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Abstract

Neural network models have been proposed to
explain the grapheme-phoneme mapping pro-
cess in humans for many alphabet languages.
These models not only successfully learned the
correspondence of the letter strings and their
pronunciation, but also captured human behav-
ior in nonce word naming tasks. How would
the neural models perform for a non-alphabet
language (e.g., Chinese) unknown character
task? How well would the model capture hu-
man behavior? In this study, we first collect
human speakers’ answers on unknown Char-
acter naming tasks and then evaluate a set
of transformer models by comparing their
performance with human behaviors on an un-
known Chinese character naming task. We
found that the models and humans behaved
very similarly, that they had similar accuracy
distribution for each character, and had a sub-
stantial overlap in answers. In addition, the
models’ answers are highly correlated with
humans’ answers. These results suggested that
the transformer models can capture humans’
character naming behavior well.1

1 Introduction

Many aspects of language can be characterized
as quasi-regular: The relationship between inputs
and outputs is systematic but allow many excep-
tions. Grapheme-phoneme mapping is an example
of such quasi-regularity. For example, the letter
string ‘-ave’ in English is regularly pronounced
as /eIv/ in GAVE, SAVE, with the exception of /æv/
in HAVE. And human speakers can easily grasp
both patterns, e.g., in a nonce word naming ex-
periment, most speakers pronounced the word
TAVE as /teIv/, while some pronounced it as /tæv/
(Glushko, 1979).

1The code and data for this paper can be found
at: https://github.com/xiaomeng-ma/Chinese
-Character-Naming.

To explain the grapheme-phoneme mapping
process, many models have been proposed, among
which the Dual Route Cascaded (DRC) model
and the connectionist model are the two most in-
fluential yet opposite models. The DRC model
(Coltheart et al., 2001; Coltheart, 1978) proposes
that the grapheme-phoneme mapping is imple-
mented in two separate routes: a lexical route that
directly maps the word’s spelling to its pronun-
ciation through a dictionary-like lookup proce-
dure,2 and a non-lexical route that applies the
grapheme-phoneme corresponding ‘rules’ to con-
vert the letters to their corresponding pronun-
ciation. The implementation of the DRC model
requires domain-specific knowledge, such as
spelling to sound rules. In contrast, the connec-
tionist model (Seidenberg and McClelland, 1989;
Plaut et al., 1996) proposed that a word’s pro-
nunciation is generated through a neural network
that takes the orthographic representation as the
input and outputs the phonological representation,
which does not require specific knowledge of
grapheme-phoneme correspondence rules. Both
models can explain various behaviors in word
identification, such as the faster identification
of frequent words compared to infrequent ones.
Therefore, there is still an ongoing debate about
which model better captures the grapheme-
phoneme mapping process.

However, most of these models were tested on
alphabetic languages (e.g., English and German),
and it is still unclear how these models would be
generalized to a non-alphabetic language, such as
Chinese. The DRC model seems to be unfit for
Chinese because there are no regularities in Chi-
nese that can be defined as grapheme-phoneme
corresponding rules (Yang et al., 2009). In ad-
dition, Coltheart et al. (2001) asserted that ‘‘the

2The lexical route is usually applied to sight words (e.g.,
‘of’, ‘and’) and words that don’t follow grapheme-phoneme
correspondence rules (e.g., ‘colonel’).
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Chinese, Japanese and Korean writing systems
are structurally so different from the English writ-
ing system, that a model like the DRC model
would simply not be applicable.’’ (p. 236). Thus
the connectionist model is the only candidate.
The majority (81%) of Chinese characters are
phono-semantic compounds (Li and Kang, 1993),
which consist of a phonetic radical that contains
pronunciation information (denoted by pinyin),3

and a semantic radical that contains semantic
information.4 For example, for the character
(<qing2>, ‘sunny’), the left side (<ri4>, ‘sun’)
is the semantic radical, and the right side
(<qing1>, ‘blue’) is the phonetic radical. While
the phonetic radical does not contain componen-
tial information about the pronunciation, e.g., the
first part of the phonetic radical does not repre-
sent the first phoneme (e.g., consonant)/syllable
onset as letter strings, the relationship between
the phonetic radical’s pinyin and the character’s
pinyin is also quasi-regular. Ignoring the tonal
differences, the character’s pinyin can be catego-
rized into 4 types (Fang et al., 1986): regular, the
same as the phonetic radical’s pinyin; alliterating,
deviating in the syllable final; rhyming, deviat-
ing in the syllable onset; and irregular, varying
in both syllable onset and final (see Table 1 for
examples). The process to pronounce an unknown
character involves two steps, where the first step
is to identify the phonetic radical, and the second
step is to apply the regularity pattern of the pinyin.
However, there are no reliable cues to identify
the phonetic radical, and the regularity patterns
are quite arbitrary (Yang et al., 2009). How do
Chinese speakers name an unknown character,
and how well can the neural models capture the
Chinese speakers’ behaviors?

In our study, we first collected human speak-
ers’ answers on unknown character naming, since
there is no study investigating how Chinese adults
read unknown characters.5 We then trained a set
of sequence-to-sequence transformer models with

3Chinese characters use pinyin to represent the pronun-
ciation. The pinyin system consists of 24 syllable initials
(mostly contain a consonant), 34 syllable finals (mostly
contain a vowel or vowels), and 4 tones.

4The phonetic radical and semantic radical are mutually
exclusive, and they are defined in the ancient Chinese dic-
tionary ‘Shuowen Jiezi’.

5Previous studies have focused on children’s behavior
on unknown character naming and found that children made
errors in identifying the incorrect phonetic radical, as well as
applying the incorrect regularity pattern (Lam, 2008, 2014).

