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Abstract

In this paper, we conduct the first study
on spurious correlations for open-domain
response generation models based on a cor-
pus CGDIALOG curated by ourselves. The
current models indeed suffer from spurious
correlations and have a tendency to gener-
ate irrelevant and generic responses. Inspired
by causal discovery algorithms, we propose
a novel model-agnostic method for training
and inference using a conditional indepen-
dence classifier. The classifier is trained by
a constrained self-training method, coined
CONSTRAIN, to overcome data sparsity. The
experimental results based on both human
and automatic evaluation show that our
method significantly outperforms the com-
petitive baselines in terms of relevance,
informativeness, and fluency.

1 Introduction

Open-domain response generation models have
achieved impressive empirical success due to
the recent advances in large-scale pre-trained
transformers (Caldarini et al., 2022). However,
although those models can generate fluent re-
sponses, it is still difficult for them to deeply
understand conversation histories, and produce
coherent and semantically diverse responses, es-
pecially when the conversation histories are long
(Sankar et al., 2019; Qiu et al., 2019). We con-
jecture that one of the key reasons is spuriously
correlated utterances in histories, which do not
directly result in responses. Although the vulner-
ability to spurious correlations is a well-known
problem in deep learning models (Wang et al.,
2021), to the best of our knowledge, there is no
study on this topic from a causal perspective for
response generation models.

To investigate spurious correlations in dia-
logues, we are concerned with identifying non-
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spurious ones, which are the direct causes of re-
sponses. In this work, a direct cause of a response
refers to a text or an utterance in a conversa-
tion history that directly results in the response.
Table 1 shows an example dialogue between a
help-seeker and a peer-supporter randomly picked
from the Emotion Support Conversation corpus
(ESCONV) (Liu et al., 2021). The utterance u3

serves as the direct cause of the response u6,
because it is the only utterance mentioning on-
line learning. Otherwise, if we remove it from
the history or significantly alter its meaning, the
response u6 becomes groundless. In contrast, if
we remove an utterance non-causally related to
a human response, such as u1 or u5 related to
u6, the direct causes still provide sufficient and
necessary information to the responses.

Causal discovery algorithms provide a theo-
retically grounded way to learn causal relations
between random variables from observational data
(Nogueira et al., 2021). Although they can be ap-
plied to identify which utterances in conversation
histories are direct causes of responses in theory,
the research on such methods for natural language
processing problems is still in its infancy.

In this work, we conduct the first study on spu-
rious correlations for response generation models
from a causal perspective. We empirically show
that non-cause utterances, including spurious cor-
related ones, have significantly more influence on
response generation models than the direct cause
utterances human would rely on.

Inspired by causal discovery algorithms, we
propose a model-agnostic training and inference
method for mitigating spurious correlations in
long conversations. The method aims to automat-
ically identify key utterances in histories, which
serve as direct causes for response generation.
Herein we convert the cause identification prob-
lem into a problem of conditional independence
(CI) tests. The CI tests are realized by building
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Supporter: Hello u0

Help seeker: Hi, how are you? u1

Supporter: Doing good.. How are you? u2

Help seeker:
I’m feeling really anxious these days. I’m finding the COVID online learning experience
to be too much for me at this time. u3

I want to stop school, but I don’t think I can afford to. I need to get done with school.
Supporter: I understand your frustration. All of us are challenged due to COVID. u4

History

Help seeker: School was always hard. Now it’s gotten harder. I think a lot of people are stressed. u5

Human Supporter: How long are you doing the online school? u6

BLENDERBOT Supporter: You are welcome. I wish you all the best in your future endeavors. Take care. u7

Table 1: An emotion support dialogue annotated with direct causes of human response (in bold).

a classifier to infer whether an utterance in the
history statistically depends on the response con-
ditioned on its preceding utterance. As there is no
training data for such a classifier, we start with
manually annotating causal relations on a small
portion of public open-domain dialogues. To over-
come the scarcity of the training data, we propose
a Constrained Self-Training method, coined CON-
STRAIN, which is able to identify causal relations
with high precision and recall. This classifier is
applied to filter out utterances in histories, which
are not direct causes of responses, before train-
ing response generation models. Furthermore, the
classifier serves as a scoring function to select
the most relevant response from all generated
candidates.

To sum up, our contributions are as follows:

• We conduct the first empirical study on
spurious correlations for dialogue response
generation models. To investigate this prob-
lem in depth, we curate a corpus CGDIALOG

by annotating causal relations on dialogues.

• We reduce the direct cause identification
problem to a problem of CI tests and
propose a constrained self-training method,
coined CONSTRAIN, to train the corresponding
classifier.

• We propose to train response generation
models by taking only direct causes as inputs
and perform inference using the CI classifier.

• The extensive human evaluation results show
that the response generation models, such
as BLENDERBOT, using our method outper-
form the baselines in terms of relevance,
informativeness, and fluency.1

1Our dataset, models, and code can be found at https://
github.com/WilliamsToTo/CGDIALOG.

2 Causal Discovery Background
Given a set of random variables, causal discov-
ery from observational data is concerned with
discovering causal relations between the random
variables. A set of causal relations constitutes a
causal graph G = {V , E}, where a node v ∈ V
denotes a random variable and a directed edge
vi → vj ∈ E indicates that vi is a direct cause
of vj (Neal, 2020). A change in vi results in a
change in vj , but an intervention in vj does not
necessarily lead to a change in vi.

Our work is motivated by constraint-based
causal discovery approaches (Nogueira et al.,
2021), which iteratively apply independence and
CI tests to infer causal structures. Those ap-
proaches make the faithfulness assumption that
independencies in a distribution imply the struc-
ture of the corresponding causal graph. The most
commonly used algorithm in this family is the
PC algorithm (Spirtes et al., 2000). It starts with
adding undirected edges between two nodes if
both of them are dependent by not passing inde-
pendence tests. Then it remove an edge between
two nodes if they are identified as conditionally
independent after running CI tests. The algo-
rithm would continue with larger conditioning
sets until the skeleton of the graph is identified.
Finally, it orients the edges when possible by
using heuristics and identifying the specific struc-
ture, vi → vk ← vj , referred to as immorality, as
illustrated in Figure 2b (Neal, 2020).

In this work, we do not need to recover the
complete causal structure between utterances in
dialogues. Instead, we only focus on identifying
direct causes of responses, namely, the parents of
the response nodes in a causal graph. A causal
graph satisfies the Causal Markov Condition,
which states that each variable is independent
of all its non-descendants, given its parents in
the causal graph. Hence the value of a re-
sponse variable is only determined by its parents
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(Pearl and Verma, 1991; Pearl, 2009). Under the
faithfulness assumption, if a response variable vj
is dependent on vi conditioning on arbitrary any
other nodes, and we know the influence direction
is from vi to vj , then we conclude that vi → vj .

3 Spurious Correlations in Dialogues

The slogan ‘‘Spurious correlation is no proof of
causation’’ is well known in statistics (Simon,
1954). A correlation between a response and an
utterance in a conversational history is spurious if
it does not directly result in the response.

