to get the final answer,
can boost multi-hop question answering (Perez
et al., 2020; Fu et al., 2021; Deng et al., 2022).
These studies focus on decomposing the ques-
tion into answerable single-hop sub-questions,
whereas this paper requires the sub-sentences with
the unified and simplest sentence structures, which
is a finer-grained decomposition. Semantic pars-
ing also benefits from question decomposition.
Zhao et al. (2022) and Yang et al. (2022a) simplify
the task with several fixed sub-questions written
by humans, which is only suitable for simple
logical systems. Besides, there are also some stud-
ies automatically extracting sub-questions with
neural decomposer (Saparina and Osokin, 2021;
Wolfson et al., 2022), which is trained on BREAK
(Wolfson et al., 2020). Our method differs from
this work in two aspects: (1) These methods are
highly dependent on the domains and question
types pre-defined by BREAK, which limits the
scope of application. In contrast, our method can
be easily adapted to any task with only a few (about
10) samples. (2) Our motivation is different. Pre-
vious methods use sentence decomposition to do
rule-based parsing, while we aim to bridge the
data gap between synthetic and natural questions
for better generalizability.

In addition to sentence decomposition, some
other data transformation techniques are also
widely used in semantic parsing and informa-
tion retrieval. Query rewriting (Carpineto and
Romano, 2012; Kuzi et al., 2016; Wu et al., 2021b)
transforms search queries in order to better rep-
resent the user intent. Syntactic analysis (Poon
and Domingos 2009; Xu et al., 2018) provides
additional dependency and constituency features,
which help understand text structures. Similarly,
our method decomposes complex sentences into
simple sentences, that is, atomic events, so as to
help the model understand complex events.

3 Method

To improve the low-resource semantic parsers
only trained on synthetic data, we propose a novel
method that decomposes the input question into
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Figure 2: Overview of our method for bridging the gap between synthetic and natural questions for semantic
parsing. The decomposer is implemented through in-context learning with a pre-trained language model (PLM),
taking several decomposition exemplars as prompt and generating the facts semantically equivalent to the input
question. The parser takes the concatenation of the facts as input and generates the corresponding logical form.

several facts before the parsing, aiming to reduce
the gap between synthetic and natural data. As
shown in Figure 2, our model consists of two
modules, a decomposer that breaks the question
into simple facts (Section 3.1) and a parser that
receives the facts to do the parsing (Section 3.2).
Moreover, our idea can also assist other semantic
understanding tasks, for example, sentence em-
bedding learning (Section 3.3), which illustrates
the potential of our method.

3.1 Sentence Decomposer
Our sentence decomposer breaks the input ques-
tion into several facts with simple syntax, unifying
the sentence structure of synthetic and natural
data. Specifically, we develop a prompt-based
approach, where the model completes the de-
composition according to several exemplars
without additional fine-tuning, making use of the
in-context learning ability (Brown et al., 2020;
Liu et al., 2022) of pre-trained language models
(PLMs).

Our prompt is composed of several (about 10)
exemplars of sentence decomposition, where an
example is shown in Table 1. Each exemplar in
the prompt consists a question and a set of facts,
which satisfies two requirements: (1) The collec-
tive meaning of the facts is consistent with the
original question. (2) Each fact contains only sub-
ject, predicate, and object to maintain a simple
structure. Note that the facts are expressed in nat-
ural language, not restricted by specific predicates
or templates. Compared with other decomposition
representations, such as AMR, the representa-
tion in the form of natural language has stronger
expressive ability and is easier for pre-trained
language models to generate.

sentence:
Is the name of a person educated in high school
in the mother tongue equivalent to Laura Linney?
decompose:
FACT1: ENTITY1 is a person.
FACT2: ENTITY1 is educated in high school.
FACT3: ENTITY2 is ENTITY1’s name.
FACT4: ENTITY2 is in the mother tongue.
Question: Is ENTITY2 equal to Laura Linney?

sentence:
How many medals did James Stewart (who won the
13th Academy Award) receive, whose country is
the United States of America?
decompose:
FACT1: ENTITY1 is James Stewart.
FACT2: ENTITY1 won the 13th Academy Award.
FACT3: ENTITY2 is the United States of America.
FACT4: ENTITY1 received ENTITY3.
FACT5: ENTITY3 is a medal.
FACT6: ENTITY1’s country is ENTITY2.
Question: How many ENTITY3?
. . .
sentence:
Which region of Italy bordering Umbria has the
lowest population?
decompose:

Table 1: An example prompt for sentence
decomposition on KQA (Cao et al., 2022). The
complete prompt is omitted for simplicity and can
be found inhttps://github.com/heyLinsir
/Decomposition-for-Semantic-Parsing.
ENTITY and FACT work as placeholders for
objects and events. The reference object of
ENTITY is not limited to named entities (e.g.,
James Stewart), but can also represent concepts,
nouns, etc. (e.g., medal).

