
Sub-Character Tokenization for Chinese Pretrained Language Models

Chenglei Si1,2∗, Zhengyan Zhang1∗, Yingfa Chen1∗, Fanchao Qi1,
Xiaozhi Wang1, Zhiyuan Liu1†, Yasheng Wang3, Qun Liu3, Maosong Sun1†

1 NLP Group, DCST, IAI, BNRIST, Tsinghua University, Beijing, China
{zy-z19,yingfa-c18,qfc17,wangxz20}@mails.tsinghua.edu.cn

{liuzy,sms}@tsinghua.edu.cn
2 University of Maryland, College Park, MD, USA

clsi@terpmail.umd.edu
3Huawei Noah’s Ark Lab, Hong Kong, China

{wangyasheng,qun.liu}@huawei.com

Abstract

Tokenization is fundamental to pretrained lan-
guage models (PLMs). Existing tokenization
methods for Chinese PLMs typically treat
each character as an indivisible token. How-
ever, they ignore the unique feature of the
Chinese writing system where additional lin-
guistic information exists below the character
level, i.e., at the sub-character level. To utilize
such information, we propose sub-character
(SubChar for short) tokenization. Specifically,
we first encode the input text by converting
each Chinese character into a short sequence
based on its glyph or pronunciation, and then
construct the vocabulary based on the encoded
text with sub-word segmentation. Experimen-
tal results show that SubChar tokenizers have
two main advantages over existing tokeniz-
ers: 1) They can tokenize inputs into much
shorter sequences, thus improving the com-
putational efficiency. 2) Pronunciation-based
SubChar tokenizers can encode Chinese ho-
mophones into the same transliteration se-
quences and produce the same tokenization
output, hence being robust to homophone ty-
pos. At the same time, models trained with
SubChar tokenizers perform competitively on
downstream tasks. We release our code and
models at https://github.com/thunlp
/SubCharTokenization to facilitate future
work.

1 Introduction

Large-scale Transformer-based pretrained lan-
guage models (PLMs) (Devlin et al., 2019; Liu
et al., 2019; Lan et al., 2020; Clark et al., 2020;
He et al., 2021, inter alia), in which tokenization

∗Equal contribution.
†Corresponding authors.

plays a fundamental role, have achieved great suc-
cess in recent years and attracted wide research
interest.

The most popular type of tokenization adopted
by PLMs is sub-word tokenization, such as byte
pair encoding (BPE) (Sennrich et al., 2016), Word-
Piece (Schuster and Nakajima, 2012), and uni-
gram language model segmentation (Kudo, 2018).
Recent Chinese PLMs such as CPM (Zhang et al.,
2020, 2021b) adopt this kind of sub-word to-
kenization. Apart from sub-word tokenization,
many other Chinese PLMs adopt a simple charac-
ter tokenizer (CharTokenizer for short) that treats
every single Chinese character as a token (Sun
et al., 2019; Cui et al., 2019a, 2020, inter alia).

However, we believe that both of these ex-
isting tokenizers are sub-optimal for Chinese.
This is based on the observation that Chinese has
unique linguistic characteristics:

1) Chinese has an opaque orthography with ir-
regular grapheme-phoneme correspondence (Hao
and Yang, 2021). This is in contrast to transparent
orthographies like Spanish and Finnish where each
letter approximately represents one sound. As a
result, utilizing pronunciation information in Chi-
nese requires explicit pronunciation encoding.

2) Chinese does not have morphological in-
flection, unlike morphologically-rich languages
like Russian (Coulmas, 1991). This renders sub-
word tokenization less useful since the main ad-
vantage of sub-word tokenization comes from the
fact that it can split common affixes and root
words as separate tokens. In fact, Chinese charac-
ters are logograms, and their glyphs (the com-
position of radicals) also contain rich semantic
information, which can only be captured at the
sub-character level.

469

Transactions of the Association for Computational Linguistics, vol. 11, pp. 469–487, 2023. https://doi.org/10.1162/tacl a 00560
Action Editor: Hai Zhao. Submission batch: 7/2022; Revision batch: 12/2022; Published 5/2023.

c© 2023 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:zy-z19@mails.tsinghua.edu.cn
mailto:yingfa-c18@mails.tsinghua.edu.cn
mailto:qfc17@mails.tsinghua.edu.cn
mailto:wangxz20@mails.tsinghua.edu.cn
mailto:liuzy@tsinghua.edu.cn
mailto:sms@tsinghua.edu.cn
mailto:clsi@terpmail.umd.edu
mailto:wangyasheng@huawei.com
mailto:qun.liu@huawei.com
https://github.com/thunlp/SubCharTokenization
https://github.com/thunlp/SubCharTokenization
https://doi.org/10.1162/tacl_a_00560

Figure 1: Comparison of existing tokenizers (character tokenizer and sub-word tokenizer) and our sub-character
tokenizers (SubChar-Wubi using glyph and SubChar-Pinyin using pronunciation encoding). Different tokens
produced by the tokenizers are separated by ‘|’. The numbers in (brackets) indicate the number of tokens
in the tokenized sequence. Tokens in orange indicate character combinations, while tokens in green indicate
sub-character tokens. ‘#’ indicates the special separation symbol after each character, circled numbers (1© 2© 3© 4©)
indicate the intonation of characters. (Figure best viewed in color.)

Motivated by these observations, we propose
the novel sub-character (SubChar) tokenization
(Figure 1). It first encodes every Chinese character
into a sequence of phonetic or stroke symbols, and
then it uses a sub-word segmenter (such as BPE)
to construct the vocabulary on all the encoded se-
quences. In this way, the resultant tokenizers can
capture sub-character tokens that correspond to
meaningful phonetic or morphemic units, which
are absent from all existing Chinese tokenizers.
As far as we know, this is the first attempt on
leveraging the sub-character information for lan-
guage models, especially in the context of Chi-
nese NLP.

To assess the effectiveness of our proposed
method, we train a series of BERT-style PLMs
using the existing and proposed tokenizers. We
evaluate these models on over ten datasets of var-
ious downstream natural language understanding
(NLU) tasks. Through extensive evaluation, we
find that models trained with SubChar tokeniz-
ers match models trained with character and sub-
word tokenizers on downstream task performance.
More importantly, SubChar tokenizers have two
major advantages compared to existing tokenizers:

1) SubChar tokenizers are more efficient.
We find that a small fraction of sub-character
tokens in the vocabulary can compose a large va-
riety of rare and complex characters, thus saving
much space in the vocabulary for more character
combination tokens such as words and phrases.

The increased use of combination tokens leads
to significantly decreased length of the tokenized
sequences. For example, on the iFLYTEK long
text classification dataset, with the same vocabu-
lary size as the CharTokenizers, SubChar tokeniz-
ers can achieve as much as 40% length reduction
on the tokenized output. Such length reduction
can significantly speed up both pretraining and
finetuning.

2) SubChar tokenizers are more robust. A
common and unique type of typos in Chinese is
caused by homophones where characters with dif-
ferent semantic meanings have exactly the same
pronunciation. SubChar tokenizers based on pro-
nunciation can map homophones into the same
transliteration sequences, thus improving robust-
ness against any homophone typos. This could be
immensely useful when handling noisy inputs.

We believe that our work is an important step
towards more tailored techniques for languages
beyond just English by effectively integrating the
unique linguistic characteristics of the language
(Bender, 2019, #BenderRule).

2 Method

In this section, we describe our proposed Sub-
Char tokenization in detail. We break it down
into two steps: 1) Chinese character encoding;
2) vocabulary construction based on the encoded
sequences.

470

2.1 Step 1: Character Encoding

The core idea of this step is to encode every Chi-
nese character into a sequence that characterizes
its glyph or pronunciation, in order to provide
additional inductive biases to the model. We ex-
plore several ways of encoding the characters.
They can be categorised as pronunciation-based
and glyph-based encoding.

Pronunciation-based Encoding In order to
capture pronunciation information of characters,
we encode Chinese characters using translitera-
tion, which uses IPA-inspired1 phonetic scripts
to characterize the pronunciation.

We explore two different transliteration meth-
ods: pinyin and zhuyin (i.e., bopomofo). Pinyin
uses romanized transcription and four different
tones (¯, ´, ˇ, `) to transliterate characters, e.g.,

→ Chi¯ Mei` Wangˇ Liangˇ. On the
other hand, zhuyin uses a set of graphemes non-
existent in English and the same four tones to
transliterate the characters, e.g., →

. In zhuyin, the first tone
mark (¯) is usually omitted.

We insert special separation symbols (#) af-
ter each character’s transliterated sequence, e.g.,
Chi¯#Mei`#Wangˇ#Liangˇ#,

. This prevents cases where transliterated
sequences of different characters are mixed to-
gether, especially when there are no tone mark-
ers to split them in zhuyin.

Different Chinese characters may have the same
pronunciation even if they have different se-
mantic meanings (i.e., homophones). For disam-
biguation, we append different indices after the
encoded sequences for the homophonic charac-
ters, so as to allow a biunique mapping between
each Chinese character and its transliteration se-
quence, e.g., Chi¯33#Mei`24#Wangˇ25#Liangˇ13#,

.
It is unclear whether having such disambig-

uation of homophones is beneficial or not. To
analyze the impact, we also experiment with a
variant where we do not add the indices to dis-
ambiguate the homophones. We implement the
tokenizer SubChar-Pinyin-NoIndex to perform
pinyin encoding without disambiguation indices.

