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Abstract

In behavioral testing, system functionalities
underrepresented in the standard evaluation
setting (with a held-out test set) are validated
through controlled input-output pairs. Opti-
mizing performance on the behavioral tests
during training (behavioral learning) would
improve coverage of phenomena not suffi-
ciently represented in the i.i.d. data and could
lead to seemingly more robust models. How-
ever, there is the risk that the model narrowly
captures spurious correlations from the behav-
ioral test suite, leading to overestimation and
misrepresentation of model performance—
one of the original pitfalls of traditional eval-
uation.

In this work, we introduce BELUGA, an anal-
ysis method for evaluating behavioral learning
considering generalization across dimensions
of different granularity levels. We optimize
behavior-specific loss functions and evaluate
models on several partitions of the behav-
ioral test suite controlled to leave out specific
phenomena. An aggregate score measures gen-
eralization to unseen functionalities (or over-
fitting). We use BELUGA to examine three
representative NLP tasks (sentiment analysis,
paraphrase identification, and reading compre-
hension) and compare the impact of a diverse
set of regularization and domain generalization
methods on generalization performance.1

1 Introduction

The standard paradigm for evaluating natural lan-
guage processing (NLP) models is to compute
correctness metrics on a held-out test set from
the same distribution as the training set (Linzen,
2020). If the test set is large and diverse, this may
be a good measure of average performance, but
it fails to account for the worst-case performance
(Sagawa et al., 2020). By exploiting correlations

1Our code is available on https://github.com
/peluz/beluga.

in the training data, models work well in most
cases but fail in those where the correlations do
not hold (Niven and Kao, 2019; McCoy et al.,
2019; Zellers et al., 2019), leading to overestima-
tion of model performance in the wild (Ribeiro
et al., 2020). Furthermore, standard evaluation
does not indicate the sources of model failure (Wu
et al., 2019) and disregards important model prop-
erties such as fairness (Ma et al., 2021).

Behavioral testing (Röttger et al., 2021; Ribeiro
et al., 2020) has been proposed as a complemen-
tary evaluation framework, where model capa-
bilities are systematically validated by examining
its responses to specific stimuli. This is done
through test suites composed of input-output pairs
where the input addresses specific linguistic or
social phenomena and the output is the expected
behavior given the input. The suites can be seen
as controlled challenge datasets (Belinkov and
Glass, 2019) aligned with human intuitions about
how the agent should perform the task (Linzen,
2020).

In this work, we understand test suites as a
hierarchy of functionality classes, functionalities,
and test cases (Röttger et al., 2021). Functionality
classes stand at the highest level, capturing sys-
tem capabilities like fairness, robustness and ne-
gation. They are composed of functionalities that
target finer-grained facets of the capability. For
example, a test suite for sentiment analysis can
include the functionality ‘‘negation of positive
statement should be negative’’ inside the Negation
class. Finally, each functionality is composed of
test cases, the input-output pairs used to validate
model behavior. For the functionality above, an
example test case could be the input ‘‘The movie
was not good’’ and the expected output ‘‘nega-
tive’’, under the assumption that the non-negated
sentence is positive.

Though behavioral test suites identify model
weaknesses, the question of what to do with such
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feedback is not trivial. While test suite creators
argue that these tools can aid the development of
better models (Röttger et al., 2021) and lead to
improvements in the tested tasks (Ribeiro et al.,
2020), how to act on the feedback concretely is
not discussed.

One common approach is fine-tuning on data
targeting the failure cases, which previous work
has shown can improve performance in these
same cases (Malon et al., 2022; Liu et al., 2019;
McCoy et al., 2019). But this practice overlooks
the possibility of models overfitting to the cov-
ered tests and consequently overestimates model
performance. Even if one takes care to split the
behavioral test cases into disjoint sets for train-
ing and testing, models can still leverage data
artifacts such as word-label co-occurrences to
achieve seemingly good performance that is over-
optimistic and does not align with out-of-
distribution (OOD) performance.

This creates the following dilemma: Either one
does not use the feedback from test suites for
model development and loses the chance to im-
prove model trustworthiness; or one uses it to
address model shortcomings (e.g., by training on
similar data)—and run the risk of overfitting to
the covered cases. Prior work (Luz de Araujo
and Roth, 2022; Rozen et al., 2019) has addressed
this in part by employing structured cross-
validation, where a model is trained and evalu-
ated on different sets of phenomena. However,
the analyses have been so far restricted to limited
settings where only one task, training configura-
tion and test type is examined. Moreover, these
studies have not examined how different regular-
ization and generalization mechanisms influence
generalization.

In this paper, we introduce BELUGA, a gen-
eral method for Behavioral Learning Unified
Generalization Analysis. By training and evaluat-
ing on several partitions of test suite and i.i.d. data,
we measure model performance on unseen phe-
nomena, such as held-out functionality and func-
tionality classes. This structured cross-validation
approach yields scores that better characterize
model performance on uncovered behavioral tests
than the ones obtained by over-optimistic i.i.d.
evaluation.

Our main contributions are:

(1) We design BELUGA, an analysis method
to measure the effect of behavioral learn-

ing. It handles different kinds of behav-
ior measures, operationalized by labeled
or perturbation-based tests. To that end we
propose loss functions that optimize the ex-
pected behavior of three test types: Mini-
mum functionality, invariance, and directional
expectation tests (Ribeiro et al., 2020).

(2) We extend previous work on behavioral
learning by exploring two training configura-
tions in addition to fine-tuning on suite data
(Luz de Araujo and Roth, 2022; Liu et al.,
2019): Training on a mixture of i.i.d. and
suite data; and training on i.i.d. data followed
by fine-tuning on the data mixture.

(3) We design aggregate metrics that measure
generalization across axes of different levels
of granularity. From finer to coarser: Gen-
eralization within functionalities, to different
functionalities and to different functionality
classes.

(4) We compare the generalization capabilities
of a range of regularization techniques and
domain generalization algorithms for three
representative NLP tasks (sentiment anal-
ysis, paraphrase identification, and reading
comprehension).

