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Abstract

Label scarcity is a bottleneck for improving
task performance in specialized domains. We
propose a novel compositional transfer learn-
ing framework (DOT51) for zero-shot domain
transfer. Without access to in-domain labels,
DOT5 jointly learns domain knowledge (from
masked language modelling of unlabelled in-
domain free text) and task knowledge (from
task training on more readily available general-
domain data) in a multi-task manner. To im-
prove the transferability of task training, we
design a strategy named NLGU: We simul-
taneously train natural language generation
(NLG) for in-domain label-to-data generation,
which enables data augmentation for self-
finetuning and natural language understand-
ing (NLU) for label prediction. We evaluate
DOT5 on the biomedical domain and the
resource-lean subdomain of radiology, focus-
ing on natural language inference, text sum-
marization, and embedding learning. DOT5
demonstrates the effectiveness of composi-
tional transfer learning through multi-task
learning. In particular, DOT5 outperforms the
current state-of-the-art in zero-shot transfer by
over 7 absolute points in accuracy on RadNLI.
We validate DOT5 with ablations and a case
study demonstrating its ability to solve chal-
lenging NLI examples requiring in-domain
expertise.

1 Introduction

While pretrained language models demonstrate
massive improvements on a wide range of natu-
ral language processing (NLP) tasks, it remains
challenging to apply them to specialized domains
(Ramponi and Plank, 2020). To acquire domain-
specific task knowledge, a conventional approach
is to perform domain-specific pretraining—usually

∗Work done at Microsoft Health Futures.
1DOT5 (read as ‘‘dot five’’): Domain Compositional

ZerO-shot T5.

masked language modelling (MLM) on in-domain
raw text—followed by finetuning with in-domain
task-annotated data (Lee et al., 2020; Gu et al.,
2021; Boecking et al., 2022). However, this ap-
proach requires in-domain task labels that can be
expensive to acquire. Another approach is to train
a model with the usually abundant general-domain
task labels and directly transfer to the new domain
(Romanov and Shivade, 2018; Ma et al., 2021),
but the transfer performance is often limited by
the domain gap. Past studies on zero-shot do-
main transfer or unsupervised domain adaptation
have explored methods to transfer task knowledge
from a source domain to an unseen target domain
(Ramponi and Plank, 2020; Ganin and Lempitsky,
2015), but they usually require external mod-
ules to perform feature or domain alignment and
are not always easily applicable to pretrained
language models. In particular, there is little un-
derstanding of how we can leverage and combine
domain-specific knowledge and general-domain
task knowledge in the context of the recent success
of text-to-text architectures in transfer learning.

To close this gap, we propose DOT5, a novel
compositional zero-shot domain-transfer frame-
work based on the state-of-the-art (SOTA) transfer
learning model transfer learning model Text-
to-Text Transfer Transformer (T5) (Raffel et al.,
2020). Throughout, the ‘zero-shot’ setup refers to
zero-shot domain transfer with no access to la-
belled in-domain data.2 By ‘‘compositional’’ we
mean that DOT5 is able to combine seen task

2The definition of ‘zero-shot’ in this paper follows recent
studies (Pan et al., 2022; Zhao et al., 2022), and is similar to
unsupervised domain adaptation, as discussed in §2. Another
similar usage of ‘zero-shot’ is found in cross-lingual setups
where no task labels are accessible in the target test lan-
guage but labels in the same task are available in a source
language. Note that this definition is different from ‘zero-
shot learning’ traditionally used to refer to the prediction of
unseen classes.
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Figure 1: By combining task knowledge from general
domain data and domain knowledge from in-domain
unlabelled text, our text-to-text model DOT5 learns to
solve in-domain tasks.

labels and domain text to acquire an unseen
combination of task domain knowledge.

As shown in Figure 1, DOT5 combines domain
knowledge and task knowledge by making the best
use of in-domain free text and general-domain
task labels, which are typically accessible and
abundant. For example, in the context of nat-
ural language inference (NLI), DOT5 can learn
domain-specific semantics (e.g., ‘‘bony abnormal-
ities’’ is a synonym of ‘‘osseous abnormalities’’)
from in-domain free text and transferable task
knowledge from general-domain task labels
(e.g., negation indicates contradiction) to infer
domain-specific task knowledge (e.g., ‘‘There are
no bony abnormalities’’ contradicts ‘‘There are
osseous abnormalities’’).

We apply DOT5 to NLI, summarization, and
text embedding learning, which are fundamental
applications across many domains, and we ex-
plore zero-shot domain transfer to the high-value
and highly specialized domain of biomedicine
and its extremely low-resource subdomain of ra-
diology. Due to their specialization, obtaining
labelled data in these domains is expensive and
time-consuming. For example, the radiology-
specific NLI dataset (RadNLI) (Miura et al., 2021)
contains only 960 manually labelled examples as
development and test data and no training data
is available.