Specifically, the exemplars used in the prompt
are produced through human-machine collabo-
ration, aiming to exploit the model’s preferred
decomposition representation. The construction
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process contains three steps: (1) Manually anno-
tate two or three exemplars to form the initial
prompt. (2) Utilize the model to decompose a new
synthetic question with the existing prompt. (3)
Manually correct the errors in the decomposition
result, which is then added to the prompt as a new
exemplar. Return to step 2 until the preset number
of exemplars is reached.

In our experiments, we utilize OpenAI Codex
(Chen et al., 2021) as the decomposition model
because it performs well in the in-context learning
and allows much more input tokens than Open-
AI GPT3 (Brown et al., 2020). Considering that
natural data is unavailable during training, only
synthetic questions are used for constructing the
prompt. Due to the simplicity of the sentence
decomposition task, our decomposer generalizes
well to natural questions. In Section 4.8, we ana-
lyze the quality of the decomposed facts, of which
89.5% preserve the exact same semantics as the
original natural questions. In practice, due to the
query limitation of Codex API, we employ an-
other T5-based decomposer (Raffel et al., 2020)
to imitate Codex’s behavior and decompose all the
synthetic training questions. The T5-decomposer
is trained with the decomposition results of 5,000
synthetic questions generated by Codex. Note that
the questions for evaluation are still decomposed
by Codex for better generalization.

3.2 Semantic Parser

Our semantic parser predicts the logical form
based on the decomposed facts instead of the
original question. We concatenate the facts, in the
original order they are generated during decompo-
sition, into a single sequence with <FACT-SEP>
as the separator (Figure 2), which serves as the
input of the semantic parser.

To bridge the structure gap between synthetic
and natural questions, two types of structure fea-
tures of the concatenated sequence should be
unified: (1) inner-fact structure, the sentence struc-
ture of each fact, and (2) inter-fact structure, the
order of the facts. Because the decomposed facts
are simple enough to have only the basic sen-
tence structures, the gap in the inner-fact structure
has been already bridged. To reduce the gap of
inter-fact structure, an intuitive idea is to randomly
reorder the facts before concatenation. However,
no significant improvement was observed with the
reordering strategy compared to using the original

order. The observation implies that the pretrained
Codex may tend to generate facts in a consistent
order, for example, a subject first and then its
properties. Therefore, we use the original order
of the generated facts in the experiments for
simplicity.

We employ T5-large (Raffel et al., 2020) as
the backbone of our semantic parser and directly
fine-tune it on the synthetic data with decomposed
facts as inputs. During training, the model takes
the concatenated facts as input and is optimized
to maximize the conditional log-likelihood of the
golden logical form. For inference, we also use
the decomposed facts as the model inputs, and the
logical form is generated with a beam search of
size 5 conditioned on the decomposed facts.

3.3 Extension: Sentence Embedding
Learning

The core idea of our method is to alleviate dis-
tracting sentence structure features in semantic
understanding, which can also benefit other se-
mantic understanding tasks even with natural
training data. To illustrate this, we extend our
approach to the task of learning sentence em-
beddings, which aims to learn representations of
sentences and is helpful in many downstream
tasks, such as information retrieval (Gao et al.,
2021a).

Contrastive learning is an effective way to learn
sentence embeddings (Gao et al., 2021a), but
the spurious correlation between sentence struc-
tures and labels can mislead the model to assign
high similarity scores to structurally similar but
non-synonymous sentences. In order to avoid the
abuse of structure features, we imitate the process
described previously: (1) Decompose the original
sentence xi into a set of facts. (2) Take the original
sentence xi and the concatenation of the facts di
as a positive example for contrastive learning:

L(f) = − log
esim(f(xi),f(di))/τ

∑N
j=1 e

sim(f(xi),f(dj))/τ
, (1)

where f is the sentence encoder, sim is the cosine
similarity function, τ is the temperature, and N is
the number of examples in a mini-batch. As ex-
pected, the experiments in Section 4.9 demonstrate
that our method tends to assign higher similarity
scores to semantically equivalent sentences rather
than structurally similar sentences.
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Note that sentence decomposition is only ap-
plied during training to align the representation
of the original and decomposed sentences, while
for evaluation, our method directly encodes the
original sentence where the decomposed facts are
not used. Intuitively, the decomposed facts have
guided the model to learn structurally irrelevant
semantic representation for the original sentence,
and thus there is no need to explicitly decom-
pose the original sentence during the test phase.
Ideally, through contrastive learning, the model
learns the semantic consistency between the orig-
inal sentence and its decomposed facts, namely,
sim(f(xi), f(di)) ≈ 1. Therefore, the similar-
ity between the embeddings of decomposed facts
can be approximated by that of original sentences,
that is, sim(f(xi), f(xj)) ≈ sim(f(di), f(dj)).