1IPA: International Phonetic Alphabet (https://en
.wikipedia.org/wiki/International Phonetic
Alphabet).

We will show that this variant also has the ad-
vantage of being robust to homophone typos
(Section 4.2).

Glyph-based Encoding The glyphs (i.e.,
shapes) of Chinese characters contain rich seman-
tic information and can help NLP models (Cao
et al., 2018). Most Chinese characters can be bro-
ken down into semantically meaningful radicals.
Characters that share common radicals often
have related semantic information, e.g., the four
characters ‘ ’ share the same radical ‘ ’
(meaning ‘‘ghost’’), and their meanings are in-
deed all related to ghosts and monsters.2 In order
to capture glyph information, we explore four
glyph-based encoding methods, namely, Stroke,
Wubi, Zhengma, and Cangjie.

For stroke encoding, we use the Latin alphabet
to represent the set of Chinese strokes and con-
vert the characters based on the standard stroke
orders,3 e.g., → pszhshpzznnhpnzsszshn;
→ pszhshpzznhhspn (underlined parts indicate
shared stroke sequences across these characters).

The other three glyph-based encoding methods
encode characters into radical sequences instead,
by using glyph-based Chinese input methods:
Wubi, Zhengma, and Cangjie. These input meth-
ods group strokes together in different ways to
form radicals, and then decompose characters into
radical sequences. We use the Latin alphabet to
represent these radicals, e.g., → Wubi:
rqcc rqci rqcn rqcw; Zhengma: njlz njbk njld njoo;
Cangjie: hiyub hijd hibtv himob (underlined parts
indicate common radicals among them).

We append the same separation symbol (‘#’)
after each character, and also add the disam-
biguation indices for characters whose stroke se-
quences are identical (e.g., (people) and
(eight)). However, we note that there are very
few cases where different characters have the
same glyph encoding.

2.2 Step 2: Vocabulary Construction

Once we have the encoded sequences, we can
treat the encoding of each character as the equiv-
alent of ‘word’ in English and then apply sub-
word segmentation to construct the vocabulary
for our sub-character tokenizers.

2The word ‘ ’ is in fact a Chinese idiom, which
is often used to refer to bad people who are like monsters.

3https://en.wikipedia.org/wiki/Stroke order.

471

https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
https://en.wikipedia.org/wiki/Stroke_order

Sub-word segmentation typically forms sub-
word tokens by merging frequent token bigrams,
which often results in meaningful morphemes of
the words when used in languages like English.
On our encoded sequences, sub-word segmenta-
tion can capture shared sub-character sequences
that correspond to shared radicals or phonetic se-
quences among similar characters. After running
the sub-word segmentation step on the encoded
sequences, the vocabulary of the resultant sub-
character tokenizers consists of a mixture of sub-
character tokens, character tokens, and character
combination tokens.

In this work, we use the unigram language
model segmentation method (Kudo, 2018) imple-
mented in SentencePiece (Kudo and Richardson,
2018) as the default sub-word segmentation
method. In Section 5.6, we also perform an abla-
tion study by setting the sub-word segmentation
method to BPE, which results in similar perfor-
mance and efficiency, illustrating that the gains of
SubChar tokenization are insensitive to the spe-
cific choice of sub-word segmentation methods.

2.3 Optional Step: Chinese Word
Segmentation

Before the first step of character encoding, there
is an optional step of Chinese word segmentation.

Chinese word segmentation (CWS) is a com-
mon technique to split Chinese text chunks into
a sequence of Chinese words. The resultant seg-
mented words sometimes provide better granu-
larity for downstream tasks (Chang et al., 2008).
However, the impact of CWS is unclear in the
context of pretraining, especially its interplay with
the tokenization. Hence, we propose a way to
incorporate CWS into our SubChar tokenization
and examine whether it is helpful. Our proposed
tokenization pipeline is summarized in Figure 2.

Given that the vocabulary of SubChar tokeniz-
ers consists of character combinations, charac-
ters, and sub-characters, we use CWS to construct
the character combination part of the vocabulary.
Compared to the character combination tokens
generated by the statistical approach of sub-word
tokenization, the combination tokens generated
by a trained Chinese word segmenter have more
linguistic prior knowledge.

Specifically, to construct the vocabulary, we
first segment the pretraining corpus into words.
Then, we select the most frequent words as the

Figure 2: Illustration of the tokenization pipeline when
incorporating CWS. After the first step of CWS,
high-frequency words (words in the dashed box) di-
rectly become part of the final output sequence, the
other words then go through SubChar tokenization.

character combination part of the SubChar tok-
enizer vocabulary. We then encode the text with
one of the pronunciation- or glyph-based encoding
methods and use sub-word tokenization on the
encoded sequences to get the sub-character and
character tokens of the vocabulary. Finally, we
merge these parts together as the vocabulary for
the SubChar tokenizer. When tokenizing new in-
puts, we first segment them into words, if the
words are in the vocabulary, they will be token-
ized as word tokens; if not, they will be further
processed by the SubChar tokenizer. We control
the ratio of word tokens in the vocabulary to be
80% based on preliminary tuning and we use a
state-of-the-art segmenter THULAC (Li and Sun,
2009; Sun et al., 2016) for word segmentation.

3 Experiment Setup

In this section, we introduce our baselines, data-
sets, and experiment settings.

3.1 Baselines

We compare two existing tokenization methods
as baselines, namely, single-character tokeniza-
tion and sub-word tokenization. For a fair com-
parison, we set the same vocabulary size of 22,675
for all tokenizers, including baselines and our
proposed tokenizers. This is consistent with the
vocabulary size of Chinese BERT (Devlin et al.,
2019).

472

Dataset #Train #Dev #Test

TNEWS 53.4K 10K 10K
IFLYTEK 12.1K 2.6K 2.6K
BQ 100K 10K 10K
THUCNEWS 669K 83.6K 83.6K
CLUEWSC 1.2K 0.3K 0.3K
AFQMC 34.3K 4.3K 3.9K
CSL 20K 3K 3K
OCNLI 45.4K 5K 3K
CHID 519K 57.8K 23K
C3 12K 3.8K 3.9K
CMRC 10K 3.4K 4.9K
CLUENER 11K 1.3K 1.3K

Table 1: Statistics of downstream datasets.

3.2 Pretraining Data

We use the same training corpus to train all the
tokenizers in this work. The corpus consists of
2.3 GB Chinese text from Baidu Baike.4

To evaluate the effectiveness of the tokenizers,
we pretrain a BERT5 model using each tokenizer
and compare their performance on downstream
tasks. When pretraining the BERT models, we use
the same pretraining corpus (i.e., Baidu Baike)
and the same set of hyper-parameters. Notably, we
also pretrain a new BERT model using the char-
acter tokenizer on our pretraining corpus instead
of loading from existing checkpoints (Devlin et al.,
2019) so that it provides an apple-to-apple com-
parison with our proposed methods. Since our pro-
posed tokenizers are direct drop-in replacements
for the baseline tokenizers, they do not incur any
extra parameters. In summary, all the compared
models have the same training corpus, hyper-
parameters, and number of parameters, allowing
for a truly fair comparison.

3.3 Evaluation Data

We finetune and evaluate the pretrained models
with different tokenization methods on various
downstream NLU datasets, including single-
sentence classification, sentence-pair classifica-
tion, and reading comprehension tasks. We briefly
introduce each dataset below and present the da-
taset statistics in Table 1.

4https://baike.baidu.com/.
5Note that we mean BERT-style pretrained Transform-

ers. Our models are not directly comparable with the orig-
inal Chinese BERT since we use different pretraining data
and hyper-parameters.

TNEWS (Xu et al., 2020b) is a news title clas-
sification dataset containing 15 classes.

IFLYTEK (Xu et al., 2020b) is a long text
classification dataset containing 119 classes. The
task is to classify mobile applications into cor-
responding categories given their description.

BQ (Chen et al., 2018) is a sentence-pair ques-
tion matching dataset extracted from an online
bank customer service log. The goal is to eval-
uate whether two questions are semantically
equivalent.

THUCNEWS (Li and Sun, 2007) is a document
classification dataset with 14 classes. The task is
to classify news into the corresponding categories
given their title and content.

CLUEWSC (Xu et al., 2020b) is a corefer-
ence resolution dataset in the format of Winograd
Schema Challenge (Levesque et al., 2012). The
task is to determine whether the given noun and
pronoun in the sentence refer to the same entity.

AFQMC (Xu et al., 2020b) is the Ant Finan-
cial Question Matching Corpus for the question
matching task that aims to predict whether two
sentences are semantically equivalent.

CSL6 is the Chinese Scientific Literature da-
taset extracted from academic papers. Given an
abstract and some keywords, the goal is to deter-
mine whether they belong to the same paper. It is
formatted as a sentence-pair classification task.

OCNLI (Hu et al., 2020) is a natural language
inference dataset. The task is to determine whether
the relationship between the hypothesis and prem-
ise is entailment, neutral, or contradiction.

