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Abstract
Recently proposed BERT-based evaluation
metrics for text generation perform well on
standard benchmarks but are vulnerable to ad-
versarial attacks, e.g., relating to information
correctness. We argue that this stems (in part)
from the fact that they are models of semantic
similarity. In contrast, we develop evaluation
metrics based on Natural Language Inference
(NLI), which we deem a more appropriate
modeling. We design a preference-based ad-
versarial attack framework and show that our
NLI based metrics are much more robust
to the attacks than the recent BERT-based
metrics. On standard benchmarks, our NLI
based metrics outperform existing summariza-
tion metrics, but perform below SOTA MT
metrics. However, when combining existing
metrics with our NLI metrics, we obtain both
higher adversarial robustness (15%–30%) and
higher quality metrics as measured on standard
benchmarks (+5% to 30%).

1 Introduction

Proper evaluation is key to fields such as machine
learning and Natural Language Processing (NLP).
Evaluation is particularly challenging for natural
language generation (NLG) tasks, as there many
be an infinitude of correct solutions (e.g., transla-
tions or summaries) for a given source text. While
human evaluation is often considered the gold
standard, it is slow and costly, thus researchers
resort to automatic evaluation. Previously, this
was done using simple lexical overlap metrics
such as BLEU and ROUGE, but these exhibit low
correlations with human judgments, particularly
for state-of-the-art NLG systems (Mathur et al.,
2020a; Peyrard, 2019). Thus, a popular recent
trend is to design automatic evaluation metrics
based on large language models such as BERT
and its many extensions (Zhang et al., 2020; Zhao
et al., 2019; Sellam et al., 2020; Wan et al., 2022).

Nonetheless, these novel metrics also have
key limitations. For example, Sai et al. (2021)
and Kaster et al. (2021) show that they are not
robust to various adversarial attacks including
lexical overlap and factuality errors. Taking the
currently most popular metric—BERTScore1—as
an example, this adversarial vulnerability is un-
surprising. BERTScore computes the semantic
similarity between a reference and a system output
(the candidate), using a simplified token matching
procedure. However, a good candidate is typically
not appropriately identified by semantic similarity.
For example, a candidate ‘‘5 Ukrainian soldiers
wounded in Russia’’ is not an adequate translation
of a source corresponding to the reference ‘‘50000
Russian soldiers killed in Ukraine’’, although the
two texts are of course semantically very similar.2

While there have been many attempts to improve
BERTScore using better token matching, e.g., us-
ing Word Mover Distance (Zhao et al., 2019;
Chen et al., 2020; Colombo et al., 2021), we argue
that this line of research is a dead-end, as the un-
derlying model of semantic similarity, originally
proposed to address issues of lexical variation in
BLEU/ROUGE, is simply not (fully) appropriate.

An intuitively more suitable idea to model
evaluation metrics is via natural language in-
ference (NLI) (Dagan et al., 2013). For example,
in reference-based settings, in which candidates
are compared to human references, a candidate
is intuitively good if it is equivalent to a human
reference via the concept of bi-implication. NLI
systems are also promising alternatives because

1Published in 2020, BERTScore has more than 1700
citations as of March 2023.

2That semantic similarity metrics are inherently incapable
of identifying this puts them at great risk of being attacked by
malicious agents, with serious real-world consequences, as
the metrics cannot distinguish between truthful translations
and semantically similar but factually incorrect translations.
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NLI is one of the most researched upstream tasks
in NLP, where a lot of emphasis has been placed
on concepts such as biases, generalization and
adversarial conditions (Poliak et al., 2018; Utama
et al., 2020).

In this paper, we ask whether we can di-
rectly use pre-trained NLI models as evaluation
metrics, thereby establishing a new paradigm
(but with predecessors, as indicated in §2). Our
contributions:

• We design: a novel preference-based adver-
sarial test suite for MT and summarization
metrics. Our adversarial benchmark does
not need human annotators, is suitable for
reference-free (where the candidate is di-
rectly compared to the source text, without
human reference) and reference-based eval-
uation, and is challenging: e.g., BLEU,
ROUGE, MoverScore, and BERTScore per-
form below or at random level.

• We explore: (i) how NLI metrics can be
induced from existing NLI models; (ii) how
they perform on benchmark and adversarial
datasets, across (iii) two NLG problems, MT
and summarization.

• We show: (iv) NLI metrics perform par-
ticularly well in summarization, but below
standard metrics in MT. (v) They substan-
tially outperform existing metrics on our
adversarial attacks (e.g., ∼30%–50% mar-
gin over the best unsupervised standard
metric in MT). (vi) Combining existing
metrics with our NLI metrics yields both
better (+5%–30%) and more robust metrics
(+15%–30%).

We point out that some current metrics already
leverage NLI systems—thus, we do not include
new information with respect to them—but in-
directly and thus (we argue) inadequately: e.g.,
MoverScore (Zhao et al., 2019) leverages BERT
representations fine-tuned on NLI. Mathur et al.
(2019) train (pre-BERT) NLI-inspired architec-
tures on MT datasets. In contrast, we show that
by directly leveraging NLI systems, much better
adversarial and standard benchmark performances
can be obtained. We call our novel metrics MENLI
(MEtrics from NLI).3

3Code+data: http://github.com/cyr19/MENLI.

Concept Examples

Semantic Similarity BERTScore, MoverScore, BaryScore, ...
Text Generation BARTScore, PRISM (Thompson and Post,

2020)
Question Answering QAEval (Deutsch et al., 2021)
NLI MENLI

Table 1: Different paradigms for metric induction
proposed in recent years.

2 Related Work

Our work connects to evaluation metrics and NLI.

Evaluation Metrics for NLG In the last few
years, researchers have come up with a plethora of
different BERT-based metrics for varying tasks
and setups: e.g., for MT and summarization,
reference-based trained (Sellam et al., 2020; Rei
et al., 2020a) and untrained approaches (Zhao
et al., 2019; Zhang et al., 2020) have been sug-
gested and the same is true for reference-free
setups, where both supervised (Ranasinghe et al.,
2020) and unsupervised metrics have been ex-
plored (Zhao et al., 2020; Song et al., 2021;
Belouadi and Eger, 2023). In our work, weconsider
both reference-based as well as reference-free
metrics. Both setups have important differences:
Reference-free setups are more challenging, as
they require to compare text in different lan-
guages (in MT) or of vastly different lengths (in
summarization). On the other hand, they are more
‘resource-efficient’, take humans out-of-the-loop,
and promise web-scale evaluation. Both ap-
proaches are also different in terms of NLI.
For example, while reference-based approaches
require equivalence between reference and hy-
pothesis, the concept of equivalence is not always
appropriate in reference-free situations (e.g., in
summarization, source and summary are intu-
itively not equivalent; rather, source should entail
summary).

To realize metrics, different high-level ap-
proaches have been suggested as we outline in
Table 1 (e.g., metrics from semantic similarity,
from text generation or from question answering).
There are also some predecessor works on metrics
from NLI which we discuss below.

Robustness of Evaluation Metrics has been a
central issue of recent interest: Sai et al. (2021)
test metrics across several CheckList (Ribeiro
et al., 2020) inspired templates, finding that most
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common standard metrics are not robust even to
simple perturbations. Kaster et al. (2021) probe
metrics in an adversarial setting with lexical over-
lap, finding that they can be fooled by text that has
high lexical overlap but low semantic similarity
(indicating that the proposed BERT-based metrics
are not even good models of semantic similarity).
We combine the approaches of Sai et al. (2021)
and Kaster et al. (2021): While Sai et al. (2021)
use human crowd-workers to evaluate robustness,
Kaster et al. (2021) use a simpler preference-based
setup, which does not need human annotators. We
will also use the preference-based setup, but our
attacks are largely inspired by Sai et al. (2021).