This work is not a recommendation to train on
behavioral test data, but an exploration of what
happens if data targeting the same set of phe-
nomena as the tests is used for model training.
We find that naive optimization and evaluation
do yield over-optimistic scenarios: Fine-tuning
on suite data results in large improvements for
seen functionalities, though at the same time i.i.d.
data and unseen functionalities performance can
degrade, with some models adopting degenerate
solutions that pass the tests but lead to catastrophic
i.i.d. performance. Including i.i.d. as well as test
suite samples was found to prevent this, miti-
gating i.i.d. performance degradation—with even
improvements in particular cases—and yielding
higher scores for unseen functionalities as well.

2 Background

2.1 Behavioral Testing

We consider a joint distribution p over an input
space X , corresponding label space Y , and as-
sume access to an i.i.d. dataset D composed of
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n examples D = {(xi, yi) ∼ p}ni=1, xi ∈ X ,
yi ∈ Y , split into disjoint train, validation, and
test sets Dtrain, Dval, and Dtest. We also assume
access to a behavioral test suite T , composed of
m test cases {li}mi=1 partitioned into nfunc dis-
joint functionalities {Fi}nfunc

i=1 . Each functional-
ity belongs to one of nclass functionality classes
{Ci}nclass

i=1 , such that nclass < nfunc < m.
Each test case belongs to a functionality,

t ∈ Fi, and is described by a pair (X, b), where X
is a list with |X| inputs. The expectation function
b : R|X|×|Y| → {0, 1} takes a model’s predictions
for all |X| inputs and outputs 1 if the model
behaves as expected and 0 otherwise.

The above taxonomy, by Röttger et al. (2021),
describes the hierarchy of concepts in behav-
ioral testing: Functionality classes correspond to
coarse properties (e.g., negation) and are com-
posed of finer-grained functionalities; these assess
facets of the coarse property (e.g., negation of
positive sentiment should be negative) and are op-
erationalized by individual input-output pairs, the
test cases. These concepts align with two of the
generalization axes we explore in this work, func-
tionality and functionality class generalization
(§ 3.3).

We additionally follow the terminology cre-
ated by Ribeiro et al. (2020), which defines three
test types, according to their evaluation mech-
anism: Minimum Functionality, Invariance, and
Directional Expectation tests. When used for
model training, each of them requires a particular
optimization strategy (§ 3.2).

Minimum Functionality Test (MFT): MFTs
are input-label pairs designed to check specific
system behavior: X has only one element, x,
and the expectation function checks if the model
output given x is equal to some label y. Thus,
they have the same form as the i.i.d. examples.

Invariance Test (INV): INVs are designed to
check for invariance to certain input transforma-
tions. The input list X consists of an original input
xo and |X|−1 perturbed inputs (xi)

|X|−1
i=1 obtained

by applying label-preserving transformations on
xo. Given model predictions Ŷ := [ŷi]

|X|−1
i=0 for

all inputs in X , then b(Ŷ ) = 1 if:

argmax ŷ0 = argmax ŷi , (1)

for all i ∈ {1, . . . , |X| − 1}. That is, the expec-
tation function checks if model predictions are
invariant to the perturbations.

Directional Expectation Test (DIR): The form
for input X is similar to the INV case, but instead
of label-preserving transformations, xo is per-
turbed in a way that changes the prediction in a
task-dependent predictable way, e.g., prediction
confidence should not increase. Given a task-
dependent comparison function δ : R|Y| ×R

|Y| →
{0, 1}, b(Ŷ ) = 1 if:

δ (ŷ0, ŷ1)∧δ (ŷ0, ŷ2)∧· · ·∧δ
(
ŷ0, ŷ|x|−1

)
. (2)

For example, if the expectation is that prediction
confidence should not increase, then δ(ŷ0, ŷi) = 1
if ŷi[c∗] ≤ ŷ0[c∗], where c∗ := argmax ŷ0

and ŷ[c∗] denotes the predicted probability for
class c∗.

Evaluation: Given a model family Θ and a loss
function � : Θ × (X × Y) → R+, the standard
learning goal is to find the model θ̂ ∈ Θ that
minimizes the loss over the training examples:

θ̂ := argmin
θ∈Θ

1

|Dtrain|
∑

(x,y)∈Dtrain

�(θ, (x, y)) . (3)

Then, general model correctness is evaluated us-
ing one or more metrics over the examples in
Dtest. The model can be additionally evaluated
using test suite T , which gives a finer-grained
performance measure over each functionality.

2.2 Behavioral Learning
In behavioral learning, samples from T are used
for training in a two-step approach: A pre-trained
language model (PLM) (Devlin et al., 2019) is
first fine-tuned on examples from Dtrain, and then
fine-tuned further on examples from T (Luz de
Araujo and Roth, 2022; Liu et al., 2019).

3 BELUGA

BELUGA is an analysis method to estimate how
training on test suite data impacts generalization
to seen and unseen phenomena. Given an i.i.d.
dataset D, a test suite T , and a training configu-
ration χ (§ 3.1), BELUGA trains on several con-
trolled splits of suite data and outputs scores that
use performance on unseen phenomena as a proxy
measure (§ 3.3) for generalization.

That is, BELUGA can be formalized as a func-
tion f parametrized by D, T , and χ that returns a
set of metrics M :

M = f(D, T , χ) . (4)
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By including measures of performance on i.i.d.
data and on seen and unseen sets of phenomena,
these metrics offer a more comprehensive and
realistic view of how the training data affected
model capabilities and shed light on failure cases
that would be obfuscated by other evaluation
schemes.

Below we describe the examined training con-
figurations (§ 3.1), how BELUGA optimizes the
expected behaviors encoded in T (§ 3.2), how it
estimates generalization (§ 3.3), and the metrics
it outputs (§ 3.4).

3.1 Training Configurations
We split T into three disjoint splits Ttrain, Tval,
and Ttest, such that each split contains cases from
all functionalities, and define four training con-
figurations regarding whether and how we use
Ttrain:

IID: The standard training approach that uses
only i.i.d. data for training (Dtrain). It serves as
a baseline to contrast performance of the three
following suite-augmented configurations.