CHID (Zheng et al., 2019) is a cloze-style
multiple-choice reading comprehension dataset.
Given a context where some idioms are masked,
the task is to select the appropriate idiom from a
list of candidates.

C3 (Sun et al., 2020) is a multiple-choice reading
comprehension dataset. The goal is to choose the
correct answer for the questions given context.

CMRC (Cui et al., 2019b) is a span-extraction
reading comprehension dataset consisting of
questions annotated from Wikipedia paragraphs.

6https://github.com/P01son6415/CSL.

473

https://baike.baidu.com/
https://github.com/P01son6415/CSL

CLUENER2020 (Xu et al., 2020a) is a named
entity recognition dataset with 10 entity types.

3.4 Hyper-parameters

We elaborate on all hyper-parameters involved for
reproducibility (we also release all code, trained
tokenizers, and models).

Tokenizer Training. When training tokenizers
with SentencePiece, we use a character coverage
of 1.0 and model type ‘unigram’ for all tokenizers
being compared. Other hyper-parameters follow
the default of SentencePiece.

BERT Pretraining. We follow the training pro-
cedure of BERT (Devlin et al., 2019) except that
the next sentence prediction objective is removed.
The pretraining process consists of two stages. The
first stage uses a maximum sequence length of
128 with a batch size of 8K for 8K steps. The sec-
ond stage uses a maximum sequence length of
512 with a batch size of 4K for 2K steps. We
experiment primarily with 6-layer Transformer
(Vaswani et al., 2017) models. To ablate the im-
pact of model size, we also pretrain 12-layer
Transformer models for the baseline CharTok-
enizer and proposed SubChar-Pinyin tokenizer.
Other model configurations are the same for all
models: 12 attention heads, an intermediate size
of 3072, and a hidden size of 768.

BERT Finetuning. For the finetuning on
downstream datasets, we use a batch size of 32,
maximum training epochs of 24, and tune max se-
quence length in {96, 256, 512}. Since the original
test sets are not released, we use the original dev
sets as the test sets and randomly hold out 10%
of the training set as the dev sets. We select the
best checkpoint on the dev sets and report perfor-
mance on test sets. These hyper-parameters are
consistent with previous work. For all experi-
ments in this paper, we report the results of the
average run of three different random seeds. All
experiments are done on NVIDIA A100 GPUs.

4 Experiment Results

In this section, we present the experiment results
and the main findings. We not only evaluate on
a wide range of common Chinese NLU datasets,
but also perform robustness evaluation on both
synthetic and real-world noisy data.

4.1 Standard Evaluation

We compare models trained with our SubChar
tokenizers and the baseline tokenizers. There are
multiple possible encoding methods for SubChar
tokenizers, as described in Section 2. In this sec-
tion, we choose two representative ones: Wubi
(glyph-based) and Pinyin (pronunciation-based).
We later show a full ablation of all different
encoding methods in Section 5.5.

Table 2 shows the performance of BERT mod-
els with different tokenizers on downstream data-
sets. Examining the results of the 6-layer BERT
models pretrained on the 2.3G Baidu Baike cor-
pus, we observe that despite some variation across
different datasets, our proposed sub-character to-
kenizers can match the baselines on downstream
datasets. When scaling the 6-layer models to 12-
layer, we observe moderate improvement on the
average performance (70.75 → 72.23 for Char-
Tokenizer and 71.42 → 72.87 for SubChar-Pinyin).
Besides, we discuss the impact of pretraining
data size in Section 5.4. These results demonstrate
that on standard NLU benchmarks, our proposed
tokenizers can serve as a very strong alternative.

4.2 Robustness Evaluation

Apart from evaluating on the standard bench-
marks, we also verify whether our proposed
tokenization methods are better at handling noisy
inputs. We cover two major Chinese input meth-
ods: keyboard input and speech input. For key-
board input, we construct synthetic noise tests
via character substitutions. For speech input, we
use a noisy test set including inputs with diverse
accents, which poses greater typo diversity. Our
SubChar-Pinyin method shows advantage in both
cases.

Synthetic Typos We simulate the homophone
typos that are common in real-world Chinese writ-
ing systems, especially user-generated inputs. As
shown in Figure 3, pinyin input is the most widely
used keyboard input method for Chinese users.7

When users type in the romanization of the in-
tended characters, the input interface will present
all Chinese characters with the same romaniza-
tion for the users to choose from. As a result, it

7https://en.wikipedia.org/wiki/Chinese
input methods for computers.

474

https://en.wikipedia.org/wiki/Chinese_input_methods_for_computers
https://en.wikipedia.org/wiki/Chinese_input_methods_for_computers

TNEWS IFLY THUC BQ WSC AFQMC CSL OCNLI CHID C3 AVG

6-layer, 2.3G Corpus

CharTokenizer 64.19 55.83 96.95 81.99 63.39 68.68 82.67 68.19 72.48 53.17 70.75
±0.18 ±0.50 ±0.04 ±0.47 ±1.95 ±0.46 ±0.46 ±0.39 ±0.23 ±0.56 ±0.31

Sub-word 64.09 54.88 97.14 81.94 62.67 69.25 83.20 69.03 72.78 53.32 70.83
±0.28 ±0.39 ±0.03 ±0.28 ±2.87 ±0.42 ±0.27 ±0.44 ±0.13 ±0.44 ±0.35

SubChar-Wubi 63.89 58.64 97.02 81.70 64.61 68.75 82.81 68.93 72.54 54.68 71.36
±0.25 ±0.27 ±0.04 ±0.29 ±2.09 ±0.59 ±0.46 ±0.38 ±0.15 ±0.77 ±0.23

SubChar-Pinyin 63.68 58.81 97.04 81.74 65.90 68.89 82.87 67.98 73.06 53.03 71.42
±0.25 ±0.28 ±0.03 ±0.24 ±1.45 ±0.42 ±0.40 ±0.45 ±0.13 ±0.47 ±0.19

12-layer, 2.3G Corpus

CharTokenizer 64.39 58.52 97.02 83.49 68.09 69.00 82.77 70.40 74.44 54.22 72.23
±0.13 ±0.46 ±0.03 ±0.38 ±1.59 ±0.35 ±0.33 ±0.34 ±0.17 ±0.40 ±0.26

SubChar-Pinyin 64.19 59.67 97.12 82.28 71.71 69.30 82.23 70.43 74.82 55.92 72.87
±0.14 ±0.23 ±0.03 ±0.16 ±2.03 ±0.24 ±0.27 ±0.25 ±0.09 ±0.26 ±0.17

12-layer, 22.1G Corpus

CharTokenizer 64.43 59.10 97.12 82.70 70.39 69.39 82.97 69.37 76.34 54.84 72.81
±0.57 ±0.29 ±0.01 ±0.02 ±1.32 ±0.06 ±0.28 ±0.14 ±0.62 ±1.24 ±0.18

SubChar-Pinyin 64.64 59.14 97.10 83.56 72.36 70.67 82.94 69.50 75.92 58.64 73.42
±0.47 ±0.17 ±0.04 ±0.18 ±0.98 ±0.66 ±0.05 ±0.24 ±0.45 ±0.35 ±0.09

Table 2: Results on downstream datasets of different tokenizers. The last column indicates average
performance. The subscript is the standard deviation. Models trained with sub-character tokenizers
can match the performance of baseline models across all datasets. Ablation shows that increasing the
model size or pretraining corpus size can slightly improve downstream task performance. These abla-
tion results support our overall conclusion that models trained with SubChar tokenizers can closely
match or slightly outperform the baselines.

Figure 3: An actual interface of the popular pinyin
input method. The first line yi yi is the user input of
the romanization sequence, all words with this same
pronunciation are listed below for users to choose from.

is common for users to choose the wrong charac-
ters either by mistake or because they are unclear
about the differences among these homophones.

In such cases, our SubChar-Pinyin-NoIndex
tokenizer (described in Section 2.1) has the advan-
tage of being robust towards any such homophone
typos. As illustrated in Figure 4, the character
encoding will map all homophones of a character
into the same romanization sequence before un-
dergoing the sub-word tokenization. As a result,
the tokenized output will be identical no mat-
ter what the typo character is as long as it is a
homophone of the intended character.

Figure 4: Illustration of how our SubChar-Pinyin-
NoIndex tokenizer is robust to any homophone typos.
The possible homophone typos (characters in purple
dashed boxes) are mapped into the same romaniza-
tion sequence as the intended correct characters, and
hence the resultant tokenization based on the roman-
ized sequences would be the same.

We inject synthetic noises into the test data and
examine whether models trained on clean train-
ing data can perform well on these noisy data.
To construct the noisy data, we replace the
original correct characters with their homophones,
e.g., change ‘ ’ (sense) to ‘ ’ (different)’ and
‘ ’ (meaning) to ‘ ’ (debate).8 Specifically, we

8Interestingly, all these four characters have the same

pronunciation but different meanings. Moreover, ‘‘ ’’
(meaning) and ‘‘ ’’ (objection) are homophone words.