Example characters

regular – <qing>
alliterating <qian>, <qiang>

rhyming – <jing>
irregular <cai>, <liang>, <dian>

Table 1: Examples of characters with the phonetic
radical <qing>, sorted into different regularity
types. Syllable onsets and finals are bold when
they are the same with the phonetic radical.

different settings on 4,281 phono-semantic char-
acters. Neither human speakers nor models can
name the unknown characters accurately, but the
transformers have a slightly better average accu-
racy (47.4%) than the human speakers (45.3%).
We then evaluated how closely the results of
our aggregated transformers matched those of the
human participants, in aspects of the variety of an-
swer types and answer overlaps. In general, both
the transformers and human speakers are able to
identify the phonetic radical correctly and apply
all 4 types of regularities to infer the pinyin, and
the transformer models show a high correlation
with human data in the proportion of each reg-
ularity type. In addition, there is a considerable
amount of agreement between the answers gener-
ated by our models and those given by humans.
Our results demonstrate that transformer models
can capture human behavior in unknown Chinese
character naming well.

2 Related Work and Current Study

Skilled Chinese readers make use of the phonetic
radicals to name characters (Chen, 1996; Zhou and
Marslen-Wilson, 1999; Ding et al., 2004), and
previous studies measured how phonetic radicals
influence character naming in two ways: regular-
ity and consistency (Fang et al., 1986; Hue, 1992;
Hsu et al., 2009). The regularity is exemplified
in Table 1, and the consistency is defined as the
number of characters that share the same phonetic
radicals and pinyin. For example, there are 12
characters sharing the phonetic radical <qing>
in Table 1, among which 3 characters ( )
have the same pinyin <jing>, so the consistency
score for these characters is 0.25 (3/12). Many
studies have found regularity and consistency ef-
fects for human speakers—the regular and more
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consistent characters are named faster and more
accurately, and these effects are stronger for low-
frequency characters than high-frequency ones
(Lien, 1985; Liu et al., 2003; Tsai et al., 2005).

Previous studies of Chinese character modeling
with phonetic radicals as inputs have successfully
simulated the regularity effect and consistency
effect. Yang et al. (2009) trained a feed-forward
network on 4,468 Chinese characters and tested
the model on 120 characters (seen in the training).
The input to the model includes the character’s
radicals and radicals’ positions (e.g., left-right,
up-down).6 The output of the model is the pho-
nological features (e.g., stop, lateral) of the char-
acter’s pinyin. They also measured the human
speakers’ response latency7 on each of the 120
test characters. By comparing the human speak-
ers’ response latency and the model’s sum squared
error, they found very similar regularity and con-
sistency effects. In addition, Hsiao and Shillcock
(2004, 2005) trained a feed-forward model on
2,159 left-right structured characters, with each
character appearing according to its log token fre-
quency. The input included each character’s rad-
icals, and the output was the character’s pinyin.
They analyzed the training accuracy of the model
and found the model’s sum squared errors lower
for the regular characters, which successfully
simulated the regularity effect.

The regularity and consistency effect revealed
that both human speakers and the neural models
utilized the statistic distribution of phonetic radi-
cals in naming familiar characters. However, these
effects can not be applied in unknown character
naming since the speakers don’t know the statis-
tics of these characters. Therefore, we proposed
a new metric (saliency of the phonetic radical) to
measure how the phonetic radicals influence the
speaker’s unknown character naming behavior.
Saliency is defined as the fraction of the regular
characters among all characters sharing the same
phonetic radical. For example, the phonetic radical

<qing> appeared in 12 characters in Table 1,
among which 4 characters ( , , , ) are
regular. Thus the saliency score of <qing> is

6There are 10 different Chinese character structures clus-
tered by the arrangement of the character radicals, e.g.,
left-right ( + = ), top-down ( + = ), and enclo-
sure ( + = ). The left-right structure is the most common
type (71%) (Hsiao and Shillcock, 2006).

7Response latency measures the response speed, usually
in milliseconds.

0.33 (4/12). The more salient a phonetic radical
is, the more likely the character that contains it is
pronounced the same as its pinyin.

We hypothesized that the human speakers
would show a saliency effect in unknown charac-
ter naming - they would name the characters more
accurately if the phonetic radical is more salient.
We expected to find a similar saliency effect in
the models. In addition, we also closely examine
the models’ answers and humans’ answers to in-
vestigate if the models can represent the human
speaker’s behavior.

3 Data

The base character dataset consists of 4,341 Chi-
nese characters constructed from the IDS dataset
in CHISE project (Morioka, 2008). The original
IDS (Ideographic Description Sequence) dataset
contains 18,347 characters used in China, Japan,
and Korea with the decomposition of each char-
acter’s phonetic and semantic radicals.8 The char-
acter selection criterion include: 1) is used in
Chinese; 2) is a phono-semantic compound; 3)
has a left-right structure.9 The character’s pinyin,
along with its phonetic and semantic radical’s
pinyin, was collected using the pinyin package.
The frequency of each character was extracted
from BLCU Corpus Center (Xun et al., 2016). We
further labeled each character’s regularity: reg-
ular, alliterating, rhyming, and irregular as de-
scribed in Table 1. In addition, we calculated each
phonetic radical’s saliency.

There are 660 radicals after decomposing the
4,341 characters, among which 46 radicals only
serve as the semantic radicals; 493 radicals only
serve as the phonetic radicals; 121 radicals serve as
both semantic and phonetic radicals. Each radical
appears in 7 characters on average, with a range
of 1 to 30. Eighty percent of the characters in our
database have the phonetic radical on the right,
with many exceptions, e.g., the semantic radical
‘ ’ <ge> always appears on the right.