4 Experiments

4.1 Datasets

We conduct experiments on two semantic parsing
tasks, KQA (Cao et al., 2022) and ComplexWeb-
Questions (CWQ) (Talmor and Berant, 2018).
We choose them because: (1) These datasets
provide the synthetic data generated by templates,
as well as the natural data annotated by humans,
which makes it convenient to investigate the gap
between them. (2) The questions of these datasets
are complex, which requires deep semantic
understanding. (3) The logical forms of KQA
and CWQ are based on KoPL (Cao et al., 2022)
and SPARQL, respectively, which demonstrates
the generality of our method for different logical
systems. The data splits and the scripts for data
processing are available at https://github
.com/heyLinsir/Decomposition-for
-Semantic-Parsing.

4.2 Baselines

Although our model only uses synthetic data in
training, we compare it against baselines trained
on full natural data, few-shot natural data, and
synthetic data.

T5-FullNatural (Raffel et al., 2020) is fine-
tuned on the full natural data, forming an upper
bound for low-resource methods.

For few-shot natural data, we only uti-
lize 100 sampled human-written examples.
T5-FewNatural is directly fine-tuned with
these examples. T5-LoRA (Hu et al., 2022)
is a parameter-efficient fine-tuning method.

Codex-InContext is an in-context learning
method to generate the logical form by seeing a
prompt consist of several exemplars (Shin and
Van Durme, 2022; Chen et al., 2021). We use 20
exemplars in the prompt, which are retrieved from
the 100 natural examples based on the embedding
similarity to the given input.

For synthetic data, we utilize two strong base-
lines. T5-Synthetic is directly trained on the
synthetic data. Semantic Searching re-ranks the
generated logical forms according to the semantic
similarity with the input questions (Berant and
Liang, 2014; Marzoev et al., 2020).

4.3 Experiment Settings

For each dataset, we utilize the exact match accu-
racy (EM) of logical forms as evaluation metric.
When evaluating each method, we early stop the
training according to the performance on the de-
velopment set, and then report the results on the
test set. Considering the low-resource settings, the
development sets consist of synthetic data, while
the test sets are annotated by human experts.

Unless otherwise stated, we employ T5-large as
the backbone of the semantic parser for the base-
line methods and our method. During inference,
we use a beam search of size 5 for generating log-
ical forms. Codex-InContext leverages Davinci
Codex (Chen et al., 2021) as the backbone.

Following AutoQA (Xu et al., 2020c), we aug-
ment the templated questions with a paraphrasing
model, which is based on T5-large and trained for
2 million steps on 5 million sentence pairs from
PARABANK 2 (Hu et al., 2019). The synthetic
training data contains five synonymous questions
paraphrased from each templated question. After
augmentation, there is 471k and 93k synthetic
training data for KQA and CWQ, respectively.

As described in Section 3.1, we employ Codex
and greedy decoding for sentence decomposi-
tion. We select about 10 synthetic questions to
compose the prompt for in-context learning. The
selected questions are diverse and complex enough
to demonstrate our requirements. Due to the query
limitation of Codex API, decomposing all the syn-
thetic training questions is time-consuming. As a
trade-off between effectiveness and efficiency,
we only use Codex to decompose 5,000 synthetic
questions, which are used to train a T5-large based
decomposer to imitate the behavior of Codex. The
T5-decomposer completes the decomposition of

372

https://github.com/heyLinsir/Decomposition-for-Semantic-Parsing
https://github.com/heyLinsir/Decomposition-for-Semantic-Parsing
https://github.com/heyLinsir/Decomposition-for-Semantic-Parsing


CWQ KQA
Method Short Long All Short Long All

(Upper Bound) Full Natural Data

T5-FullNatural 59.2 37.8 54.9 92.2 79.4 86.4

100 Natural Data

T5-FewNatural 5.6 6.5 5.8 32.6 7.3 21.2
T5-LoRA 5.9 6.0 5.9 29.0 6.0 18.6
Codex-InContext 17.8 19.9 18.2 44.8 19.3 33.3

Large-scale Synthetic Data

T5-Synthetic 46.6 24.4 42.1 77.8 57.9 68.8
Semantic Searching 42.9 25.4 39.4 75.2 55.7 66.4
Our Method 54.3 37.8 51.0 85.8 65.6 76.7

Table 2: Evaluation results of low-resource se-
mantic parsing. The metric is the exact match
accuracy (EM) of logical forms. The test set for
each dataset is divided into two subsets, according
to the number of predicates in logical forms. For
both CWQ and KQA, an example is allocated
into the Short set if it contains no more than 4
predicates, otherwise into the Long set.

all the synthetic training questions. Note that the
questions of development sets and test sets are
decomposed by Codex unless otherwise specified.

4.4 Main Results: Low-resource Semantic
Parsing

Table 2 shows the results on KQA and CWQ.
Among the methods using synthetic data or
few-shot natural data, our method achieves the
best performance. Compared to the powerful
baseline, T5-Synthetic, our method substantially
bridges the gap of the training performance on syn-
thetic and natural data (+8.9% on CWQ and +7.9%
on KQA). Additionally, the consistent improve-
ment on both datasets demonstrates the generality
of our method for different logical systems and
domains.