475

TNEWS

clean 7.5 % 15.0 % 22.5 % 30.0 % 37.5 %

CharTokenizer 64.10 63.09 58.96 50.91 38.33 25.20
Sub-word 64.09 62.82 57.75 48.67 36.37 25.72
SubChar-Pinyin 63.68 61.95 56.67 45.22 30.71 27.53
SubChar-Pinyin-NoIndex 63.28 63.28 63.28 63.28 63.28 63.28

OCNLI

clean 7.5 % 15.0 % 22.5 % 30.0 % 37.5 %

CharTokenizer 68.37 64.89 56.85 47.65 40.48 36.36
Sub-word 68.84 64.33 56.49 48.07 42.68 38.28
SubChar-Pinyin 67.70 61.93 54.39 46.01 40.24 37.33
SubChar-Pinyin-NoIndex 67.91 67.91 67.91 67.91 67.91 67.91

C3

clean 7.5 % 15.0 % 22.5 % 30.0 % 37.5 %

CharTokenizer 53.13 51.46 49.22 47.71 46.78 43.95
Sub-word 53.55 51.66 49.49 47.81 46.24 43.58
SubChar-Pinyin 52.87 50.45 47.26 44.50 42.42 40.07
SubChar-Pinyin-NoIndex 53.65 53.65 53.65 53.65 53.65 53.65

Table 3: Results for noisy evaluation with homophone typos. Different columns correspond to differ-
ent percentages of typos in the test data. The BERT model with our SubChar-Pinyin-NoIndex to-
kenizer (results in bold) suffers no performance drop on noisy test data since it is robust to all
homophone typos.

randomly sample a certain ratio r% of the orig-
inal characters. For each of them, we replace it
with a randomly sampled homophone from all
its homophones obtained via a Pinyin dictionary
(no replacement if it has no homophones).

The results are shown in Table 3. We observe
that there can be a significant drop in perfor-
mance where there exist homophone typos in the
test data. For example, the BERT model trained
with CharTokenizer drops from 64.10% accu-
racy on clean data to 25.20% accuracy when
37.5% of the characters in test inputs are re-
placed with homophone typos. Overall, we find
that the character tokenizer, sub-word tokenizer,
as well as the vanilla SubChar-Pinyin tokenizer,
cannot handle such noisy data. However, our
SubChar-Pinyin-NoIndex tokenizer exhibits no
performance drop under noises. Moreover, de-
spite learning a shared representation for homo-
phones, the model with SubChar-Pinyin-NoIndex
still performs competitively on the clean test
sets, either match (on C3) or only a little worse
than the baselines (on TNEWS and OCNLI).

Real-World Typos While the above synthetic
typos aim to simulate typos in keyboard inputs,
another major input method is through speech
input where users speak to their devices (like mo-
bile phones) and their speech input is then con-
verted to text for downstream tasks. In order
to evaluate model robustness in such scenarios,
we use a realistically collected test set that cap-
tures such speech input typos. Specifically, we
use the speech-noise version of the AFQMC test
set from the READIN (Si et al., 2023) bench-
mark. For each example in this noisy AFQMC
test set, three annotators with different accents
read the original input, and then the speech re-
cordings are converted to text using commercial
automatic speech recognition (ASR) software. We
refer readers to the dataset description paper
for more data construction details. When com-
puting performance for each test example, we
compute both the average across different anno-
tations (Noisy-Average), as well as the worst
performance across different annotations (Noisy-
Worst), and then take the macro-average across

476

Clean N-Avg N-Worst

CharTokenizer 73.02 44.11 18.81
Sub-word 74.22 42.21 16.91
SubChar-Pinyin 73.24 45.24 19.47

Table 4: Results on the real-world AFQMC noisy
test set. Each clean test instance is annotated by
three different annotators, we report both the
macro-average on these noisy annotations (N-
Average) as well as the average of the worst-case
performance across all test examples (N-Worst).
SubChar-Pinyin outperforms baselines on the
challenging noisy test set (best results on the
noisy test set are in bold).

all examples. The character-level error rate of
the noisy test set is 30% on average.

This AFQMC noisy test set contains not only
homophone typos, but also a wide range of other
types of real-world input noises due to both the
accent variations and ASR errors. The greater di-
versity of typo types in the real-world test set
makes it much more challenging to maintain ro-
bustness than the synthetic setting which only
considers homophone typos. While the original
AFQMC is a binary classification task that clas-
sifies whether the question pair is a paraphrase or
not, we find that models trained on the AFQMC
training set exploit spurious correlations like lex-
ical overlap, even though we explicitly balanced
the training set. In particular, when introducing
typos in the test data, performance on positive
examples drops drastically due to lower lexical
overlap, while the performance on negative ex-
amples stays or even improves a little because of
the lower lexical overlap caused by the typos. This
is similar to previous findings on HANS (McCoy
et al., 2019) and PAWS (Zhang et al., 2019a).
Hence, we follow the evaluation practice when
dealing with spurious correlation, which is to fo-
cus on improving the worst-group performance,
and in this case, we focus on improving perfor-
mance on the positive examples against the impact
of typos.

The results are shown in Table 4, where we
report performance on the AFQMC positive ex-
amples. All models are trained on the original
clean data from AFQMC (we balanced the positive
and negative classes during training). We evaluate

on the original clean test set, the Noisy-Average
performance (N-Average), and the Noisy-Worst
performance (N-Worst). We can see that de-
spite this more challenging speech typo setting,
our SubChar-Pinyin model still outperforms the
baselines.

These results highlight the robustness advan-
tage of our Sub-Character tokenization method
in both dealing with synthetic homophone typos
as well as on more diverse real-world typos.

4.3 Effect of CWS

We examine the impact of incorporating CWS

in the tokenization as described in Section 2.3.
We train tokenizers with and without CWS as
preprocessing and compare the performance of
the corresponding pretrained models. The results
are reported in Table 5. We highlight the take-
aways as following: (1) The influence of CWS

varies largely across different datasets and tok-
enizers. Specifically, for the same tokenizer (e.g.,
SubChar-Wubi), the impact of CWS is positive
on some datasets while negative on others; on
the same dataset (e.g., TNEWS), the impact of
CWS is positive on some tokenizers but negative
on others. One of the exceptions is that we ob-
serve consistent improvement on AFQMC, which
aims to identify whether two sentences are para-
phrases. We hypothesize that the fine-grained sen-
tence structures provided by CWS may help the
model capture more relevant features. In contrast,
we observe consistent degradation on IFLYTEK,
which is a long-text classification task. We hy-
pothesize that CWS brings little benefit to long
inputs when there is already abundant informa-
tion. (2) For the overall average performance,
only SubChar-Pinyin + CWS achieves slightly bet-
ter performance than the no-CWS baseline. Out
of the seven datasets we evaluated, SubChar-
Pinyin + CWS improves the performance on
OCNLI (+1.95) and AFQMC (+0.77) which ac-
counts for most of the overall improvement. On
the other datasets, CWS either has marginal im-
pact or slightly degrades performance.

Hence, we conclude that adding CWS as an
additional step does not consistently help down-
stream task performance. These results serve as
empirical evidence that CWS is not very effec-
tive in the use of PLMs, complementary to the
results of Li et al. (2019) on models without
pretraining.

477

TNEWS IFLYTEK CLUEWSC AFQMC CSL OCNLI C3 AVG

Sub-word 64.09 54.88 62.67 69.25 83.20 69.03 53.32 65.21
Sub-word + CWS 64.26 ↑0.17 54.15 ↓0.73 63.05 ↑0.38 69.62 ↑0.37 82.87 ↓0.33 68.64 ↓0.39 51.77 ↓1.55 64.91 ↓0.30
SubChar-Wubi 63.89 58.64 64.61 68.75 82.81 68.93 54.68 66.04
SubChar-Wubi + CWS 63.57 ↓0.32 58.01 ↓0.63 64.38 ↓0.23 69.41 ↑0.66 82.62 ↓0.19 69.43 ↑0.50 53.15 ↓1.53 65.80 ↓0.24
SubChar-Pinyin 63.68 58.81 65.90 68.89 82.87 67.98 53.03 65.88
SubChar-Pinyin + CWS 63.73 ↑0.05 57.89 ↓0.92 64.51 ↓1.39 69.66 ↑0.77 82.90 ↑0.03 69.93 ↑1.95 53.63 ↑0.60 66.04 ↑0.16

Table 5: Downstream task results of models trained with different tokenizers. Numbers in subscripts
indicate the difference between adding and not adding the CWS step in tokenization. Adding CWS

does not bring significant improvement on average.

CMRC CLUENER

CharTokenizer 56.58 69.61
Sub-word 55.85 67.94
SubChar-Wubi 54.45 70.63
SubChar-Pinyin 55.18 70.77

Table 6: Results on two character-level classi-
fication datasets: CMRC (span-extraction) and
CLUENER (named entity recognition). Models
are 6-layer BERT. Models with SubChar token-
izers perform close to the baseline models.

4.4 Character-Level Tasks
The evaluation in Section 4.1 is restricted to
sequence-level classification tasks such as single-
sentence classification, sentence-pair classifica-
tion, and machine reading comprehension.

One might wonder how SubChar tokenizers
handle character-level tasks where classification
is done on every single character, such as sequence
labeling and span extraction. Since SubChar to-
kenizers may combine multiple characters into
one token or split one character into sub-character
tokens, directly adding a classification head on
each token may cause discrepancy with the hu-
man annotation, which is done on the character
level. For example, it is infeasible to evaluate the
POS tag of a sub-character token.