Spurious correlations are an inherent problem of
statistical machine learning (ML) models. Wang
et al. (2021) point out that ML models relying
on core features may well achieve similar train-
ing errors on the same training data as those
relying on spurious features. However, the mod-
els relying on spurious correlations lead to high
test errors because spurious correlations are in-
consistent across datasets. Overparameterization
further exacerbates spurious correlations by mem-
orizing examples containing spurious features
(Sagawa et al., 2020). Unfortunately, almost all the
SotA open-domain dialogue models are based on
large-scale transformers, which are overparam-
eterized with respect to small dialogue training
datasets in target domains.

To study the impact of spurious correlations
for dialogue models, we leverage two public di-
alogue corpora (ESCONV and MSC) to construct
a small evaluation corpus for Causal Graphs in
dialogues, coined CGDIALOG, and evaluate two
SotA dialogue models, BLENDERBOT (Roller et al.,
2021) and DIALOGGPT (Zhang et al., 2020), on
that corpus in terms of spurious correlations.

3.1 Annotation of Causal Graphs

We randomly sampled 80 dialogues from ESCONV

(Liu et al., 2021) and MSC (Xu et al., 2022) each,
then employed four graduate computer science
students and four well-trained crowd-workers to
annotate direct causes of responses. All annota-
tors were instructed to have a good understanding
about what are direct causes of responses and used
Amazon Mechanical Turk (AMT) for annotation.
We trained them by letting them first annotate on
a dry-run dataset, and provided feedback if there
was a misunderstanding. After training, annota-
tors were asked to read the provided responses
and their conversation histories, then highlight

Number of items ESCONV MSC Total

Dialogues 80 80 160
History-response pairs 694 800 922
Utterances 2301 3807 6108
Direct causes utterance 1347 1525 2872
Average token length 24.01 22.22 23.05
of direct causes (σ = 16.61) (σ = 13.79) (σ = 15.20)
The proportion of direct causes 0.86 0.72 0.79
in original utterances (σ = 0.22) (σ = 0.27) (σ = 0.26)

Table 2: Statistics of the CGDIALOG.

which utterances or clauses serve as direct causes
of the responses. We include clause level anno-
tations because sometimes only one clause in a
long utterance is the direct cause of a response.
For quality check, a human expert having a good
grasp of this task reviewed all annotations and
corrected mistakes. CGDIALOG-ESCONV is splitted
into a training set, a validation set, and a test set,
containing 272, 211, and 211 context-response
pairs, respectively, while CGDIALOG-MSC con-
tains 300, 250, and 250 context-response pairs,
respectively.

We measured the inter-annotator agreement be-
tween the expert and an annotator at both the
utterance level and the clause level. At the ut-
terance level, we computed Cohen’s Kappa and
obtained 0.8149. At the clause level, because
marked text boundaries may vary between an-
notators, we compute the averaged F1 score for
all possible pairs of annotators, as detailed in
Rajpurkar et al. (2016) and Poria et al. (2021). We
obtained a F1 score of 0.8449, which indicates a
high-level of inter-annotator agreement.

We show the corpus statistics in Table 2 and
Figure 1. Most of the preceding utterances of re-
sponses are annotated as direct causes, which are
over 80% and 95% on ESCONV and MSC, respec-
tively. The proximity of utterances to responses
matters: The closer utterances are to the responses,
the higher the chance to be direct causes.

3.2 Analysis of Spurious Correlations
We conduct experiments to investigate the impact
of spurious correlations on two SotA response
generation models: BLENDERBOT and DIALOGGPT.
Both models are fine-tuned on the training sets
of ESCONV and MSC by taking full conversation
histories as inputs. Inspired by Sankar et al. (2019),
we perturb conversation histories by removing
either direct causes or non-causes from histories.
We hope that the outputs of a robust model should
have little changes if only spuriously correlated
utterances are removed. The removal is conducted
in two ways: i) replacing each removed token with
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Figure 1: Top: The ratio between the number of the
history-response pairs with a particular number of direct
causes and all history-response pairs. Bottom: Prox-
imity between direct causes and responses, measured
by the percentage of such pairs in all history-response
pairs. Most direct causes are very close to responses.

the pad token <pad>; and ii) directly dropping the
removed tokens. We apply such perturbations to
the test set of CGDIALOG and compare their results
with the ones without any perturbations.

If a response model captures the same genuine
correlations between key utterances in histories
and responses as humans, the perplexities of hu-
man responses estimated by the model should
change only slightly if non-cause utterances are
excluded from conversation histories. However,
as shown in Table 3, the increase of perplexities
caused by dropping or replacing non-cause utter-
ances is significantly sharper than that resulted by
the removal of cause utterances.

To further investigate the effects of perturbing
conversation histories, we apply the same decod-
ing method of both models to the histories after
perturbations. We compare the responses gener-
ated before and after perturbations in terms of
BLEU. Lower BLEU indicates larger changes

of generated outputs. As we can see, drop-
ping or replacing direct causes leads to notably
smaller changes of outputs than applying the same
operations to non-cause utterances.

To eliminate the concern that the above obser-
vations are caused by the number of perturbed
utterances, we remove or replace the same num-
ber of non-cause utterances as that of direct
causes each time. More specifically, as the num-
ber of direct causes is always smaller than that of
non-causes, we apply the perturbations to k utter-
ances randomly chosen from non-cause utterances
if the number of direct causes is k, and compute
the corresponding perplexities and BLEU. To mit-
igate the influence of randomness, we repeat each
experiment for five times and compute statisti-
cal significance based on two-sample t-test (Dror
et al. 2020). As one can see from Table 3, both
generative models are sensitive to the removal of
utterances that are weakly associated with human
responses. The perturbations on the equal number
of non-cause utterances lead to larger changes of
the model outputs than those on causes, as indi-
cated by BLEU. For DIALOGGPT, the increase of
perplexities by perturbing non-causes is still sig-
nificantly higher than that by perturbing causes.
Therefore, both models do not really learn on
the utterances that humans use as causes to ar-
ticulate responses, but rely heavily on non-cause
utterances.

4 Causal Discovery Motivated Training
and Inference

As shown by our empirical study, spurious correla-
tions are detrimental to the SotA dialogue models.
To remedy this, we propose to automatically iden-
tify the utterances in conversation histories, which
serve as direct causes to responses, and only
use them as history representations during both
training and inference. Based on the theoretical
analysis in Section 2, this identification problem
is reduced to running CI tests between responses
and utterances in their history. Herein, we propose
a constrained self-training procedure to build a
classifier for classifier-based CI tests (Lopez-Paz
and Oquab 2017; Sen et al., 2017, 2018; Bellot
and Schaar 2019).