IID→T: A two-step approach where first the
PLM is fine-tuned on Dtrain and then on Ttrain.
This is the setting examined in prior work on be-
havioral learning (§ 2.2), which has been shown
to lead to deterioration of i.i.d. dataset (Dtest)
performance (Luz de Araujo and Roth, 2022).

To assess the impact of including i.i.d. sam-
ples in the behavioral learning procedure, we de-
fine two additional configurations:

IID+T: The PLM is fine-tuned on a mixture
of suite and i.i.d. data (Dtrain ∪ Ttrain).

IID→(IID+T): The PLM is first fine-tuned
on Dtrain and then on Dtrain ∪ Ttrain.

By contrasting the performance on Dtest and
Ttest of these configurations, we assess the im-
pact of behavioral learning on both i.i.d. and test
suite data distributions.

3.2 Behavior Optimization
Since each test type describes and expects differ-
ent behavior, BELUGA optimizes type-specific
loss functions:

MFT: As MFTs are formally equivalent to i.i.d.
data (input-label pairs), they are treated as such:
We randomly divide them into mini-batches and
optimize the cross-entropy between model pre-
dictions and labels.

INV: We randomly divide INVs into mini-
batches composed of unperturbed-perturbed input

pairs. For each training update, we randomly se-
lect one perturbed version (of several possible) for
each original input.2 We enforce invariance by
minimizing the cross-entropy between model pre-
dictions over perturbed-unperturbed input pairs:

�(ŷ0, ŷi) := −
c∑

k=1

ŷ0[k] · log (ŷi[k]) , (5)

where c is the number of classes. This penalizes
models that are not invariant to the perturbations
(Eq. 1), since the global minimum of the loss is
the point where the predictions are the same.

DIR: Batch construction follows the INV pro-
cedure: The DIRs are randomly divided into mini-
batches of unperturbed-perturbed input pairs, the
unperturbed input is randomly sampled during
training.

The optimization objective depends on the com-
parison function δ. For a given δ, we define a
corresponding error measure εδ : R|Y| × R

|Y| →
[0, 1]. For example, if the expectation is that
prediction confidence should not increase, then
εδ(ŷ0, ŷi) = max (0, ŷi[c∗]− ŷ0[c∗]). This way,
εδ increases with confidence increase and is zero
otherwise.

We minimize the following loss:

�(ŷ0, ŷi, δ) := − log (1− εδ(ŷ0, ŷi)) . (6)

Intuitively, if εδ = 0, the loss is zero. Conversely,
the loss increases with the error measure (as εδ
gets closer to 1).

3.3 Cross-functional Analysis

Test suites have limited coverage: The set of cov-
ered functionalities is only a subset of the phe-
nomena of interest: T ⊂ P , where P is the
hypothetical set of all functionalities. For exam-
ple, the test suite for sentiment analysis provided
by Ribeiro et al. (2020) has a functionality that
tests for invariance to people’s names—the sen-
timent of the sentence ‘‘I do not like Mary’s
favourite movie’’ should not change if ‘‘Mary’’
is changed to ‘‘Maria’’. However, the equally
valid functionality that tests for invariance to or-
ganizations’ names is not in the suite. Training

2Note that any amount of perturbed inputs could be
used, but using only one allows fitting more test cases in a
mini-batch if its size is kept constant.
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and evaluating on the same set of functionali-
ties can lead to overestimating the performance:
Models that overfit to covered functionalities but
fail catastrophically on non-covered ones.

BELUGA computes several measures of model
performance that address generalization from
Ttrain to Ttest and from Ttrain to P . We do not
assume access to test cases for non-covered phe-
nomena, so we use held-out sets of functionali-
ties as proxies for generalization to P .

i.i.d. Data: To score performance on Dtest, we
use the canonical evaluation metric for the spe-
cific dataset. We detail the metrics used for each
examined task3 in Section 4.1. We denote the
i.i.d. score as siid.

Test Suite Data: We compute the pass rate
sFi of each functionality Fi ∈ T :

sFi :=
1

|Ftesti |
∑

(X,b)∈Ftesti

b(Ŷ ) , (7)

where Ŷ are the model prediction given the inputs
in X . In other words, the pass rate is simply the
proportion of successful test cases.

We vary the set of functionalities used for
training and testing to construct different evalua-
tion scenarios:

Unseen Evaluation: No test cases are seen
during training. This is equivalent to the use of
behavioral test suites without behavioral learning:
We compute the pass rates using the predictions
of an IID model.

Seen Evaluation: Ttrain is used for training.
We compute the pass rate on Ttest using the pre-
dictions of suite-augmented models. This score
measures how well the fine-tuning procedure gen-
eralizes to test cases of covered functionalities:
Even though all functionalities are seen dur-
ing training, the particular test cases evaluated
({t|t ∈ Ttest}) are not the same as the ones used
for training (Ttrain ∩ Ttest = ∅).

Generalization to Non-Covered Phenomena:
To estimate performance on non-covered phe-
nomena, we construct a l-subset partition of the
set of functionalities U := {Ui}li=1. For each Ui,
we use Ttrain \ Ui for training and then compute
the pass rates for Ttest ∩ Ui: {sFunseen|F ∈ Ui}.
That is, we fine-tune it on a set of functionalities

3We refer to the i.i.d. data as the dataset as opposed
to the task. The task is more abstract, and it comes with a
corresponding behavioral test suite.

and evaluate it on the remaining (unseen) func-
tionalities. Since U is a partition of T , by the
end of the procedure there will be a pass rate for
each functionality.

We consider three different partitions, depend-
ing on the considered generalization proxy:

(1) Functionality generalization: A partition
with nfunc subsets, each corresponding to a held-
out functionality: Ui = {Fi}, i ∈ {1, . . . , nfunc}.
We consider this a proxy of performance on
non-covered functionalities: F ∈ P \ T .