The key to DOT5’s compositional transfer is
continual multi-task pretraining to simultaneously
acquire domain and task knowledge: We jointly
train T5 with MLM on in-domain unlabelled data
and general-domain tasks (NLI and summari-
zation). To better acquire the transferable task
knowledge from the general-domain task labels,
we propose a multi-task setup we call NLGU. As
depicted in Figure 2, NLGU gives each task two
formulations: natural language generation (NLG)

(label-to-data generation), and natural language
understanding (NLU) (data-to-label prediction).
NLU enables label prediction when tested in an
unseen domain and forces model sensitivity to
the conditioned label, assisting NLG. Meanwhile,
NLG enables downstream tasks such as sum-
marization or data augmentation. This enables
DOT5 to generate its own NLI in-domain task
data for further finetuning (a process we call self-
finetuning), or to generate positive and negative
examples for improving text embeddings by con-
trastive learning (Oord et al., 2018).

Our experiments show the effectiveness of
DOT5 in zero-shot domain transfer, and our pro-
posed multi-task compositional approach achieves
large gains compared with sequential training
with T5 across all tasks. In particular, we achieve
SOTA zero-shot domain transfer performance on
RadNLI (Romanov and Shivade, 2018), outper-
forming baselines including large language mod-
els (LLMs), sequential training approaches, and
task-specific baselines by large margins. We also
identify several key insights through extensive
analysis: 1) All three key components (in-domain
MLM, NLGU, self-finetuning) in DOT5 are im-
portant for transfer success while multi-task learn-
ing with in-domain MLM is the key for combining
domain and task knowledge. 2) Scaling up model
size significantly improves transfer performance.
3) DOT5 is able to solve challenging domain-
specific task examples, indicating it acquires domain-
specific task knowledge through compositional
transfer.

To summarize, we present the following major
contributions: 1) We propose DOT5, a general
framework for compositional transfer learning
with text-to-text models, and show that multi-
task training is superior to sequential training in
the models’ domain transfer. 2) With a novel
NLGU training strategy combining generation
and understanding, DOT5 can be used for both
classification and generation tasks.3 With the
latter, DOT5 can perform self-finetuning to fur-
ther improve transfer performance. 3) We show
the effectiveness of DOT5 in zero-shot domain
transfer, achieving SOTA zero-shot performance
in radiology NLI. 4) Comprehensive analysis
demonstrates the inner workings of DOT5’s
compositional transfer.

3Notice that the tasks are limited to those that can have
pairwise input instead of single sentence input.
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Figure 2: Continual pretraining of DOT5 on general-domain tasks (warm colors) and in-domain unlabelled text
(blue). For task training, we form both NLG and NLU variants of NLI and summarization. All training is per-
formed simultaneously, exploiting the unified text-to-text framework of T5.

2 Related Work

Cross-task Transfer with Text-to-text Models
T5 (Raffel et al., 2020) unifies NLP tasks under
a seq-to-seq framework and solves them using a
single model. T0 (Sanh et al., 2022), FLAN (Wei
et al., 2022), MetaICL (Min et al., 2022), and
ExT5 (Aribandi et al., 2022) build on top of this
idea and explore pretraining T5 with a massive
collection of NLP datasets with diverse natural
language prompts. Among them, T0, FLAN, and
MetaICL investigate pretraining on a set of tasks,
and then zero-shot transfer to another set of un-
seen tasks.

Domain-specific Pretraining Gururangan et al.
(2020) show continual training on domain and
task data can adapt pretrained models for new
domains and tasks. Both BioBERT (Lee et al.,
2020) and BlueBERT (Peng et al., 2019) apply
the BERT pretraining protocol (i.e., masked lan-
guage modelling and next sentence prediction)
on PubMed Central (PMC) or PubMed articles.
They continue pretraining BERT checkpoints in-
stead of training from scratch. Gu et al. (2021)
demonstrate the importance of domain-specific
vocabulary and pretraining from scratch when in-
domain text is abundant, and produces PubMed-
BERT by pretraining on PubMed articles. Similar

to PubMedBERT, SciBERT (Beltagy et al., 2019)
pretrains from scratch on a mix of both PMC and
computer science publications. Boecking et al.
(2022) introduce CXR-BERT, which is pretrained
on biomedical and radiology corpora. SciFive
(Phan et al., 2021) continually pretrains T5 check-
points on PubMed abstracts with seq-to-seq MLM.
We compare to finetuned versions of SciFive,
PubMedBERT, and CXR-BERT in §4.3.