Our method achieves significant improvements
on the Long sets, especially on the CWQ dataset.
Specifically, the performance of our method on
the CWQ-Long set is already comparable to that
of T5-Supervised, which is the upper bound of
low-resource methods. This observation indicates
that our method largely strengthens the model’s
ability to understand complex questions.

4.5 Generalization to Natural Questions

To understand how our method improves the pars-
ing, we investigate the model performance on the
natural questions while considering their similar-

Figure 3: The exact match accuracy of logical forms on
the natural questions of KQA test set, grouped by their
similarity to synthetic questions. Samples with lower
similarity are novel in expressions and thus harder for
models.

ity to the synthetic data. We find that our method
largely contributes to the parsing accuracy of
the questions with novel text expressions, verify-
ing our motivation of bridging the gap between
synthetic and natural data.

To demonstrate novelty of natural questions
in text expressions, we divide the KQA test set
into four subsets with the following steps: (1) For
each natural question in the test set, we obtain a
synonymous synthetic question provided by the
original dataset. We then employ SimCSE (Gao
et al., 2021a) to calculate the sentence embeddings
of these two questions as well as their cosine simi-
larity. We directly utilize their cosine similarity as
the novelty of the natural questions. (2) According
to the similarity, we divide all the test examples
into four subsets with the same number of samples,
in which the natural and synthetic questions are
the most similar, similar, less similar, and least
similar, respectively. In the four subsets, samples
with lower similarity are novel in expressions and
thus harder for models.

Figure 3 shows the semantic parsing perfor-
mance on these four subsets. We find that lower
similarity indicates a larger gap between the
natural questions and synthetic data, leading to
lower performance on both models. However,
our method consistently outperforms the baseline
method, especially on the subset with less simi-
larity. It indicates that our method can effectively
reduce the training and test gap for the natural
questions with novel text expressions.
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# Exemplars Selection Method Short Long All

5 Manual 85.4 67.6 77.4
10 Manual 85.4 66.1 76.7
15 Manual 85.8 65.6 76.7
15 Random (Trial 1) 84.3 63.6 75.0
15 Random (Trial 2) 85.8 63.4 75.7

Table 3: The exact match accuracy (EM) of
our method on the KQA test set with different
prompts for the decomposer. # Exemplars refers
to the number of exemplars provided in a prompt.
Selection Method specifies how we choose the
exemplars, including random selection and man-
ual selection. Short consists of the examples with
no more than 4 predicates, while the examples in
Long have longer logical forms.

4.6 Analysis on the Prompt for Sentence
Decomposition

In the previous experiments, the prompt of the
sentence decomposer is composed of 15 manually
selected exemplars. To investigate the influence
of prompt design, we vary (1) the numbers
of exemplars and (2) the selection method of
exemplars.

The results on KQA are provided in Table 3. In
general, the change of prompts has limited effects
on the overall performance of semantic parsing.

In terms of the number of exemplars, we se-
lect 5 and 10 out of the original 15 manually
selected exemplars, respectively, to form two new
prompts. As shown in Table 3 (5/10/15 Exemplars,
Selection=Manual), these three prompts lead to
comparable parsing performance.

For the selection methods, we compare our
manually selected prompt against two random
prompts, each of which consists of 15 randomly
sampled exemplars. The results show that the two
random prompts perform slightly worse on the
Long set. The possible reason is that our man-
ual selection strategy deliberately chooses diverse
and complex questions to cover complicated situa-
tions, whereas random selection may contain more
simple questions and fail to cover these situations.

4.7 Analysis on the Choice of Decomposition
Representation

In this section, we show that, in our method,
fact-based decomposition representation is better
than traditional representations, such as abstract
meaning representation (AMR) and question de-

Method CWQ KQA

T5-Synthetic 42.1 68.8
Our Method (AMR) 46.8 66.1
Our Method (QDMR) 45.7 71.7
Our Method (Fact) 51.0 76.7

Table 4: Evaluation results of the best baseline
method, T5-Synthetic, and our methods with dif-
ferent decomposition representations. Fact-based
representation is proposed in Section 3.1 and used
in other experiments. The metric is the exact match
accuracy of logical form.

composition meaning representation (QDMR)
(Wolfson et al., 2020).

Specifically, we replace fact-based representa-
tion with AMR and QDMR, and the evaluation
results are shown in Table 4. For AMR, we
directly utilize an open-source parsing tool1 as
the decomposer. For QDMR, we train another
T5-decomposer using the training data from
BREAK dataset2 (Wolfson et al., 2020).