(2) Functionality class generalization: A par-
tition with nclass subsets, each corresponding to
a held-out functionality class: Ui = {Ci}, i ∈
{1, . . . , nclass}. We consider this to be a proxy
of performance on non-covered functionality
classes: C ⊂ P \ T .

(3) Test type generalization: A partition with
three subsets, each corresponding to a held-out
test type: Ui = {F|F has type i}, i ∈ {MFT,
INV,DIR}. We use this measure to examine gen-
eralization across different test types.

3.4 Metrics
For model comparison purposes, BELUGA out-
puts the average pass rate (the arithmetic mean
of the nfunc pass rates) as the aggregated metric
for test suite correctness. Since one of the moti-
vations for behavioral testing is its fine-grained
results, BELUGA also reports the individual pass
rates.

In total, BELUGA computes five aggregated
suite scores, each corresponding to an evaluation
scenario:
sT standard: The baseline score of a model only

trained on i.i.d. data: If the other scores are lower,
then fine-tuning on test suite data degraded overall
model performance.
sT seen: Performance on seen functionalities.

This score can give a false sense of model per-
formance since it does not account for model
overfitting to the seen functionalities: Spurious
correlations within functionalities and function-
ality classes can be exploited to get deceivingly
high scores.
sT func: Measure of generalization to unseen

functionalities. It is a more realistic measure of
model quality, but since functionalities correlate
within a functionality class, the score may still
offer a false sense of quality.
sT class: Measure of generalization to unseen

functionality classes. This is the most challenging
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Table 1: Examples for each i.i.d. dataset. The number of train/validation/test samples is 67k/436/436,
363k/20k/20k and 87k/5k/5k for SST-2, QQP and SQuAD, respectively.

generalization setting, as the model cannot exploit
correlations within functionalities and function-
ality classes.
sT type: Measure of generalization to unseen test

types. This score is of a more technical interest:
It can offer insights into how different training
signals affect each other (e.g., if training with
MFTs supports performance on INVs and vice-
versa).

Comprehensive Generalization Score: Since
performance on i.i.d. data and passing the behav-
ioral tests are both important, BELUGA provides
the harmonic mean of the aggregated pass rates
and the i.i.d. score as an additional metric for
model comparison:

G := 2
sT · siid
sT + siid

. (8)

There are five G scores (Gstandard, Gseen, Gfunc,
Gclass, and Gtype), each corresponding to plugging
either sT standard, sT seen, sT func, sT class, or sT type

into Eq. (8).
This aggregation makes implicit importance

assignments explicit: On the one hand, the har-
monic mean ensures that both i.i.d. and suite per-
formance are important due to its sensitivity to
low scores; on the other, different phenomena are
weighted differently, as i.i.d. performance has a
bigger influence on the final score than each sin-
gle functionality pass rate.

4 Experiments on Cross-functional
Analysis

4.1 Tasks
We experiment with three classification tasks that
correspond to the test suites made available4 by
Ribeiro et al. (2020): Sentiment analysis (SENT),

4https://github.com/marcotcr/checklist.

paraphrase identification (PARA), and reading
comprehension (READ).5 Tables 1 and 2 sum-
marize and show representative examples from
the i.i.d. and test suite datasets, respectively.

Sentiment Analysis (SENT): As the i.i.d. data-
set for sentiment analysis, we use the Stanford
Sentiment Treebank (SST-2) (Socher et al., 2013).
We use the version made available in the GLUE
benchmark (Wang et al., 2018), where the task
is to assign binary labels (negative/positive sen-
timent) to sentences. The test set labels are not
publicly available, so we split the original valida-
tion set in half as our validation and test sets. The
canonical metric for the dataset is accuracy.

The SENT suite contains 68k MFTs, 9k DIRs,
and 8k INVs. It covers functionality classes such
as semantic role labeling (SRL), named entity
recognition (NER), and fairness. The MFTs were
template-generated, while the DIRs and INVs
were either template-generated or obtained from
perturbing a dataset of unlabeled airline tweets.
Therefore, there is a domain mismatch between
the i.i.d. data (movie reviews) and the suite data
(tweets about airlines).

There are also label mismatches between the
two datasets: The suite contains an additional
class for neutral sentiment and the MFTs have the
‘‘not negative’’ label, which admits both positive
and neutral predictions. We follow Ribeiro et al.
(2020) and consider predictions with probability
of positive sentiment within [1/3, 2/3] as neutral.6

5These test suites were originally proposed for model
evaluation. Every design choice we describe regarding opti-
mization (e.g., loss functions and label encodings) is ours.

6When training, we encode ‘‘neutral’’ and ‘‘not negative’’
labels as [1/2, 1/2] and [1/3, 2/3], respectively. One alterna-
tive is to create two additional classes for such cases, but this
would prevent the use of the classification head fine-tuned
on i.i.d. data (which is annotated with binary labels).
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Table 2: Examples for each test suite. We color-code perturbations as red/green for deletions/additions.
The number of train/validation/test samples is 89k/44k/44k, 103k/51k/51k, and 35k/17k/17k for the
SENT, PARA and READ test suites, respectively.

There are two types of comparison for DIRs,
regarding either sentiment or prediction confi-
dence. In the former case, the prediction for a
perturbed input is expected to be either not more
negative or not more positive when compared
with the prediction for the original input. In the
latter, the confidence of the original prediction is
expected to either not increase or not decrease,
regardless of the sentiment. For example, when
adding an intensifier (‘‘really’’, ‘‘very’’) or a
reducer (‘‘a little’’, ‘‘somewhat’’), the confidence
of the original prediction should not decrease in
the first case and not increase in the second. On
the other hand, if a perturbation adds a positive
or negative phrase to the original input, the posi-
tive probability should not go down (up) for the
first (second) case.