Formally, given a conversation history Ct =
{u0, . . . ,ut−1} at time t, a dialogue model aims to
produce a word sequence rt as the response based
on Ct. Both ui and rt are regarded as collections
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Datasets Models No Perturbations Replace non-causes Replace non-causes Replace causes Drop non-causes Drop non-causes Drop causes

with <pad> with <pad> randomly with <pad> randomly
PPL↓

ESConv
Blenderbot 12.16 25.00∗ 12.10 12.81 22.65∗ 13.13 12.35

DialoGPT 400.15 588.16∗ 569.60† 514.09 474.42∗ 469.51† 452.91

MSC
Blenderbot 48.29 57.52∗ 47.52 49.65 58.53∗ 49.69 48.82

DialoGPT 404.08 875.15∗ 703.61† 613.95 590.28∗ 575.12† 480.95

Average BLEU↑

ESConv
Blenderbot – 0.11∗ 0.56† 0.82 0.15∗ 0.48† 0.86

DialoGPT – 0.08∗ 0.48† 0.56 0.11∗ 0.35† 0.81

MSC
Blenderbot – 0.14∗ 0.47† 0.94 0.09∗ 0.39† 0.95

DialoGPT – 0.28∗ 0.49† 0.81 0.37∗ 0.48† 0.82

Table 3: Performance comparison with respect to conversation history perturbations. PPL indicates
perplexity of human responses. Average BLEU scores are computed as the mean over the four orders
of the n-grams. Because responses generated in ‘‘No Perturbations’’ setting are treated as references,
average BLEU scores are empty in the ‘‘No Perturbations’’ column. ∗ indicates a significant difference
between ‘‘Replace (or Drop) causes’’ and ‘‘Replace (or Drop) non-causes’’, while † represents a
significant difference between ‘‘Replace (or Drop) causes’’ and ‘‘Replace (or Drop) non-causes
randomly’’. The significant difference is computed by two sample t-test with p � 0.05.

of random variable, where each variable in the
collection denotes if a single word is present or
not. Because the same event can be expressed
in various linguistic forms, we assume there is a
projection function g(u), which maps an utterance
to a latent random variable vector z ∈ Z denoting
the meaning of the corresponding event.

A causal graph in the semantic space is a di-
rected acyclic graph G = {V ,E}, where a node
represents a latent random variable vector zi and
an edge is denoted by a causal relation between
a pair of nodes. We do not define causal graphs
in the word space because i) it is the mean-
ings of utterances that are causally correlated and
ii) the same words in different contexts may be
involved in different causal relations. Identifying
direct causes of responses can thus be regarded as
recognizing causal relations between those latent
random variables. To simplify notation, we denote
the output of g(ui) by zi, unless stated otherwise.

4.1 From Cause Identification to the
Conditional Independence Tests

If a latent semantic vector zi of an utterance is a
direct cause of the meaning of a response zj , then
zi 	⊥⊥ zj |Zt,−i, where Zt,−i denotes any subset of
latent random variables derived from the history
Ct excluding zi. In other words, zi provides ad-
ditional useful information for zj given any other
utterances in a history. However, it is computa-
tionally expensive to consider all possible subsets
of a conversation history for running CI tests for
a single utterance.

To address the computational challenge, we
observe that a response often only depends on the
preceding utterance and at most two utterances in
total. As evident in Figure 1, 81% of the responses
in CGDIALOG have one or two direct causes and
90% of the preceding utterances serve as direct
causes of the following responses. Therefore, we
can sharply reduce the computational overhead by
making the following assumptions.

Assumption 1. For each response rt, g(ut−1) →
g(rt) always holds.

Assumption 2. There are at most two direct
causes for the latent random variable vector of a
response.

Assumption 3. If there is an edge between g(ui)
and g(uj) in a causal graph and i < j, then
g(ui) → g(uj).

The last assumption articulates the fact that
what people said in the past influences what people
will say in the future. If the temporal order in a
conversation is known, there is no need to apply
statistical methods to infer the orientation.

Under the above assumptions, for a given
response rt, there are only four possible neigh-
borhood structures, as illustrated in Figure 2. We
have zt 	⊥⊥ zj |zt−1 for Figure 2a and Figure 2b,
but zt is conditionally independent of zj in the
remaining cases. Herein, we make the faithfulness
assumption that CIs imply graph structures. Un-
der our assumptions, it is sufficient to determine
if an utterance uj with j < t is a cause of tt by
checking whether zt 	⊥⊥ zj |zt−1. Hence, we only
need to run t − 2 CI tests for a response rt. Note
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Figure 2: In a, the response variable has two direct
causes that may be connected through zk (k > j) or
directly connected, while the response variable in b has
two disconnected cause variables. In c and d there is
only one direct cause zt−1 linking to zt.

that it is important to run CI tests instead of de-
pendence tests to find a direct cause of a response.
As illustrated in Figure 2c, although zj is not a
direct cause of zt, both of them are still dependent
through zk and zt−1 according to dependence
tests. If we run a CI test conditioned on zt−1, the
path through zk is blocked so that the test result
reveals zt⊥⊥zj |zt−1. More details of identifying
independence structures in a graphical model can
be found in Neal (2020) and Pearl (2009).

4.2 Conditional Independence Tests

To perform CI tests over a set of latent random
variables z on observational data, we need to i)
project utterances to the latent space, and ii) choose
a scalable test method which can work with texts.
However, the first step is already challenging
because the latent random variables are unknown
and we even do not know the number of them for
an arbitrary dialogue corpus.

To tackle both challenges, we opt for the
classifier-based CI test. As zt ⊥⊥ zj |zt−1 implies
p(zt, zj |zt−1) = p(zt|zt−1)p(zj |zt−1), this fam-
ily of tests builds a classifier to determine if a sam-
ple of data is drawn from p(zt|zt−1)p(zj |zt−1) or
p(zt|zj , zt−1)p(zj |zt−1). To train the classifier,
we label a tuple (zt, zt−1, zj) with l = 1 if it is
drawn from p(zt|zj , zt−1)p(zj |zt−1), otherwise
l = 0. Then the classifier aims to capture the
conditional distribution p(l|zt, zt−1, zj).

The recent advances of deep learning show
that hidden representations of deep neural net-
works can well capture meanings of input texts
(Yang et al., 2020). Hence, it is straightforward
to consider a deep encoder as a function g(u)
from an utterance u to a hidden representation z.
Specifically, we employ a pre-trained ROBERTA

(Liu et al., 2019) as the encoder to map a tuple
(rt,ut−1,uj) to a sequence of hidden represen-
tations (zt, zt−1, zj), where adjacent utterances
are separated by the special token </s>. Taking
the representations (zt, zt−1, zj) as input, the CI
classifier consists of a mean-pooling layer, a lin-
ear layer, and a sigmoid layer for characterizing
p(l|zt, zt−1, zj).

Inspired by Sun et al. (2019), we first train the
pre-trained ROBERTA with the masked language
model objective on the publicly available Reddit
dataset (Baumgartner et al., 2020) to adapt it
to dialogues. After training 10 epochs with the
learning rate 5 × 10−5, we fine-tune the model
with our self-training procedure detailed below.

Incremental Self-training with Constraints. It
is straightforward to collect a small training dataset
DL from the training set of CGDIALOG by consider-
ing (uj ,ut−1, rt) annotated with g(uj) → g(rt)
as positive examples and the remaining as nega-
tive examples. However, the size of DL is small
by having only 922 examples in total.