To handle such situations, we perform classi-
fication on the character level for these tasks. To
obtain the representation of each character, we
average the representations of all its sub-character
tokens. We apply this on the final layer of BERT
and feed the character representation to a linear
classifier for downstream tasks.

We measure the performance of this approach
on CMRC (span-extraction reading comprehen-
sion) and CLUENER (named entity recognition)
and show the results in Table 6. The results show

Figure 5: Breakdown of different types of tokens in
the vocabularies of various tokenizers. We observe
the clear trend that in our SubChar tokenizers, a small
fraction of sub-character tokens saves the space to store
much more character combination tokens (e.g., words
and phrases).

that our model can indeed handle character-level
tasks with this simple adaptation. There might be
better ways of adopting our model on character-
level tasks, and we leave it to future work.

5 Analysis

In this section, we conduct various analyses to
better understand the working mechanisms of Sub-
Char tokenization, including illustrations of the
efficiency improvement and ablations on different
components of our tokenization pipeline.

5.1 Vocabulary Composition

We break down the vocabulary of each tokenizer
into three different categories: sub-character to-
kens, character tokens, and character combination
tokens (words and phrases). As shown in Figure 5,
character tokenizers only have character tokens,
while sub-word tokenizers have a small percent-
age of combination tokens. The main reason for
the relatively small number of combination to-
kens in sub-word tokenizers is that unlike how
English words are composed with 26 alphabet
letters, there are thousands of unique Chinese

478

iFLYTEK TNEWS

CharTokenizer 289.0 22.0
Sub-word 255.2 20.1
SubChar-Wubi 183.2 15.8
SubChar-Pinyin 185.2 16.1
SubChar-Pinyin-NoIndex 175.4 15.2

Table 7: Comparison of average length of to-
kenized sequences with different tokenizers.
SubChar tokenizers produce much shorter tok-
enized sequences than the baselines. SubChar-
Pinyin-NoIndex tokenizer achieves the most
length reduction. BPE and Unigram LM coun-
terparts achieve similar speedup improvement.

characters, which take up a large proportion of
the vocabulary in order to maintain coverage.

In contrast, SubChar tokenizers use a very small
fraction of sub-character tokens to compose many
complex Chinese characters, therefore saving up
a large percentage of the vocabulary to store
combination tokens. This brings the advantage of
having more words and phrases in the tokenized
outputs, thus shortening the sequence lengths, as
elaborated in the next section.

5.2 Efficiency Improvement
The direct consequence of having more character
combinations in the vocabulary is that the tok-
enized sequences are shorter. Table 7 shows the
average sequence length by using different tok-
enizers on two downstream datasets. We observe
that SubChar tokenizers can tokenize the inputs
into much shorter sequences.

Moreover, our SubChar tokenizers can speed
up training for both pretraining and finetuning.
During finetuning, we can pack multiple se-
quences into one input sequence to reduce the
computation waste introduced by sequence pad-
ding (Krell et al., 2021), and shorter sequence
lengths allow the sequences to be packed more
densely, thus increasing the overall throughput.

Table 8 shows the model finetuning time rel-
ative to the CharTokenizer baseline. We observe
significant speedup by SubChar tokenizers, finish-
ing in as little as 68.9% time on iFLYTEK with the
SubChar-Pinyin-NoIndex tokenizer. In Figure 6,
we plot the training curves for the CharTok-
enizer baseline and the SubChar-Pinyin-NoIndex
model on the iFLYTEK dataset; we observe that

TNEWS iFLYTEK

CharTokenizer 100.0% 100.0%
Sub-word 99.9% 92.6%
SubChar-Wubi 87.0% 69.6%
SubChar-Pinyin 83.8% 70.4%
SubChar-Pinyin-NoIndex 82.7% 68.9%

Table 8: Finetuning time of models with different
tokenizers. Numbers indicate time relative to the
CharTokenizer baseline model. Models with Sub-
Char tokenizers take much shorter time to finish
finetuning. SubChar-Pinyin-NoIndex brings the
most speedup.

Figure 6: Training curves on the iFLYTEK dataset
with two different models. The y-axis indicates classi-
fication loss (cross-entropy), the x-axis indicates time
(seconds). Our SubChar-Pinyin-NoIndex model gets a
lower loss than the CharTokenizer baseline throughout
training.

our SubChar-Pinyin-Noindex model indeed con-
verges much faster and achieves lower training
loss in the end.

The speedup on pretraining is also signifi-
cant. While the running speed differs on differ-
ent machines, the compression brought by the
shorter tokenized outputs is hardware-invariant.
In Table 9, we show the relative size (disk mem-
ory) of the tokenized pretraining corpus. We ob-
serve that SubChar tokenizers can tokenize the
raw pretraining texts into shorter sequences than
the baselines, thus resulting in a much smaller
pretraining data (e.g., as much as 25.3% smaller
than that of the CharTokenizer baseline with
SubChar-Pinyin-NoIndex). In turn, this can trans-
late to much faster pretraining on any training
infrastructure.

479

Tokenized Corpus Size

CharTokenizer 100.0%
Sub-word 91.4%
SubChar-Wubi 77.2%
SubChar-Pinyin 78.4%
SubChar-Pinyin-NoIndex 74.7%

Table 9: Relative size (disk memory) of the to-
kenized pretraining corpus with different token-
izers. SubChar tokenizers produce much smaller
tokenized corpus due to their ability to tokenize
inputs into shorter sequences.

5.3 Impact of Vocabulary Size
Intuitively, when we increase the vocabulary size,
there will also be more room to store combina-
tion tokens (e.g., words and phrases), leading to
a decrease in tokenization length and thus better
efficiency. Although we used the standard vocab-
ulary size of 22675 in our previous experiments,
to understand whether the efficiency benefits of
SubChar tokenization wear off at larger vocabu-
lary size, we perform an additional ablation on
the impact of vocabulary size.

As shown in Table 10, as we increase the
vocabulary size, the efficiency advantage of Sub-
Char tokenizers slightly diminishes. However,
even at a very large vocab size of 60000, our
SubChar-Pinyin tokenizer still tokenizes the in-
puts into significantly shorter sequences than the
Sub-word baseline. We thus conclude that the
efficiency advantage of our SubChar tokenizers
would hold in most practical cases where the vo-
cabulary size is typically under 60000 (such as
BERT and RoBERTa).

5.4 Impact of Pretraining Data Size
To understand the impact of pretraining data size,
we take the checkpoints of the 12-layer Trans-
former models pretrained on the 2.3G Baike cor-
pus, and further pretrain them on a much larger
corpus of 22.1GB text. This 22.1GB corpus is
sampled from Chinese web text,9 mainly consist-
ing of books and web pages. We further pretrain
for 8K steps with a maximum sequence length
of 512.

As shown in the bottom block of Table 2, fur-
ther training on this larger corpus leads to small
improvement on average performance (72.23 →
72.81 for CharTokenizer and 72.87 → 73.42 for

9https://github.com/OpenBMB/CPM-Live.

iFLYTEK TNEWS

Vocab Size = 22675
Sub-word 255.2 20.1
SubChar-Pinyin-NoIndex 175.4 15.2

Vocab Size = 40000
Sub-word 188.9 15.9
SubChar-Pinyin-NoIndex 166.1 14.4

Vocab Size = 60000
Sub-word 176.2 14.9
SubChar-Pinyin-NoIndex 164.0 14.1

Table 10: Comparison of average length of to-
kenized sequences with different tokenizers and
different vocabulary sizes.

SubChar-Pinyin), possibly because the original
models trained on 2.3GB corpus are already close
to being fully trained. More importantly, this re-
sult shows that even with pretraining on larger
corpora, our proposed methods can still match or
slightly outperform baselines on the downstream
datasets.

5.5 Impact of Encoding Methods
As described in Section 2, we experiment with
different types of encoding methods and com-
pare their downstream performance to analyze the
impact.

Our previous encoding methods are based on
the hypothesis that linguistic information such
as glyph or pronunciation provides useful induc-
tive biases to the model. However, in the case
where this hypothesis is not true, it is possible
that non-linguistic encoding methods may work
as well. To verify this, we add two encoding meth-
ods that do not consider any linguistic informa-
tion: Byte Encoding and Random Index Encoding,
for the purpose of ablation analysis.

In Byte Encoding, we convert every character
into its byte sequence, same as in ByT5 (Xue
et al., 2022). In cases where the byte sequence
consists of multiple indices (each Chinese char-
acter has three byte indices), we concatenate
them and append the character separation symbol
as the encoding (e.g., → 233 173 145#).

In Random Index Encoding, we map each
character into a unique and randomly gener-
ated five-digit index and append the character
separation symbol as the encoding (e.g., →
29146#).