3.1 Test Data

We selected 60 characters with different phonetic
radicals from the dataset as our test data, which

8The phonetic and semantic radicals are decomposed
according to Shuowen Jiezi .

9Following Hsiao and Shillcock (2004), we only se-
lected left-right structure to make sure that the character’s
structure is not a variable in our study.
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Figure 1: The histogram of saliency scores for 60 test
characters’ phonetic radicals.

Regularity Type # pinyin # character

regular 30 30
alliterating 6 6
rhyming 24 19
irregular 28 20

Table 2: The distribution of regularity types of
pinyins and characters for the test data.

are listed in Table 14 in Appendix B. The test
characters are selected following two criteria to
ensure that human speakers are unfamiliar with
the character, while familiar with the phonetic
radicals: 1) the character appears less than 5 times
in the whole corpus, 2) the phonetic radical in
each character appears in more than 4 other char-
acters. The average saliency score for these pho-
netic radicals is 0.43, with the score distribution
shown in Figure 1. Among these characters, 22
of them have more than one pinyin, e.g., ‘ ’
(<que>, <ke>, <ku>), which yields 88 pinyins
for 60 characters. The distribution of the reg-
ularity type for the test characters is shown in
Table 2.

3.2 Training Data

We exclude the 60 test characters and use the
rest of the characters as our training data (4,281).
The regular is the most common type (42.7%),
followed by irregular, rhyming, and alliterating.
Since many of the characters have extremely low
frequency and are not known to the Chinese
speakers, we used three training datasets with
characters of different frequencies to represent
the native speakers’ vocabulary size. The ALL data-
set used all 4,281 characters. The MID dataset con-
sists of 2,140 characters whose frequencies are

Training Data ALL MID HIGH

# characters 4,281 2,140 1,070

regular (%) 42.7 43.3 42.1
alliterating (%) 7.8 8.1 8.7
rhyming (%) 23.6 23.3 22.5
irregular (%) 25.9 25.3 26.7

Table 3: Number of characters and percentage of
regularity types for our training datasets.

in the top 50% percentile. The HIGH dataset con-
sists of 1,070 characters with frequencies in the
top 25% percentile. The statistics of these train-
ing sets are shown in Table 3. Each training set
has similar regularity distribution.

4 Human Experiment

A total of 55 native speakers of Mandarin par-
ticipated in this study. All of them are able to
read and write in traditional Chinese scripts and
pinyin. The average age is 26.3 years, and 80%
of them have an education background of college
or above. In the experiments, they were asked if
they knew the character and prompted to type the
pinyin of the character. The detailed experiment
procedure and sample questions are described in
Appendix A.

4.1 Results: Human Answer Accuracy

In general, the test characters are unknown to the
participants.10 The accuracy is calculated on the
syllable onset and final, ignoring the tone, since
tones are more affected by the speaker’s accent
than syllable onsets and finals. For polyphone
characters, as long as the participant named one
correct pinyin, we counted it as correct. The aver-
age accuracy for all participants is 45.3% (27 out
of 60 characters), with a range of 26.7%–68.3%.
Some characters are more difficult to name than
others. For example, 8 characters’ accuracies are
0, meaning that none of the participants named
them correctly. The character’s accuracy is calcu-
lated as the proportion of participants who named
it correctly, ranging from 0%–98.2%. There is
a strong positive correlation between the charac-
ter’s accuracy and its phonetic radical’s saliency

10Very few participants indicated that they knew one or
two test characters. For those who indicated that they knew
the character, they still answered its pinyin incorrectly.
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<shan>, <qian>, ‘sparkle’
Phonetic Radical: <zhan>, ‘to seize’
Semantic Radical: <yan>, ‘fire’

Answer Type Answer(s) Pp (%)

regular <zhan> 36.4
alliterating <zhen> 1.8
rhyming <dan> 3.6

<nian>, <jian>,
irregular <dian>,<pou> 34.6

<yi>, <tie>
semantic <yan> 23.6

Table 4: The answer types and production prob-
ability of human answers for polyphone ‘ ’.

(r = 0.62), which confirms our hypothesis about
the saliency effect. The more salient the phonetic
radical is, the more participants named the char-
acter correctly. The accuracy measures how well
the human speakers can grasp the grapheme-
phoneme distributional patterns in Chinese. The
results show that even native speakers can not ac-
curately predict the pronunciation of an unknown
character, which reflects the complex nature of
Chinese grapheme-phoneme mapping system.

4.2 Results: Human Answer Variability
Since the participants named the character’s pin-
yin differently, each character has a variety of
unique answers. On average, each character has
6.7 answers, with a minimum of 2 answers and
a maximum of 15 answers. The number of an-
swers is negatively correlated with the saliency
of the phonetic radical (r = -0.51), such that the
more salient the phonetic radical, the fewer num-
ber of answers the speakers guessed.

We defined 5 answer types based on regularity.
The participants either guessed the character’s
pinyin the same as its phonetic radical’s (regu-
lar), or changing the syllable final (alliterating),
the syllable onset (rhyming), or both (irregular),
or mistakenly used the semantic radical to name
the character (semantic).11 We presented the an-
swer types for character ‘ ’ as an example in
Table 4, and defined the production probability

11When examining the data, we found that some partici-
pants named the character the same as its semantic radical.
We loosely defined this type of error as semantic type. It
could also be that the participants applied irregular on the
phonetic radical, and the pinyin happened to be the same as
the semantic radical’s pinyin. However, there’s no way to

Answer Type Average Pp (%) Range of Pp (%)

regular 58.0±25.8 0–98.2
alliterating 6.8±16.4 0–81.8
rhyming 13.0±18.9 0–81.8
irregular 20.6±20.0 0–72.7
semantic 1.6±4.6 0–23.6

Table 5: The average production probability and
its range for each answer type in human answers.