Overall, the variants of our method using
AMR or QDMR are slightly better than the
best baseline method, T5-Synthetic, but a proper
decomposition representation can bring a larger
performance improvement. Fact-based represen-
tation takes simple natural sentences as elemen-
tary units, which retains the powerful expressive
ability of natural language. In contrast, AMR and
QDMR may be limited by the scope of pre-
defined predicates, where their models will gen-
erate unexpected outputs when the tasks contain
unseen predicates.

4.8 Analysis on the Quality of Decomposed
Facts

While the performance of our method serves as an
extrinsic evaluation for the quality of decomposed
facts, we are also interested in evaluating their
quality intrinsically. In this section, we conduct
manual evaluation of the decomposed facts.

We randomly select 200 synthetic questions
and 200 natural questions from KQA, and then
human experts examine the decomposed facts of
each question: (1) whether the decomposition is

1https://github.com/bjascob/amrlib.
2BREAK contains the QDMRs of the natural questions

from CWQ. For fair comparison, we remove these natural
questions from the training set.
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Question Correct Minor Error Incorrect Unknown
Synthetic 184 9 3 4
Natural 179 11 5 5

Table 5: The quality of the decomposed facts of
200 synthetic questions and 200 natural questions.
Unknown quality occurs when the three experts
cannot reach an agreement through majority vote.

Error Type: Incorrect Coreference (48.1%)

sentence:
For the higher education institution that is the education
place of Dick Clark ...
decompose:
FACT1: ENTITY1 is a higher education institution.
FACT2: ENTITY2 is Dick Clark.
(✘) FACT3: ENTITY2 is the education place of ENTITY1.
(✓) FACT3: ENTITY1 is the education place of ENTITY2.

Error Type: Information Loss (38.5%)

sentence:
Which movie is shorter, Tulsa (the one whose narrative
location is Oklahoma) or Jack and Jill?
decompose:
FACT1: ENTITY1 is a movie.
FACT2: ENTITY2 is Tulsa.
FACT3: ENTITY2’s narrative location is Oklahoma.
FACT4: ENTITY3 is Jack and Jill.
(✘) Question: Which ENTITY1 is shorter?
(✓) Question: Which ENTITY1 is shorter, ENTITY2 or

ENTITY3?

Table 6: Two main types of errors in decompo-
sition results and their proportions.

correct, not exactly correct but with only one error
(minor error), or incorrect with more than one
errors; and (2) if an error exists, whether it derives
from incorrect coreference, information loss, or
other aspects. Each decomposition result is an-
notated by 3 human experts, and we aggregate
their annotations using majority vote. The anno-
tations yield moderate levels of agreement, with
Fleiss Kappa κ = 0.335 (Landis and Koch, 1977).
The details of manual evaluation can be found in
Appendix C.

Table 5 shows the results of human evaluation.
Around 90% of the synthetic and natural ques-
tions maintain exactly the original semantics after
decomposition. The high quality of decomposi-
tion indicates that our proposed decomposer has
good generalization for natural questions, even
our prompt only contains synthetic exemplars.

We also ask the experts to annotate the error
type if the decomposing is not exactly correct.

The main error types are listed in Table 6, includ-
ing incorrect coreference (48.1%) and information
loss (38.5%). Reducing these errors may further
improve the performance of our method, which
we reserve for future research.

To illustrate what kinds of generalization we
can expect from our method, we provide the
decomposition results of five pairs of synthetic
and natural questions from KQA (see Table 7).
Note that each pair of questions is semantically
equivalent but expressed in different ways. The
decomposed facts are generated by the sentence
decomposer proposed in Section 3.1. We can ob-
serve that: (1) Although the natural questions have
diverse text expressions, most of them can still
be decomposed properly, which demonstrates the
generalization ability of the sentence decomposer.
(2) For both synthetic and natural questions, most
of the decomposed facts have simple and similar
sentence structure. The simplification of sentence
structure bridges the gap between synthetic and
natural questions, thus reducing the generalization
difficulty of semantic parser.

4.9 Extension: Sentence Embedding
Learning

As described in Section 3.3, existing sentence
embedding methods tend to assign higher match-
ing scores to structurally similar sentences than
semantically similar sentences. A possible hypoth-
esis is that structure features distract the learning
of sentence encoder. In this section, we extend our
method to sentence embedding learning to show
its potential on mitigating the abuse of structure
features.

4.9.1 Implementation
We follow the settings and implementation of
SimCSE (Gao et al., 2021a), which is trained on
English Wikipedia and NLI datasets (Bowman
et al., 2015; Williams et al., 2018). Specifi-
cally, we conduct unsupervised post-training on
sup-simcse-roberta-large3 in three steps: (1) Ex-
tract 17,200 premise sentences from NLI datasets.
(2) Decompose each premise into several simpler
facts using Codex. (3) Train the sentence encoder,
initialized with sup-simcse-roberta-large, via con-
trastive learning (Equation 1), where each premise
takes its decomposed facts as a positive example
andtheotherfacts in the batch as negative examples.