More recently (contemporaneously with us and
after the first Arxiv submission of our work),
several other papers have explored the robust-
ness of recent evaluation metrics. For example,
He et al. (2022) develop stress test suites ac-
cording to potential errors arising from certain
choices of metric design and pretrained lan-
guage models used, showing that metrics are
biased towards their underlying models—e.g.,
BARTScore assigns higher scores to texts gener-
ated by the models of the metric itself.4 Karpinska
et al. (2022) explore the sensitivity of MT met-
rics to errors of different categories (regarding
semantics, syntax, and morphology) and sever-
ity, using a preference-based setting; they show
that recent metrics like BERTScore dramatically
outperform lexical overlap-based metrics such as
BLEU and ROUGE, mostly obtaining over 95%
accuracy in their experiments. Our setups and that
of Karpinska et al. (2022) and He et al. (2022) are
differentiated by the tasks considered, the prefer-
ence specifications, the results, and the solutions
proposed. Karpinska et al. (2022) only evaluate
metrics for MT while we consider both MT and
summarization. They design their preferences in
such a way that it would seem that recent met-
rics are quite robust while our more elaborate
preferences expose their weak spots much bet-

4Robustness is also related to model biases. For example,
Sun et al. (2022) show that BERTScore encodes social
biases such as gender biases. And Deutsch et al. (2022)
claim that reference-free metrics are inherently biased, which
implies that they have unreasonable preferences. Our results
show that many current reference-based metrics also have
unreasonable preferences. Robustness checks are also related
to explainability (Leiter et al., 2022; Golovneva et al., 2023)
of evaluation metrics as they help to understand metric
limitations.

ter. Finally, we propose solutions (e.g., metrics
from NLI) to addressing lack of robustness. Like
us, He et al. (2022) also consider summarization
and MT. Instead of designing preferences, how-
ever, they manually introspect how metric scores
change as various perturbations are introduced. In
this way, they expose blind spots of metrics. As
remedies, they suggest to combine heterogeneous
metrics to shield against varying blind spots (with-
out performing concrete experiments)—we show
that combining metrics with NLI based metrics
yields additional robustness.

Finally, Rony et al. (2022) develop RoMe
as a robust metric in the context of semantic
similarity, fluency and grammatical variability.
They evaluate it on an adversarial dataset with
five phenomena (entity, adjective and random
word replacement; as well as text transforma-
tion and passive forms) by correlating against
human judgments. Their model is a rather com-
plicated trained metric leveraging semantic and
grammatical features—we compare to it in §6.

NLI NLI is one of the core upstream tasks in
the NLP community. Due to its popularity, NLI
has been investigated in-depth, where researchers
found that trained models often overfit to low-level
statistical cues instead of learning generalizable
concepts of logical relationships between sen-
tences (Poliak et al., 2018; Gururangan et al.,
2018). As a consequence, many approaches to im-
prove generalization have been investigated (e.g.,
Belinkov et al., 2019; Utama et al., 2020; Zhou
and Bansal, 2020). We argue that a high-quality
NLI model would be an excellent candidate for an
evaluation metric and explore this in this work.

Like us, Mathur et al. (2019) note the similarity
of (MT) evaluation and logical equivalence via
NLI. They design supervised MT metrics lever-
aging different pre-BERT inspired architectures,
including one from the NLI community called
ESIM (Chen et al., 2017) (which performs on
par to an LSTM with attention in their exper-
iments). Thus, in contrast to us, they do not
leverage NLI models out-of-the-box as evalua-
tion metrics but only fine-tune an NLI-inspired
architecture on human scores from MT. Mover-
Score (Zhao et al., 2019) fine-tunes BERT on NLI,
which leads to better metrics. Thus, they, too, use
NLI only indirectly. Dušek and Kasner (2020) use
NLI to evaluate hallucinations and omissions in
reference-free data-to-text generation scenarios.
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Number error Negation error
src Der bilaterale Handel wurde auf über 100

Milliarden Dollar im Jahr gesteigert.
Die Wirtschaft der Entwicklungs- und Schwellenländer
wird schwach bleiben.

ref Bilateral trade has increased to more than
$100 billion a year.

Emerging economies will remain weak.

r (google translation of src) Bilateral trade has increased to over $100
billion a year.

The economies of developing and emerging countries
will remain weak.

candpara Bilateral trade has increased to more than
one hundred billion dollars a year.

Emerging markets will remain weak.

candadv( ref-based ) Bilateral trade has increased to more than
$814 billion a year.

Emerging economies won’t remain weak.

candadv( ref-free ) Bilateral trade has increased to over $478
billion a year.

The economies of developing and emerging countries
won’t remain weak.

Table 2: Examples of our adversarial test suite taken from WMT20de. Red words indicate specific adver-
sarial perturbations of the words in green. candadv(ref-based) builds on ref, whereas candadv(ref-free)
builds on r (indicated by corresponding coloring in the first column). The preferences we query for are
given in Eq. (1).

They do not compare to any other metrics and do
not consider NLI as a general paradigm for eval-
uation metrics. While the summarization commu-
nity uses NLI models for consistency evaluation
(Fabbri et al., 2021; Laban et al., 2022), to our
knowledge, we are the first to verify the useful-
ness of NLI systems as general evaluation met-
rics against a range of strong competitors, both in
standard evaluation and adversarial attack settings.

3 Adversarial Setup

Following Sai et al. (2021) and others, we con-
sider an array of adversarial attacks on evaluation
metrics—we will give a motivation of our at-
tacks from the perspective of errors committed
by real text generation systems below. In con-
trast to Sai et al. (2021) and similar to the later
published work of Karpinska et al. (2022), we
implement a preference-based setup, which does
not need human annotators. The advantages of the
preference-based setup are: (i) lower cost (e.g., no
annotation costs), (ii) which can be especially rel-
evant for non-English languages (e.g., in ref-free
situations for MT), and (iii) which allows adver-
sarial evaluation at larger scale, yielding more
robust estimates of performance. The challenge of
the preference setup is to cleverly determine text
pairs to compare.

In our design, we use an anchor text (either
the reference ref or the source src), a paraphrase
candpara of the anchor text, and an adversarial
text candadv which is maximally similar to the
anchor text, but contains an adversarial attack. We

expect a good metric m to prefer candpara over
candadv:

ref-based :m(ref, candpara)> m(ref, candadv)

ref-free : m(src, ref) > m(src, candadv)
(1)

The outcome of preferences in Eq. (1) depend
on how we choose candadvand candpara, which
we will describe below. In general, a challeng-
ing test suite has candadv maximally similar to
ref /src, but with a key error. In contrast, candpara
should be maximally dissimilar to ref /src (e.g.,
on surface level) but meaning-equivalent. Table 2
illustrates the general structure of our adversarial
test suite.

candadv To obtain candadv, we consider the
following attacks (nine regarding information
adequacy/correctness in candidates and three re-
garding text fluency), which we deem (to a large
degree) representative for errors in different NLG
tasks:

• Addition: We randomly add a noun after an
existing one and connect them with ‘‘and’’.
For example, ‘‘I love dogs’’ → ‘‘I love dogs
and cats.’’

• Omission: We use the framework of Sai et al.
(2021) to randomly drop ∼1%–20% words
in the sentence.

• Mismatch: We consider mismatching nouns,
verbs, and adjectives, which can lead to mis-
understanding of an entity, an action, and the
speakers’ emotion, respectively. Following
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Chen et al. (2021), we replace a specific word
having the POS tag of noun/verb/adjective
with another word having the same POS tag
randomly selected from our collected words
for that POS tag.