Pp by the proportion of participants named that
answer type.

The average production probability for each
type is listed in Table 5. Most of the participants
are able to identify the phonetic radical correctly,
as the average production probability of the se-
mantic type is only 2%. The regular answer type
has the highest production probability (58%), sug-
gesting that the participants are more likely to
name the character the same as its phonetic radi-
cal. The production probabilities of answer types
for each character are plotted in Figure 3 in
Section 6.

5 Transformer Model

To model the joint probability of the syllable
onset and final, we used seq-to-seq transformers
(Vaswani et al., 2017) to generate the pinyin of
Chinese characters trained from scratch.12

5.1 Experiment Setup

Both encoder and decoder of all our models had
2 layers, 4 attention heads, 128 expected features
in the input, and 256 as the dimension of the
feed-forward network model. For training, we
split the dataset into train/dev splits of 90/10, and
replace those tokens that appear once in training
data by 〈unk〉. We also set dropout to 0.1, batch
size to 16, and used the Adam optimizer (Kingma
and Ba, 2015) with varied learning rates in the
training process, computed according to Vaswani
et al. (2017). We used 5 different random seeds,
and trained 40 epochs with early stopping for all

confirm this. We asked some of our participants (with lin-
guistic background) to explain how they guessed the pinyin,
and none of them could articulate their thinking process.

12We did not use a classification model because there are
certain rules in pinyin formation (e.g., /ü/ cannot follow /b/,
/p/, /m/, /f/), which requires the model to learn the syllable
onsets and finals jointly.

759



of our experiments. For inference, we set beam
size to 3.

5.2 Experiment 1

We trained a set of models to simulate the
grapheme-phoneme mapping process in Chinese
speakers. Our BASE model used the phonetic rad-
ical’s orthographic forms to generate syllable on-
set and final (without tone) of the target character.
We further examined whether identifying the pho-
netic radical before generating the syllable onset
and final would improve the model’s performance.
We labeled the phonetic radical’s position (left
or right) with two methods: LABELm and LABELs.
LABELm used the true position of the phonetic
radical as the ground truth label. Besides, since
human speakers do not always identify the pho-
netic radical’s position correctly, LABELs labeled
the position of the phonetic radical based on the
phonetic similarity. We calculated the phonetic
similarity between the character’s pinyin and the
two radicals’ pinyins using the Chinese Phonetic
Similarity Estimator (Li et al., 2018). The rad-
ical with higher phonetic similarity was labeled
as the phonetic radical.13 We further labeled the
regularity type of the characters based on LABELm

and LABELs, hence yielding LABELmr and LABELsr.
Examples of input and gold output in the train-
ing data are shown in Table 6. All the models
were trained on ALL, MID, and HIGH datasets as
described in section 3.2.

Since previous studies suggested that the regu-
larity and consistency effects are more prominent
for the characters with low frequency than high
frequency (e.g., Ziegler et al., 2000; Chen et al.,
2009), the frequency of the known characters
might also influence how participants predict the
unknown characters. We further added the fre-
quency label as an input feature in the full training
data as the ALL+FREQ model. The characters were
categorized into four categories based on their
frequency: ‘rare’ (frequency = 1), ‘low’ (1 < fre-
quency ≤ 50% percentile), ‘mid’ (50% percentile
< frequency ≤ 75% percentile), and ‘high’ (fre-
quency > 75% percentile). The distribution of

13For example, the character ‘ ’ <luo4> (‘flatiron’)
consists of the semantic radical ‘ ’ <huo3> (‘fire’) and the
phonetic radical ‘ ’ <ge4> (‘each’). The distance between
<luo4> and <huo3> is 7.5, and the distance between
<luo4> and <ge4> is 35.6. For LABELs, the output radical
should be ‘left’, although the left radical ‘ ’ is the semantic
radical.

Input Begin, , , End

Model Output

BASE Begin, l, uo, End
LABELm Begin, right, l, uo, End
LABELs Begin, left, l, uo, End
LABELmr Begin, right, irregular, l, uo, End
LABELsr Begin, left, rhyming, l, uo, End

Condition Input

ALL+FREQ Begin, , , high, End

Condition Output (BASE model as an example)

[+Shuffle] Begin, uo, l, End
[+Tone] Begin, l, uo, 4, End

Table 6: Input and gold output in the training
data of our models and conditions for character
‘ ’<luo4>, tokens are separated by comma.

regularity types is similar for the characters with
different frequencies. The summary of the num-
ber of characters and each regularity type can be
found in Appendix B, Table 12.

In addition, we added two conditions for out-
put in training all models: Shuffling and Adding
tones. We shuffle the position of the syllable on-
set and final in model output to explore the im-
pact of the generated order since we don’t know
if the human speakers identify the syllable onset
or syllable final first in character naming. We also
add tones before the ‘End’ token in the genera-
tion to see whether it improves the model per-
formance. Examples of input and output of the
conditions are shown in Table 6. In total, there
are 80 types of models with different settings.

