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Abstract

Semi-supervised text classification-based par-
adigms (SSTC) typically employ the spirit of
self-training. The key idea is to train a deep
classifier on limited labeled texts and then it-
eratively predict the unlabeled texts as their
pseudo-labels for further training. However,
the performance is largely affected by the ac-
curacy of pseudo-labels, which may not be
significant in real-world scenarios. This pa-
per presents a Rank-aware Negative Training
(RNT) framework to address SSTC in learn-
ing with noisy label settings. To alleviate the
noisy information, we adapt a reasoning with
uncertainty-based approach to rank the unla-
beled texts based on the evidential support
received from the labeled texts. Moreover, we
propose the use of negative training to train
RNT based on the concept that ‘‘the input in-
stance does not belong to the complementary
label’’. A complementary label is randomly se-
lected from all labels except the label on-target.
Intuitively, the probability of a true label serv-
ing as a complementary label is low and thus
provides less noisy information during the
training, resulting in better performance on the
test data. Finally, we evaluate the proposed so-
lution on various text classification benchmark
datasets. Our extensive experiments show that
it consistently overcomes the state-of-the-art
alternatives in most scenarios and achieves
competitive performance in the others. The
code of RNT is publicly available on GitHub.

1 Introduction

The text classification task aims to associate a
piece of text with a corresponding class that could
be a sentiment, topic, or category. With the rapid
development of deep neural networks, text clas-
sification has experienced a considerable shift to-
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wards pre-trained language models (PLMs) (Devlin
et al., 2019; Yang et al., 2019; Liu et al., 2019;
Lewis et al., 2020). Overall, PLMs are first trained
on massive text corpora (e.g., Wikipedia) to learn
contextual representation, followed by a fine-
tuning step on the downstream tasks (Li et al.,
2021; Chen et al., 2022; Tsai et al., 2022; Ahmed
et al., 2022). The improvement of these ap-
proaches heavily relies on high-quality labeled
data. However, labeling data is labor-intensive
and may not be readily available in real-world
scenarios. To alleviate the burden of labeled data,
Semi-Supervised Text Classification (SSTC) typ-
ically refers to leveraging unlabeled texts to per-
form a particular task. SSTC-based approaches
commonly attempt to exploit the consistency be-
tween instances under different perturbations (Li
et al., 2020).

Earlier SSTC-based approaches adopt various
data augmentation techniques via back-translation.
They employ consistency loss between the predic-
tions of unlabeled texts and corresponding aug-
mented texts by translating the text into a targeted
language and then translating it back to the source
language (Miyato et al., 2019; Xie et al., 2020;
Chen et al., 2020). However, the performance of
these approaches requires an additional neural ma-
chine translation (NMT), which may not be ac-
curate and bothersome in real-world scenarios.
Recently, SSTC has experienced a shift toward
self-training, and PLM fine-tuning (Li et al., 2021;
Tsai et al., 2022). The basic idea is to fine-tune
PLMs on the labeled data and iteratively employ
prediction on the unlabeled data as pseudo-labels
for further training. However, the pseudo-labels
are treated equally likely to the truth labels and
thus may lead to error accumulation (Zhang et al.,
2021; Arazo et al., 2020).

In this paper, we propose a Rank-aware Nega-
tive Training (RNT) framework to address SSTC
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under learning with noisy label settings. To alle-
viate the domination of noisy information during
training, we adopt reasoning with an uncertainty-
based approach to rank the unlabeled texts by
measuring their shared features, also known as
evidential support, with the labeled texts. Eventu-
ally, the shared features that serve as a medium
to convey knowledge from labeled texts (i.e., ev-
idence) to the unlabeled texts (i.e., inference) are
regarded as belief functions to reason about the
degree of noisiness. These belief functions are
combined to reach a final belief about the text
being mislabeled. In other words, we attempt to
discard the texts whose pseudo-labels may in-
troduce inaccurate information to the training
process.

Moreover, we propose using negative training
(NT) (Kim et al., 2019) to robustly train with po-
tential noisy pseudo-labels. Unlike positive train-
ing, NT is an indirect learning method that trains
the network based on the concept that ‘‘the input
sentence does not belong to the complementary
label’’, whereas a complementary label is ran-
domly generated from the label space except the
label of the sentence on-target. Considering the
AG News dataset, given a sentence annotated as
sport, the complementary label is randomly se-
lected from all labels except sport (e.g., business).
Intuitively, the probability of a true label serving
as a complementary label is low and thus can
reduce the noisy information during the training
process. Finally, we conduct extensive experi-
ments on various text classification benchmark
datasets with different ratios of labeled examples,
resulting in better performance on the test data.
Experimental results suggest that RNT can mostly
outperform the SSTC-based alternatives. More-
over, it has been empirically shown that RNT
can perform better than PLMs fine-tuned on suf-
ficient labeled examples.

In brief, our main contributions are three-fold:

• We propose a rank-aware negative training
framework, namely, RNT, to address the
semi-supervised text classification problem
as learning in the noisy label setting.

• We introduce reasoning with an uncertainty-
based solution to discard texts with the
potential noisy pseudo-labels by measuring
evidential support received from the labeled
texts.

• We evaluate the proposed solution on vari-
ous text classification benchmark datasets.
Our extensive experiments show that it
consistently overcomes the state-of-the-art
alternatives in most cases and achieves
competitive performance in others.

2 Related Work

This section reviews the existing solutions of the
SSTC task and learning with noisy labels.