• Negation: We use the perturbation tool of
Ribeiro et al. (2020) to add/remove negations
to/from the verb for generating candadv with
contrary claims.

• Number error: We replace all numbers (ex-
cept for those related to dates) in the sentence
with random numbers in the same format
(e.g., integer to integer, decimal to decimal).

• Pronoun error: We replace all pronouns in
the sentence with other ones without causing
syntax errors (e.g., ‘‘he’’ to ‘‘she’’ and ‘‘us’’
to ‘‘them’’).

• Name error: We use the tool of Ribeiro
et al. (2020) to replace exactly one name
with a random one of the same gender.

• Fluency: We also include three phenomena
from Sai et al. (2021) to examine metrics’
robustness against attacks on text fluency: (i)
Jumbling word order: Randomly shuffle the
word order in a sentence. Spelling error: Add
a typo to a word in a sentence. Subject-verb
disagreement: Make the subject and verb
disagree (e.g., ‘‘He like dogs.’’).

For ref-based metrics, we apply the perturbation
templates to ref to construct candadv. In contrast,
for ref-free MT metrics, we first translate the
source src using Google Translate to a translation r
and then perturb r to obtain candadv. We introduce
r to increase the similarity of candadv to src; e.g.,
we assume that Google Translate translates more
literally, i.e., closer to word-by-word translations,
than human translators. This may be important to
construct challenging test cases, cf. §6 and our
above discussion. For ref-free summarization, we
apply the perturbation templates to a document r
which is maximally similar to src; details follow.

candpara We use different ways to obtain
candpara, because different kinds of paraphrases
may yield more/less difficult test cases for metrics.
We will analyze this in §6.

In particular, we use data from (1) PAWS
(Zhang et al., 2019), (2) PAWS-X (Yang
et al., 2019), (3) WMT20-news-commentary-v15
German-to-English (Mathur et al., 2020b) to gen-

dataset task ref-
based

ref-
free

candpara #examples

PAWSori MT yes no ORI 2,000
PAWSback MT yes no BACK 2,000
XPAWSx MT yes yes ORI 455–474
WMT20de MT yes yes BACK 200
SEadv SUM yes yes BACK 199

Table 3: Adversarial datasets. ‘‘Yes/no’’ indicates
whether the dataset supports ref-based/free adver-
sarial evaluation. ‘‘ORI/BACK’’ denotes whether
candpara (except for number error) is from
the original datasets or backtranslation. ‘‘#exam-
ples’’ refers to the avg. number of examples per
phenomenon. XPAWSx denotes XPAWSde/fr/zh/ja.

erate candpara for MT evaluation metrics, and
(4) SummEval for summarization metrics. A
summary with attributes is shown in Table 3.

(1) PAWS contains sentence pairs created by
word swapping and backtranslation, labeled as
(non-)paraphrases by human raters. From sen-
tence pairs labeled as paraphrase, we derive two
datasets for ref-based evaluation metrics:

• PAWSori: We take the first sentence of a
PAWS sentence pair as ref and the second as
candpara.

• PAWSback: We use the first sentence of a
PAWS sentence pair as ref and generate
candpara based on ref using backtranslation
(we use German as the pivot language) except
for number error, for which we replace the
numbers in ref with the corresponding words,
using the Python library num2words.

(2) PAWS-X is the multilingual version of
PAWS, which includes PAWS sentence pairs in
six languages, translated from English PAWS,
allowing us to generate test suites for both
ref-free and ref-based metrics. We use the first
sentence in PAWS-X (e.g., German) as src
and the second sentence with the same ID in
English PAWS as ref. We select the data for
two closer language pairs: German-to-English
and French-to-English, and two more dis-
tant language pairs: Chinese-to-English and
Japanese-to-English. Accordingly, we create
4 datasets: XPAWSde, XPAWSfr, XPAWSzh,
and XPAWSja, each of which contains src
(first sentence of X-PAWS pair in source
language), ref (first sentence of English PAWS
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Error Source MT hypothesis
Mismatch/verb Pay attention to (Follow) Suning.com service account

Mismatch/adj. Not bad, the picture quality of playing games is
really fragrant (good)

Pronoun/Addition Bought it for his (my) son, he said it was good.

Name

On the same day, US Secretary of Transportation Zhao
Xiaolan (Elaine Lan Chao), US Congressman Meng
Zhaowen (Grace Meng) and Dong Jiling (Chiling Tong),
founding president of the International Leaders
Foundation, spoke at the meeting respectively.

Omission I’ll review your account, one moment,
please.

Ich werde Ihr Konto [...] (überprüfen), einen Moment
bitte.

Mismatch/noun Listen, I don’t want to make my
people mad," she said.

,,Hör zu, ich will mein Volk (meine Leute) nicht verrückt
machen‘‘, sagte sie.

Pronoun Williams wasn’t the only one who
received a fine at this year’s Wimbledon,
though hers was the most costly.

Williams war nicht die einzige, die beim diesjährigen
Wimbledon eine Geldstrafe erhielt, obwohl sie (ihre)
die teuerste war.

Table 4: Examples of errors in WMT MQM annotations for Chinese-to-English and English-to-German.
Red texts are the annotated errors (‘‘[...]’’ indicates the missing translation) and the green texts in the
bracket refer to a more correct translation accordingly; the green texts in source sentences denote the
parts being mistranslated or omitted.

pair), and candpara (second sentence of English
PAWS pair).

(3) WMT20-news-commentary-v15 contains
sentence pairs of source and human reference.
From this, we create WMT20de, directly taking
the source and reference sentences as src and ref.
We obtain candpara as in the case of PAWSback.

(4) SummEval (Fabbri et al., 2021) contains
documents and references from CNN Daily-
Mail (CNNDM) (Hermann et al., 2015), with
10 additional human references. We rank the 11
references using ROUGE-L (Lin, 2004) and use
the reference r with highest ROUGE score to
generate candadv for ref-free setting, while the
remaining 10 references serve as ref. We refer to
the adversarial dataset induced from SummEval
as SEadv in the remainder. We obtain candpara as
in the case of PAWSback.5

Real-world Motivation of Attacks Modern
text generation systems are prone to many of
the errors we investigate in this work. For ex-
ample, Freitag et al. (2021a,b, 2022) show,
based on fine-grained human error annotations

5As we generate our adversarial test instances fully auto-
matically from backtranslation or automatic tools, they may
contain some errors (including upper-/lower-case). For ex-
ample, we note that in candpara, ‘‘. . . billion dollars’’ is
sometimes incorrectly formulated as ‘‘. . . dollars billion’’;
however, such cases occur only in ∼1% of all test cases for
number error, which we argue is still on an acceptable noise
level.

(Lommel et al., 2014), that translations gener-
ated by state-of-the-art MT models still contain
many accuracy-related errors (e.g., addition and
omission of information, inappropriately informal
pronouns) and sometimes even fluency-related er-
rors (e.g., wrong spelling). Negation handling is
also frequently discussed as an issue of modern
MT systems (Bentivogli et al., 2016; Sennrich,
2017; Hossain et al., 2020; Tang et al., 2021).
In summarization, system summaries are often
factually inconsistent with source documents in
terms of numbers, named entities and assign-
ing quotations to a particular person, etc. (Falke
et al., 2019; Kryscinski et al., 2020; Chen et al.,
2021). More generally, hallucination (of which
addition/mismatches/etc. may be considered spe-
cial cases) is a particular worrisome limitation
of recent large language models (Ji et al., 2022).
In Table 4, we show selected system translations
from real MT systems with specific errors (fol-
lowing WMT MQM annotations) that are very
similar to the ones we consider.6 The frequency
of errors may differ for various source-target lan-
guage pairs (e.g., depending on their language
distance) and formal/informal context. For exam-
ple, when translating Chinese to English for news,
the names are often directly translated to their
Pinyin format (see the 4th row) instead of the

6https://github.com/google/wmt-mqm-human
-evaluation.
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Task Metrics

MT
ref-based MoverScore (Zhao et al., 2019), BERTScore (Zhang et al., 2020), BARTScore (Yuan et al.,

2021), SentSim (Song et al., 2021), COMET (Rei et al., 2020b), BLEURT (Sellam et al., 2020)
ref-free COMET, SentSim, XMoverScore (Zhao et al., 2020)

Summarization
ref-based BARTScore, DiscoScore (Zhao et al., 2023), MoverScore, BERTScore
ref-free BARTScore, SUPERT (Gao et al., 2020)

Table 5: Evaluation metrics explored in this work.