3https://github.com/princeton-nlp
/SimCSE.
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Synthetic Question Natural Question
sentence: sentence:
Which one has the smallest elevation (above sea level) among the mountain range
whose elevation (above sea level) is less than 4000 metre

Which mountain range whose elevation is under 4000 meters above sea level has
the lowest elevation above sea level?

decompose: decompose:
FACT1: ENTITY1 is a mountain range. FACT1: ENTITY1 is a mountain range.
FACT2: ENTITY1’s elevation (above sea level) is less than 4000 metre. FACT2: ENTITY1’s elevation is under 4000 meters above sea level.
Question: Which ENTITY1 has the smallest elevation (above sea level)? Question: Which ENTITY1 has the lowest elevation above sea level?
sentence: sentence:
How many philosophy that is the interest of the human whose CANTIC-ID is
a10430969?

The person with CANTIC-ID a10430969 has how many interests in the field of philosophy?

decompose: decompose:
FACT1: ENTITY1 is the human. FACT1: ENTITY1 is a person.
FACT2: ENTITY1’s CANTIC-ID is a10430969. FACT2: ENTITY1’s CANTIC-ID is a10430969.
FACT3: ENTITY2 is ENTITY1’s interest. FACT3: ENTITY2 is ENTITY1’s interest.
FACT4: ENTITY2 is philosophy. FACT4: ENTITY2 is in the field of philosophy.
Question: How many ENTITY2? Question: How many ENTITY2?
sentence: sentence:
For the province of China that has Suzhou as a part, its ISO 3166-2 code is CN-32,
what is the end time

ISO 3166-2 code CN-32 corresponded until what date to the Chinese province that includes Suzhou?

decompose: decompose:
FACT1: ENTITY1 is a province of China. FACT1: ENTITY1 is a Chinese province.
FACT2: ENTITY2 is Suzhou. FACT2: ENTITY1 includes Suzhou.
FACT3: ENTITY2 is a part of ENTITY1. FACT3: ISO 3166-2 code CN-32 corresponded to ENTITY1.
FACT4: ENTITY1’s ISO 3166-2 code is CN-32. Question: Until what date FACT3?
Question: What is the end time of FACT4?
sentence: sentence:
For Waterloo (the one that is headed by councillor), its population is 104986, what
is the time point of it

When did the Waterloo led by a councillor record a population of 104,986?

decompose: decompose:
FACT1: ENTITY1 is Waterloo. FACT1: ENTITY1 is Waterloo.
FACT2: ENTITY1 is headed by councillor. FACT2: ENTITY1 is led by a councillor.
FACT3: ENTITY1’s population is 104986. FACT3: ENTITY1 recorded a population of 104,986.
Question: What is the time point of FACT3? Question: When did FACT3 happen?
sentence: sentence:
For the democracy that is imported from Italy, its Human Development Index is
0.752, what is the time point of it

At what point in time is 0.752 the Human Development Index for the democracy that comes from Italy?

decompose: decompose:
FACT1: ENTITY1 is a democracy. FACT1: ENTITY1 is a democracy.
FACT2: ENTITY1 is imported from Italy. FACT2: ENTITY1 comes from Italy.
FACT3: ENTITY1’s Human Development Index is 0.752. FACT3: 0.752 is the Human Development Index for ENTITY1.
Question: What is the time point of FACT3? Question: At what point in time is FACT3?

Table 7: Synthetic/natural questions from KQA and their decomposed facts, which are generated by
Codex.

Query: J. R. R. Tolkien is an employee of University of Leeds, what is the end time
SimCSE Candidate Our Method
0.773 (✓) When did J. R. R. Tolkien stop being an employee of University of Leeds? 0.848
0.886 (✘) J. R. R. Tolkien is an employee of University of Oxford, what is the end time 0.781
0.816 (✘) J. R. R. Tolkien is educated at University of Oxford, what is the end time 0.717
Query: Which one has the smallest population among the region of Italy that shares border with Umbria
SimCSE Candidate Our Method
0.902 (✓) Which region of Italy bordering Umbria has the lowest population? 0.920
0.922 (✘) Which one has the smallest population among the region of Italy that shares border with Marche 0.862
0.929 (✘) Which one has the smallest population among the region of Italy that shares border with Campania 0.871

Table 8: Two examples of the sentence retrieval task (25k candidate sentences). Each method selects
the candidate with the highest cosine similarity as the retrieved result.