Text Classification. Text classification aims at
assigning a given document to a number of se-
mantic categories, which could be a sentiment,
topic, or aspect (Hu and Liu, 2004; Liu, 2012;
Schouten and Frasincar, 2016). Earlier solutions
were usually equipped with deep memory or an
attention mechanism to learn semantic represen-
tation in response to a given category (Socher
et al., 2013b; Zhang et al., 2015; Wang et al., 2016;
Ma et al., 2017; Chen et al., 2017; Johnson and
Zhang, 2017; Conneau et al., 2017; Song et al.,
2019; Murtadha et al., 2020; Tsai et al., 2022).
Recently, many NLP tasks have experienced a
considerable shift towards fine-tuning the PLMs
(Devlin et al., 2019; Yang et al., 2019; Liu et al.,
2019; Zaheer et al., 2020; Chen et al., 2022; Tsai
et al., 2022; Ahmed et al., 2022). Despite the ef-
fectiveness of these approaches, the performance
heavily relies on the quality of the labeled data,
which requires intensive human labor.

Semi-supervised Text Classification. Partially
supervised text classification, also known as learn-
ing from Positive and Unlabeled (PU) examples,
aims at building a classifier using P and U in the
absence of negative examples to classify the Un-
labeled examples (Liu et al., 2002; Li et al., 2010;
Liu et al., 2011). Recent SSTC approaches pri-
marily focus on exploiting the consistency in the
predictions for the same samples under different
perturbations. Miyato et al. (2016) established vir-
tual adversarial training that perturbs word embed-
dings to encourage consistency between perturbed
embeddings. Variational auto-encoders-based ap-
proaches (Yang et al., 2017; Chen et al., 2018;
Gururangan et al., 2019) attempted to recon-
struct instances and utilized the latent variables
to classify text. Unsupervised data augmentation
(UDA) (Xie et al., 2020) performed consistency
training by making features consistent between
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back-translated instances. However, these meth-
ods mostly require additional systems (e.g., NMT
back-translation), which may be bothersome in
real-world scenarios. Mukherjee and Awadallah,
(2020) and Tsai et al. (2022) introduced uncertainty-
driven self-training-based solutions to select sam-
ples and performed self-training on the selected
data. An iterative framework (Ma et al., 2021),
named SENT, proposed to address distant relation
extraction via negative training. Self-Pretraining
(Karisani and Karisani, 2021) was introduced
to employ an iterative distillation procedure to
cope with the inherent problems of self-training.
SSTC-based approaches and their limitations are
well described by van Engelen and Hoos (2020)
and Yang et al. (2022). Recently, S2TC-BDD
(Li et al., 2021) was introduced to balance the
label angle variances (i.e., the angles between
deep representations of texts and weight vectors
of labels), also called the margin bias. Despite
the effectiveness of these methods, the unlabeled
instances contribute equally likely to the labeled
ones; therefore, the performance heavily relies
on the quality of pseudo-labels. Unlikely, our
proposed solution addresses the SSTC task as a
learning under noisy label settings problem. Since
the pseudo-labels are automatically labeled by the
machine, we thus regard them as noisy labels and
introduce a ranking approach to filter the highly
risky mislabeled instances. To alleviate the noisy
information resulting from the filtering process,
we use negative training that performs classifica-
tion based on the concept that ‘‘the input instance
does not belong to the complementary label’’.

Learning with Noisy Labels. Learning with
noisy data has been extensively studied, especially
in the computer vision. The existing solutions in-
troduced various methods to relabel the noisy
samples in order to correct the loss function. To
this end, several relabeling methods have been
introduced to treat all samples equally to model
the noisy ones, including directed graphical mod-
els (Xiao et al., 2015), conditional random fields
(Vahdat, 2017), knowledge graphs (Baek et al.,
2022), or deep neural networks (Veit et al., 2017;
Lee et al., 2018). However, they were built based
on semi-supervised learning, where access to a
limited number of clean data is required. Ma
et al. (2018) introduced a bootstrapping method
to modify the loss with model predictions by ex-
ploiting the dimensionality of feature subspaces.

Patrini et al. (2017) proposed to estimate the label
corruption matrix for loss correction. Another di-
rection of research on loss correction investigated
two approaches, including reweighting training
samples and separating clean and noisy sam-
ples (Thulasidasan et al., 2019; Konstantinov and
Lampert, 2019). Shen and Sanghavi (2019) have
claimed that the deep classifier normally learns
the clean instances faster than the noisy ones.
Based on this claim, they consider instances with
smaller losses as clean ones. A negative training
technique (Kim et al., 2019) was introduced to
train the model based on the complementary la-
bel, which is randomly generated from the label
space except for the label on-target. The goal is
to encourage the probability to follow a distri-
bution such that the noisy instances are largely
distributed in low-value areas and the clean data
are generally distributed in high-value areas to
facilitate the separation process. Han et al. (2018)
proposed to jointly train two networks that se-
lect small-loss samples within each mini-batch to
train each other. Based on this paradigm, Yu
et al. 2019 proposed updating the network on
disagreement data to keep the two networks di-
verged. In this paper, we leverage a robust nega-
tive loss (Kim et al., 2019) for noisy data training.