480

https://github.com/OpenBMB/CPM-Live

TNEWS IFLY BQ WSC AFQMC CSL OCNLI AVG

SubChar-Pinyin 63.68 58.81 81.74 65.90 68.89 82.87 67.98 70.16
SubChar-Zhuyin 64.91 59.39 81.41 62.72 69.14 82.60 69.12 69.90
SubChar-Stroke 64.26 55.44 81.52 62.06 69.88 83.16 68.98 69.33
SubChar-Wubi 63.81 58.74 81.55 64.61 69.66 82.44 68.02 69.90
SubChar-Zhengma 63.86 59.51 81.59 63.27 70.47 82.91 69.03 70.09
SubChar-Cangjie 64.10 57.77 81.98 62.39 68.95 82.60 68.46 69.46
SubChar-Byte 63.58 59.55 81.65 63.60 68.60 82.66 67.93 69.65
SubChar-RandomIndex 64.11 59.16 81.64 63.93 68.53 82.86 69.39 69.95

SubChar-Pinyin (BPE) 63.86 58.84 82.12 65.57 69.86 82.86 68.57 70.24

Table 11: Results of SubChar tokenizers when using different encoding methods. The last row is a
model with SubChar-Pinyin tokenizer using BPE as the subword tokenization algorithm, all previous
rows are using unigram LM as the subword tokenization implementation. All models have 6 layers with
the same hyper-parameters. The impact of different encoding methods on downstream performance is
small, and the ULM and BPE versions of SubChar-Pinyin also achieve similar results.

We train SubChar tokenizers with all the
different encoding methods and compare the cor-
responding BERT models using these tokenizers
on downstream tasks. The results are presented
in Table 11. We observe that the differences
between these different tokenizers are rather small
in terms of the model performance on down-
stream datasets. Moreover, perhaps somewhat
surprisingly, tokenizers with the non-linguistic
encoding methods—SubChar-Byte and SubChar-
RandomIndex—can also perform competitively
despite the fact that they do not capture glyph or
pronunciation information like the other tokenizers.

These results suggest that linguistic encoding
may not be necessary for SubChar tokenizers to
achieve high performance on downstream tasks.
However, the linguistic encoding methods can
build more robust and efficient tokenizers as illus-
trated in previous sections.

5.6 Impact of Vocabulary Construction
Algorithm

In previous experiments, we used the Unigram
LM implementation in SentencePiece for vocab-
ulary construction. We perform an additional ab-
lation where we replace Unigram LM with BPE
for vocabulary construction to train a pinyin-
based tokenizer, while holding all other hyper-
parameters constant.

We compare the SubChar-Pinyin-BPE variant
with the unigram LM (SubChar-Pinyin) token-
izer. We find that these two perform similarly.

In terms of efficiency: SubChar-Pinyin-BPE tok-
enizes iFLYTEK to an average length of 184.4 and
tokenizes TNEWS to an average length of 15.9.
In comparison, SubChar-Pinyin tokenizes iFLY-
TEK to an average length of 185.2 and tokenizes
TNEWS to an average length of 16.1. The vo-
cabulary compositions of the two are also similar,
where character combination takes up the majority
of the space in the vocabulary for both BPE and
unigram LM implementations. In terms of per-
formance, we observe in Table 11 that the BPE
implementation and the unigram LM implemen-
tation have little difference in downstream task
performance. Based on these results, we conclude
that the choice of which vocabulary construction
to use has a marginal impact on the tokenization
efficiency and model performance.

6 Related Work

Chinese PLMs. Chinese BERT (Devlin et al.,
2019) is the first Chinese PLM, and it adopts char-
acter tokenization. Since then, researchers have
explored techniques to explicitly incorporate the
word-level information into Chinese PLMs for
better performance. Zhu (2020) and Zhang et al.
(2021a) expand BERT vocabulary with Chinese
words apart from Chinese characters and incor-
porate them in the pretraining objectives. Cui
et al. (2019a), Wei et al. (2019), and Xiao
et al. (2021) consider coarse-grained informa-
tion through masking whole words and n-grams

481

during the masked language modeling pretrain-
ing. Diao et al. (2020) incorporate word-level
information via superimposing the character and
word embeddings. Lai et al. (2021) incorporate
Chinese word lattice structures in pretraining. Dif-
ferent from these studies, we investigate the in-
formation in the sub-character level for Chinese
PLMs.

Linguistically Informed Techniques for Chi-
nese NLP. Before the era of PLM, many efforts
have been made to incorporate linguistic knowl-
edge, including both glyph (Sun et al., 2014; Yu
et al., 2017; Cao et al., 2018) and pronunciation
(Zhang et al., 2019b; Chaudhary et al., 2018), into
word embedding (Mikolov et al., 2013). Beyond
word-level representation, researchers explore the
use of linguistic information to enhance sequen-
tial models (Dong et al., 2016; Bharadwaj et al.,
2016; Liu et al., 2017), especially BERT (Meng
et al., 2019; Sun et al., 2021). Compared to these
works, we do not incorporate additional infor-
mation from sources like images, instead, our
proposed tokenization methods are drop-in re-
placements to existing tokenizers, without adding
any extra layers or parameters. Besides, CWS is
a common preprocessing step for Chinese NLP
(Li and Sun, 2009); Li et al. (2019) empirically
analyze whether CWS is helpful for Chinese NLP
tasks before the era of PLMs and find that the
answer is no in many cases. In our work, we
also spend a section examining the impact of CWS

specifically for PLMs. Moreover, as shown by
Huang et al. (2021), incorporating linguistic in-
formation also benefits spelling check. Instead
of explicitly using spelling check, our linguisti-
cally informed tokenizations are robust to spell-
ing errors.

Granularity of Tokenization. Although sub-
words are taken to be the default granularity of
tokenization since the release of BERT, research-
ers also explore different granularities for PLMs.
For instance, ELMo (Peters et al., 2018), the early
pioneer of PLMs, starts by using character rep-
resentation. Ma et al. (2020) combine character
representations with sub-word representations for
better performance and robustness. Nzeyimana
and Rubungo (2022) incorporate a morphologi-
cal analyzer for tokenization and achieve gains
for the Kinyarwanda language model. More re-
cently, there has been a trend in tokenization-free

methods, including Byte-BPE (Wei et al., 2021),
CANINE (Clark et al., 2021), ByT5 (Xue et al.,
2022), and Charformer (Tay et al., 2022), which
discard explicit tokenization and directly represent
inputs as small units such as bytes. The downside
of these tokenization-free approaches is obvious:
The longer tokenized sequence lengths slow down
both training and inference. Contrary to these,
our sub-character tokenization encourages the use
of more character combinations, which largely
shortens the tokenized sequences.

7 Conclusion

In this work, we propose sub-character tokeniza-
tion and conduct comprehensive experiments to
illustrate its advantage over existing tokenization
methods. Compared to treating each individual
character as a token (CharTokenizer) or directly
running sub-word tokenization on the raw Chinese
text (sub-word tokenizer), our SubChar tokenizers
not only perform competitively on downstream
NLU tasks, but, more importantly, they can be
much more efficient and robust. We conduct a
series of ablation and analysis to understand the
reasons why SubChar tokenizers are more effi-
cient, as well as the impact of linguistic and non-
linguistic encoding. Given the advantages of our
SubChar tokenizers, we believe that they are bet-
ter alternatives to all existing Chinese tokenizers,
especially in applications where efficiency and
robustness are critical. It is possible that our ap-
proach can be useful for other morphologically
poor languages and more complicated methods
could be developed based on SubChar tokeniza-
tion for even better performance. We leave these
interesting directions for future exploration. On a
broader level, our work makes an important at-
tempt in developing more tailored methods for a
language drastically different from English with
promising results. We believe that this is a cru-
cial future direction for the community given the
language diversity in the world. We hope that
our work can inspire more such work in order to
benefit language technology users from different
countries and cultures.

Limitations

Our experiments are focused on natural language
understanding tasks. We recognize that adapting
our SubChar tokenization to language generation

482

tasks might require additional efforts, for exam-
ple, we may want to avoid cases of predicting
sub-character tokens that do not form complete
characters. Also, evaluating the robustness of
language generation models on real-world input
noises may require additional benchmarks beyond
those used in this paper. We leave such exploration
as an interesting direction for future work.

Another limitation is that our method is
designed specifically for the Chinese language.
While we hypothesize that our method can also
bring benefits to other languages with ideographic
symbols, such as Kanji in Japanese, we leave such
investigation to future work.

Broader Impact

We expect our work to have a positive impact
on the society. Firstly, we addressed the practical
problem of handling input with real-world noises.
Such noisy settings are very common in real-
life applications. Our method, along with the
evaluation framework, can help make language
technologies more robust and reliable in real-
world applications, especially for Chinese users.
Secondly, we addressed the efficiency concern of
large language models by significantly reducing
both and training and inference time. This not only
reduces the latency of these models in real-world
applications, but, more importantly, helps reduce
the environmental costs of using these large lan-
guage models, moving further towards Green AI.
All of our code and models are released with
proper documentation in order to better facilitate
the adoption of our work in a wide range of re-
search and industrial applications.

Acknowledgments

This work is supported by the National Key
Research and Development Program of China
(No. 2020AAA0106500) and the National Nat-
ural Science Foundation of China (NSFC No.
62236004).

We thank Xu Han, Yusheng Su, Tianyu Gao,
and other members of THUNLP for their helpful
discussion in the early stages of this work. We
thank Jordan Boyd-Graber, Chen Zhao, Shi Feng,
Neha Srikanth, Tonia Bleam, Leslie Li, and other
members of UMD CLIP and Language Science
Center for their helpful discussion and feedback.