Task Datasets

MT
segment-level WMT15-17, WMT20-21
system-level WMT20-21
adversary ref-based: PAWSori/back, WMT20de, XPAWSde; ref-free: XPAWSde/fr/zh/ja, WMT20de

Summarization
summary-level RealSum (Bhandari et al., 2020)
system-level RealSum, SummEval
adversary SEadv, Rank19 (Falke et al., 2019) (ref-free only)

Table 6: We use the to-English language pairs in WMT15-17 datasets (Stanojević et al., 2015; Bojar
et al., 2016, 2017). In segment-level evaluation on WMT20-21 (Mathur et al., 2020b; Freitag et al.,
2021a,b), we use the data with MQM scores for zh-en, while in system-level evaluation, we correlate
the metrics with DA scores for all to-English language pairs. The datasets for system-level evaluation
before WMT20 are skipped, as all metrics mostly get very high correlations on them.

official translations; in contrast, this rarely hap-
pens in English-to-German translations. But even
for such closely related languages, NLG systems
may omit information, or choose wrong pronouns
or mismatching nouns, particularly when a word
has multiple senses.

4 Experimental Setup

4.1 Evaluation Metrics

We explore a large array of recent state-of-the-
art transformer based metrics, summarized in
Table 5. The variants used are briefly introduced
below; further details (e.g., model checkpoints and
implementation) can be found on our Github.

We report BERTScore F1 employing a
RoBERTa-large model. For MoverScore, we use
the unigram variant with a BERT-base model
fine-tuned on MNLI (Williams et al., 2018). We
use two variants of BARTScore (Precision and
F1) for ref-based MT and summarization and
BARTScore-FN (FN stands for Faithfulness) for
ref-free summarization. We consider two variants
of XMoverScore with different remapping strate-
gies for multilingual embeddings (CLP, UMD)
and two variants of SentSim with different word
matching paradigms (BERTScore, WMD). We re-
port the DiscoScore variant with feature ‘Focus
Frequency’.

4.2 Datasets & Evaluation Protocol

We summarize our used datasets in Table 6. To
evaluate the metrics’ robustness under adversar-
ial conditions, we use the datasets introduced in
§3 and additionally Rank19 (Falke et al., 2019)
(only for ref-free summarization), which contains
examples composed of documents paired with
one correct and one incorrect candidate summary
with real-world factuality errors. In general, we
check the metrics’ preference between the two
candidates and calculate accuracy: the relative
frequency that the metrics correctly choose among
the two alternatives.

On MT standard benchmarks, we evaluate the
metrics on both segment-level (where we cor-
relate metrics scores to human judgments for
individual sentences/segments in the datasets)
and system-level (where we correlate the aver-
age metric scores to the average human scores
over the segments generated by each system),
using Pearson correlation as the performance in-
dicator. On SummEval for summarization, we
compute Kendall correlation with system-level
human judgements on four criteria: coherence,
consistency, fluency and relevance (we apply
two aggregation methods for the multi-reference
setting, max and mean). We calculate Pearson cor-
relation with both summary-level (analogous to
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segment-level in MT) and system-level LitePyra-
mids (Shapira et al., 2019) human ratings in
RealSumm.

4.3 NLI as a Metric

NLI systems yield probability distributions over
Entailment, Contradiction, and Neutral. Wedenote
the probability values as e, c, and n, where e+ c+
n = 1 and e, c, n ≥ 0. We first determine how to
leverage the three values as NLI metrics.

To do so, we evaluate five simple formulas of
their arithmetic combination in a heuristic way: (1)
e, (2) -c, (3) e-n, (4) e-c, and (5) e-n-2c, and inspect
their effect in three directions, which correspond
to the entailment directions implication, reverse
implication and bi-implication: (i) ref /src→ cand,
where ref or src act as premise and cand as
hypothesis; (ii) ref /src ← cand, where cand acts
as premise and ref or src act as hypothesis; and
(iii) ref /src ↔ cand, as arithmetic average over
the two above cases.

For example, to obtain e-n from ref /src↔ cand,
we first average the three probability scores over
direction ref /src→ cand and ref /src← cand, then
calculate e-n based on the averaged scores. We
only consider direction src → cand for ref-free
summarization, since hypothesis does not need to
entail source document. The various selections of
the formulas and directions result in 15 pooling
strategies for NLI-based metrics.

NLI Systems We explore both monolingual and
cross-lingual NLI-based metrics. For each setup,
we choose two NLI models, which are obtained
from Hugging Face or fine-tuning by ourselves.

For monolingual NLI metrics, we choose
(1) a RoBERTa-large model (Liu et al., 2019)
fine-tuned on SNLI (Bowman et al., 2015), MNLI,
Fever (Nie et al., 2019) and ANLI (Nie et al., 2020)
by Nie et al. (2020) and (2) a DeBERTa-large
model fine-tuned by He et al. (2021), using MNLI.
We denote the NLI metrics induced from these two
models as NLI-R and NLI-D. They will be used
for ref-based MT evaluation, and both ref-based
and -free summarization evaluation tasks. Note
that, while NLI-R has been fine-tuned on adversar-
ial NLI (ANLI), which has been shown to increase
robustness on (for example) negation and numer-
ical reasoning, NLI-D has not been trained on
ANLI. Cross-lingual NLI metrics should handle
premises and hypotheses in different languages,
so we select the multilingual versions of the under-

(a) Reference-based

e -c e-n e-c e-n-2c
ref→cand 3+0 3+0 2+0
ref←cand
ref↔cand 0+4 0+3 0+1 0+2

(b) Reference-free

e -c e-n e-c e-n-2c
src→cand 2+0
src←cand 0+1 0+2
src↔cand 0+1 4+6 4+0

Table 7: Winning frequency of different pooling
strategies for NLI metrics on adversarial (first
entry) and MT datasets (second entry). We only
show non-zero entries.

lying models of NLI-R/NLI-D. (1) We fine-tune
a XLM-RoBERTa-base model (Conneau et al.,
2019), using the datasets for fine-tuning NLI-R
as well as XNLI dataset (Conneau et al., 2018). (2)
We select an mDeBERTa-base model fine-tuned
on MNLI and XNLI. We denote the correspond-
ing cross-lingual NLI metrics as XNLI-R and
XNLI-D.

5 Experiment Results

Before outlining our main results in §5.1 (MT)
and §5.2 (summarization), we first discuss good
pooling strategies for NLI metrics.

Pooling Strategy We determine the pooling
strategy for NLI metrics in MT evaluation from
(1) the accuracy on the adversarial datasets and
(2) the correlation with human judgements on
the standard (segment-level) MT datasets. We
leverage the winning frequency of the pooling
strategies to choose the best one; a strategy wins
if it works best for an NLI metric among all 15
strategies. Overall, we find that the simple for-
mula e from the direction src/ref↔cand is a good
choice which works well for both standard and ad-
versarial benchmarks, even though slightly better
formulas could be chosen in selected subsettings
(e.g., ref-based vs. ref-free evaluation), see Table 7
for examples.