More formally, each prediction ŷ is a two-
dimensional vector where the first and second
components are the confidence for negative (ŷ[0])
and positive (ŷ[1]) sentiment, respectively. Let c∗
denote the component with highest confidence in
the original prediction: c∗ := argmax ŷ0. Then,
the comparison function δ can take one of four
forms (not more negative, not more positive, not
more confident, and not less confident):

δ↑p(ŷ0, ŷi) = 1 if ŷi[0] ≤ ŷ0[0]

δ↑n(ŷ0, ŷi) = 1 if ŷi[1] ≤ ŷ0[1]

δ↓c(ŷ0, ŷi) = 1 if ŷi[c∗] ≤ ŷ0[c∗]
δ↑c(ŷ0, ŷi) = 1 if ŷi[c∗] ≥ ŷ0[c∗]

Each corresponding to an error measure ε:

εδ↑p(ŷ0, ŷi) := max (0, ŷi[0]− ŷ0[0])

εδ↑n(ŷ0, ŷi) := max (0, ŷi[1]− ŷ0[1])

εδ↓c(ŷ0, ŷi) := max (0, ŷi[c∗]− ŷ0[c∗])
εδ↑c(ŷ0, ŷi) := max (0, ŷ0[c∗]− ŷi[c∗])

We compute the max because only test viola-
tions should be penalized.

Paraphrase Identification (PARA): We use
Quora Question Pairs (QQP) (Iyer et al., 2017)
as the i.i.d. dataset. It is composed of question
pairs from the website Quora with annotation for
whether a pair of questions is semantically equiv-
alent (duplicates or not duplicates). The test set
labels are not available, hence we split the origi-
nal validation set into two sets for validation and
testing. The canonical metrics are accuracy and
the F1 score of the duplicate class.

The PARA suite contains 46k MFTs, 13k DIRs,
and 3k INVs, with functionality classes such as
co-reference resolution, logic, and negation. All
MFTs are template generated,7 while the INVs
and DIRs are obtained from perturbing QQP data.

The DIRs are similar to MFTs: Perturbed ques-
tion pairs are either duplicate or not duplicate.

7The test cases from functionality ‘‘Order does matter
for asymmetric relations’’ (e.g., Q1: Is Rachel faithful to
Christian?, Q2: Is Christian faithful to Rachel?) were origi-
nally labeled as duplicates. This seems to be unintended, so
we change their label to not duplicates.

1072



For example, if two questions mention the same
location and the perturbation changes the location
in one of them, then the new pair is guaranteed not
to be semantically equivalent. Thus, the compari-
son function δ checks if the perturbed predictions
correspond to the expected label; the original
prediction is not used for evaluation. So during
training, we treat them as MFTs: We construct
mini-batches of perturbed samples and corre-
sponding labels and minimize the cross-entropy
between predictions and labels.

Reading Comprehension (READ): The i.i.d.
dataset for READ is the Stanford Question An-
swering Dataset (SQuAD) (Rajpurkar et al., 2016),
composed of excerpts from Wikipedia articles
with crowdsourced questions and answers. The
task is to, given a text passage (context) and a
question about it, extract the context span that
contains the answer. Once again, the test set la-
bels are not publicly available and we repeat
our splitting approach for SENT and PARA. The
canonical metrics are exact string match (EM)
(percentage of predictions that match ground truth
answers exactly) and the more lenient F1 score,
which measures average token overlap between
predictions and ground truth answers.

The READ suite contains 10k MFTs and 2k
INVs, with functionality classes such as vocab-
ulary and taxonomy. The MFTs are template
generated, while the INVs are obtained from
perturbing SQuAD data.

Invariance training in READ has one compli-
cation, since the task is to extract the answer
span by predicting the start and end positions.
Naively using the originally predicted positions
would not work because the answer position may
have changed after the perturbation. For exam-
ple, let us take the original context-question pair
(C: Paul traveled from Chicago to New York,
Q: Where did Paul travel to?) and perturb it so
that Chicago is changed to Los Angeles. The
correct answer for the original input is (5, 6) as
the start and end (word) positions, yielding the
span ‘‘New York’’. Applying these positions to
the perturbed input would extract ‘‘to New’’. In-
stead, we only compare the model outputs for the
positions that correspond to the common ground
of original and perturbed inputs. In the example,
the outputs for the tokens ‘‘Paul’’, ‘‘traveled’’,
‘‘from’’, ‘‘to’’, ‘‘New’’ and ‘‘York’’. We mini-
mize the cross-entropy between this restricted set
of outputs for the original and perturbed inputs.

This penalizes changes in prediction for equiva-
lent tokens (e.g., the probability of ‘‘Paul’’ being
the start of the answer is 0.1 for the original in-
put but 0.15 for the perturbed).

4.2 Generalization Methods

We use BELUGA to compare several techniques
used to improve generalization:

L2: We apply a stronger-than-typical �2-penalty
coefficient of λ = 0.1.

Dropout: We triple the dropout rate for all
fully connected layers and attention probabilities
from the default value of 0.1 to 0.3.

LP: Instead of fine-tuning on suite data, we
apply linear probing (LP), where the encoder
parameters are frozen, and only the classifica-
tion head parameters are updated. Previous work
(Kumar et al., 2022) has found this to generalize
better than full fine-tuning.

LP-FT: We experiment with linear probing fol-
lowed by fine-tuning, which Kumar et al. (2022)
have shown to combine the benefits of fine-tuning
(in-distribution performance) and linear-probing
(out-of-distribution performance).

Invariant Risk Minimization (IRM) (Arjovsky
et al., 2019), a framework for OOD generali-
zation that leverages different training environ-
ments to learn feature-label correlations that are
invariant across the environments, under the as-
sumption that such features are not spuriously
correlated with the labels.

Group Distributionally Robust Optimization
(Group-DRO) (Sagawa et al., 2020), an algo-
rithm that minimizes not the average training loss,
but the highest loss across the different train-
ing environments. This is assumed to prevent
the model from adopting spurious correlations as
long as such correlations do not hold on one of the
environments.

Fish (Shi et al., 2022), an algorithm for do-
main generalization that maximises the inner
product between gradients from different train-
ing environments, under the assumption that this
leads models to learn features invariant across
environments.