To address the scarcity of DL, we adapt the
self-training procedure introduced in Zou et al.
(2019) to train the CI classifier. It starts with train-
ing an initial classifier f0 on DL in a supervised
manner. Then we apply this classifier to unlabeled
utterance tuples. The tuples predicted with labels 1
are added to the training set as positive examples if
they satisfy the threshold and context constraints:

i) The probability p(l = 1|uj ,ut−1, rt) ex-
ceeds a predefined threshold 0.9;

ii) uj is either ut−2 or ut−3 with respect to a
response rt.

For each response rt, negative examples are
collected by randomly sampling uj from the
utterances that are not selected as positive ex-
amples. We keep the number of positive examples
the same as the number of negative examples in
each batch. The extended training set is used to
fine-tune the classifier. The process is repeated
until the classifier achieves the highest perfor-
mance on the validation set of CGDIALOG. More
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Algorithm 1 Incremental Self-training
Require:

1: Labeled training and validation set: Dtr
L , Dva

L

2: Unlabeled dataset: DU

3: Pseudo-labeled data selection constraint: C
4: Classifier with pre-trained ROBERTA: fθ

Ensure:
5: i ← 0
6: D

i ← D
tr
L

7: fi ← fine-tuning fθ on D
i

8: while fi does not have the best performance
on D

va
L do

9: Apply fi on unlabeled dataset DU

10: Construct pseudo-labeled dataset D
i
PL

with constraint C
11: D

i+1 ← D
i ∪ D

i
PL

12: fi+1 ← fine-tuning fi on D
i+1

13: i ← i+ 1
14: end while

details can be found in Algorithm 1. Note that
the main difference to the original self-training
algorithm is that we add a positive example to the
training set only if uj is either ut−2 or ut−3. The
constraint is proven to be empirically useful in our
experiments.

4.3 Training and Inference for Generative
Response Models

To overcome spurious correlations, we propose to
feed only direct causes of responses to dialogue
models during training and inference, where direct
causes are selected by the CI classifier. This ap-
proach is model-agnostic because it only ‘‘cleans’’
the inputs of a response model regardless which
neural architecture is used.

The training set of mainstream open-domain
dialogue models consists of conversation history
and response pairs {Ct, rt}nt=1. Before training,
we preprocess the training set by keeping only di-
rect causes in each conversation history. As ut−1

is always one of the direct causes according to
Assumption 1, we find another cause by using
the CI classifier. In particular, for each conver-
sation history Ct, we perform max inference on
all tuples (uj ,ut−1, rt) using the classifier, where
j ∈ [0, t− 2]. We select the uj that has the high-
est probability p(l = 1 | uj ,ut−1, rt) as another
direct cause. Dialogue models are subsequently
trained on the preprocessed training set.

The input selection for inference is conducted
in a similar manner. In particular, we feed each
possible (uj ,ut−1)with j ∈ [0, t−2] to the trained
dialogue model to generate a response by beam
search. Then we apply the CI classifier to identify
the tuple (uj ,ut−1, rt) with the highest p(l = 1 |
uj ,ut−1, rt). To allow selecting responses based
on p(rt|uj ,ut−1) or p(rt|ut−1), we choose the
response conditioned on (uj ,ut−1) if the highest
p(l = 1 | uj ,ut−1, rt) exceeds the threshold 0.5,
tuned on a validation set, otherwise we take the
response conditioned on ut−1.

5 Experiments

5.1 Datasets
We experiment on the following two open-domain
dialogue corpora that have long conversation his-
tories. The longer a conversation history is, the
more likely utterances in the history are spuri-
ously correlated with responses. In contrast, most
open-domain dialogue corpora contain short con-
versations, in which there are dramatically less
spuriously correlated utterances. For example,
DailyDialog (Li et al., 2017), WizardOfWikipedia
(Dinan et al., 2019), and EmpatheticDialogues
(Rashkin et al., 2019) have 7.9 utterances, 9 ut-
terances, and 4.31 utterances per conversation,
respectively.

Emotion Support Conversation (ESCONV).
ESCONV (Liu et al., 2021) contains conversations
between mental health help seekers and support-
ers, with 29.8 utterances per dialogue on average.
In each dialogue, help seekers talk about their
problems, such as unemployment, losing a family
member, or being infected with COVID. Dialogue
response models play the role of supporters to pro-
vide supportive responses to help seekers. Each
utterance from supporters is annotated with a strat-
egy such as providing suggestions, paraphrasing,
or questioning, which are not considered in our
models. It is splitted into training, validation, and
test sets with the ratios of 80%, 10%, and 10%,
respectively.

Multi-Session Chat (MSC). MSC (Xu et al.,
2022) contains human-human chit-chats over five
sessions, each of which contains up to 14 ut-
terances. The average number of utterances per
dialogue is 53.3. In each session, two interlocutors
conduct a conversation based on given personas.
Each persona describes personal information with
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multiple sentences. We experiment on its official
splits of training, validation, and test sets.

5.2 Baseline Models

We compare our method CONSTRAIN and its vari-
ations, based on BLENDERBOT, with the following
generative models:

BLENDERBOT. This transformer-based encoder-
decoder model achieves superior performance
over the prior models in terms of engaging-
ness and humanness (Roller et al., 2021). We
fine-tune the pre-trained model with varying
settings of conversational histories. As such, a
conversational history contains either: 1) only
the preceding utterance ut−1, 2) the preceding
two utterances (ut−2,ut−1) when available, 3)
the preceding three utterances (ut−3,ut−2,ut−1)
when available, 4) the complete conversational
history (u0, . . . ,ut−1), or 5) the preceding utter-
ance ut−1 and a randomly selected utterance uj

between 0 and t− 2. All hyperparameters remain
the same in different settings.

DialoFlow. Li et al. (2021) propose a dialogue
system that models dynamic information flow
across utterances. The model generates a response
based on a distributed representation predicted
based on past information flow.

Retrieval-guided Model. We implement the
retrieval-guided response generation model pro-
posed in Zhong et al. (2022) without using user
ids, because they are not available in both corpora.
Herein, we first map the tokens in the preceding
utterance ut−1 and the tokens in the previous his-
tory {u0, . . . ,ut−2} into a set of BERT embeddings,
respectively. Then we compute a similarity matrix
between the two sets of embeddings in terms of
dot product. As there is a similarity vector for
each token in the previous history, we score each
of them by using the highest similarity score in the
corresponding vector. We pick the top 30 scored
ones as the final set of retrieved tokens. The input
to their response generation model is the concate-
nation of ut−1 and the corresponding retrieved
tokens.

ESCONV Baseline. Liu et al. (2021) provide
two response models on ESCONV. The first one
directly fine-tunes the BLENDERBOT model on ES-
CONV without using annotations of negotiation
strategies. Another one fine-tunes BLENDERBOT by

taking as input both negotiation strategies and
conversation histories. Both models consider the
preceding five utterances as conversation history.

TransferTransfo. As MSC can be viewed as
an extension of PersonaChat dataset (Zhang et al.,
2018), we consider TransferTransfo (Wolf et al.,
2019), which reports the SotA performance on
PersonaChat. We fine-tune this model on the
training set of MSC for a fair comparison.