For summarization, the situation is slightly
more complex: (1) e-c from direction ref←cand
performs best for ref-based NLI metrics; (2) -c
from direction src→cand is the best strategy for
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Adv. MT
ref-based ref-free ref-based ref-free
all adeq. all adeq. seg sys seg sys

Supervised
COMET 67.4 67.0 76.8 74.5 0.676 0.808 0.620 0.698
BLEURT 74.8 79.8 – – 0.708 0.807 – –
Unsupervised
sentBLEU 32.9 27.2 – – 0.380 0.757 – –
Rouge 34.3 28.7 – – 0.425 0.774 – –
MoverScore 48.3 46.9 – – 0.567 0.806 – –
XMoverS(UMD) 74.5 71.7 – – 0.400 0.672
XMoverS(CLP) – – 73.8 70.9 – – 0.422 0.673
BERTS 65.3 60.9 – – 0.620 0.799 – –
BARTS-P 67.4 64.2 – – 0.587 0.761
BARTS-F 78.4 77.8 – – 0.593 0.802 – –
SentS(BERTS) 68.1 67.8 62.7 65.5 0.612 0.401 0.421 −0.021
SentS(WMD) 62.1 61.9 63.0 65.8 0.607 – 0.427 –
NLI-based
X(NLI)-R 85.0 92.1 70.5 75.8 0.451 0.756 0.221 0.335
X(NLI)-D 86.6 92.3 79.3 85.8 0.439 0.770 0.149 0.581

Table 8: Pearson correlation with human judg-
ments in WMT and accuracy (%) on our
adversarial datasets, averaged over datasets. The
performance of ref-based COMET is averaged
over WMT20de and XPAWSde, since it also re-
quires source texts as input. In bold: best results
among all unsupervised metrics including the
NLI-based metrics.

ref-free NLI metrics. Thus, we compare NLI met-
rics adopting these strategies with classic metrics.

Even though we only looked at global aggregate
statistics, we still observe that our method of
identifying the pooling strategies above leveraged
the data on which we will later evaluate the NLI
metrics. To avoid leaking information from the test
set, we evaluate NLI metrics on each dataset with
the pooling strategy selected from the remaining
datasets for that task in §6.

5.1 Machine Translation

5.1.1 Adversarial Evaluation

We now compare our NLI metrics with the best
pooling strategy to our baseline metrics under
adversarial conditions.

From Table 8 (columns ‘‘Adv.’’), we observe
that in the ref-based setup: (1) NLI metrics out-
perform the great majority of metrics by a huge
margin: over 85% vs. 32%–78% (all phenomena)
and 92% vs. 27%–80% (adequacy phenomena
only) on average. (2) Further, the two NLI metrics
perform similarly. In the ref-free setup, the best
cross-lingual NLI metric (XNLI-D) is still most
robust under our attacks. However, NLI metrics
do not as substantially outperform the other met-

rics as in the ref-based setup. A potential reason is
that the cross-lingual NLI models underperform
compared to the monolingual setup (the prefer-
ences we query for in the reference-free setup
may also play a role). Nevertheless, when ex-
cluding the fluency-related phenomena from the
adversarial datasets, XNLI-D is still on average
10 points better than the best standard metric,
COMET (86% vs. 75%).

Moreover, our results reveal that: (1) most
standard metrics are particularly incapable of
detecting name error, number error, and pro-
noun error (∼29%–70%); (2) standard metrics,
especially BLEURT and COMET, are most
competitive regarding omission, addition, and
jumbling (∼80%–100%); (3) NLI metrics are sub-
optimal for fluency attacks (mostly at random
level), especially the reference-free NLI metrics;
and (4) NLI metrics are much better at name er-
ror, negation, number error, pronoun error, and
adj. mismatch than most of the other metrics,
especially ref-based (>90% vs. ∼10%–80%), as
shown in Figure 1.

Our observations are inconsistent with Karpinska
et al. (2022), where the state-of-the-art MT
metrics mostly obtain >95% accuracy in the
preference-based evaluation. The reason is that
our test suites are much more difficult for the
evaluation metrics because we challenge them
by lexical overlap between source/reference and
candidate sentences during attacks: Metrics must
choose between high lexical overlap adversar-
ial candidates (with key errors) over low lexical
overlap paraphrases. In contrast, in Karpinska
et al. (2022), metrics are challenged to assign cor-
rect preferences for score(ref, t) vs. score(ref, t′)
where t is a candidate and t′ the perturbed can-
didate. This is a much easier comparison because
neither are ref and t maximally dissimilar (but
meaning equivalent) nor are ref and t′ maximally
similar. This is an important lesson: How to de-
sign the adversarial preferences may critically
affect the assessment of whether recent metrics
are robust or not.

5.1.2 Standard Benchmarks
Ref-based We give average results over all
datasets in Table 8 (columns ‘MT’; individ-
ual results are available in our Github). For
segment-level evaluation, we observe: (1) trained
metrics (COMET and BLEURT) substantially
outperform the others, with average performance
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Figure 1: Average accuracy (values in each block) of all metrics per phenomenon over the adversarial datasets for
ref-based MT evaluation. Darker color indicates higher accuracy and vice versa.

of ∼0.7 Pearson. (2) Unsupervised SOTA met-
rics have average correlation of ∼0.6 Pearson,
BERTScore is the best among them. (3) Our
NLI-based metrics are not competitive, with cor-
relations of ∼0.45 Pearson. When correlating with
system-level human judgments, NLI metrics still
underperform most of the SOTA metrics, but the
margin is much smaller.

Ref-free Trained metrics also dominate in
segment-level evaluation (>0.6 Pearson),
whereas the two NLI-based metrics perform
much worse than the others (0.15-0.22 Pearson).
Nevertheless, XNLI-D performs on par with
COMET and better than the others on WMT20 at
system-level.

Overall, we conclude that our NLI metrics are
not competitive with state-of-the-art evaluation
metrics on standard MT datasets, especially at
segment-level and ref-free.

5.1.3 Combined Metrics
Observing that NLI metrics are strong on adversar-
ial setups, but comparatively weaker in standard

evaluation, we examine how to get more robust
metrics which also perform well on standard
benchmarks. To do so, we take the weighted
average of NLI and classical metrics:

C = wnli ·N + (1− wnli) ·M (2)

where wnli ∈ [0, 1] is the weight for NLI metric N
and M is a classical metric. Before combination,
we rescale M and N to [0, 1], using min-max
normalization.