Accuracy Results We calculated the test accu-
racy the same way as for the human data: We
only counted the accuracy of the syllable onset
and final. For polyphone characters, as long as the
model predicted one correct pinyin, it is counted
as correct. The average accuracy of all 400 mod-
els (80 types x 5 random seeds) is 42.1%, which
is significantly lower than the humans’ accuracy
(45.3%, t = 3.15, p<0.01). The average accuracy
of each type of model is listed in Table 7. The best
performing model is ALL+FREQ with LABELm with-
out tone and with shuffling, which achieved an
accuracy of 50.3%. Compared to the BASE model,
adding the label of phonetic position label and
the character’s regularity label usually could im-
prove the model’s accuracy. Adding tone would
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data label –T–S –T+S +T–S +T+S

ALL

BASE 49.3 49.3 42.3 46.0
LABELm 48.0 49.7 45.3 47.7
LABELs 46.0 45.3 42.3 48.7
LABELmr 47.0 48.7 48.7 49.7
LABELsr 44.0 47.3 45.0 48.3

MID

BASE 41.7 41.3 38.7 41.7
LABELm 44.3 43.0 44.0 42.3
LABELs 41.3 43.3 41.3 42.3
LABELmr 42.0 40.3 39.7 44.3
LABELsr 37.7 42.7 39.0 42.0

HIGH

BASE 28.7 32.3 29.3 32.3
LABELm 36.3 34.7 30.7 35.3
LABELs 32.7 36.0 30.0 34.0
LABELmr 31.3 31.7 31.3 32.0
LABELsr 32.3 32.0 31.0 33.7

ALL+ FREQ

BASE 46.7 47.0 47.7 46.7
LABELm 49.7 50.3 47.3 47.0
LABELs 45.3 47.3 47.0 48.3
LABELmr 46.3 49.3 47.0 48.0
LABELsr 47.7 44.7 44.0 47.7

Table 7: The average accuracy (over 5 seeds) on the
test set for models trained on HIGH, MID, or adding
frequency label as input features on ALL. +T, –T,
+S, –S refers to adding tone, no tone, shuffling, and
no shuffling, respectively.

generally hurt the model’s accuracy. Shuffling
the syllable onset and final and adding the fre-
quency label in the input would not change the
model’s accuracy.

5.3 Experiment 2

In Experiment 1, the input of our models only used
the orthographic form of the radicals, which is
how the previous literature described the Chinese
grapheme-phoneme mapping process. However,
the models might not have enough data to learn
the full mapping from radicals to pinyin because
many radicals only appeared once or twice in the
training data since we only included compound
characters with the left-right structure. For ex-
ample, the phonetic radical ‘ ’ <cheng> only
occurred once in the character ‘ ’ <sheng> in
the training data.14 The models would not be able
to accurately learn the pinyins of these radicals.
However, human speakers know the pinyin of
most radicals, since many radicals are also com-

14We choose the first pinyin from the pinyin package for
polyphone radicals.

Input Begin, , h, uo, 3, End, , g, e, 4, End

Table 8: Input in the training data for Experiment
2 using ‘ ’ <luo4> as an example.

monly used as stand-alone characters, e.g., ‘ ’
is a stand-alone character meaning ‘to multiply’.
In order to better model the human speakers, it is
necessary to inject pinyin of the radicals as exter-
nal information to the model. The model would
also benefit from the added radicals’ pinyin to
generate the character’s pinyin.

In addition, pinyin also plays an important role
in modern Chinese speakers’ reading and spelling
experience. Pinyin is a Romanized phonetic cod-
ing system created in 1958 to promote literacy
(Zhou, 1958). In the information age, pinyin has
become indispensable in Chinese speakers’ lives
because it is the dominant typing system for com-
puters, smartphones, and electronic devices. The
prevalent experience of typing characters through
pinyin has challenged the traditional view that
Chinese characters are processed purely through
orthographic forms (Tan et al., 2013). Many re-
cent studies have found that pinyin mediates the
character recognition process (Chen et al., 2017;
Lyu et al., 2021; Yuan et al., 2022). To better
capture modern Chinese speakers’ character nam-
ing process, it is necessary to incorporate the rad-
ical’s orthographic form as well as its pinyin in
our models.

Therefore, in Experiment 2, we added the rad-
ical’s pinyin (syllable onset, syllable final, and
tone) in the input, as shown in Table 8. We used
the same model variations as in Experiment 115

and trained 80 different types of models (5 ran-
dom seeds for each type) with the new input. The
training settings are the same as Experiment 1.

Accuracy Results Adding pinyin to the input
has increased the model’s accuracy.16 The av-
erage accuracy of 400 models in Experiment 2
is 47.4%, which is significantly higher than the

15For the output, we added LABELm, LABELs, LABELmr ,
LABELsr as well as adding tone and shuffling. For the input,
we added frequency label to create ALL+FREQ.

16We cannot fully rule out the possibility that the in-
creased accuracy is due to the model having longer inputs
with pinyin instead of the model making use of the phonetic
information. However, the input length might not have a
significant impact on the models because our models with
frequency labels (ALL vs ALL+FREQ) also vary in input lengths
but the accuracies didn’t change much.
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humans’ accuracy (t = −2.7, p <0.01). The accu-
racy for each type of model is listed in Table 11
in Appendix B. The best performing model is
ALL+FREQ with LABELmr without tone and with
shuffling, which achieved an accuracy of 55%.
The effects of different labels, adding tone, and
shuffling are similar to the models in Experi-
ment 1.