3 Ranked-aware Negative Training

This section describes the proposed framework,
namely, Rank-aware Negative Training (RNT),
for semi-supervised text classification. An exam-
ple of RNT is depicted in Figure 1. Suppose we
have a training dataset D consisting of a limited
labeled set Dl and a large unlabeled set Du. We
follow the pseudo-labels method introduced by
Lee (2013) to associate Du with pseudo-labels
based on the concept of positive training. Sim-
ply put, we fine-tune the pre-trained language
models (e.g., BERT) on the Dl set. It is note-
worthy that we use BERT for a fair comparison,
while other models can be used similarly. As the
pseudo-labels are not manually annotated, we
propose ranking the texts based on their poten-
tial for mislabeling to identify and discard the
most risky mislabeled texts. Specifically, we first
capture the shared information (i.e., we refer to
this as the evidential support) between the labeled
and unlabeled instances. Then, we measure the
amount of support that an unlabeled instance re-
ceives from the labeled instances being correctly
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Figure 1: An example of the proposed framework.
Dl, Du, and D′

u denote labeled set, unlabeled set,
and filtered unlabeled set, respectively. Briefly, RNT
consists of three key steps: (1) Training with PT on
limited labeled texts and then iteratively predicting
the unlabeled texts as their pseudo-labels; (2) Measur-
ing the evidential support based on the learned em-
bedding space of PT to estimate the degree of noise;
and (3) Training with NT on the mixture of clean and
filtered data.

labeled. We denote the filtered set as D′
u in

Figure 1. Finally, we train on both Dl and D′
u

through the concept of the negative training.
Next, we describe the framework in detail.

3.1 Task Description

Semi-Supervised Text Classification (SSTC).
Let D be the training dataset consisting of a lim-
ited labeled set Dl = {(xli, yli)}

i=Nl
i=1 and a large

unlabeled text set Du = {(xuj )}
j=Nu
j=1 , where xli

and xuj denote the input sequences of labeled and
unlabeled texts, respectively, and yli ∈ {0, 1}K
represents the corresponding one-hot label vector
of xli. The goal is to learn a classifier that lever-
ages both Dl and Du to better generate in the
inference step, also known as inductive SSTC.

3.2 Positive and Negative Training

Positive Training (PT). A typical method of
training a model with a given input instance and
the corresponding labels is referred to as PT. In
other words, the model is trained based on the
concept that ‘‘the input instance belongs to this
label’’. Considering a multi-class classification
problem, let x ∈ X be an input, y ∈ {0, 1}K
be a c-dimension one-hot vector of its label. The
training objective f(x; θ) aims to map the in-
put instance to the k-dimensional score space
f : X → R

k, where θ is the set of parameters.
To achieve this, PT uses the cross-entropy loss
function defined as follows:

Lpt = −
K∑

k=1

yk log(pk), (1)

where pk denotes the probability of the kth

label. Equation 1 satisfies the claim of PT to
optimize the probability value corresponding to
the given label as 1 (pk → 1).

Negative Training (NT). Unlike PT, the model
is trained based on the concept that ‘‘the input
text does not belong to this label’’. Specifically,
given an input text x with a label y ∈ {0, 1}K , a
complementary label ȳ is generated by randomly
sampling from the label space except y (e.g.,
ȳ ∈ R\{y}). The cross-entropy loss function of
NT is defined as follows.

Lnt = −
K∑

k=1

yk log(1− pk). (2)

To illustrate the robustness of PT and NT
against noisiness, we train both techniques on the
AG News dataset corrupted with randomly 30%
of symmetric noise (i.e., associating the instance
with a random label). In terms of confidence (i.e.,
the probability of the true class), we illustrate the
histogram of the training data after PT and NT in
Figure 2. As can be seen, with PT in Figure 2(a),
the confidence of both clean and noisy instances
increases simultaneously. With NT in Figure 2 (b),
in contrast, the noisy instances yield much lower
confidence compared to the clean ones and thus
discourages the domination of noisy data. After
NT training, we train the model with only the
samples having NT confidence over 1

K , where K
denotes the number of classes. We refer to this
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Figure 2: A histogram of PT, NT, and RNT data training distribution conducted on AG News dataset with ran-
dom 30% noisy-labels, in which blue represents the clean data and orange indicates the noisy data. SelNT further
trains the model with only the samples having NT confidence over 1

K , where K denotes the number of classes.

Figure 3: A comparison between PT and NT techniques
trained on the AG News dataset corrupted with ran-
domly 30% of symmetric noise. The accuracy of PT on
the clean Dev data increases in the early stage. How-
ever, overfiting to the noisy training examples results in
gradual inaccurate performance on the clean Dev data.

process as Selective NT (SelNT), as illustrated in
Figure 2 (c) (Kim et al., 2019). We also depict
the distribution of proposed RNT in Figure 2(d),
which demonstrates the improvement of RNT in
terms of noise filtering. In terms of performance,
as shown in Figure 3, the accuracy of PT on the
Dev data increases in the early stage. However,
the direct mapping of features to the noisy labels
eventually leads to the overfitting problem and
thus gradually results in inaccurate performance
on the clean Dev data.

3.3 Noise Ranking
We begin by extracting the shared features (i.e.,
evidential support) between the evidences (i.e.,
the labeled texts) and the inference (i.e., the un-
labeled texts). Then, we adopt a reasoning with
uncertainty approach to measure the evidential
support. The instance with higher evidential sup-

Figure 4: An illustrative example of the evidential
support. The instances xu

j and xl
i exhibit a similar

Lcos value in response to class 0 (i.e., f3(0, 0.2)). The
approximate PT’s confidence of 0.9, represented by
f ′
1(0, 0.9), further strengthens this similarity. Conse-

quently, the instance xu
j is considered less noisy due

to the higher degree of evidential support it receives.

port is regarded as a less potential noisy instance.
An illustrative example is shown in Figure 4. Next,
we describe the process in detail.