We also thank Nelson Liu and Canwen Xu for
their constructive feedback on our early drafts.
We especially appreciate the constructive reviews
from TACL reviewers and action editors.

Author contributions Chenglei Si, Zhengyan
Zhang, and Yingfa Chen wrote the code and con-
ducted the experiments. Chenglei was in charge
of tokenzer training and pretraining experiments,
Zhengyan did the CWS experiments, Yingfa
did the finetuning experiments. All three con-
tributed to the analysis experiments. Chenglei Si,
Zhengyan Zhang, and Yingfa Chen wrote the ini-
tial draft; Fanchao Qi, Xiaozhi Wang, and Zhiyuan
Liu significantly edited and improved the paper.
Yasheng Wang, Qun Liu, and Maosong Sun pro-
vided valuable advice to the research. Chenglei
started this work back when he was visiting the
THUNLP group in 2021.

References

Emily Bender. 2019. The #BenderRule: On nam-
ing the languages we study and why it matters.
The Gradient.

Akash Bharadwaj, David Mortensen, Chris
Dyer, and Jaime Carbonell. 2016. Phonolog-
ically aware neural model for named entity
recognition in low resource transfer settings.
In Proceedings of EMNLP, pages 1462–1472.
https://doi.org/10.18653/v1/D16
-1153

Shaosheng Cao, Wei Lu, Jun Zhou, and
Xiaolong Li. 2018. cw2vec: Learning chinese
word embeddings with stroke n-gram informa-
tion. In Proceedings of AAAI.

Pi-Chuan Chang, Michel Galley, and Christopher
D. Manning. 2008. Optimizing Chinese word
segmentation for machine translation perfor-
mance. In Proceedings of the Third Workshop
on Statistical Machine Translation. https://
doi.org/10.3115/1626394.1626430

Aditi Chaudhary, Chunting Zhou, Lori Levin,
Graham Neubig, David R. Mortensen, and
Jaime Carbonell. 2018. Adapting word em-
beddings to new languages with morphologi-
cal and phonological subword representations.
In Proceedings of EMNLP, pages 3285–3295.
https://doi.org/10.18653/v1/D18
-1366

483

https://doi.org/10.18653/v1/D16-1153
https://doi.org/10.18653/v1/D16-1153
https://doi.org/10.3115/1626394.1626430
https://doi.org/10.3115/1626394.1626430
https://doi.org/10.18653/v1/D18-1366
https://doi.org/10.18653/v1/D18-1366

Jing Chen, Qingcai Chen, Xin Liu, Haijun
Yang, Daohe Lu, and Buzhou Tang. 2018.
The BQ corpus: A large-scale domain-specific
Chinese corpus for sentence semantic equiva-
lence identification. In Proceedings of EMNLP.
https://doi.org/10.18653/v1/D18
-1536

Jonathan Clark, Dan Garrette, Iulia Turc, and
John Wieting. 2021. CANINE: Pre-training an
efficient tokenization-free encoder for language
representation. Transactions of the Associa-
tion for Computational Linguistics, 10:73–91.
https://doi.org/10.1162/tacl a 00448

Kevin Clark, Minh-Thang Luong, Quoc V. Le,
and Christopher D. Manning. 2020. ELECTRA:
Pre-training text encoders as discriminators
rather than generators. In Proceedings of ICLR.

Florian Coulmas. 1991. The Writing Systems of
the World. Blackwell Publishers.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin,
Shijin Wang, and Guoping Hu. 2020. Revis-
iting pre-trained models for Chinese natural
language processing. In Findings of EMNLP.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin,
Ziqing Yang, Shijin Wang, and Guoping Hu.
2019a. Pre-training with whole word mask-
ing for Chinese BERT. IEEE/ACM TASLP,
29:3504–3514.

Yiming Cui, Ting Liu, Wanxiang Che, Li Xiao,
Zhipeng Chen, Wentao Ma, Shijin Wang, and
Guoping Hu. 2019b. A span-extraction dataset
for Chinese machine reading comprehension.
In Proceedings of EMNLP-IJCNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of NAACL-HLT.

Shizhe Diao, Jiaxin Bai, Yan Song, Tong
Zhang, and Yonggang Wang. 2020. ZEN: Pre-
training Chinese text encoder enhanced by
n-gram representations. In Findings of EMNLP.
https://doi.org/10.18653/v1/2020
.findings-emnlp.425

Chuanhai Dong, Jiajun Zhang, Chengqing
Zong, Masanori Hattori, and Hui Di. 2016.
Character-based lstm-crf with radical-level
features for chinese named entity recognition.
In International Conference on Computer Pro-

cessing of Oriental Languages. https://
doi.org/10.1007/978-3-319-50496
-4 20

Yen-Chen Hao and Chung-Lin Martin Yang.
2021. The effect of second-language ortho-
graphic input on the phonological encoding
of Mandarin words. Applied Psycholinguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. DeBERTa: Decoding-
enhanced BERT with disentangled attention.
In Proceedings of ICLR.

Hai Hu, Kyle Richardson, Liang Xu, Lu Li,
Sandra Kübler, and Lawrence Moss. 2020.
OCNLI: Original Chinese natural language
inference. In Findings of EMNLP. https://
doi.org/10.18653/v1/2020.findings
-emnlp.314

Li Huang, Junjie Li, Weiwei Jiang, Zhiyu
Zhang, Minchuan Chen, Shaojun Wang, and
Jing Xiao. 2021. PHMOSpell: Phonological
and morphological knowledge guided Chi-
nese spelling check. In Proceedings of ACL,
pages 5958–5967. https://doi.org/10
.18653/v1/2021.acl-long.464

Mario Michael Krell, Matej Kosec, Sergio P.
Perez, and Andrew Fitzgibbon. 2021. Efficient
sequence packing without cross-contamination:
Accelerating large language models without
impacting performance. arXiv preprint, abs/
2107.02027.

Taku Kudo. 2018. Subword regularization: Im-
proving neural network translation models with
multiple subword candidates. In Proceedings
of ACL. https://doi.org/10.18653
/v1/P18-1007

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A simple and language independent
subword tokenizer and detokenizer for neural
text processing. In Proceedings of EMNLP Sys-
tem Demonstrations. https://doi.org/10
.18653/v1/D18-2012

Yuxuan Lai, Yijia Liu, Yansong Feng, Songfang
Huang, and Dongyan Zhao. 2021. Lattice-
BERT: Leveraging multi-granularity represen-
tations in Chinese pre-trained language models.
In Proceedings of NAACL-HLT .

Zhenzhong Lan, Mingda Chen, Sebastian
Goodman, Kevin Gimpel, Piyush Sharma, and

484

https://doi.org/10.18653/v1/D18-1536
https://doi.org/10.18653/v1/D18-1536
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.18653/v1/2020.findings-emnlp.425
https://doi.org/10.18653/v1/2020.findings-emnlp.425
https://doi.org/10.1007/978-3-319-50496-4_20
https://doi.org/10.1007/978-3-319-50496-4_20
https://doi.org/10.1007/978-3-319-50496-4_20
https://doi.org/10.18653/v1/2020.findings-emnlp.314
https://doi.org/10.18653/v1/2020.findings-emnlp.314
https://doi.org/10.18653/v1/2020.findings-emnlp.314
https://doi.org/10.18653/v1/2021.acl-long.464
https://doi.org/10.18653/v1/2021.acl-long.464
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012

Radu Soricut. 2020. ALBERT: A lite BERT
for self-supervised learning of language repre-
sentations. In Proceedings of ICLR.

Hector Levesque, Ernest Davis, and Leora
Morgenstern. 2012. The Winograd schema
challenge. In Thirteenth International Con-
ference on the Principles of Knowledge Rep-
resentation and Reasoning.

Jingyang Li and Maosong Sun. 2007. Scalable
term selection for text categorization. In Pro-
ceedings of EMNLP.

Xiaoya Li, Yuxian Meng, Xiaofei Sun, Qinghong
Han, Arianna Yuan, and Jiwei Li. 2019. Is
word segmentation necessary for deep learning
of Chinese representations? In Proceedings of
ACL.

Zhongguo Li and Maosong Sun. 2009. Punctua-
tion as implicit annotations for Chinese word
segmentation. Computational Linguistics.

Frederick Liu, Han Lu, Chieh Lo, and Graham
Neubig. 2017. Learning character-level compo-
sitionality with visual features. In Proceedings
of ACL, pages 2059–2068.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. RoBERTa: A robustly opti-
mized BERT pretraining approach. arXiv pre-
print, abs/1907.11692.

Wentao Ma, Yiming Cui, Chenglei Si, Ting Liu,
Shijin Wang, and Guoping Hu. 2020. Char-
BERT: Character-aware pre-trained language
model. In Proceedings of COLING.

R. Thomas McCoy, Ellie Pavlick, and Tal Linzen.
2019. Right for the wrong reasons: Diagnosing
syntactic heuristics in natural language infer-
ence. In Proceedings of ACL. https://doi
.org/10.18653/v1/P19-1334

Yuxian Meng, Wei Wu, Fei Wang, Xiaoya
Li, Ping Nie, Fan Yin, Muyu Li, Qinghong
Han, Xiaofei Sun, and Jiwei Li. 2019. Glyce:
Glyph-vectors for Chinese character represen-
tations. In Proceedings of NeurIPS.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
S. Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In Proceedings of NeurIPS,
volume 26.