6 Comparison Between Models’ Results
and Human Behaviors

In this section, we compared transformer mod-
els’ results in Experiments 1 (MODEL[–PINYIN]) and
2 (MODEL[+PINYIN]) with human performance. Since
human participants are different, i.e., they have
different vocabularies, and they may use different
strategies to identify the phonetic radical, we used
all 80 models in each experiment to represent the
human variety. Following Corkery et al. (2019),
each random initialization was also treated as an
individual participant. Therefore, the sample size
for the human participants is 55, and the sample
size for the models in each experiment is 400
(80 models × 5 initializations). We focused on
three types of similarities: 1) accuracy, i.e., do
humans and models show similar accuracy on
each character? 2) overlap, i.e., do humans and
models predict the same pinyin for each character?
3) variability, i.e., do humans and models have
similar answer regularity patterns?

Accuracy We calculated each character’s ac-
curacy for MODEL[–PINYIN] and MODEL[+PINYIN]. First,
both models showed saliency effect: The model’s
character accuracy is positively correlated with
saliency score (Pearson r = 0.48 for MODEL[–PINYIN]

and r = 0.57 for MODEL[+PINYIN]), which is not signifi-
cantly different from humans’ saliency correlation
(r = 0.62). In addition, there’s a strong correlation
between human character accuracy and both mod-
els’ character accuracy (MODEL[–PINYIN] r = 0.79,
MODEL[+PINYIN] r= 0.88), suggesting that the humans
and models are in high agreement. In conclusion,
the transformer models’ answers are very simi-
lar to the human answers in terms of character
accuracy.

Overlap The overlap rate was computed to
measure to what extent different human speak-
ers (and models) predict the same answers for
each character. For example, if participant 1 and
2 have 30 same answers, then the overlap rate =

Overlap rate Range

Human - Human 50.2±7.0 25.0–73.3

Transformer models - Human

All MODEL[–PINYIN] 39.6*±7.6 11.7–66.7
Best MODEL[–PINYIN] 45.6*±5.8 28.3–61.7
All MODEL[+PINYIN] 45.3*±7.0 16.7–71.7
Best MODEL[+PINYIN] 50.1±6.1 31.7–66.7
*indicates significantly smaller than 50.2.

Table 9: The average overlap rate (%) and its
range for human-human and transformer-human
comparison.

50% (30/60). Among 1,485 answer pairs of 55
human speakers, the average overlap rate of
human-human is 50.2%, with a range of 25.0% –
73.3%. For MODEL[–PINYIN], among 400 models and
55 speakers, the average overlap rate for 22,000
answer pairs is 39.6%, with a range of 12.0% –
66.7%. For MODEL[+PINYIN], the average overlap rate
of 22,000 answer pairs is 45.2%, with a range
of 16.7% – 71.7%. Both models’ overlap rates are
significantly lower than the human-human over-
lap rate, and MODEL[+PINYIN]’s overlap rate is sig-
nificantly higher than MODEL[–PINYIN]. In addition,
we computed the human-model overlap rate for
different models, with 275 answer pairs for each
model (5 random seeds × 55 human speakers).17

The best model for MODEL[–PINYIN] is ALL with
LABELmr with tone and without shuffling, with
an overlap rate of 45.6%. The best model for
MODEL[+PINYIN] is ALL+FREQ with LABELs with tone
and without shuffling, with an overlap rate of
50.1%, which is not significantly different from
human-human overlap rate. The overlap results
are summarized in Table 9. The density plot of the
overlap rate for human-human, human-all mod-
els, and human-best model is shown in Figure 2.
In general, the humans’ answers are more sim-
ilar to each other than to the models’ answers.
MODEL[+PINYIN]’s answers are more similar to hu-
man answers than MODEL[–PINYIN].

Variability Like human speakers, transformer
models also produce different answers for each
character. We categorized these answers based

17See the detailed overlap results for MODEL[–PINYIN] and
MODEL[+PINYIN] in Table 13, Appendix B.
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Figure 2: Density plot of the overlap rate.

MODEL Cor. MODEL Cor.
[–PINYIN] [+PINYIN]

Reg. 39.4*±32.6
ρ 0.72 52.9±30.3

ρ 0.70
r 0.71 r 0.72

Alli. 10.9±21.4
ρ 0.59 10.1±19.7

ρ 0.51
r 0.95 r 0.85

Rhym. 22.6*±28.4
ρ 0.64 20.6±25.1

ρ 0.70
r 0.58 r 0.62

Irr. 26.6±28.1
ρ 0.55 16.1±20.6

ρ 0.67
r 0.50 r 0.58

Sem. 0.5*±1.7
ρ 0.39 0.2*±0.9

ρ NA†
r 0.30 r 0.09

* indicates significantly different from human (Pp).
NA† is due to too many zeros in the data that the correlation cannot
be calculated.

Table 10: The average production probability (Pp)
of each answer type and their correlation (ρ and r)
with humans for MODEL[–PINYIN] and MODEL[+PINYIN].

on their regularity type and calculated the mod-
els’ averaged production probability (Pp) for each
answer type, as listed in Table 10. We further
calculated Spearman correlation (ρ) and Pearson
correlation (r) between the production probability
of each type in human answers and the mod-
els’ answers on each character (N = 60). All the
regularity types are highly correlated except for
the semantic type. The models did not produce
as many semantic type answers as humans, sug-
gesting that the models are better at identifying
the phonetic radical than humans. In addition,
we also calculated the cross-entropy between the
humans and the models on the production prob-
ability of 5 regularity types. The cross-entropy

for MODEL[–PINYIN] is H(human, MODEL[–PINYIN]) = 1.79
and for MODEL[+PINYIN] is H(human, MODEL[+PINYIN]) =
1.74, suggesting that MODEL[+PINYIN] is slightly
more similar to the human results than the
MODEL[–PINYIN].