We illustrate the performance of the com-
bined evaluation metrics with (X)NLI-R
on both adversarial and standard benchmarks
(segment-level) in Figure 2; the results for
(X)NLI-D and for system-level are similar. The
x-axis denotes the average accuracy over the
adversarial datasets, while y-axis is the average
Pearson correlation over the standard benchmarks
(MT datasets). Each dot in each graph shows
the value C(wnli) for a specific weight wnli.
As seen from Figure 2, the graphs show an
intriguing concave curvature. In standard MT
evaluation, the combination boosts the metric
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Figure 2: Accuracy on adversarial datasets and Pearson
correlation with segment-level human judgements in
WMT datasets of combined metrics with (X)NLI-R,
averaged over datasets. The points on each path from
the original metric to the NLI metric indicate wnli =
0, 0.1, . . . , 1. The purple line denoting the combination
with ref-based COMET ends at another point since
the corresponding adversarial performance is averaged
over the 2 adversarial datasets containing source texts.

performance when wnli is small (from 0.1 to 0.4)
in virtually all cases. We then see a simultaneous
increase of adversarial robustness and quality on
standard benchmarks. In ref-based setup, e.g.,
for wnli = 0.2, we observe: (1) MoverScore and
BARTScore-P improve most, with ∼8% (from
0.57/0.59 to 0.61/0.64 Pearson, respectively)
and 21%–36% improvements on adversarial
datasets (from 48%/67% to 66%/82% accuracy
on average). (2) The best unsupervised metric
on segment-level MT, BERTScore, increases
∼4% Pearson on standard benchmarks and
∼24% accuracy on adversarial datasets. (3) The
most robust untrained metric, BARTScore-F,
improves about ∼11% in robustness, whereas its
performance on standard benchmarks also rises
∼5%. (4) The improvements on MT for trained
metrics are smaller compared to those untrained
metrics, with COMET improving only 1.5%
and BLEURT even becoming worse with the
choice wnli = 0.2. However, their performance
in defending adversarial attacks still improves
∼10%–20%. In ref-free setups, all metrics
improve ∼6%–7% on adversarial datasets. Such
setting only substantially boosts XMoverScore’s
performance on standard benchmarks, with
∼6%–9%.

We summarize the improvements for all com-
binations in Figure 3(a), which are averages over
all experiments considered here. We can observe
that the line denoting improvements on standard

Figure 3: Improvements of all metrics on standard
benchmarks and adversarial datasets for wnli = 0.1,
... 0.9, averaged over all experiments. We show 95%
confidence interval.

benchmarks peaks at wnli = 0.2, and the average
improvements are positive when wnli ≤ 0.5. Fur-
ther, on the adversarial datasets, the improvement
monotonously increases with wnli and the gain is a
concave function ofwnli which saturates aswnli be-
comes larger. The sweet spots arewnli ∈ [0.2, 0.3],
which leads to 5%–6% improvement on stan-
dard benchmarks and 14%–16% improvement in
adversarial robustness on average. When exclud-
ing the fluency phenomena from the adversarial
datasets, the combined metrics consistently gain
larger improvements in adversarial robustness,
with 20%–24% improvements at the sweet spots.

5.2 Summarization

Evaluation As Table 9 shows, similar to
MT evaluation, NLI-based metrics exhibit much
stronger robustness under adversarial conditions
(our best NLI metrics have at least ∼8 points
higher accuracy than the best standard met-
rics; right-most columns). The difference is that
the vanilla NLI metrics are now also compara-
bly effective to the SOTA metrics on standard
benchmarks. For instance, in ref-based setup,
NLI-D with max aggregation beats all metrics
except for DiscoScore with mean on SummEval
and both NLI metrics highly correlate with
system-level human ratings in RealSumm (above
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(a) Reference-based

metric
SummEval RealSumm Adv.

coherence consistency fluency relevance avg litePyr SEadv

mean max mean max mean max mean max mean max sum sys all adeq.
BLEU 0.294 0.279 0.044 −0.029 0.244 0.229 0.397 0.382 0.245 0.215 0.480 0.124 0.182 0.109

Rouge 0.191 0.176 0.088 −0.279 −0.037 −0.081 0.118 0.103 0.090 −0.020 0.540 0.457 0.185 0.117
MoverS 0.206 0.324 0.456 0.103 0.421 0.362 0.368 0.515 0.363 0.326 0.585 0.501 0.287 0.251

BERTS 0.618 0.618 0.221 0.044 0.273 0.185 0.603 0.515 0.429 0.340 0.574 0.380 0.598 0.574

BARTS-P 0.485 0.441 0.176 −0.044 0.376 0.185 0.500 0.368 0.385 0.237 0.478 0.531 0.697 0.692

BARTS-F 0.515 0.647 0.206 0.250 0.317 0.450 0.529 0.632 0.392 0.495 0.583 0.687 0.788 0.792

DiscoS 0.676 0.279 0.279 0.676 0.539 0.554 0.632 0.353 0.532 0.466 −0.199 −0.066 0.334 0.294

NLI-based

NLI-R 0.147 0.074 0.632 0.676 0.494 0.450 0.279 0.206 0.388 0.352 0.525 0.856 0.864 0.905
NLI-D 0.250 0.265 0.706 0.750 0.568 0.613 0.471 0.397 0.499 0.506 0.489 0.840 0.806 0.843

(b) Reference-free

metric
SummEval RealSumm Adv.

coherence consistency fluency relevance avg
litePyr SEadv Rank19

summary system all adeq. avg

BARTS-FN 0.735 0.132 0.391 0.662 0.480 0.178 −0.023 0.427 0.389 0.796 0.612

SUPERT 0.147 0.603 0.465 0.279 0.374 0.522 0.626 0.296 0.273 0.668 0.482

NLI-based
NLI-R 0.221 0.235 0.391 0.500 0.337 0.300 0.688 0.720 0.722 0.866 0.793
NLI-D 0.162 0.647 0.332 0.324 0.366 −0.076 0.568 0.624 0.629 0.885 0.755

Table 9: Kendall correlation with system-level human judgments in SummEval. Pearson correlation
with summary/system-level litePyramid in RealSumm. Accuracy on adversarial benchmarks, averaged
over phenomena in SEadv. We bold the best performance on each criterion. ‘‘max/mean’’ denotes the
aggregation method used for multi-reference setting in ref-based evaluation on SummEval.

0.8 Pearson), where most standard metrics ob-
tain only 0.5–0.7 Pearson correlations. When
considering all evaluation dimensions of Sum-
mEval and RealSumm, NLI-D outperforms all
other metrics, followed by NLI-R. Besides, we
observe that NLI metrics correlate much bet-
ter with human judgments regarding consistency
and (somewhat surprisingly) fluency in Sum-
mEval compared to the other metrics. For the
ref-free setup, BARTScore-FN performs best on
SummEval—it outperforms the other metrics by
above 0.1 Kendall on average. However, it does
not correlate well with both summary-level and
system-level human judgments in RealSumm. NLI
metrics are comparable or better than standard
metrics on system-level. For example, NLI-R
performs best among the examined metrics and is
about 0.06 Pearson better than the best standard
metric (SUPERT) on system-level in RealSumm.
Nevertheless, reference-free NLI metrics also
perform worse than the reference-based ones
as in MT; an explicit bottleneck for the two
NLI metrics is that they were only trained on
NLI data with short sentences, but reference-free

summarization evaluation requires metrics to deal
with source documents which contain many more
sentences.

Combined Metrics In Figure 3(b), we sum-
marize the median improvements of combined
summarization metrics (the median smooths some
outliers). In contrast to MT, the combination
brings almost equal benefits to performance of
standard metrics on standard and adversarial
benchmarks concerning only adequacy—we again
observe a decrease in improvements on adversarial
datasets when adding our fluency phenomena. We
identify a best wnli, namely, 0.8, with which the
standard metrics gain about 25%–30% improve-
ments in both types of performances (adversarial
and standard).

6 Discussion & Analysis

Selected Failure Cases of Metrics: Table 10
shows selected failure cases of four popular
metrics (BERTScore, BARTScore, BLEURT,
COMET), where the NLI metrics are correct in
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ref candpara candadv

scorepara:
scoreadv
(standard
metric)

scorepara:
scoreadv
(NLI-R) error

BERTScore
Although President George
W. Bush says he believes in
markets, in this case he has
called for voluntary action.

Although President George
W. Bush says he believes in
markets, he has demanded
voluntary action in this case.

Although President George
W. Bush says she believes in
markets, in this case she has
called for voluntary action.