For the last three methods, we treat the differ-
ent functionalities as different environments. For
the IID+T and IID→(IID+T) settings, we con-
sider the i.i.d. data as an additional environment.
In the multi-step training configurations (IID→T
and IID→(IID+T)), we only apply the techniques
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Table 3: i.i.d. test set performance and generalization measures (in %) of each examined method for
all tasks and training configurations. The Avg. column shows the average G score across all tasks and
generalization measures. We show scores significantly above and below the IID baseline (first row,
suite scores are Gstandard) in green and red, respectively, and write the best score for each column in bold
weight. When the score is not significantly different from the baseline counterpart, we show it in black.
We use two-tailed binomial testing when comparing the i.i.d. performances, and randomization testing
(Yeh, 2000) when comparing G scores, setting 0.05 as the significance level.

during the second step: When training only with
i.i.d. data we employ vanilla gradient descent,
since we are interested in the generalization effect
of using suite data.

4.3 Experimental Setting

We use pre-trained BERT models (Devlin et al.,
2019) for all tasks. We follow Ribeiro et al. (2020)
and use BERT-base for SENT and PARA and
BERT-large for READ. All our experiments use
AdamW (Loshchilov and Hutter, 2019) as the op-
timizer. When fine-tuning on i.i.d. data, we use
the same hyper-parameters as the ones reported
for models available on Hugging Face’s model
zoo.8 When fine-tuning on test suite data, we run
a grid search over a range of values for batch

8Available on https://huggingface.co/. The
model names are textattack/bert-base-uncased-SST-2 (SENT),

size, learning rate and number of epochs.9 We se-
lect the configuration that performed best on Tval.
To maintain the same compute budget across all
methods, we do not tune method-specific hyper-
parameters. We instead use values shown to work
well in the original papers and previous work
(Dranker et al., 2021).

5 Results and Observations

5.1 i.i.d. and Generalization Scores

Table 3 exhibits i.i.d. and aggregate G scores for
all tasks, training configurations, and generalization

textattack/bert-base-uncased-QQP (PARA), and bert-large-
uncased-whole-word-masking-finetuned-squad (READ).

9Batch size:{2, 3} for READ and {8, 16} for the others;
learning rate: {2e− 5, 3e− 5, 5e− 5}; number of epochs:
{1, 2, 3}.
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Figure 1: Average and individual pass rates for all tasks, methods, and training configurations. From first to
third row: Results for SENT, PARA, and READ. From first to fourth column: Seen evaluation, functionality
generalization, functionality class generalization, and test type generalization scores. The y-axis correspond to all
training configuration-method pairs; the x-axis shows the average functionality pass rate followed by the individual
pass rates. The blue horizontal and vertical lines demarcate different training configurations and functionality
classes, respectively. The colors in the x-axis designate the different test types: Blue for MFTs, red for INVs, and
green for DIRs.

methods. Figure 1 presents pass rates of indi-
vidual functionalities.

Seen Performance: Fine-tuning on test suite
data led to improvements for all tasks: The Gseen

scores are generally higher than the baseline scores
(first row in Table 3).

That is, models were able to generalize across
test cases from covered functionalities (from Ttrain

to Ttest) while retaining reasonable i.i.d. data per-
formance. In some specific training configuration-
method combinations this was not the case. We
discuss this below when we compare methods and
report the degenerate solutions.

Generalization Performance: For any given
configuration-method pair, Gseen is higher than
Gfunc, Gclass, and Gtype, indicating a generaliza-
tion gap between seen and unseen functionalities.
Furthermore, for all tasks, average (across meth-
ods) Gfunc is higher than average Gclass, which is

higher than average Gtype,10 indicating that gen-
eralization gets harder as one moves from unseen
functionalities to unseen functionality classes and
test types. This aligns with previous work (Luz
de Araujo and Roth, 2022), in which hate speech
detection models are found to generalize within—
but not across—functionality classes.

Improvements over the IID baseline were
task-dependent. Almost all configuration-method
pairs achieved Gfunc (22 of 24) and Gclass (20 of
24) scores significantly higher that the IID base-
line for SENT, with improvements over the base-
line as high as 18.44 and 12.84 percentage points
(p.p.) for each metric, respectively. For PARA,
improving over Gclass proved much harder—only
seven configuration-method pairs could do so.

10SENT: 85.97/78.15/69.54, PARA: 75.04/72.22/71.55,
READ: 49.23/46.66/43.46.
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Increases in score were also less pronounced,
the best Gfunc and Gclass scores being 6.91 and
2.19 p.p. above the baseline. READ was the one
with both rarer and subtler improvements, with
a third of the approaches significantly improving
functionality and none significantly improving
functionality class generalization. Improvements
in each case were as high as 4.70 and 0.51 per-
centage points over the baseline.

i.i.d. Performance: Fine-tuning on test suite
data only (IID→T configuration) reduced perfor-
mance for all tasks’ i.i.d. test sets. Fine-tuning on
both suite and i.i.d. examples (IID+T and IID→
(IID+T)) helped retain—or improve—performance
in some cases, but decreases were still more
common. The IID→(IID+T) configuration was
the most robust regarding i.i.d. scores, with an
average change (compared to the IID baseline) of
−1.43/−0.50/−1.73 for SENT/PARA/READ.

5.2 Training Configuration and
Method Comparison

Using a mixture of i.i.d. and suite samples proved
essential to retain i.i.d. performance: The over-
all scores (average over methods and i.i.d. test
sets) for each configuration are 67.52, 76.33, and
87.98 for IID→T, IID+T, and IID→(IID+T),
respectively.

That said, the environment-based generaliza-
tion algorithms (IRM, DRO, and Fish) struggled in
the IID+T configuration, underperforming when
compared with the other methods. We hypothe-
size that in these scenarios models simply do not
see enough i.i.d. data, as we treat it as just one
more environment among many others (reaching
as much as 54 in PARA). LP also achieves subpar
scores, even though i.i.d. data is not undersam-
pled. The problem here is the frozen feature en-
coder, as BERT features are not good enough
without fine-tuning on i.i.d. task data—as was
done in the other configurations, with clear ben-
efits for LP.