Antoine Nzeyimana and Andre Niyongabo
Rubungo. 2022. KinyaBERT: A morphology-
aware kinyarwanda language model. In Pro-
ceedings of ACL. https://doi.org/10
.18653/v1/2022.acl-long.367

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. 2018. Deep contextu-
alized word representations. In Proceedings
of NAACL-HLT . https://doi.org/10
.18653/v1/N18-1202

Mike Schuster and Kaisuke Nakajima. 2012.
Japanese and Korean voice search. In Proceed-
ings of the IEEE International Conference
on Acoustics, Speech and Signal Processing.
https://doi.org/10.1109/ICASSP.2012
.6289079

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2016. Neural machine translation of rare
words with subword units. In Proceedings of
ACL. https://doi.org/10.18653/v1
/P16-1162

Chenglei Si, Zhengyan Zhang, Yingfa Chen,
Xiaozhi Wang, Zhiyuan Liu, and Maosong
Sun. 2023. READIN: A Chinese multi-task
benchmark with realistic and diverse input
noises. arXiv, abs/2302.07324.

Kai Sun, Dian Yu, Dong Yu, and Claire
Cardie. 2020. Investigating prior knowledge
for challenging Chinese machine reading com-
prehension. Transactions of the Association for
Computational Linguistics. https://doi.org
/10.1162/tacl a 00305

Maosong Sun, Xinxiong Chen, Kaixu Zhang,
Zhipeng Guo, and Zhiyuan Liu. 2016. THU-
LAC: An efficient lexical analyzer for Chinese.
GitHub.

Yaming Sun, Lei Lin, Nan Yang, Zhenzhou Ji,
and Xiaolong Wang. 2014. Radical-enhanced
chinese character embedding. In Proceedings
of COLING, pages 279–286.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun
Feng, Xuyi Chen, Han Zhang, Xin Tian,
Danxiang Zhu, Hao Tian, and Hua Wu. 2019.
ERNIE: Enhanced representation through
knowledge integration. arXiv preprint, abs/
1904.09223.

Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian
Meng, Xiang Ao, Qing He, Fei Wu, and Jiwei

485

https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/2022.acl-long.367
https://doi.org/10.18653/v1/2022.acl-long.367
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1162/tacl_a_00305
https://doi.org/10.1162/tacl_a_00305

Li. 2021. ChineseBERT: Chinese pretraining
enhanced by glyph and Pinyin information.
In Proceedings of ACL, pages 2065–2075.
https://doi.org/10.18653/v1/2021
.acl-long.161

Yi Tay, Vinh Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin,
Simon Baumgartner, Cong Yu, and Donald
Metzler. 2022. Charformer: Fast character
transformers via gradient-based subword tok-
enization. In Proceedings of ICLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. In Proceedings of
NeurIPS.

Junqiu Wei, Qun Liu, Yinpeng Guo, and Xin
Jiang. 2021. Training multilingual pre-trained
language model with byte-level | subwords.
arXiv preprint, abs/2101.09469.

Junqiu Wei, Xiaozhe Ren, Xiaoguang Li,
Wenyong Huang, Yi Liao, Yasheng Wang,
Jiashu Lin, Xin Jiang, Xiao Chen, and Qun Liu.
2019. NEZHA: Neural contextualized repre-
sentation for Chinese language understanding.
arXiv, abs/1904.00204.

Dongling Xiao, Yu-Kun Li, Han Zhang, Yu Sun,
Hao Tian, Hua Wu, and Haifeng Wang.
2021. ERNIE-Gram: Pre-training with explic-
itly n-gram masked language modeling for nat-
ural language understanding. In Proceedings of
NAACL-HLT . https://doi.org/10.18653
/v1/2021.naacl-main.136

Liang Xu, Qianqian Dong, Cong Yu, Yin Tian,
Weitang Liu, Lu Li, and Xuanwei Zhang.
2020a. CLUENER2020: Fine-grained name
entity recognition for Chinese. arXiv preprint,
abs/2001.04351.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li,
Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun,
Dian Yu, Cong Yu, Yin Tian, Qianqian Dong,
Weitang Liu, Bo Shi, Yiming Cui, Junyi Li, Jun
Zeng, Rongzhao Wang, Weijian Xie, Yanting
Li, Yina Patterson, Zuoyu Tian, Yiwen Zhang,
He Zhou, Shaoweihua Liu, Zhe Zhao, Qipeng
Zhao, Cong Yue, Xinrui Zhang, Zhengliang
Yang, Kyle Richardson, and Zhenzhong Lan.
2020b. CLUE: A Chinese language under-

standing evaluation benchmark. In Proceed-
ings of COLING.

Linting Xue, Aditya Barua, Noah Constant, Rami
Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. 2022. ByT5: To-
wards a token-free future with pre-trained
byte-to-byte models. Transactions of the As-
sociation for Computational Linguistics.

Jinxing Yu, Xun Jian, Hao Xin, and Yangqiu
Song. 2017. Joint embeddings of Chinese
words, characters, and fine-grained subchar-
acter components. In Proceedings of EMNLP,
pages 286–291.

Xinsong Zhang, Pengshuai Li, and Hang Li.
2021a. AMBERT: A pre-trained language
model with multi-grained tokenization. In
Findings of ACL. https://doi.org/10
.18653/v1/2021.findings-acl.37

Yuan Zhang, Jason Baldridge, and Luheng He.
2019a. PAWS: Paraphrase adversaries from
word scrambling. In Proceedings of NAACL-
HLT .

Yun Zhang, Yongguo Liu, Jiajing Zhu, Ziqiang
Zheng, Xiaofeng Liu, Weiguang Wang, Zijie
Chen, and Shuangqing Zhai. 2019b. Learning
chinese word embeddings from stroke, struc-
ture and pinyin of characters. In Proceedings
of CIKM, pages 1011–1020. https://doi
.org/10.1145/3357384.3358005

Zhengyan Zhang, Yuxian Gu, Xu Han, Shengqi
Chen, Chaojun Xiao, Zhenbo Sun, Yuan Yao,
Fanchao Qi, Jian Guan, Pei Ke, Yanzheng
Cai, Guoyang Zeng, Zhixing Tan, Zhiyuan
Liu, Minlie Huang, Wentao Han, Yang Liu,
Xiaoyan Zhu, and Maosong Sun. 2021b.
CPM-2: Large-scale cost-effective pre-trained
language models. arXiv preprint, abs/2106
.10715. https://doi.org/10.1016/j
.aiopen.2021.12.003

Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke,
Yuxian Gu, Deming Ye, Yujia Qin, Yusheng
Su, Haozhe Ji, Jian Guan, Fanchao Qi,
Xiaozhi Wang, Yanan Zheng, Guoyang Zeng,
Huanqi Cao, Shengqi Chen, Daixuan Li,
Zhenbo Sun, Zhiyuan Liu, Minlie Huang,
Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu,
and Maosong Sun. 2020. CPM: A large-scale
generative Chinese pre-trained language model.

486

https://doi.org/10.18653/v1/2021.acl-long.161
https://doi.org/10.18653/v1/2021.acl-long.161
https://doi.org/10.18653/v1/2021.naacl-main.136
https://doi.org/10.18653/v1/2021.naacl-main.136
https://doi.org/10.18653/v1/2021.findings-acl.37
https://doi.org/10.18653/v1/2021.findings-acl.37
https://doi.org/10.1145/3357384.3358005
https://doi.org/10.1145/3357384.3358005
https://doi.org/10.1016/j.aiopen.2021.12.003
https://doi.org/10.1016/j.aiopen.2021.12.003

AI Open. https://doi.org/10.1016/j
.aiopen.2021.07.001

Chujie Zheng, Minlie Huang, and Aixin Sun.
2019. ChID: A large-scale Chinese IDiom da-
taset for cloze test. In Proceedings of ACL.

https://doi.org/10.18653/v1/P19
-1075

Wei Zhu. 2020. MVP-BERT: Redesigning vo-
cabularies for Chinese BERT and multi-vocab
pretraining. arXiv preprint, abs/2011.08539.

487

https://doi.org/10.1016/j.aiopen.2021.07.001
https://doi.org/10.1016/j.aiopen.2021.07.001
https://doi.org/10.18653/v1/P19-1075
https://doi.org/10.18653/v1/P19-1075

	Introduction
	Method
	Step 1: Character Encoding
	Step 2: Vocabulary Construction
	Optional Step: Chinese Word Segmentation

	Experiment Setup
	Baselines
	Pretraining Data
	Evaluation Data
	Hyper-parameters

	Experiment Results
	Standard Evaluation
	Robustness Evaluation
	Effect of CWS
	Character-Level Tasks

	Analysis
	Vocabulary Composition
	Efficiency Improvement
	Impact of Vocabulary Size
	Impact of Pretraining Data Size
	Impact of Encoding Methods
	Impact of Vocabulary Construction Algorithm

	Related Work
	Conclusion