Retriever-generator. Xu et al. (2022) propose
a model consisting of a retriever and a generator.
The retriever selects relevant utterances from a
history, while the generator produces responses
conditioned on the utterances selected by the
retriever.

Among the above models, BLENDERBOT,
DialoFlow, and retrieval-guided model are
evaluated on both corpora. TransferTransfo is
evaluated only on MSC because the same model
shows inferior performance than the one proposed
in Liu et al. (2021) on ESCONV. Furthermore,
the baseline (Liu et al., 2021) is only evaluated
on ESCONV because it requires annotations of
strategies.

5.3 Implementation Details

All the models are implemented with PyTorch
(Paszke et al., 2019) and the Transformers library
(Wolf et al., 2020). We use the same BLENDERBOT

model2 in all relevant experiments. All models
are trained with Adam (Kingma and Ba, 2015)
optimizer with hyperparameters tuned on the val-
idation sets. As a result, we run Adam with
β1 = 0.9 and β2 = 0.999. The learning rate
is 2 × 10−5 for the CI classifier and 5 × 10−5

for the response model. We use a linear learning
rate scheduler that dynamically decreases learning
rate after a warm-up period. CI classifiers were
trained for 10 epochs with the batch size 16 on
one NVIDIA RTX 16G V100 GPU; the response
models were trained with 5 epochs and a batch
size of 8. The beam search width is set to 5 during
decoding.

5.4 Metrics

Human Evaluation. In practice, we had the
same observations as in other reports (Belz
and Kow 2010; Callison-Burch et al., 2007;

2https://huggingface.co/facebook
/blenderbot-400M-distill.
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Kiritchenko and Mohammad, 2017), that ask-
ing crowd-workers to directly score responses
on a scale usually receives low-quality evaluation.
Thus, following the evaluation design proposed in
other work (Novikova et al., 2018; Bojar et al.,
2016; Zheng et al., 2021; Zhou et al., 2018; Liu
et al., 2021), we opt for pairwise comparison be-
tween responses from different sources. In each
comparison experiment, we compared our model
with a baseline or human responses on a set of
100 conversations randomly sampled from our
test set. Given a conversation history, we pre-
sented crowd-workers with a pair of responses,
one of which is generated by our model and
the other is either from humans or a baseline.
Five well-trained crowd-workers from AMT are
asked to choose the better one in terms of four
metrics: Empathy (Which response shows better
understanding of the partner’s feelings?), Fluency
(Which response has better fluency and readabil-
ity?), Relevance (Which response is more relevant
and coherent to the context?), and Informative-
ness (Which response provides more information
when both are relevant?). For quality control, we
selected only crowd-workers who have an ap-
proval rating greater than 90% and a minimum
of 10,000 approved tasks. Inter-rater agreement
using Krippendorff’s α was 0.41. In addition, we
presented both good and bad example responses
for each metric to educate crowd-workers.

The results of all comparison experiments are
summarized by using ranking-based Best-Worst
Scaling, a method shown to be more reliable
than rating-based Likert scaling in prior studies
(Kiritchenko and Mohammad, 2017; Puduppully
and Lapata, 2021; Steen and Markert, 2021; Tang
et al., 2022; Louviere et al., 2015). For each pair
of models in comparison, the score of a model
is calculated as the number of times rated best
minus the number of times rated worst (Amplayo
and Lapata, 2021; Puduppully and Lapata, 2021).
Thus, for such a pair of models, their scores have
the same absolute value but opposite signs. For
example, in a comparison experiment between
System A and System B, the score of System A
is 13, then that of System B is -13. Thus, we
only need to know the score of one system, then
obtain the score of the other system automatically.
To summarize those results, we put the scores of
baselines and human responses in one table, which
are compared with our model. As our model is
always used as a reference, we set the scores of

our model to be zero in that table. Therefore, a
negative score in the table means the correspond-
ing system performs worse than our model, while
a positive score indicates a better performance of
the corresponding system.

Automatic Evaluation Although automatic
metrics are still not reliable for response evalua-
tion (Liu et al., 2016), to facilitate comparisons
with prior works, we consider the four automatic
metrics for evaluating the quality of responses:
BLEU (Papineni et al., 2002), BERTScore
(Zhang* et al., 2020), MAUVE (Pillutla
et al., 2021), and METEOR (Banerjee and Lavie,
2005). In addition, we evaluate the diversity
of model outputs in terms of Distinct-1/2
(Li et al., 2016).

5.5 Experimental Results

Response Generation. We compare BLENDER-
BOT using our method (CONSTRAIN) with multiple
strongest baselines for response generation.
Table 4 summarizes the human evaluation results
based on the Best-Worst Scaling. Our response
model outperforms all baselines in terms of all
the metrics on both ESCONV and MSC, as indi-
cated by their negative scores. Most of the results
are statistically significant. The automatic eval-
uation results with MAUVE in Table 5, one of
the best automatic metrics for NLG tasks, also
demonstrates the strengths of our method over
the baselines. This meets our expectation that
responses generated based on direct causes per-
form better than responses generated on histories
including spuriously correlated utterances.

Surprisingly, the BLENDERBOT using our method
outperforms human responses on ESCONV in terms
of fluency and informativeness. A close look at
the results reveals that i) some of the responses
generated by our model are longer than the cor-
responding human responses because they cover
more specific details in contexts, and ii) a sig-
nificant amount of responses in ESCONV contain
grammatical errors while the model generated
ones rarely make grammatical errors. Unfortu-
nately, our model does not reach human-level
performance on MSC in terms of informative-
ness and relevance, in which the majority of
the multi-session conversations span more than
40 turns.

The two model variations in Liu et al. (2021) are
the reported strongest baselines on ESCONV, while
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Models Empathy↑ Fluency↑ Informativeness↑ Relevance↑
ESCONV

BLENDERBOT - P (rt|ut−1) −22* −48* −15* −4
BLENDERBOT - P (rt|ut−2:t−1) −83* −46* −12 −26*
BLENDERBOT - P (rt|ut−3:t−1) −28* −39* −31* −31*
BLENDERBOT - P (rt|u0:t−1) −54* −36* −16* −38*
BLENDERBOT - P (rt|uj ,ut−1) −69* −61* −25* −51*
DialoFlow −38* −54* −6 −28*
(Liu et al., 2021) w/o strategy −64* −45* −6 −9
(Liu et al., 2021) with strategy −52* −36* −13* −19*
Retrieval-guided −3 −14* −12* −18*
CONSTRAIN (Ours) 0 0 0 0
Human 12 −30* −16* 3

MSC
BLENDERBOT - P (rt|ut−1) − −31* −25* −7
BLENDERBOT - P (rt|ut−2:t−1) − −54* −24* −35*
BLENDERBOT - P (rt|ut−3:t−1) − −12 −8 −4
BLENDERBOT - P (rt|u0:t−1) − −80* −30* −80*
BLENDERBOT - P (rt|uj ,ut−1) − −82* −71* −66*
DialoFlow − −54* −35* −51*
TransferTransfo − −49* −44* −48*
Retriever-generator − −64* −10 −14
Retrieval-guided − −12 −29* −32*
CONSTRAIN (Ours) − 0 0 0
Human − 3 19* 19*

Table 4: Results of human evaluation using best-worst scaling (higher is better). The results in Bold
are better than all the competitors. Systems significantly different from our method are marked with an
asterisk * (using a one-way ANOVA with post hoc Tukey HSD tests; p � 0.05).

the retriever-generator model is the strongest one
on MSC in literature. Both the retriever-generator
and the retrieval-guided model apply retrieval
techniques to identify the most relevant texts in
context. The retrieval-guided model starts with
employing the tokens in the preceding utterance
ut−1 as queries to retrieve the most relevant tokens
in the context {u0, . . . ,ut−2}, followed by con-
catenating them with the ones in ut−1 as model
inputs. In contrast, retriever-generator identifies
relevant utterances in histories. Despite that, all
of them still fall short of our method according to
human and automatic evaluations. Those results
indicate that retrieval techniques are still limited
for identifying key utterances from conversation
histories.