We apply the trained sentence encoders on
two downstream tasks, semantic textual similarity
(STS) and sentence retrieval, without additional
fine-tuning. For simplicity, we report the average
Spearman correlation on seven STS tasks: STS
2012–2016 (Agirre et al., 2012, 2013, 2014, 2015,
2016), STS Benchmark (Cer et al., 2017), and
SICK-Relatedness (Marelli et al., 2014). We de-
fine the sentence retrieval task as follows: (1)
Extract 12,889 examples from KQA, each of

which consists of a synthetic question and a syn-
onymous natural question. Both the query and
candidate sets are composed of all the synthetic
and natural questions unless otherwise stated. (2)
For each question in the query set, retrieve its
synonymous question from the candidate set, ac-
cording to the cosine similarities between sentence
embeddings. As stated in Section 3.3, sentence de-
composition is only applied during training, while
for evaluation, our method directly encodes the
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Method
STS Sentence Retrieval

Spearman↑ Hit@1↑ Hit@2↑ MR↓ MRR↑
SimCSE 83.8 78.1 87.4 3.3 85.0
Our Method 82.5 91.2 95.8 1.4 94.5

Table 9: Evaluation of the sentence embeddings
learned by SimCSE and our method. Spearman
correlation is averaged on seven STS tasks. The
sentence retrieval task reports Hit@k, mean rank
(MR) and mean reciprocal rank (MRR) as metrics.
Hit@k refers to the proportion of the gold sentence
occurring in the top-k retrieved sentences.

original sentences where the decomposed facts
are not used.

4.9.2 Results
Table 9 shows the results on semantic textual simi-
larity (STS) task and sentence retrieval task, where
both the query and candidate sets are composed
of all the synthetic and natural questions. Our
method achieves competitive performance with
SimCSE on STS, while significantly outperform-
ing SimCSE by more than 10 points on Hit@1 of
the sentence retrieval task. A potential reason is
that the sentence retrieval task contains plenty of
synonymous but structurally different questions,
which are distracting to SimCSE. By contrast,
our method is more focused on semantics rather
than structure features (see Table 8 for two exam-
ples), which leads to the improved performance.
However, the two sentences in a sample of STS
usually have similar structures, in which situation
our method is not advantageous.

4.9.3 Impact of Sentence Structure on
Sentence Retrieval

To investigate the impact of structure features
on sentence retrieval, we split the task into four
different experiment settings according to the
data sources for the query set and candidate
set (see Figure 4). For example, (Natural, All)
indicates that the query set consists of natural
questions, while the candidate set contains all
synthetic and natural questions. We can observe
that: (1) Synthetic query has more distractors in
the candidate set, which have different semantics
but similar sentence structure. The retrieval per-
formance degrades greatly when the experiment
setting changes from (Natural, All) to (Synthetic,
All). (2) The candidates from the same source
as the query are more likely to mislead models.

Figure 4: Hit@1 of sentence retrieval with four different
experiment settings. Each setting corresponds to a pair
of data sources for the query set and candidate set. For
example, (Natural, All) represents that the query set
consists of natural questions while the candidate set
consists of all synthetic and natural questions.

For example, compared to (Natural, Synthetic),
the performance of SimCSE on (Natural, All)
drops significantly. (3) Our method is more robust
against the distractors in all these settings.

5 Limitations

In this section, we enumerate three limitations of
our method: applicability, error propagation, and
inference speed. (1) Our method is designed to
improve the robustness of models to distracting
structure features, such as the structure gap be-
tween synthetic and natural questions. If there are
no distracting structure features, such as on STS
datasets, where the two sentences in a sample
usually have similar structures, our method may
not achieve an advantage. (2) Our method needs
to decompose the input text, which may introduce
errors that mislead the training and inference of
models. (3) If sentence decomposition is also con-
ducted during inference, as in the semantic parsing
method proposed in this paper, it may decrease
the inference speed of models.

6 Conclusion

We present a decomposition-based low-resource
semantic parsing method, which can narrow the
data gap and thus better generalize from synthetic
data to natural data. Unlike previous methods
that tackle the issue by diversifying synthetic
questions, we leverage sentence decomposition to
break questions into simple facts, which are more
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Method CWQ KQA
T5-Synthetic 42.1 68.8
Our Method

T5-decomposer 49.8 76.5
Codex-decomposer 51.0 76.7

Table 10: The exact match accuracy (EM) of
our method on the test sets of CWQ and KQA
with different decomposers used in the test phase.
T5-Synthetic is the best baseline method.

effective in bridging the gap of sentence-level
structure. Experiment results on two semantic
parsing datasets show that our method achieves
the best performance compared with strong base-
lines, and it can better generalize to the natural
questions with novel text expressions. Besides se-
mantic parsing, our method also has great potential
to mitigate distracting structure features on other
tasks of semantic understanding, for example, sen-
tence embedding learning. As future work, we plan
to explore more tasks that require complex sen-
tence understanding, such as question answering,
and paraphrase detection and generation.

A Analysis on the Choice of Decomposer
in the Test Phase

In the previous experiments, the synthetic ques-
tions of training sets are decomposed by the
T5-decomposer due to the query limitation of
the Codex API, while the natural questions of test
sets are decomposed by Codex for better gener-
alization. In this section, we explore the impact
of different decomposers on the performance of
semantic parsing in the test phase.