3.3.1 Feature Generation

Recall that RNT begins by training on the labeled
data using the PT technique. Consequently, we
rely on the learned latent space of PT to gener-
ate various features with three properties, includ-
ing automatically generated, discriminating, and
high-coverage, as follows.

Semantic Distance. For each instance xi ∈
{Dl, Du}, we recompute its semantic related-
ness to each label yi ∈ Y based on the Angular
Margin (AM) loss (Wang et al., 2018).

The AM loss adds a margin term to the Softmax
loss based on the angle (i.e., cosine similarity) be-
tween an input sample’s feature vector and the
actual class’s weight vector. Notably, the margin
term encourages the network to learn feature rep-
resentations that are well-separated and distinct
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for different classes. As a result, the angle be-
tween the feature vectors of an input sample and
different classes becomes an essential factor in
estimating the degree of noisiness. For clarity, we
first describe the AM loss with respect to angles.
Given a training example (xi; yi), it can be for-
mulated as:

Lcos(xi, yi, φ) =−
∑K

k=1
yik log(

es(cos(θik−yikm))

∑K
j=1 e

s(cos(θij−yijm))
),

(3)

where φ denotes the model parameters and cos(.)
stands for the cosine similarity, which can be
read as the angular distance between feature vec-
tors and the class weights. Given an unlabeled
instance xuj , we recompute its AM loss to each
class yi ∈ Y as follows:

Lcos(x
u
j , yi, φ) = − 1

N

N∑

n=1

K∑

k=1

yik log(θjn), (4)

where N is the number of samples (e.g., 5) from
Dl labeled with yi (i.e., class on-target) and θjn
denotes the cosine similarity between xuj and xln
(i.e., the deep representations of the PT clas-
sifier). The intuition behind this feature is that
an unlabeled instance xuj , which receives close
amount of support from different classes, is re-
garded as potentially mislabeled. We denote this
feature as f and its value consists of the corre-
sponding class yi as well as the value of Lcos.
To enable valuable shared knowledge between
instances, Lcos is approximated to one digit
(e.g., Lcos(x

u
j , 1) = 0.213 ≈ 0.2). Considering

the illustrative example in Figure 4, xuj and xli
approximately share the same Lcos in response
to class 0, (i.e., f3(0, 0.2)).

PT Confidence. Instances with extreme confi-
dence (i.e., close to 1) are generally considered to
have a low risk of being mislabeled (Hou et al.,
2020). To incorporate the class distribution of
PT into the evidential support measurement pro-
cess, we introduce a new feature, denoted as f ′,
whose value consists of the predicted class and
its corresponding probability. Considering the il-
lustrative example in Figure 4, xuj and xli share
f ′
1 (i.e., f ′

1(0, 0.9)), which can be read as both
instances are related to the class 0 based on PT
classifier with 0.9 confidence.

3.3.2 Evidential Support Measurement

Now can capture shared knowledge between the
labeled and unlabeled instances (i.e., the evi-
dential support). We leverage Dempster Shafer
Theory (DST) (Yang and Xu, 2013) to address
evidential support measurement as reasoning with
uncertainty. The goal is to estimate the degree of
noisiness for an unlabeled instance by combining
its evidence from multiple sources of uncertain
information (i.e., PT and semantic features). To
achieve this, DST applies Dempster’s rule, which
combines the mass functions of each source of
evidence to form a joint mass function. It is
noteworthy that DST has been widely used for
various purposes of reasoning (Liu et al., 2018;
Wang et al., 2021; Ahmed et al., 2021). The basic
concepts of DST are:

• Proposition. It refers to all possible states
of a situation under consideration. Two
propositions are defined: ‘‘clean instance’’,
denoted by C, and ‘‘unclean instance’’, de-
noted by U . Let proposition be X = {C,U}
and a power set of X be 2X = {∅, C, U,X}.

• Belief function. It associates each E ∈ 2X

with a degree of belief (or mass), which
satisfies

∑
E∈2X m(E) = 1 and m(∅) = 0.

Different belief functions for various ev-
idences are defined (i.e., the generated
features).

Given an unlabeled instance xuj and its seman-
tic feature f , we estimate the evidential support
that xuj receives from labeled instances that share
f by the belief function:

mf (E)=

⎧⎪⎨
⎪⎩

(1− df )max{P (f), 1−P (f)} E = {C}
(1− df )min{P (f), 1−P (f)} E = {U}
df E = {C,U}

(5)

where df denotes the degree of uncertainty of f ,
and P (f) is the division of the number of pos-
itive instances (i.e., the labeled instances with
the same class of the feature on-target f ) by all
labeled instances shared f . Consider the illus-
trative example in Figure 4, f3(0, 0.2) (i.e., se-
mantically related to class 0 with approximated
similarity of 0.2), suppose that the positive in-
stances xli and xli+1 are annotated with class 0,
then P (f3) = 1.0. Equation 5 can be read as the
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more extreme the value of P (f) (i.e., close to 0
or 1) is, the more evidential support the element
of C should receive from the feature f . Simi-
larly, we use Equation 5 to estimate the eviden-
tial support mf ′(E) that xui receives from f ′.
Note that df represents the impact that a given
feature may have on the final degree of belief
in terms of evidential support measurement. The
lower the value, the greater the impact. Note that
both types of features are generated based on
the latent space of the PT classifier that we be-
lieve in its semantic representation as it is trained
on the labeled data. Therefore, we empirically
set df to a small unified value (i.e., 0.2 in our
experiments).

