@article{zheng-etal-2023-multilingual,
title = "Multilingual Coreference Resolution in Multiparty Dialogue",
author = "Zheng, Boyuan and
Xia, Patrick and
Yarmohammadi, Mahsa and
Van Durme, Benjamin",
journal = "Transactions of the Association for Computational Linguistics",
volume = "11",
year = "2023",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2023.tacl-1.52",
doi = "10.1162/tacl_a_00581",
pages = "922--940",
abstract = "Existing multiparty dialogue datasets for entity coreference resolution are nascent, and many challenges are still unaddressed. We create a large-scale dataset, Multilingual Multiparty Coref (MMC), for this task based on TV transcripts. Due to the availability of gold-quality subtitles in multiple languages, we propose reusing the annotations to create silver coreference resolution data in other languages (Chinese and Farsi) via annotation projection. On the gold (English) data, off-the-shelf models perform relatively poorly on MMC, suggesting that MMC has broader coverage of multiparty coreference than prior datasets. On the silver data, we find success both using it for data augmentation and training from scratch, which effectively simulates the zero-shot cross-lingual setting.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zheng-etal-2023-multilingual">
<titleInfo>
<title>Multilingual Coreference Resolution in Multiparty Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Boyuan</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahsa</namePart>
<namePart type="family">Yarmohammadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Existing multiparty dialogue datasets for entity coreference resolution are nascent, and many challenges are still unaddressed. We create a large-scale dataset, Multilingual Multiparty Coref (MMC), for this task based on TV transcripts. Due to the availability of gold-quality subtitles in multiple languages, we propose reusing the annotations to create silver coreference resolution data in other languages (Chinese and Farsi) via annotation projection. On the gold (English) data, off-the-shelf models perform relatively poorly on MMC, suggesting that MMC has broader coverage of multiparty coreference than prior datasets. On the silver data, we find success both using it for data augmentation and training from scratch, which effectively simulates the zero-shot cross-lingual setting.</abstract>
<identifier type="citekey">zheng-etal-2023-multilingual</identifier>
<identifier type="doi">10.1162/tacl_a_00581</identifier>
<location>
<url>https://aclanthology.org/2023.tacl-1.52</url>
</location>
<part>
<date>2023</date>
<detail type="volume"><number>11</number></detail>
<extent unit="page">
<start>922</start>
<end>940</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Multilingual Coreference Resolution in Multiparty Dialogue
%A Zheng, Boyuan
%A Xia, Patrick
%A Yarmohammadi, Mahsa
%A Van Durme, Benjamin
%J Transactions of the Association for Computational Linguistics
%D 2023
%V 11
%I MIT Press
%C Cambridge, MA
%F zheng-etal-2023-multilingual
%X Existing multiparty dialogue datasets for entity coreference resolution are nascent, and many challenges are still unaddressed. We create a large-scale dataset, Multilingual Multiparty Coref (MMC), for this task based on TV transcripts. Due to the availability of gold-quality subtitles in multiple languages, we propose reusing the annotations to create silver coreference resolution data in other languages (Chinese and Farsi) via annotation projection. On the gold (English) data, off-the-shelf models perform relatively poorly on MMC, suggesting that MMC has broader coverage of multiparty coreference than prior datasets. On the silver data, we find success both using it for data augmentation and training from scratch, which effectively simulates the zero-shot cross-lingual setting.
%R 10.1162/tacl_a_00581
%U https://aclanthology.org/2023.tacl-1.52
%U https://doi.org/10.1162/tacl_a_00581
%P 922-940
Markdown (Informal)
[Multilingual Coreference Resolution in Multiparty Dialogue](https://aclanthology.org/2023.tacl-1.52) (Zheng et al., TACL 2023)
ACL