0.980:
0.982

0.951:
0.000 Pronoun

BARTScore-F
Reagan and I were nonetheless
able to create a reservoir
of constructive spirit
through constant outreach
and face-to-face interaction.

Nevertheless, Reagan and
I were able to create a
constructive climate through
constantcontact and
personal interaction.

Nicole and I were nonetheless
able to create a reservoir
of constructive spirit
through constant outreach
and face-to-face interaction.

−2.104:
−1.527

0.943:
0.002 Name

BLEURT
In 2012, when Freedom
House downgraded Mali to
‘‘not free,’’ engagement
declined by 7%.

In 2012, when Freedom
House classified Mali as
unfree, the engagement fell by
7 percent.

In 2012, when Freedom
House downgraded Melissa
to ‘‘not free,’’ engagement
declined by 7%.

0.787:
0.834

0.983:
0.030 Name

This leads to heavy deforestation
and lethal indoor
air pollution, which kills 1.3
million people each year.

This leads to heavy
Deforestation and lethal indoor
air pollution, which kills one
point three million people
each year.

This leads to heavy
Deforestation and lethal indoor
air pollution, which kills
6.9 million people each year.

0.682:
0.767

0.783:
0.000 Num

COMET
Who serves as president of
the United States is critically
important for
Mexicans.

Anyone who serves as
President of the United States is
crucial to Mexicans.

Who serves as president of
the United States is not
critically important for
Mexicans.

1.067:
1.086

0.974:
0.044 Negation

Table 10: Sample instances in adversarial datasets where standard metrics failed while NLI-R succeeded;
ref-based setup. In the 4th and 5th columns, we show [score assigned to candpara]: [score assigned
to candadv] by standard metrics and NLI-R, respectively; robust metrics should give candpara higher
scores. Green bold texts indicate the anchor words/phrases to be perturbed and the red ones in
candadvrefer to the corresponding perturbed texts.

each case. In the examples, BERTScore prefers
text with the wrong gendered pronoun over a le-
gitimate paraphrase and even trained metrics like
BLEURT fail on severe name changes such as
‘‘Melissa’’ (a person name) vs. ‘‘Mali’’ (a coun-
try name). Leveraging more subtle cases (e.g.,
mismatches based on wrong word senses instead
of random mismatches with the same POS or re-
placing names with names of the same ‘type’)
would likely constitute even harder test cases for
future metrics.

No Metric is Good Everywhere: Across distinct
dimensions, different metrics perform differently,
indicating that they capture varying aspects. For
example, NLI metrics are not so good on flu-
ency adversarial attacks, e.g., typos. This may be
unsurprising, given that fluency is a low-level phe-
nomenon while NLI concerns high-level logical
relationships between sentences (some fluency
phenomena would best be treated by switch-

ing to a lower-level representation space, such
as character-level [Vu et al., 2022]; this could
seamlessly be integrated in existing NLI mod-
els). The NLI metrics are also weaker concerning
segment-level MT evaluation on standard bench-
marks. However, NLI metrics alone perform
surprisingly well: In ref-based MT, they win on 7
out of 19 dimensions (12 adversarial phenomena
and 7 standard datasets, evaluated segment- and
system-level), only beaten by BLEURT (8 wins);
ref-free, they win 5 out of 19 dimensions, second
only to COMET (11 wins). In ref-based summa-
rization, they are clearly ahead of all standard
metrics, winning not only 8 out of 12 adversarial
dimensions, but also system-level LitePyramid,
consistency and fluency (thus, 11 out of 18 wins),
clearly ahead of BARTScore-P (4 of 18); ref-free,
they are also best and win 13 out of 18 di-
mensions. The best overall metrics, measured as
average performance over standard and adversar-
ial datasets, always include NLI: for ref-based MT,
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this is BLEURT+0.2×NLI-R, for ref-free MT, it is
COMET+0.3×NLI-D. For summarization, NLI-R
alone and combined with BARTScore-F perform
best on average.

Rescaling: The min-max normalization we used
(a standard technique for normalizing data in ma-
chine learning, typically applied to input features)
for metric combination requires batch processing.
It is necessary to account for the different ranges
of metrics, e.g., some metrics take negative val-
ues. An alternative would include to enforce more
formal constraints on evaluation metrics, i.e., that
they should take outputs in [0,1]. When applying
our combined metrics in practice, one could also
replace them by surrogate metrics trained on the
outputs of the original combined metrics or simply
take the min-max values inferred from the datasets
already evaluated on—the larger these datasets the
more reliably are min and max estimated.

Sensitvity to wnli: Having different weights
wnli for different tasks is undesirable, because it
requires considering each task individually. How-
ever, in our experiments, we found that all small
wnli (below 0.5) yield good performances and
are thus safe choices: They increase adversar-
ial robustness and also lead to better metrics on
standard benchmarks.

Adversarial Performance vs. Standard Perfor-
mance: From our experiments, it might seem
that adversarial and standard performance are
anti-correlated: A metric with higher adversar-
ial performance may have lower performance on
standard benchmarks and vice versa. While this
would not necessarily be a major surprise as adver-
sarial conditions oftentimes test phenomena that
are otherwise not represented in standard bench-
marks (Niven and Kao, 2019), a statistical analysis
reveals that standard performance generally pos-
itively correlates to the adversarial performance
in our case, consistent with our earlier argument
that existing NLG systems in the real world do
commit similar errors as we check for. To do so,
we first convert the metrics’ standard performance
to rankings for each performance category (e.g.,
ref-based/-free segment/system-level MT perfor-
mance, performance on SummEval/RealSumm),
then we correlate the ranking-based standard
performance to the corresponding adversarial per-
formance rankings, obtaining 0.37 Spearman.

When excluding NLI metrics, the correlation
increases to 0.60.

The Choice of candpara Matters: As indi-
cated in §3, we speculate that a good adversarial
setting maximizes (surface) dissimilarity between
ref and candpara (which can better trick the met-
rics). To investigate, we compute the normalized
edit distance between ref and candpara;7 a larger
edit distance means a greater dissimilarity. If our
assumption is true, then larger edit distances rep-
resent harder test cases for the metrics. We find:
(1) the average edit distance for the test cases
where the metrics fail to defend against the ad-
versarial attacks is 0.01–0.6 larger than that for
where they succeed, averaged over metrics; (2)
for PAWSback and PAWSori (both induced from
PAWS) where the candpara are obtained in dif-
ferent ways, all metrics achieve 0.02-0.15 lower
accuracy on PAWSori, which has 0.46 larger av-
erage edit distance than PAWSback, in turn. Both
findings confirm our above assumption. In addi-
tion, we observe that NLI metrics have the smallest
difference between the edit distances for failure
and success cases (0.01–0.26) as well as that be-
tween the accuracy on PAWSback and PAWSori

(0.02) among all evaluation metrics. This implies
that they are least affected by surface overlap
and instead better consider the logical relation-
ship between sentences. This is what makes them
attractive as evaluation metrics.

The Choice of candadv Matters, Too: We
evaluate on one complex attack combining Num-
ber error with Negation which increases the
difference between ref and candadvbased on
the test cases for Number error in WMT20de.
The accuracy increases by an average of 0.28 over
all metrics. This confirms our assumption that
maximizing the (surface) similarity between ref
and candadv (but with key errors) leads to harder
test suites and vice versa.