No individual method performed best for all
scores and tasks. That said, IID→(IID+T) with
L2, LP, LP-FT or Fish was able to achieve Gfunc

and Gclass scores higher or not significantly dif-
ferent from the baseline in all tasks, though
IID→(IID+T) with dropout was the best when
score is averaged over all tasks and general-
ization measures. Considering this same metric,
IID→(IID+T) was the most consistently good

configuration, with all methods improving over
the average IID baseline.

5.3 DIR Applicability
We have found that DIRs, as used for SENT,
have limited applicability for both testing and
training. The reason for that is that models are
generally very confident about their predictions:
The average prediction confidence for the test
suite predictions is 0.97 for the IID model. On the
evaluation side, this makes some DIRs impossible
to fail: The confidence cannot get higher and
fail ‘‘not more confident’’ expectations. On the
training side, DIRs do not add much of a training
signal, as the training loss is near zero from the
very beginning.11

We see an additional problem with DIRs in
the SENT setting: They confuse prediction con-
fidence with sentiment intensity. Though pre-
diction confidence may correlate with sentiment
intensity, uncertainty also signals difficulty and
ambiguousness (Swayamdipta et al., 2020). Con-
sequently, sentiment intensity tests may not be
measuring the intended phenomena. One alterna-
tive would be to disentangle the two factors: Using
prediction values only for confidence-based tests,
and sentiment intensity tests only for sentiment
analysis tasks with numeric or fine-grained labels.

5.4 Negative Transfer
Though Gclass scores are generally lower than Gfunc

scores, this is not always the case for the pass
rates of individual functionalities. When there are
contrastive functionalities within a class—those
whose test cases have similar surface form but
entirely different expected behaviors—it is very
difficult to generalize from one to the other.

For example, the SRL class in PARA contains
the functionalities ‘‘order does not matter for
symmetric relations’’ and ‘‘order does matter for
asymmetric relations’’ (functionalities 41 and 42
in the second row of Figure 1). Their test cases
are generated by nearly identical templates where
the only change is the relation placeholder. Ex-
amples from the first and second functionalities
would include (Q1: Is Natalie dating Sophia? Q2:
Is Sophia dating Natalie?) and (Q1: Is Matthew
lying to Nicole? Q2: Is Nicole lying to Matthew?)
respectively. Though their surface forms are

11Confidence regularization (Yu et al., 2021) could poten-
tially increase DIR’s usefulness for training and evaluation
purposes.
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similar, they have opposite labels: duplicate and
not duplicate.

To compute sT func, a model is trained with
samples from one functionality and evaluated on
samples from the other. Consequently, the surface
form will be spuriously correlated with the label
seen during training and models may blindly as-
sign it to the question pairs that fit the template.
This would work well for the seen functionality,
but samples from the unseen one would be en-
tirely misclassified. Conversely, when computing
the sT class score, the model will not have been
trained on either of the functionalities and will
not have the chance to adopt the heuristic, lead-
ing to better unseen pass rates.

5.5 Degenerate Solutions

Settings where the Gtype score is higher than
the baseline are much rarer than for the other
measures, happening only in one case for SENT
(IID→T with dropout) and never for READ. One
explanation is that training only on perturbation-
based tests (with no MFTs) can lead to degener-
ate solutions, such as passing all tests by always
predicting the same class.

To assess if that was the case, we examined
the predictions on the SST-2 test set of the
IID→T vanilla model fine-tuned only on DIRs
and INVs. We have found that 95.18% of the
i.i.d. data points were predicted as negative,
though the ground truth frequency for that la-
bel is 47.25%. When examining the predictions
for MFTs, the results are even more contrasting:
0.29% of the predictions were negative, with the
ground truth frequency being 43.42%. These re-
sults show that the model has, indeed, adopted
the degenerate solution. Interestingly, it predicts
different classes depending on the domain, al-
most always predicting negative for i.i.d. data
and positive for suite data.

The gap between Gclass and Gtype scores in
PARA is not as severe, possibly due to the super-
vised signal in its DIRs. Since these tests expect
inputs to correspond to specific labels—as op-
posed to DIRs for SENT, which check for changes
in prediction confidence—always predicting the
same class would not be a good solution. In-
deed, when examining the predictions on the QQP
test set of the vanilla IID→T model fine-tuned
with no MFT data, we see that 58.70% of ques-
tion pairs are predicted as not duplicate, which

is similar to the ground truth frequency, 63.25%.
The same is true when checking the predictions
for MFTs: 64.47% of the data points are predicted
as not duplicate, against a ground truth frequency
of 52.46%.

The READ scenario is more complex—instead
of categories, spans are extracted. Manual inspec-
tion showed that some IID→T models adopted
degenerate solutions (e.g., extracting the first
word, a full stop or the empty span as the answer),
even when constrained by the MFT supervised sig-
nal. Interestingly, the degenerate solutions were
applied only for INV tests (where such invariant
predictions work reasonably) and i.i.d. examples
(where they do not). On the other hand, these
models were able to handle the MFTs well, ob-
taining near perfect scores and achieving high
sT seen scores even though i.i.d. performance is
catastrophic. The first grid of the third row in
Figure 1 illustrates this: The high sT seen scores are
shown on the first column, and the MFT pass rates
on the columns with blue x-axis numbers.

5.6 Summary Interpretation of the Results
Figure 1 Figure 1 supports fine-grained anal-
yses that consider performance on individual
functionalities in each generalization scenario.
One can interpret it horizontally to assess the
functionality pass rates for a particular method.
For example, the bottom left grid, representing
seen results for READ, shows that IID+T with
LP behaves poorly on almost all functionalities,
confirming the importance of fine-tuning BERT
pre-trained features (§ 5.2).