Zero-shot Domain Transfer Learning Train-
ing in one domain and directly testing on another
domain has been a prevalent paradigm in zero-
shot cross-domain transfer (Miura et al., 2021;
Boecking et al., 2022; Agrawal et al., 2022). A
similar zero-shot setup is also frequently seen in
other transfer learning scenarios such as cross-
lingual zero-shot learning (Conneau et al., 2018,
2020). Our summarization experiment is most
similar to such a direct zero-shot setup. Con-
currently, Pan et al. (2022) also propose to
combine in-domain training and out-of-domain
task knowledge. They proposed a zero-shot in-
domain question answering model by finetun-
ing a general-domain RoBERTa model with first
domain-specific NER and then general-domain
question answering. This study is the closest to
our approach, with several key differences: Their
method requires in-domain labels (in-domain
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NER) whereas we do not require any in-domain
task labels. They only test on question answering
whereas we show a more diverse range of eval-
uation datasets. Additionally, they do sequential
training whereas we perform multi-task training.
Finally, their model is not generative and there-
fore it cannot perform NLGU and self-finetuning
as we did in our approach (see §3).

Our proposed NLGU and self-finetuning strate-
gies are closely related to cross-domain data
augmentation. A line of work in information re-
trieval generates ‘‘in-domain’’ pseudo training
data leveraging unlabelled in-domain texts. As an
example, Ma et al. (2021) and Wang et al. (2022)
train a passage-to-query generator for synthesiz-
ing in-domain queries for the task of zero-shot
passage retrieval. Similarly, The NLG component
in our proposed NLGU strategy can also perform
data augmentation but with better granularity and
diversity as we can generate label-conditioned
task data to create both positive and negative
examples.

Besides zero-shot transfer in NLP, unsuper-
vised domain adaptation (which also assumes la-
bels in current domain and unlabelled data in the
target domain) is a long-standing research topic
in machine learning in general (Huang et al., 2006;
Pan et al., 2010b; Ganin and Lempitsky, 2015;
Ramponi and Plank, 2020). Many conventional
unsupervised domain adaptation methods require
external components to align domains on the fea-
ture/embedding level. For example, Pan et al.
(2010a) propose applying spectral feature align-
ment to align domain-specific words across do-
mains into unified clusters. Ganin and Lempitsky
(2015) add a domain classifier that promotes
domain-invariant features via a gradient reversal
layer. These methods are not always immediately
suitable for the recent pretrained language mod-
els, especially the text-to-text models. In com-
parison, our approach exploits the task unifying
nature of text-to-text models, which contain the
inherent transfer learning abilities and requires
minimal architecture changes.

3 Method

To achieve compositional transfer, DOT5 ac-
quires domain knowledge and task knowledge
via continual pretraining (see Figure 2). Specifi-
cally, we optimize a joint loss function composed
of an in-domain masked language model loss

(‘‘domain-MLM’’) and a general-domain task-
specific loss:

Ljoint = λLdomain-MLM + (1− λ)Ltask (1)

We set λ = 0.5 but explore tuning it in §4.1.
We use T5, an encoder-decoder generative

language modelling framework (Raffel et al.,
2020), to learn a conditional sequence generator
P (output|input). T5 is chosen for two reasons: 1)
It is a strong transfer learning model, and 2) it
can unify classification and generation, which has
potential to further boost transfer performance
(see NLGU discussion in §3.2). We use the same
pretraining objective (cross-entropy with teacher-
forcing) as in T5.

We detail the two loss components for contin-
ual pretraining in §3.1 and §3.2. Once the model
has been continually pretrained, it can be used to
perform zero-shot domain transfer on a task. Task-
specific designs for inference are given in §3.3.

3.1 Continual Pretraining with
In-domain MLM

For Ldomain-MLM we use the MLM loss (Devlin
et al., 2019) to continually pretrain a T5 on in-
domain free text: Given a piece of sampled radi-
ology or biomedical text, we randomly mask 15%
of its tokens and ask the model to denoise the
masked input sequence, i.e., generate the masked
tokens.

3.2 Continual Pretraining on
General-domain Tasks

For Ltask, we define (x1, x2) as a text pair that
denotes (premise, hypothesis) for NLI, and (docu-
ment, summary) for summarization. The standard
NLI task assigns labels from y: {entailment, neu-
tral, contradiction}, and the task is (x1, x2) → y.
For summarization, the task is usually cast as
x1 → x2. We follow Sanh et al. (2022) to adopt
a multi-task learning strategy to train summari-
zation and NLI simultaneously. Hence, the basic
setup of task learning would be: NLI as a dis-
criminative NLU task plus summarization as an
NLG task.