The overall evidential support of E = {C} that
xuj receives from its observations is estimated by
combining the estimated beliefs as follows:

m(E) = mf1(E)⊕ . . .⊕mfn(E)⊕mf ′(E), (6)

where m(E) represents the total amount of evi-
dential support that xuj receives, and the combi-
nation is computed from the two sets of belief
functions, mf1(E) and mf2(E), as follows:

mf1
(E)⊕mf2

(E) =
1

1− U

∑
E′∩E′′=E

mf1
(E′)mf2

(E′′),

(7)

where E′ and E′′ denote the power set 2X ele-
ments and U =

∑
E ′∩E ′′=∅ mf1(E

′)mf2(E
′′) is a

measure of the amount of conflict between E′ and
E′′. In words, given the element of E = {C},
we multiply the combinations of E′ and E′′ such
that E′ ∩ E′′ = C and thus can be regarded as
a measure for the amount of support from {C}.
For time complexity, each iteration takes O(n ×
nf ) time with n instances and nf the number of
the generated features. Thus, the time complexity
can be represented by O(n2 × nf ).

3.4 Training Procedure

Now that we can measure the evidential support,
we then rank the instances of Du and select the
less risky instances as the filtered set, denoted
as D′

u = {(xuj , yuj )}
j=Nf

i=1 . Note that the value of
Nf is fine-tuned using the Dev set (please refer
to Section 4.3 for more details). Finally, we com-
bine both sets Dl and D′

u together for the final
NT training, as illustrated in Figure 1. The train-
ing procedure can be explained by the following

steps. We first generate pseudo-labels using the
PT technique from Eq. 1. Then, we apply DST
to filter the highly risky instances. Finally, we
adopt NT technique, Eq. 2, to alleviate the noisy
information during the training. Furthermore, to
improve the convergence after NT, we follow
Kim et al. (2019) by training only with the in-
stances whose confidence is over 1

K , denoted as
SelNT in Figure 2(c).

4 Experimental Setup

4.1 Dataset

We validate the performance of the proposed
RNT on various text classification benchmark
datasets (Table 1). In particular, we rely on AG
News (Zhang et al., 2015), Yahoo (Chang et al.,
2008), Yelp (Zhang et al., 2015), DBPedia (Zhang
et al., 2015), TREC (Li and Roth, 2002), SST
(Socher et al., 2013a), CR (Ding et al., 2008), MR
(Pang and Lee, 2005), TNEWS, and OCNLI (Xu
et al., 2020). For the AG News, Yelp, and Yahoo
datasets, we follow the comparative approaches
by forming the unlabeled training set Du, la-
beled training set Dl, and development set by
randomly drawing from the corresponding orig-
inal training datasets. For the other datasets, we
split the training set into 10% and 90% for Dl

and Du, respectively. Note that we utilize the
original test sets for prediction evaluation.

4.2 Comparative Baselines

For fairness, we only include the semi-supervised
learning methods that were built upon the con-
textual embedding models (e.g., BERT):

• PLM is a pre-trained language model di-
rectly fine-tuned on the labeled data. We
compared to BERT (Devlin et al., 2019; Cui
et al., 2021) and RoBERTa (Liu et al., 2019);

• UDA (Xie et al., 2020) is an SSTC method
based on unsupervised data augmentation
with back translation. We use German and
English languages for back-translation of
English and Chinese, datasets, respectively;

• UST (Mukherjee and Awadallah, 2020) in-
troduces select samples by information gain
and utilizes cross-entropy loss to perform
self-training;
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Dataset #Class
Train

#Dev #Test Length Language Task Metric
#Lab #Unlab

AG News 4 10k 20k 8k 7.6k 100 English Topic Macro-F1
Yelp 5 10k 20k 10k 5k 256 English Sentiment Macro-F1
Yahoo 10 10k 40k 20k 60k 256 English Topic Macro-F1
DBPedia 14 10k 20k 10k 70k 160 English Topic Macro-F1
TREC 6 5.4k NA 1.1k 500 30 English Question Macro-F1
SST {2,5} 6.9k NA 871 1.8k 50 English Sentiment Macro-F1
CR 2 3k NA 378 372 50 English Sentiment Macro-F1
MR 2 6.9k NA 1.7k 2k 50 English Sentiment Macro-F1
TNEWS 15 53.3k NA 10k 10k 128 Chinese Topic Accuracy
OCNLI 3 50k NA 3k 3k 128 Chinese NLI Accuracy

Table 1: The statistics of benchmark datasets, where #Lab and #Unlab denote the number of labeled and
unlabeled texts, respectively. Note that for datasets with NA, we split #Lab into 10% and 90% for #Lab
and #Unlab, respectively.

• S2TC-BDD (Li et al., 2021) is an SSTC
method that addresses the margin bias prob-
lem by balancing the label angle variances.

4.3 Experimental Settings
• Hyper-parameters. We use 12 heads and

layers and keep the dropout probability to 0.1
with 30 epochs, learning rate of 2e−5 and 32
batch size. To guarantee the re-productivity
without manual effort, we rely on the Dev set
to automatically set the value of Nf (i.e., the
number of instances in D′

u). First, the ranked
Dev set is split into small proportions (i.e.,
max is 10). Then, m is set to proportions
that meet the condition λ = max(p)− st(p),
where p is a vector that represents the ac-
curacy of RNT on each proportion and st
denotes the standard deviation. For example,
θ = 0.2 means that D′

u consists of the first
20% of the ranked Du, as shown in Figure 5.
We set the number of negative samples to
K − 1, where K is the number of classes in
the labeled training set.