Alternatively, one can interpret it vertically
to assess performance and generalization trends
for individual functionalities. For example, mod-
els generalized well to functionality 21 of the
READ suite (second grid of the bottom row), with
most methods improving over the IID baseline.
However, under the functionality class evaluation
scenario (third grid of the bottom row), improve-
ments for functionality 21 are much rarer. That is,
the models were able to generalize to functionality
21 as long as they were fine-tuned on cases from
functionalities from the same class (20 and 22).12

Such fine-grained analyses show the way for
more targeted explorations of generalization (e.g.,

12These functionalities assess co-reference resolution ca-
pabilities: 20 and 21 have test cases with personal and pos-
sessive pronouns, respectively; 22 tests whether the model
distinguishes ‘‘former’’ from ‘‘latter’’.
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why do models generalize to functionality 21
but not to functionality 20?), which can guide
subsequent data annotation, selection and crea-
tion efforts, and shed light on model limitations.

Table 3 For i.i.d. results, we refer to the SST2,
QQP, and SQuAD columns. These show that
the suite-augmented configuration and methods
(all rows below and including IID→T Vanilla)
generally hurt i.i.d. performance. However, im-
provements can be found for some methods in
the IID+T and IID→(IID+T). Takeaway: Fine-
tuning on behavioral tests degrades model
general performance, which can be mitigated
by jointly fine-tuning on i.i.d. samples and
behavioral tests.

For performance concerning seen functionali-
ties, we refer to the Gseen columns. Generalization
scores concerning unseen functionalities, func-
tionality classes, and test types can be found
in the Gfunc, Gclass, and Gtype columns. Across
all tasks, training configurations, and methods,
the Gseen scores are higher than the others.
Takeaway: Evaluating only on the seen func-
tionalities (Liu et al., 2019; Malon et al., 2022)
is overoptimistic—improving performance on
seen cases may come at the expense of degra-
dation on unseen cases. This is detected by the
underperforming generalization scores.

Previous work on generalization in behav-
ioral learning (Luz de Araujo and Roth, 2022;
Rozen et al., 2019) corresponds to the IID→T
Vanilla row. It shows deterioration of i.i.d. scores,
poor generalization in some cases, and lower
average performance compared with the IID base-
line. However, our experiments with additional
methods (all rows below IID→T Vanilla), show
that some configuration-method combinations
improve the average performance. Takeaway:
While naive behavioral learning generalizes
poorly, more sophisticated algorithms can
lead to improvements. BELUGA is a method
that detects and measures further algorithmic
improvements.

6 Related Work

Traditional NLP benchmarks (Wang et al., 2018,
2019) are composed of text corpora that re-
flect the naturally occurring language distribution,
which may fail to sufficiently capture rarer, but
important phenomena (Belinkov and Glass, 2019).
Moreover, since these benchmarks are commonly

split into identically distributed train and test sets,
spurious correlations in the former will gener-
ally hold for the latter. This may lead to the ob-
fuscation of unintended behaviors, such as the
adoption of heuristics that work well for the data
distribution but not in general (Linzen, 2020;
McCoy et al., 2019). To account for these short-
comings, complementary evaluations methods have
been proposed, such as using dynamic bench-
marks (Kiela et al., 2021) and behavioral test
suites (Kirk et al., 2022; Röttger et al., 2021;
Ribeiro et al., 2020).

A line of work has explored how training on
challenge and test suite data affects model perfor-
mance by fine-tuning on examples from specific
linguistic phenomena and evaluating on other sam-
ples from the same phenomena (Malon et al.,
2022; Liu et al., 2019). This is equivalent to our
seen evaluation scenario, and thus cannot distin-
guish between models with good generalization
and those that have overfitted to the seen phe-
nomena. We account for that with our additional
generalization measures, computed using only
data from held-out phenomena.

Other efforts have also used controlled data
splits to examine generalization: McCoy et al.
(2019) have trained and evaluated on data from
disjoints sets of phenomena relevant for Natural
Language Inference (NLI); Rozen et al. (2019)
have split challenge data according to sentence
length and constituency parsing tree depth, cre-
ating a distribution shift between training and
evaluation data; Luz de Araujo and Roth (2022)
employ a cross-functional analysis of generaliza-
tion in hate speech detection. Though these works
address the issue of overfitting to seen phenom-
ena, their analyses are restricted to specific tasks
and training configurations. Our work gives a
more comprehensive view of generalization of
behavioral learning by examining different tasks,
training configurations, test types, and metrics.
Additionally, we use this setting as an opportunity
to compare the generalization impact of both sim-
ple regularization mechanisms and state-of-the-
art domain generalization algorithms.

7 Conclusion

We have presented BELUGA, a framework for
cross-functional analysis of generalization in NLP
systems that both makes explicit the desired
system traits and allows for quantifying and
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examining several axes of generalization. While in
this work we have used BELUGA to analyze data
from behavioral suites, it can be applied in any
setting where one has access to data structured
into meaningful groups (e.g., demographic data,
linguistic phenomena, domains).

We have shown that, while model perfor-
mance for seen phenomena greatly improves after
fine-tuning on test suite data, the generalization
scores reveal a more nuanced view, in which the
actual benefit is less pronounced and depends
on the task and training configuration-method
combination. We have found the IID→(IID+T)
configuration to result in the most consistent im-
provements. Conversely, some methods struggle
in the IID→T and IID+T settings by overfitting
to the suite or underfitting i.i.d. data, respectively.
In these cases, a model both practically aces all
tests and fails badly for i.i.d. data, which rein-
forces the importance of considering both i.i.d.
and test suite performance when comparing sys-
tems, which is accounted for by BELUGA’s ag-
gregate scores.

These results show that naive behavioral learn-
ing has unintended consequences, which the
IID→(IID+T) configuration mitigates to some
degree. There is still much room for improvement,
though, especially if generalization to unseen
types of behavior is desired. Through BELUGA,
progress in that direction is measurable, and
further algorithmic improvements might make be-
havioral learning an option to ensure desirable
behaviors and preserve general performance and
generalizability of the resulting models. We do
not recommend training on behavioral tests in the
current technological state. Instead, we show a
way to improve research on reconciling the qual-
itative guidance of behavioral tests with desired
generalization in NLP models.
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