We compare different ways of selecting utter-
ances from conversation histories as the inputs of
the same neural architecture. Table 4 and Table 5
include the corresponding results of BLENDERBOT

on both corpora. Taking the full conversation

histories as input, which is widely used in
practice, turns out to be a poor choice on both
corpora. The responses generated in this set-
ting are often too general, such as ‘‘I’m sorry
to hear that.’’, without touching specific details
in contexts. As a comparison, using the preced-
ing utterances is evident as a good heuristic on
ESCONV, while the best heuristic on MSC is to
use the preceding three utterances. The worse
case is P (rt|uj ,ut−1), which randomly selects
an utterance between the first utterance and ut−2

to combine with ut−1. The corresponding ratio
of spurious correlations is one of the highest
among all settings. Those results again demon-
strate the harm of spuriously correlated utterances
for generative models.

To demonstrate that our method is model-
agnostic, we apply our method to DIALOGGPT3

3https://huggingface.co/microsoft/DialoGPT
-medium.
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Models BLEU↑ BERTScore↑ MAUVE↑ METEOR↑ D-1↑ D-2↑
ESCONV

BLENDERBOT - P (rt|ut−1) 0.09 0.19 0.24 0.12 0.26 0.72
BLENDERBOT - P (rt|ut−2:t−1) 0.09 0.19 0.32 0.12 0.27 0.73
BLENDERBOT - P (rt|ut−3:t−1) 0.08 0.18 0.24 0.13 0.27 0.73
BLENDERBOT - P (rt|u0:t−1) 0.08 0.15 0.09 0.11 0.27 0.73
BLENDERBOT - P (rt|uj ,ut−1) 0.07 0.14 0.29 0.11 0.24 0.70
DialoFlow 0.05 0.14 0.19 0.07 0.23 0.72
(Liu et al., 2021) w/o strategy 0.09 0.18 0.31 0.12 0.24 0.70
(Liu et al., 2021) with strategy 0.07 0.18 0.21 0.13 0.27 0.73
Retrieval-guided 0.07 0.17 0.27 0.12 0.26 0.72
CONSTRAIN (Ours) 0.08 0.18 0.33 0.13 0.26 0.73

MSC
BLENDERBOT - P (rt|ut−1) 0.09 0.20 0.28 0.11 0.28 0.74
BLENDERBOT - P (rt|ut−2:t−1) 0.09 0.20 0.30 0.10 0.29 0.76
BLENDERBOT - P (rt|ut−3:t−1) 0.08 0.18 0.23 0.11 0.29 0.76
BLENDERBOT - P (rt|u0:t−1) 0.06 0.13 0.02 0.08 0.26 0.75
BLENDERBOT - P (rt|uj ,ut−1) 0.07 0.16 0.07 0.09 0.27 0.74
DialoFlow 0.05 0.14 0.16 0.08 0.33 0.74
TransferTransfo 0.07 0.13 0.10 0.05 0.50 0.89
Retriever-generator 0.09 0.20 0.25 0.10 0.29 0.75
Retrieval-guided 0.08 0.18 0.20 0.11 0.26 0.74
CONSTRAIN (Ours) 0.09 0.20 0.31 0.13 0.29 0.76

Table 5: Automatic evaluation results contain BLEU, BERTScore (F1), MAUVE, METEOR, and
Distinct (D1 and D2). Distinct score is calculated on 1-gram and 2-gram on corpus level.

Models Empa↑ Fluen↑ Info↑ Rele↑
ESCONV

P (rt|ut−1) −3 −11 −14* −21*
P (rt|ut−2:t−1) −12 −17* −25* −28*
P (rt|ut−3:t−1) −11 −5 −25* −18*
P (rt|u0:t−1) −26* −32* −22* −20*
CONSTRAIN 0 0 0 0

MSC
P (rt|ut−1) − −9 −7 −11
P (rt|ut−2:t−1) − −5 −10 −15*
P (rt|ut−3:t−1) − −16* −28* −18*
P (rt|u0:t−1) − −13* −23* −17*
CONSTRAIN − 0 0 0

Table 6: Model-agnostic experiment results where
all models use DIALOGGPT as backbone. * in-
dicates significant difference with CONSTRAIN -
uMaxCI,t−1.

instead of BLENDERBOT, and evaluate the models
on both ESCONV and MSC with varying input
settings. As one can see from Table 6, our method
outperforms the other DIALOGGPT models with
different input settings in terms of all metrics.
As DIALOGGPT uses only a transformer-based
decoder, we show that our training and in-
ference methods improve the performance of
both decoder-only and encoder-decoder neural
architectures.

Ablation Study of Response Generation. We
conduct ablation studies to demonstrate that
conditional dependence is crucial for select-
ing direct causes during training and infer-
ence. The corresponding results are summarized
in Table 7.

Training generative models with the utter-
ances selected by our method improves model
performance significantly. Without our method,
empathy, informativeness and relevance drop for
all BLENDERBOT variations on ESCONV. Only the
fluency increases slightly when using the preced-
ing two utterances as input during training. It is
worth noting that training models with the ut-
terances selected by our CI classifier improves
the diversity of response candidates consistently.
From Table 8 we can see the diversity of re-
sponse candidates produced by different response
models. The model trained with our method gen-
erates more diverse response candidates than the
other ones in terms of all metrics. We conjec-
ture that training with direct causes can let model
parameters focus on associating key differences
among inputs with responses, thus becoming more
sensitive to input variations.