The production probability of different regular-
ity types for each character is shown in Figure 3.
The answer type patterns are very similar for hu-
mans and models except for the semantic type.
Humans produced semantic type answers for 15
characters, while both our models produced se-
mantic type for fewer characters with a much
smaller production probability. This implied that
phonetic radicals are identified differently by
humans and transformer models. Humans are
affected by a wide range of linguistic knowl-
edge in identifying the phonetic radical, including
the semantic meaning of the radical, vocabulary
size, and reading comprehension (Anderson et al.,
2013; Yeh et al., 2017). The models did not re-
ceive these extra inputs, and thus did not closely
capture human behavior on the semantic answer
type.

7 Conclusion and Discussion

Conclusion We evaluated transformer models
and human behaviors on an unknown Chinese
naming task. This task is difficult for both humans
and transformer models, as the average accuracy
is lower than 50%. Humans have higher accu-
racy than MODEL[–PINYIN] and lower accuracy than
MODEL[+PINYIN], and the models and the humans
have very similar performances. First, saliency
effects were found in both human data and the
models’ results, suggesting that both models and
humans utilize the statistical distribution of the
phonetic radical to infer the character’s pinyin.
Further, although humans’ answers are more sim-
ilar to each other, our models also achieved a
substantial overlap with humans’ answers. Addi-
tionally, the production probability of each an-
swer type is highly correlated between models
and humans (except for semantic type), suggest-
ing that both models and humans are able to apply
all regularity patterns in producing answers. Fi-
nally, models with radical’s pinyins in the input
are more similar to humans and achieved higher
accuracy.

Capturing Quasi-regularity Our work is also
related to the long-standing criticism that the
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Figure 3: The production probability of 5 answer types produced by humans (top), MODEL[–PINYIN] (middle), and
MODEL[+PINYIN] (bottom).

neural networks may only learn the most frequent
class and can not extend other minority classes,
thus would fail to learn the quasi-regularity in
languages (Marcus et al., 1995). Previous studies
on morphological inflections have shown that the
neural models overgeneralized the most frequent
inflections on nonce words and had almost no
correlation with humans’ production probability
on the less frequent inflections (e.g., ρ = 0.05
for the /-er/ suffix in German plural [McCurdy
et al., 2020], and r = 0.17 for irregular English
verbs [Corkery et al., 2019]). However, our re-
sults showed that the transformer models could
learn the quasi-regularity in Chinese character
naming, that the models produce all answer types,
and the production probability of each type is
highly correlated with human data.

However, our results do not contradict the
previous studies. Chinese character naming and
morphological inflection both exhibit quasi-

regularity, but the two domains are very different:
The patterns in Chinese character naming are less
rule-governed. This paper’s contribution to the
debate of quasi-regularity in language processing
is not to provide a ‘yes’ or ‘no’ answer; instead,
we used a novel task and showed that the neu-
ral models have the potential to model human
behaviors in learning quasi-regularity. We hope
our study could inspire future work in this field
to apply diverse tasks and conduct more detailed
examinations of neural models’ ability in learning
quasi-regularity.

Modeling Chinese Reading with Neural Network
Our study also contributed to the current debate
of whether reading skill is acquired by a domain-
general statistical learning mechanism (Plaut,
2005), or language-specific knowledge such as the
DRC model (Coltheart et al., 2001). Our results
demonstrated that a general statistical learning
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mechanism (implemented as the transformer
model) could learn Chinese grapheme-phoneme
mapping. We not only successfully simulated
the general saliency effects in humans’ unknown
character naming behavior, but also showed in
details that the answers produced by models and
humans are highly similar. Another contribution
to modeling Chinese reading is that we are the
first study that incorporated the radicals’ pinyin in
the model. Models with pinyin as input not only
had better accuracy, but also are more similar to
human behavior. Our results echoed the recent lit-
erature on the pinyin effect. For modern Chinese
speakers who type characters through pinyin more
often than hand-writing characters, pinyin can be
an important mediator for the grapheme-phoneme
mapping process.
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Appendix A. Chinese Character
Naming Experiment

The human Chinese character naming experiment
received IRB approval. The participants were re-
cruited online and in person. The selection crite-
ria include: 1) native speaker of Mandarin; 2) able
to read and write in traditional Chinese scripts
and pinyin. The participants completed an on-
line questionnaire on Qualtrics on their phones or
computers.

The participants were first asked to complete
the screening questions to make sure that they
are able to read and write in traditional Chinese
scripts and pinyin. The screen questions are:

•
(Please transcribe the fol-

lowing pinyin into Chinese. Use numbers to
represent the tone):
‘chun1 mian2 bu4 jue2 xiao3, chu4 chu4
wen2 ti2 niao3.’

•
(Please transcribe the fol-

lowing Chinese into pinyin. Use numbers to
represent the tone):
‘ , ’

Then the participants were asked to provide
the pinyin for 60 test characters. The participants
first selected ‘yes’ or ‘no’ whether they know the
character. Then they were asked to type the pin-
yin of the character. Example questions are:

• ? (Do you know
the character ?)
� (yes) � (no)

• (Please guess
and write the pinyin of )

The 60 test characters were separated into 2
test blocks, with 30 characters each. In between the
2 blocks, we set a block of 15 frequent characters
and ask the participants to provide the answer to
make it more engaging for the participants. An
example question is:

• : (Please write the
pinyin of ‘‘ ’’)

Appendix B. Tables of Statistic Summaries

data label –T–S –T+S +T–S +T+S

ALL

BASE 49.5 50.3 51.0 49.2
LABELm 48.2 49.0 49.8 48.8
LABELs 48.2 50.8 50.8 51.2
LABELmr 52.3 53.5 53.7 50.0
LABELsr 51.0 51.0 52.3 49.2