• Metrics. We use the accuracy metric on Clue
datasets, including TNEWS and OCNLI, and
Macro-F1 scores for all other datasets.

5 Evaluation and Results

We describe the evaluation tasks and report the
experimental results in this section. The evaluation
criteria are: (I) Is RNT able to rank the instances
of being mislabeled?; (II) Can the filtered data
enhance the performance of the clean test data?

Figure 5: Ranking evaluation on Dev sets with Nl =
1k. The ranked Dev set is first split into 10 proportions
equally-likely. Then, each proportion is inferred (i.e.,
calculate its accuracy) independently. The accuracy
gradually drops as the noisy texts increase. In our ex-
periment, we choose the proportions whose instances
meet λ Section 4.3 for further NT training.

5.1 Results

We use the Dev set to select the best model
and average three runs with different seeds. The
experimental results are reported in Tables 2, 3,
and 4, from which we have made the following
observations.

• Compared to the baselines, RNT gives the
best results compared to its alternatives in
most cases and achieves competitive per-
formance in others. We also observe that
SSTC-based approaches comfortably out-
perform the PLM fine-tuning when training
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PLM Model AG News Yelp Yahoo DBPedia

30 1k 10k 30 1k 10k 30 1k 10k 30

BERT-Base

Fine-tuning 84.1±0.9 87.8±0.3 90.5±0.2 42.2±1.7 53.2±0.8 58.6±0.5 63.2±0.5 67.1±0.3 70.8±0.2 97.1±0.9
UDA 85.7±0.3 88.3 90.6 44.6±1.2 55.0 57.6 66.4±0.5 66.6 70.4 98.5±0.6
UST 87.2±0.6 88.6 90.8 44.8±1.1 54.2 57.7 66.5±0.3 67.5 71.1 98.4±0.6
S2TC-BDD 86.9±0.7 88.9 90.7 45.9±1.4 55.0 58.6 66.2±0.6 68.0 70.9 98.8±0.7
RNT (Ours) 86.7±0.3 89.4±0.1 91.9±0.1 44.9±1.2 56.6±0.6 60.2±0.1 66.2±0.3 69.1±0.2 72.7±0.1 98.2±0.4

RoBERTa-Base Fine-tuning 84.9±0.7 88.5±0.3 91.0±0.2 53.7±1.6 57.8±0.7 62.5±0.4 66.6±0.4 68.3±0.5 72.3±0.2 98.1±0.5
RNT (Ours) 86.9±0.4 89.6±0.1 92.2±0.2 53.9±1.4 60.0±0.5 63.8±0.1 67.2±0.4 69.6±0.2 73.7±0.1 98.4±0.2

RoBERTa-Large Fine-tuning 86.5±0.4 89.1±0.2 91.8±0.2 56.2±1.3 62.3±0.6 66.0±0.4 67.8±0.3 70.3±0.3 73.7±0.1 98.3±0.3
RNT (Ours) 87.8±0.3 89.8±0.1 92.6±0.1 58.3±0.9 63.1±0.4 66.8±0.2 68.9±0.2 71.2±0.2 74.3±0.1 98.8±0.2

Table 2: Comparative results with the state-of-the-art alternatives on 30 examples per label and
Nl ∈ {1k, 10k}. The results of Nl ∈ {1k, 10k} are retrieved from S2TC-BDD (Li et al., 2021), while
the others are our implementations. The scores consists of the average of three runs, and the best scores
are in bold.

PLM Model TREC SST-2 SST-5 CR MR

30 10% 30 10% 30 10% 30 10% 30 10%

BERT-Base

Fine-tuning 78.7±1.6 87.1±1.0 76.9±1.6 85.2±0.8 33.2±1.4 39.0±1.1 74.7±1.2 85.8±0.9 66.6±1.4 80.7±0.7
UDA 83.5±1.1 91.2±0.7 79.9±1.3 85.6±0.3 33.6±1.1 40.6±0.8 81.0±0.7 87.7±0.6 72.9±0.9 81.0±0.1
UST 83.3±1.2 92.1±0.8 78.7±1.0 85.6±0.4 33.9±1.1 40.8±0.7 82.7±0.8 87.8±0.3 71.1±1.0 81.0±0.3
S2TC-BDD 81.2±1.3 91.2±0.9 81.1±1.2 85.7±0.5 34.6±1.3 39.6±0.5 82.3±0.9 87.6±0.7 72.1±0.9 80.0±0.6
RNT (Ours) 85.2±1.1 91.4±0.7 83.8±1.3 87.6±0.4 35.9±1.2 42.3±0.9 82.6±0.9 89.3±0.4 71.5±1.0 82.4±0.3

RoBERTa-Base Fine-tuning 84.2±1.3 92.1±0.7 85.0±0.9 89.5±0.4 39.3±1.0 47.6±0.7 86.5±1.2 91.1±0.7 71.2±1.4 84.9±0.5
RNT (Ours) 86.7±0.8 93.2±0.4 87.7±0.7 90.7±0.4 40.5±0.6 49.6±0.4 88.9±0.6 92.5±0.2 75.8±0.7 86.4±0.2

RoBERTa-Large Fine-tuning 88.9±1.1 92.5±0.6 87.7±1.0 92.3±0.7 40.5±0.8 51.0±0.6 89.7±0.9 91.8±0.8 82.4±1.2 88.3±0.6
RNT (Ours) 89.6±0.6 94.0±0.4 89.6±0.6 93.2±0.5 42.8±0.5 52.4±0.3 92.3±0.6 92.6±0.3 85.9±0.6 88.4±0.3

Table 3: Comparative results with the state-of-the-art alternatives with 30 samples per label and
Nl = 10% of the labeled texts. Note that all results are the average of three runs with different seeds.
Best scores are in bold.