Using BLENDERBOT trained with our method
(CONSTRAIN), we compare our inference method,
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ESCONV MSC
Models Empa↑ Fluen↑ Info↑ Rele↑ Empa↑ Fluen↑ Info↑ Rele↑
CONSTRAIN (Ours) 0 0 0 0 − 0 0 0
CONSTRAIN - ut−2,t−1 −21* 2 −6 −7 − −2 3 −4
CONSTRAIN - uMaxDep,t−1 −9 −13* −14* −10 − −17* 4 −18*
CONSTRAIN - uRandom,t−1 −22* −18* −19* −23* − −28* −14 −20*
CONSTRAIN - uEntropy,t−1 −26* −28* −8 −23* − −21* −17* −21*
P (rt|ut−2,ut−1) - uMaxCI,t−1 −17* 11 −19* −5 − 10 −21* −5
P (rt|u0:t−1) - uMaxCI,t−1 −23* −25* −10 −21* − −5 8 −18*
P (rt|u0:t−1) - ut−2,t−1 −22* −11 −9 −13* − −9 −16* −15*
P (rt|urandom,ut−1) - uMaxCI,t−1 −43* −36* −30* −43* − −12* −15* −25*
CONSTRAIN - Beam 3 −2 1 3 − 5 −5 6
P (rt|ut−1) - Beam −20* −35* −33* −6 − −39* −30* −9
P (rt|u0:t−1) - Beam −40* −28* −23* −37* − −52* −49* −14*

Table 7: The comparisons between inference methods. All models are fine-tuned on BLENDERBOT. *
indicates a significant difference with our model. ‘‘Beam’’ indicates regularized beam search that
employs a width of 10 with 3-grams blocking and a minimum length of 20.

Models Self-BLEU ↓ D-1 ↑ D-2 ↑
ESCONV

CONSTRAIN 0.42 0.27 0.74
P (rt|ut−2,ut−1) 0.69 0.27 0.70
P (rt|u0:t−1) 0.71 0.24 0.62
P (rt|urandom,ut−1) 0.91 0.19 0.59

MSC
CONSTRAIN 0.69 0.32 0.78
P (rt|ut−2,ut−1) 0.78 0.30 0.75
P (rt|u0:t−1) 0.80 0.27 0.74
P (rt|urandom,ut−1) 0.93 0.20 0.53

Table 8: Response candidates diversity. All
models are fine-tuned on BLENDERBOT.

coined uMaxCI,t−1, with alternative methods: i)
randomly selecting uj between 0 and t − 2 and
combining it with ut−1, coined uRandom,t−1;
ii) taking both ut−2 and ut−1 as input, coined
ut−2,t−1; iii) applying the entropy-based method
proposed in Csáky et al. (2019) to remove
generic response candidates and select optimal
response, coined uEntropy,t−1; and iv) replac-
ing the CI classifier with a dependence classifier
for inference, coined uMaxDep,t−1. The depen-
dence classifier is trained by setting (ut−1, rt)
as positive samples, (uj , rt) as negative sam-
ples, where uj far from responses is randomly
sampled from dialogue histories. During infer-
ence, we generate response candidates in the
same way as our method uMaxCI,t−1, but select
the candidate that has the highest dependence
probability Pdepend(l = 1|uj , r

j
t ) as the final

output.
The results in Table 7 show that our inference

method outperforms alternative inference meth-

ods, when the models are trained with our method.
Replacing the CI classifier with the dependence
classifier (uMaxDep,t−1) leads to substantial per-
formance drops in terms of all metrics. It is also
noteworthy that generating responses using the
preceding two utterances (ut−2,t−1) is a fairly
effective heuristic, which only falls short of our
method in terms of empathy. This can be explained
by the statistics that 40% of direct causes on ES-
CONV are the preceding two utterances, while
the corresponding percentage on MSC is 29%.
Selecting key utterances randomly or using en-
tropy to pair with ut−1 is worse than that simple
heuristic.

In addition, we compare our method with
regularized beam search (Roller et al., 2021)
in three settings: i) replacing the unregularlized
beam search with the regularized one using our
method, ii) using only preceding utterances as in-
put, and iii) using full conversation histories as
input. In all settings, the beam search employs a
width of 10 with 3-grams blocking and a mini-
mum length of 20. Regularized beam search with
full conversation histories (P (rt|u0:t−1)-Beam)
or only preceding utterances (P (rt|ut−1)-Beam)
achieve dramatically lower performance than our
inference method. If the beam search is used to-
gether with the CI classifier (CONSTRAIN-Beam),
the model performance increases slightly but the
differences are not statistically significant.

Qualitative Studies. To further investigate the
differences between the CI classifier and the
dependence classifier, we apply the model to
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Human How long are you doing the online school? (−2, 0, 0, 1)
Input Generated Response Conditional dependence Dependence

CONSTRAIN (Ours)
(u0,u5) I am sorry to hear that. What is causing you to be so stressed right now? 0.0004 0.8314

(u1,u5) Do you have any friends or family that you can talk to about it? 0.0003 0.0115

(u2,u5) I am doing well. I am sorry to hear that school is stressful for you right now. 0.0004 0.9996

(u3,u5) I can understand how stressful this is for you. Have you thought about talking to a school counselor? 0.7287 0.9287

(u4,u5) Yes, I can understand that. Do you have any friends or family that you can talk to about it? 0.0112 0.9981

P (rt |u0:t−1) - uMaxCI,t−1

(u0,u5) I am sorry to hear that. I can understand how stressful it is to be in school right now. 0.0003 0.0028

(u1,u5) I’m sorry to hear that. What is stressing you out the most about school right now? 0.0003 0.999

(u2,u5) I can understand how stressful school can be. What is stressing you out the most about it? 0.0003 0.9472

(u3,u5) I can understand how stressful online learning can be, especially online learning. (1, 0, −1, −1) 0.872 0.7682

(u4,u5) I can understand that. It seems like everyone is stressed about the vaccine. 0.2121 0.9996

Other baselines
P (rt |ut−1) It sounds like you’re stressed about the way things are going in school. Is that correct? (−3, 0, −3, 1)

P (rt |ut−2:t−1) Have you tried to talk to someone about it? (−2, 0, −3, −2)

P (rt |ut−3:t−1) I can understand how stressful this is for you. Do you have anyone you can talk to about this? (−1, 0, 1, −1)

P (rt |u0:t−1) I can understand how stressful it is to be in school right now. ( −2, 1, −3, 0)

P (rt |uj ,ut−1) I am sorry to hear that. What are you studying? (−2, −1, −2, −2)

DialoFlow I’m sorry to hear that. I hope you feel better soon. (−1, 0, −2, −2)

(Liu et al., 2021) I’m sorry to hear that. What is stressing you out the most about school right now? (−1, 0, −1, −2)

w/o strategy

(Liu et al., 2021) I can understand how stressful school can be. What is stressing you out the most about it? (−1, 0, −2, 1)

with strategy

Retrieval-guided I can understand how stressful this is for you. I am sure you are doing your best. (0, 1, −1,−2)

Table 9: Response candidates generated by CONSTRAIN and one baseline P (rt|u0:t−1) based on the
conversation history in Table 1. We use uMaxCI,t−1 to select final responses, which are in bold. Behind
responses generated by baselines, we append pair-wise comparison results annotated by five workers
between baselines and our model, (Empathy, fluency, informativeness, relevance). In a pair-wise
comparison, if baseline is better, it gets a +1 score; if baseline is worse, it gets a -1 score; if baseline is
the same with our model, both get 0 score. The sum of the five workers’ evaluations is the score shown
in this Table.

generate all candidate responses and score the
candidates with the probabilities yielded by the
dependence and the CI classifiers. Using the exam-
ple conversation in Table 1, we show all generated
candidate responses and the corresponding scores
in Table 9. With u3, the direct cause used by
humans, the corresponding response achieves the
highest conditional dependence probability but
not the highest dependence probability. Perplex-
ity is also not reliable. Moreover, the distributions
of the conditional dependence scores are more
skewed towards the true direct causes than those
of dependence scores. Hence, the conditional de-
pendence, which measures the conditional mutual
information obtained from a selected utterance
beyond that from the preceding utterance, is
more informative and robust than mutual infor-
mation between responses and single utterances
in contexts.