Ensemble with NLI Metrics Are More Ef-
fective: We compare the ensembles with NLI
metrics to ensembles with standard metrics, i.e.,
w ·A+ (1− w) ·M , where A is a fixed standard
metric and M is any of the remaining metrics. To
do so, we combine standard metrics with the rest
metrics for each category of MT/summarization
and ref-based/-free setting. We take the arithmetic

7Ref-free, the edit distance between r and ref isconsidered.
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Figure 4: Accuracy on adversarial datasets and Pearson
correlation with segment-level human judgements in
WMT datasets of combined metrics with BERTScore,
averaged over datasets. The green line denoting the
combination with COMET ends at another point since
the corresponding adversarial performance is only av-
eraged over the 2 adversarial datasets containing source
texts.

average of the accuracy on adversarial bench-
marks and correlations on standard benchmarks
as the overall metric performance here. We calcu-
late the mean/maximal improvement of ensembles
to the original metric M over w ∈ [0.1, 0.9] and
observe: (i) While the ensembles with standard
metrics are better for ref-free MT metrics because
cross-lingual NLI metrics perform very poorly
in our experiments, (ii) the monolingual NLI
metrics lead to much better ensembles—17/15
points larger mean/max improvement—compared
to the standard metrics. (iii) Overall, the ensem-
bles with NLI metrics yield 10/7 points larger
mean/max improvement in overall performance
than with standard metrics (averaged over all 4
tasks: ref-based/-free MT/summarization). Thus,
(monolingual) NLI metrics have unique proper-
ties, compared to standard metrics, making them
attractive in ensembles.

To illustrate, Figure 4 shows ensembles with
BERTScore. These show minor or no improve-
ments on standard benchmarks and also mixed
(often negative) results for adversarial robustness.

SummaCZS and Falsesum: In §5, we applied
NLI systems on whole input texts, not taking into

account the multi-sentence nature of source texts
and outputs, especially in summarization.

To remedy the mismatch between the gran-
ularities of the training data of NLI models
and the input data of summarization evalua-
tion, i.e., sentence- vs. document-level, Laban
et al. (2022) propose both supervised and un-
supervised NLI-based summarization metrics for
inconsistency detection. We test their unsuper-
vised variant (SummaCZS),8 which segments
documents into sentence units and aggregates
scores between pairs of sentences, with the
underlying model of NLI-R. However, Sum-
maCZS does not consistently outperform NLI-R
across all datasets; in contrast, NLI-R performs
much better in our adversarial test compared
to SummaCZS (72% vs. 53%). Besides, to
match the training data of NLI models with the
task of factual inconsistency detection in sum-
marization, Utama et al. (2022) introduce an
augmented NLI dataset with task-oriented exam-
ples based on CNNDM—FalseSum; we evaluate
three Roberta-large models finetuned on it and
MNLI. Similar to SummaCZS, this also does
not always yield better performance compared to
simple NLI metrics (∼55%–68% vs. 72% on ad-
versarial datasets). Overall, both approaches work
well on SummEval, but not so well on RealSumm
and our adversarial benchmark.

Choice of Pooling Strategy: To examine the
issue of data leakage discussed in §5, we now
evaluate the NLI metrics on each dataset with
the pooling strategy selected from the remain-
ing datasets (excluding the one for evaluation)
based on winning frequency. For example, for
the segment-level MT evaluation on WMT15,
we choose the pooling strategy which wins most
times on all MT datasets (including all standard
datasets for both segment/system-level evalua-
tion and the adversarial datasets) except for
WMT15. We observe that this change in pooling
strategy induction results in minor performance
variation: −1.9% for segment-level evaluation,
+0.8% for system-level evaluation, and −0.7%
for adversarial evaluation. For summarization,
as only one direction—i.e., src→cand—is con-
sidered for ref-free NLI metrics, we separately
select the pooling strategy for ref-based and

8We do not compare to the supervised one as it is trained
on a consistency dataset for summarization task, for a fairer
comparison.
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ref-free NLI metrics. Overall, we have no perfor-
mance change for the ref-free setting and −3.6%
performance on average over all five criteria
(correlations on SummEval with max/mean ag-
gregation, summary/system-level correlations on
RealSumm, and accuracy on SEadv) ref-based.
Thus, the changes are again minor.

Comparison to RoMe: As the authors of RoMe
did not publish their adversarial dataset, we com-
pare RoMe’s performance with our metrics on
one of our adversarial datasets, WMT20de, in-
stead. RoMe has an average accuracy of 43%,
with > 90% accuracy only on the phenomena
SVD and omission, which are the easiest for most
standard metrics. In contrast, our NLI metrics
have above 80% average accuracy. As RoMe
does not evaluate on MT or summarization, we
also evaluate our NLI metrics on one (randomly
chosen) data-to-text generation dataset used in
Rony et al. (2022)—BAGEL (Mairesse et al.,
2010). RoMe and our NLI metrics perform on
par here (∼0.23 Spearman’s ρ). Overall, this
seems to imply that simple NLI models taken
out of the box are better and more robust metrics
than a specially trained approach such as RoMe.

7 Concluding Remarks

In this work, we explored NLI as a general
paradigm for evaluation metrics. We showed
that NLI metrics yield adversarial robustness,
and are also strong—though not always state-of-
the-art—when it comes to standard metric eval-
uation benchmarks. By linearly interpolating
established (BERT-based) metrics with our NLI
metrics, we obtained high-quality metrics along
both axes: adversarial robustness and standard
benchmarks, with substantial gains over recent
BERT-based metrics.

A potential reason why NLI based metrics
perform subpar on some standard benchmarks
(especially in MT) is the training data mismatch,
i.e., typical NLI datasets contain many artificial
sentences of the type ‘‘A girl is playing on a
piano’’. A further limitation is that cross-lingual
NLI models are not yet high-quality enough and
that most current NLI models are sentence-level,
not document-level—with a few recent exceptions
(Yin et al., 2021). Once these limitations of NLI
are overcome, we believe that even better perfor-
mances from NLI based metrics can be expected,

which, we believe, is one of the most promis-
ing directions for future high-quality and robust
evaluation metric design. Future work should also
consider NLI metrics for other text generation
tasks; the NLI paradigm looks especially promis-
ing for tasks that require comparison with human
references, which oftentimes involve the concept
of logical equivalence.
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Yang Gao, Robert West, and Steffen Eger.
2020. On the limitations of cross-lingual en-

coders as exposed by reference-free machine
translation evaluation. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 1656–1671,
Online. Association for Computational Lin-
guistics. https://doi.org/10.18653
/v1/2020.acl-main.151

Wei Zhao, Maxime Peyrard, Fei Liu, Yang
Gao, Christian M. Meyer, and Steffen Eger.
2019. MoverScore: Text generation evaluat-
ing with contextualized embeddings and earth
mover distance. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th Interna-
tional Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 563–578,
Hong Kong, China. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/D19-1053

Wei Zhao, Michael Strube, and Steffen Eger.
2023. Discoscore: Evaluating text generation
with BERT and discourse coherence. In EACL.

Xiang Zhou and Mohit Bansal. 2020. To-
wards robustifying NLI models against lex-
ical dataset biases. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 8759–8771,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.acl-main.773

825

https://doi.org/10.18653/v1/D19-1382
https://doi.org/10.18653/v1/D19-1382
https://doi.org/10.18653/v1/2021.findings-acl.435
https://doi.org/10.18653/v1/2021.findings-acl.435
https://doi.org/10.18653/v1/2020.acl-main.151
https://doi.org/10.18653/v1/2020.acl-main.151
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/2020.acl-main.773
https://doi.org/10.18653/v1/2020.acl-main.773

	Introduction
	Related Work
	Adversarial Setup
	Experimental Setup
	Evaluation Metrics
	Datasets & Evaluation Protocol
	NLI as a Metric

	Experiment Results
	Machine Translation
	Adversarial Evaluation
	Standard Benchmarks
	Combined Metrics

	Summarization

	Discussion & Analysis
	Concluding Remarks