Model
TNEWS OCNLI

10% 10%

Fine-tuning 53.9 62.6
UDA 52.3 63.8
UST 54.3 63.7
S2TC-BDD 53.4 64.5
RNT (Ours) 54.6±0.4 65.2±0.3

Table 4: Comparative results on Chinese datasets
based on initial weights from RoBERTa-Large
(Cui et al., 2020). The best scores are in bold.

with scarce labeled data (e.g.,Nl = 30); how-
ever, the same performance is expected when
Nl is increased (e.g., Nl ∈ {1k, 10k}), but it
was not supported by the experiments. Fur-
thermore, experimental results demonstrate
that RNT is not sensitive to the number of
classes compared to SSTC-based alterna-
tives. For instance, UDA (Xie et al., 2020)
can perform better on the binary datasets, as
shown in Table 3.

• Compared to the PLM fine-tuned on the
labeled data, RNT comfortably overcomes

PLM by considerable margins. For example,
the Macro-F1 scores of RNT with Nl = 30
are even about 2.6%, 2.7%, and 3.0% on
AG News, Yelp and Yahoo datasets, respec-
tively. Moreover, we also observe that RNT
can perform better than PLM fine-tuned on
sufficient labeled data (e.g., Nl = 10k).

5.2 Mislabeling Filtering Evaluation

To evaluate the ability of RNT in mislabeling
filtering, we conduct experiments on the Dev sets
of AG News, Yelp, and Yahoo datasets as fol-
lows. We first associate the instances with the
corresponding pseudo-labels (i.e., inferring using
the PT classifier). Then, we require RNT to rank
them based on their evidential support received
from the clean training set (i.e., Nl = 1k). Since
we have access to the true labels of the Dev set,
we can evaluate the performance of the filtering
process. Specifically, we divide the ranked Dev
set into ten equally-likely proportions (note that
we keep the same order of ranking) and calculate
the accuracy of each proportion separately (i.e.,
comparing the pseudo-labels with the true labels).
The proportions, as shown in Figure 5, are signifi-
cantly correlated with the extent of mislabeling. In
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Dataset Nl
Full Dev Filtering

Acc F1 Prop Acc F1

AG News 1k 88.1 88.1 70% 95.8 95.2
10k 91.9 91.9 70% 98.2 97.9

Yelp 1k 53.8 53.2 30% 68.8 64.2
10k 60.5 60.2 30% 75.9 72.5

Yahoo 1k 67.1 67.0 30% 89.6 72.6
10k 72.0 71.2 40% 91.0 83.6

Table 5: Filtering evaluation on Dev sets. Prop,
Acc, and F1 denote proportion (i.e., the ratio of fil-
tered texts), accuracy, and Macro-F1, respectively.

AG News Yelp Yahoo

BERT (fine-tune) 87.8 53.2 67.1
S2TC-BDD 88.9 55.0 68.0

RNT w/o ranking 88.1 55.0 67.9
RNT 89.4 56.6 69.1

Table 6: The impact of noise filtering to the
overall performance. Note that the number of la-
beled data is set to Nl = 1k. Removing noise
ranking from RNT leads to a noticeable per-
formance drop; however, it still performs better
than BERT-Based fine-tuned on labeled data
and achieves competitive scores comparable to
S2TC-BDD.

other words, the accuracy score gradually drops
as the mislabeled instances increase and vice-
versa. Note that we report the accuracy due to the
imbalance labels in the proportions. Moreover,
we report the performance of both the full Dev
set and the filtered set in Table 5.

5.3 The Impact of Noise Filtering

To assess the impact of noise filtering on the
overall performance of RNT, we remove DST
and conduct experiments on the AG News, Yelp,
and Yahoo datasets. The experimental results
presented in Table 6 show that removing noise
ranking from RNT causes a performance drop of
1.3, 1.6, and 1.2 on the AG News, Yelp, and
Yahoo datasets, respectively. This demonstrates
the efficacy of a well-designed noisy ranking in
improving text classification performance. Fur-
thermore, we observe that even without noise
filtering, RNT outperforms PLM fine-tuning and
achieves competitive results compared to other

alternatives. This supports the adoption of NT
for noisy data.

5.4 The Effect of DST
To validate the contribution of DST on the final
performance in terms of mislabeled instances fil-
tering, we implement two variants, namely, RNT
Pure and RNT PT-conf, as follows. The RNT
Pure is trained on Dl and Du as a whole with-
out any filtering mechanism, while RNT PT-conf
uses the PT confidence to filter the instances in
Du that do not meet the predefined threshold
(i.e., 0.9 in our experiments). In other words,
instead of DST, we rely on the PT confidence
to discard the instances close to the boundary.
Empirically, we conduct experiments on AG
News, Yelp, and Yahoo datasets with various
Nl = {30, 1k, 10k}. The comparative results are
shown in Table 7, from which we made the fol-
lowing observations. Overall, RNT can mostly
give the best performance, and the improvements
are significant, especially with less limited data
(e.g., Nl = 30). RNT Pure performs worse due
to the absence of a filtering mechanism. RNT
PT-conf can achieve competitive performance
with sufficient labeled data (e.g., Nl = 10k)
even in terms of uncertainty. However, it grad-
ually drops with the decrease of labeled data.
Intuitively, these results are expected as the per-
formance of the PT classifier heavily relies on
the amount of labeled data. In brief, the abla-
tion study empirically supports the contribution of
DST to the performance of RNT.