Table 10 shows the semantic parsing perfor-
mance based on T5- and Codex-decomposers.
There is no significant performance drop when
Codex is replaced by T5-decomposer in the test
phase. We can speculate that, slightly weaker than
Codex, the T5-decomposer also generalizes well
to natural questions, even though it is only trained
on synthetic data. This may be because the de-
composition representation is composed of simple
natural sentences, which makes it easy for models
to learn and generalize. In addition, as mentioned
in Section 3.1, the exemplars used for in-context
learning are produced through human-Codex col-
laboration, so the decomposition representation
may be in line with the generation bias of language
models.

Figure 5: The performance of two methods with differ-
ent number of natural examples available in training on
KQA. Each method first trains a semantic parser with
large-scale synthetic data (472k examples), and then
fine-tunes it with the natural data.

B Combination of Synthetic Data and
Few-shot Natural Data

In this section, we investigate the model per-
formance on KQA when a few natural data
are available for training together with synthetic
data. The semantic parser is first trained on
the large-scale synthetic data, and then further
fine-tuned with the natural data. We vary the
number of natural examples in a wide range from
100 to 5,000 and compare our method against T5.

As shown in Figure 5, our method consistently
outperforms the T5 baseline with no more than
5,000 natural examples. It demonstrates that our
pipeline (decomposing and then parsing) would
not introduce serious error accumulation in the
low-resource setting.

The improvement of our method compared to
T5 becomes weaker with more natural data—this
is because there is a smaller gap between train-
ing and test when more natural training data is
available.

C Details of Manual Evaluation

For manual evaluation, we randomly select 200
synthetic questions and 200 natural questions from
KQA. Six human experts, including two of the
authors and four colleagues, examine the decom-
posed facts of each question. These six experts are
all NLP researchers, who are expected to provide
high-quality annotations. Each expert examines
100 synthetic questions and 100 natural questions,
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Annotation Instruction
Whether the collective meaning of the decomposed facts is consistent with the original question (three levels of semantic consistency):
Level 2: the collective meaning is consistent with the original question.
Level 1: the collective meaning may be not exactly the same as the original question, or correcting a single error can achieve semantic consistency.
Level 0: the collective meaning is different from the original question, and correcting a single error cannot achieve semantic consistency.

If there exist errors, annotate the error types (three possible error types) (note that an example may have more than one error type):
Error Type 1: Incorrect Coreference

Incorrect usage of noun phrases or placeholders (i.e., ENTITY and FACT).
Such errors can be corrected by replacing noun phrases or placeholders.

Error Type 2: Information Loss
Missing some key information in the original question, such as description of time, place, affiliation, etc.
Such errors can be corrected by extending a fact or adding a new fact.

Error Type 3: Others
Annotation Examples

Question: Of counties in the Texas led by a Secretary of State, which occupies the most area?
Decomposed Facts:
Of counties in the Texas led by a Secretary of State, which occupies the most area?
FACT2: A Secretary of State is the leader of ENTITY1.
Question: Which ENTITY1 occupies the most area?

Whether the question is correctly decomposed(0/1/2):2
(optional) Error type (1/2/3): (Explanation: the question is correctly decomposed, so there is no need to annotate the error type.)
Question: Of counties in the Texas led by a Secretary of State, which occupies the most area?
Decomposed Facts:
FACT1: ENTITY1 is a county in the Texas.
FACT2: A Secretary of State is the leader of ENTITY1.
(✘) Question: Which FACT2 occupies the most area? (Correction: replace ‘‘FACT2’’ with ‘‘ENTITY1’’.)

Whether the question is correctly decomposed(0/1/2):1 (Explanation: only one error need to be corrected.)
(optional) Error type (1/2/3):1
Question: Of counties in the Texas led by a Secretary of State, which occupies the most area?
Decomposed Facts:
(✘) FACT1: ENTITY1 is a county in a Secretary of State. (Correction: replace ‘‘a Secretary of State’’ with ‘‘the Texas’’.)
(✘) FACT2: The Texas is the leader of ENTITY1. (Correction: replace ‘‘the Texas’’ with ‘‘a Secretary of State’’.)
Question: Which ENTITY1 occupies the most area?

Whether the question is correctly decomposed(0/1/2):0 (Explanation: two errors need to be corrected.)
(optional) Error type (1/2/3):1
Question: Which one is higher, Tom or Jerry?
Decomposed Facts:
FACT1: ENTITY1 is Tom.
FACT2: ENTITY2 is Jerry.
(✘) Question: Which ENTITY1 is higher? (Correction: add the missing information ‘‘ENTITY2’’. ‘‘Which one, ENTITY1 or ENTITY2, is higher?’’)

Whether the question is correctly decomposed(0/1/2):1 (Explanation: only one error need to be corrected.)
(optional) Error type (1/2/3):2

Table 11: The core part of the annotation guideline provided to the experts.

and each question is examined by three experts
for majority vote.

The core part of the annotation guideline
provided to the experts is shown in Table 11.
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