MID

BASE 47.0 43.7 45.3 46.7
LABELm 47.7 48.0 48.0 45.0
LABELs 49.7 49.3 48.7 43.0
LABELmr 46.0 45.0 45.3 47.7
LABELsr 49.0 52.0 49.7 45.3

HIGH

BASE 40.0 41.3 39.7 41.3
LABELm 39.3 39.7 42.0 39.0
LABELs 40.7 40.0 41.7 42.7
LABELmr 45.0 43.0 43.0 41.7
LABELsr 44.0 43.7 42.0 44.0

ALL+ FREQ

BASE 48.0 49.7 52.3 49.3
LABELm 46.0 47.3 48.0 49.3
LABELs 47.3 52.7 53.3 51.0
LABELmr 52.3 55.0 53.7 50.3
LABELsr 49.7 49.3 50.7 47.3

Table 11: The average accuracy (over 5 seeds)
on the test set for models in Experiment 2
(MODEL[+PINYIN]) trained on HIGH, MID, or adding
frequency label as input features on ALL. +T, –T,
+S, –S refers to adding tone, no tone, shuffling,
and no shuffling, respectively.
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Label Freq. # of characters regular (%) alliterating (%) rhyming (%) irregular (%)

Rare = 1 1025 41.6 7.0 22.7 28.7
Low 2 – 29 1116 42.7 8.0 24.8 24.5
Mid 30 – 2337 1070 44.6 7.5 24.1 23.8
High > 2337 1070 42.1 8.7 22.5 26.7

Table 12: The summary of characters in ALL+FREQ.

Overlap Rate No Tone Tone
No Shuffle Shuffle No Shuffle Shuffle

Data Model MODEL MODEL MODEL MODEL MODEL MODEL MODEL MODEL

[–PINYIN] [+PINYIN] [–PINYIN] [+PINYIN] [–PINYIN] [+PINYIN] [–PINYIN] [+PINYIN]

ALL BASE 0.43±0.06 0.47±0.06 0.44±0.06 0.45±0.06 0.41±0.06 0.47±0.06 0.42±0.06 0.48±0.06
LABELm 0.41±0.06 0.49±0.06 0.43±0.05 0.49±0.07 0.42±0.05 0.49±0.07 0.42±0.06 0.48±0.06
LABELmr 0.43±0.07 0.45±0.05 0.43±0.05 0.47±0.06 0.46±0.06 0.43±0.06 0.44±0.06 0.45±0.07
LABELs 0.42±0.06 0.47±0.06 0.44±0.06 0.45±0.06 0.44±0.06 0.48±0.06 0.45±0.06 0.48±0.06
LABELsr 0.42±0.07 0.46±0.07 0.42±0.06 0.47±0.06 0.44±0.06 0.48±0.06 0.44±0.05 0.47±0.06

MID BASE 0.41±0.06 0.46±0.07 0.41±0.06 0.44±0.06 0.39±0.06 0.45±0.07 0.41±0.06 0.45±0.07
LABELm 0.42±0.06 0.46±0.06 0.39±0.06 0.47±0.06 0.42±0.07 0.47±0.06 0.41±0.06 0.44±0.07
LABELmr 0.42±0.06 0.44±0.08 0.41±0.06 0.47±0.06 0.41±0.06 0.45±0.06 0.42±0.06 0.46±0.06
LABELs 0.41±0.05 0.48±0.06 0.42±0.06 0.47±0.07 0.37±0.06 0.48±0.07 0.40±0.07 0.46±0.07
LABELsr 0.38±0.07 0.45±0.08 0.42±0.06 0.47±0.06 0.41±0.06 0.45±0.06 0.39±0.06 0.45±0.06

HIGH BASE 0.32±0.06 0.38±0.07 0.31±0.06 0.39±0.06 0.30±0.05 0.41±0.08 0.32±0.06 0.42±0.06
LABELm 0.32±0.06 0.41±0.08 0.30±0.06 0.40±0.06 0.31±0.06 0.42±0.06 0.32±0.06 0.39±0.07
LABELmr 0.34±0.07 0.45±0.07 0.32±0.06 0.43±0.08 0.33±0.07 0.45±0.07 0.32±0.06 0.44±0.07
LABELs 0.30±0.07 0.41±0.07 0.33±0.06 0.41±0.07 0.31±0.06 0.43±0.06 0.34±0.06 0.43±0.07
LABELsr 0.31±0.05 0.45±0.06 0.32±0.06 0.43±0.06 0.31±0.05 0.44±0.06 0.32±0.06 0.44±0.07

ALL+ BASE 0.43±0.06 0.46±0.07 0.42±0.06 0.45±0.07 0.44±0.06 0.47±0.06 0.43±0.06 0.47±0.06
FREQ LABELm 0.44±0.06 0.44±0.07 0.44±0.06 0.46±0.06 0.43±0.06 0.47±0.06 0.40±0.06 0.47±0.07

LABELmr 0.44±0.06 0.45±0.07 0.42±0.05 0.44±0.06 0.43±0.06 0.43±0.05 0.43±0.06 0.47±0.06
LABELs 0.43±0.06 0.46±0.06 0.44±0.06 0.48±0.06 0.42±0.06 0.50±0.06 0.41±0.06 0.48±0.06
LABELsr 0.43±0.05 0.46±0.06 0.43±0.06 0.47±0.06 0.41±0.07 0.46±0.06 0.45±0.06 0.45±0.06

Table 13: The overlap rate averaged over 275 pairs of answers (5 random seeds x 55 participants) for
each model with different labels and conditions.
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Table 14: The humans’ and models’ results for each test character.
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