5.5 Denoising Evaluation
Recall that the ultimate goal of DST is to estimate
the score of unlabeled instances being mislabeled
by the PT classifier. To evaluate the ability of
DST to denoising, we adopt a perturbation strat-
egy that has been used widely in the literature
(Belinkov and Bisk, 2018; Sun and Jiang, 2019).
We randomly pick 30% of the Dev data as the
noisy instances. For each instance, we randomly
select 30% of the words to be perturbed as fol-
lows. Specifically, we apply four kinds of noise:
(1) swap two letters per word; (2) delete a letter
randomly in the middle of the word; (3) replace a
random letter with another in a word; (4) insert a
random letter in the middle of the word.

The evaluation results of denoising are reported
in Table 8, from which we made the following
observations. (1) A considerable margin exists
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Model AG News Yelp Yahoo

30 1k 10k 30 1k 10k 30 1k 10k

RNT Pure 82.9±0.8 88.1±0.2 91.3±0.2 42.6±1.7 55.0±0.8 59.8±0.3 65.1±0.7 67.9±0.2 71.9±0.1
RNT PT-conf 83.7±1.3 89.7±0.2 91.7±0.1 42.2±1.6 54.6±0.6 60.1±0.2 65.4±1.0 68.1±0.4 72.3±0.1
RNT (Ours) 86.7±0.3 89.4±0.1 91.9±0.1 44.9±1.2 56.6±0.6 60.2±0.1 66.2±0.3 69.1±0.2 72.7±0.1

Table 7: The effect of DST on the performance of RNT. All variants are jointly trained on Dl and Du

using PT and NT. RNT Pure is trained on all instances in Du without any filtering mechanism, while
RNT PT-conf uses the PT-based confidence to filter the instances in Du that does not meet a prede-
fined threshold (i.e., 0.9 in our experiments).

Dataset
Full Dev

Denoising accuracy
clean noise

AG News 91.92 84.74 87.53
Yelp 60.49 57.14 74.12
Yahoo 71.96 68.46 83.25

Table 8: Denoising evaluation with Nl = 10k
and 30% of noise instances. Full Dev denotes
the performance on the clean and noisy Dev sets.
Denoising indicates the ability of RNT to iden-
tify the clean instances.

between the performance of the PT classifier on
the clean and noise data, demonstrating the im-
pact of the generated noise. (2) Despite the well-
recognized challenge of denoising in NLP, our
proposed solution can mostly identify clean in-
stances. (3) Even though the performance can be
deemed considerable, noisy information may still
exist in the filtered data; therefore, we use NT for
further training.

6 Conclusion and Future Work

In this paper, we proposed a self-training semi-
supervised framework, namely, RNT, to address
the text classification problem in learning with
noisy label settings. RNT first discards the high
risky mislabeled texts based on reasoning with un-
certainty theory. Then, it uses the negative training
technique to reduce the noisy information during
training. Our extensive experiments have shown
that RNT mostly outperformed SSTC-based alter-
natives. Despite the robustness of negative train-
ing, clean samples that have identical distributions
with test data are subjected to complementary
labels. Consequently, both clean and potentially
noisy samples contribute equally to the final per-
formance. A combination of both positive and

negative training strategies in a unified frame-
work can remedy the abundance of noisy sam-
ples; however, this needs further investigation.
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Santiago Ontañón, Philip Pham, Anirudh
Ravula, Qifan Wang, Li Yang, and Amr
Ahmed. 2020. Big Bird: Transformers for
longer sequences. In Proceedings of the An-
nual Conference on Neural Information Pro-
cessing Systems, NeurIPS.

Chiyuan Zhang, Samy Bengio, Moritz Hardt,
Benjamin Recht, and Oriol Vinyals. 2021.
Understanding deep learning (still) requires
rethinking generalization. Communications of
the ACM, 64(3):107–115. https://doi.org
/10.1145/3446776

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun.
2015. Character-level convolutional networks
for text classification. In Annual Conference
on Neural Information Processing Systems,
pages 649–657.

786

https://doi.org/10.18653/v1/2020.coling-main.419
https://doi.org/10.18653/v1/2020.coling-main.419
https://doi.org/10.1016/j.artint.2013.09.003
https://doi.org/10.1016/j.artint.2013.09.003
https://doi.org/10.1109/TKDE.2022.3220219
https://doi.org/10.1109/TKDE.2022.3220219
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776

	Introduction
	Related Work
	Ranked-aware Negative Training
	Task Description
	Positive and Negative Training
	Noise Ranking
	Feature Generation
	Evidential Support Measurement

	Training Procedure

	Experimental Setup
	Dataset
	Comparative Baselines
	Experimental Settings

	Evaluation and Results
	Results
	Mislabeling Filtering Evaluation
	The Impact of Noise Filtering
	The Effect of DST
	Denoising Evaluation

	Conclusion and Future Work