Furthermore, we apply our method to BLENDER-
BOT on example dialogues and show qualitative
differences to the baselines. Table 9 shows the
responses generated by our method and the base-
lines using the running example in Table 1. The
responses generated by our method give a spe-
cific suggestion to ‘‘talk to a school counselor’’ or

refer to the most specific detail of ‘‘online learn-
ing’’, while the remaining ones talk about school
or irrelevant contents. In addition, we provide the
Best-Worse Scaling scores of five crowd-workers,
who compare the baseline outputs with those of
our method. Most crowd-workers consider our
model output is better than that of the baselines in
terms of informativeness and relevance.

For error analysis, we find that model cannot
always generate natural and relevant responses
by relying on the same direct causes as humans.
As shown in Table 10, although there are over-
lapped direct causes between humans and our
model, the response generated by our model is
reasonable and relevant by capturing context spe-
cific entities ‘‘son’’ and ‘‘boyfriend’’, while the
other models fail to do so. In those cases, even
if our model uses different direct causes than hu-
mans for response generation, most of them are
reasonable and fluent. To further investigate to
what degree our model utilizes the same direct
causes as humans, we apply our model to the
test set of CGDIALOG and collect the direct causes
used during inference. The percentage of using
exactly same causes, partially overlapped causes
and totally different causes amount to 26.47%,
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Table 10: An example where causes of the human response and the generated response partially
overlap. The causes of human response are in bold. The causes of the response generated by our model
are highlighted. Behind responses generated by baselines, we append pair-wise comparison results
annotated by five workers between baselines and our model, (Empathy, fluency, informativeness,
relevance).

62.13%, and 11.40%, respectively. Overall, com-
paring with the baselines, the model with our
method produces more specific, relevant, and nat-
ural responses than the baselines regardless if it
uses the same direct causes as humans or not.

CI Classification Results. We evaluate our
method CONSTRAIN to identify direct causes of
responses in the test sets of CGDIALOG, and com-
pare them with two simple but strong baselines:
‘‘Always ut−1’’ and ‘‘Always ut−2,ut−1’’. The
former always considers ut−1 of responses as
direct causes, while the latter considers the preced-
ing two utterances as direct causes. In the test sets,
we keep the manually annotated cause-response
pairs as positive examples, while combining all
non-cause utterances with ut−1 and rt as nega-
tive samples. As a result, the number of negative
samples is much larger than the number of pos-
itive examples. Due to such an imbalance, we
adopt precision, recall, and F1 as the evaluation
metrics.

Table 11 reports the results of cause identifi-
cation. CONSTRAIN reaches the highest recall and
F1 on this task. ‘‘Always ut−1’’ reaches the high-
est precision because preceding utterances have

Models Precision Recall F1
CGDIALOG - ESCONV

Always ut−1 0.80 0.41 0.54
Always ut−2,ut−1 0.60 0.61 0.61
INIT 0.63 0.41 0.49
FC 0.43 0.54 0.47
IST 0.67 0.33 0.44
CONSTRAIN 0.70 0.71 0.70

CGDIALOG - MSC
Always ut−1 0.98 0.51 0.67
Always ut−2,ut−1 0.64 0.66 0.65
INIT 0.70 0.60 0.65
FC 0.49 0.59 0.54
IST 0.73 0.54 0.62
CONSTRAIN 0.73 0.72 0.73

Table 11: The results of direct cause identification
on the test sets of CGDIALOG.

the highest probability to be direct causes, as we
discussed in Section 3.1. We also created a bal-
anced test set by randomly sampling non-cause
utterances and combining them with ut−1 and
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rt as negative examples. The accuracy of CON-
STRAIN is 0.83 on CGDIALOG - ESCONV, and 0.86
on CGDIALOG - MSC, much higher than random
guess.

Furthermore, we evaluate the effectiveness of
incremental self-training with constraints on the
test sets of CGDIALOG by comparing it with three
options: i) training only the initial classifier on
the labeled training set DL of CGDIALOG (INIT),
ii) fine-tuning the initial classifier on the full un-
labeled training set with the context constraint
(FC), and iii) incremental self-training without the
context constraint on the full unlabeled training
set (IST). As shown in Table 11, CONSTRAIN out-
performs the three options in terms of recall by a
wide margin, hence achieves the highest F1 scores
on both datasets. Applying the context constraint
during self-training filters out mislabeled data far
from responses, dropping it leads to the largest re-
duction of recall and F1. The threshold constraint
is still effective by boosting both the precision and
the recall of direct cause identification.

6 Related Work

Dialogue Datasets Recently, state-of-the-art
open-domain dialogue agents have utilized Dai-
lyDialog (Li et al., 2017), PersonaChat (Zhang
et al., 2018), EmpatheticDialogues (Rashkin et al.,
2019), and Wizard of Wikipedia (Dinan et al.,
2019). Dialogues in these datasets usually have
3-15 turns. Dialogue agents trained on these
dataset don’t have the ability to deal with dialogue
with very long history. This weakness encourages
researchers to crowdsource long conversations,
such as Emotion Support Conversation (Liu et al.,
2021) and Multi-Session Chat (Xu et al., 2022).
The number of utterances per dialogue in two
datasets is 30 and 53, respectively.

Dialogue Models Recently, seq2seq dialogue
models, such as DialoGPT, Blenderbot, and
PLATO (Zhang et al., 2020; Roller et al., 2021;
Bao et al., 2020), showed significant improvement
in generating fluent and relevant responses in var-
ious dialogue datasets. Xu et al. (2022), Lewis
et al. (2020), Izacard and Grave (2021), and Qu
et al. (2021) propose retrieval-based dialog sys-
tems that select relevant utterances from history
as input. However, such methods select utterances
based on semantic relevance, which may still suf-
fer from spurious correlation in input. Whang

et al. (2021), Niu and Bansal (2018), Lee and
Choi (2022), and Akama et al. (2020) seek to first
generate or retrieve response candidates, then se-
lect final responses using dialog–response binary
classifier. Such binary classifiers are trained to
identify relevance or irrelevance. However, rele-
vance includes causation and spurious correlation,
which cannot be identified by those classifiers.

7 Conclusion

We conduct the first study from a causal view
to investigate and tackle spurious correlations in
dialogues. Inspired by constraint-based causal dis-
covery algorithms, we propose a novel constrained
self-training method to build a CI classifier by us-
ing a small corpus CGDIALOG, which is manually
annotated with causal graphs by us. The CI clas-
sifier is applied to filter out spuriously correlated
utterances in conversation histories before training
a response generation model. That classifier also
serves as a scoring function during inference to
select the best response from all generated candi-
dates. By identifying conditionally dependencies
between utterances and responses, our model ag-
nostic approach significantly improves the overall
generation quality of response models in terms of
relevance, informativeness and fluency.
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