NLGU: Simultaneous NLG and NLU One im-
mediate question is whether we can turn each task
into both NLG and NLU (i.e., adding NLG for
NLI and NLU for summarization). For NLI, we
can add label-to-data NLG to generate pseudo
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Setting Prompt (Input) Output
N

L
I NLG: (x1, y) → x2 Generate a {label} sentence of: {premise} {hypothesis}

NLU: (x1, x2) → y {premise} Question: {hypothesis} True, False or Neither? {True | False | Neither}

Su
m

. NLG: (x1, y) → x2 Generate a {label} summary of: {document} {summary}
NLU: (x1, x2) → y {document} Question: {summary} True or False? {True | False}

Table 1: Prompts used for task-specific training with NLGU for both NLI and summarization (Sum).
For NLI x1: premise, x2: hypothesis, and the label (y) is one of {entailed, neutral, contradictory}. For
summarization x1: document, x2: summary, and the label (y) is one of {entailed, contradictory}.

in-domain text for data augmentation, perform-
ing (x1, y) → x2 (the label y is used as control
code). For summarization, we can also follow
NLI to add a NLU task that predicts whether
a document-summary pair is entailed (the cor-
rect match) or contradictory (a counterfactual
summary) (§4.1). This NLU component aims to
improve the factuality of generated text as it en-
courages the model to distinguish counterfactuals
and true summaries. With the hypothesis that
performing NLG and NLU simultaneously will
mutually benefit each other, we propose NLGU,
meaning joint training of NLG and NLU. With
NLGU, we unify both summarization and NLI
into (x1, x2) → y for NLU and (x1, y) → x2

for NLG. The conditional generator then simul-
taneously optimizes two losses:

Ltask = γL(x1,x2)→y + L(x1,y)→x2
(2)

We set γ = 10 to balance the two losses since
x2 is usually much longer than y (the classifi-
cation label). NLU and NLG are both trained
with sequence-to-sequence generation, and differ
only in the input prompt and the expected out-
put (Table 1). The prompt for L(x1,x2)→y is from
Brown et al. (2020). The prompts for summari-
zation are akin to those for NLI, with premise
and hypothesis replaced with document
and summary, respectively, and we only use
{entailment, contradiction} relations.

3.3 Task-specific Designs for In-domain
Zero-shot Inference

After continual pretraining, we zero-shot-transfer
the trained model to three applications in special-
ized domains without requiring labels from these
domains: 1) NLI, 2) summarization, and 3) text
embedding learning.

NLI (with Self-finetuning) While the model is
capable of directly performing NLI after train

ing on general-domain NLI task labels with
(x1, x2) → y, we propose an additional step,
self-finetuning, to boost transfer performance
(§5.1). We first use the model’s NLG capabili-
ties to generate pseudo in-domain NLI data: We
sample a set of sentences from the target domain
as premises, and prompt the pretrained model to
generate hypotheses (the NLG task) with each
of the three control codes (labels). This pseudo-
in-domain NLI dataset is then used as additional
training data to finetune the same model to per-
form the NLU task: (x1, x2) → y. The resulting
finetuned model is then used for zero-shot NLI
transfer.

Text Summarization We directly prompt the
model after continual pretraining to summarize
in-domain documents. We use the same prompt
as pretraining: ‘‘Generate an entailed summary
of: {document}’’. The output summary is then
compared against the gold summary. Since this is
already a task of text generation, i.e., (x1, y) → x2,
we cannot exploit self-finetuning as for NLI since
we cannot improve generation from training on
the model’s own generated pseudo data.

Text Embedding Learning DOT5 can be di-
rectly used as a generator for data augmentation.
Apart from creating more pseudo NLI task data to
improve NLI, DOT5 can improve domain-specific
embedding learning in general. To do so, we sam-
ple a set of in-domain sentences as anchors, and
prompt the trained model to generate entailed
and contradictory sentences to form positive and
negative pairs for each anchor. With beam search
size of 5, we sample the top-k most probable
sequences as the entailed (positives) and con-
tradictory (negatives) sentences of the anchor.4

Given the collected anchors and positive/negative

4We experimented generating one, three, and five pairs
of positives and negatives and found three to be the best
in our setup. We thus use three across all models.
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Dataset Task Used for # Examples

G
en

er
al SNLI – Bowman et al. NLI Task pretrain. 550K

MultiNLI – Williams et al. NLI Task pretrain. 392K
AdversarialNLI – Nie et al. NLI Task pretrain. 162K
Gigaword – Graff et al. Summ. Task pretrain. 1M

R
ad

io
lo

gy MIMIC-CXR – Johnson et al. MLM Domain pretrain. 227K
RadNLI – Miura et al. NLI Evaluation 480
Open-I – Demner-Fushman et al. Summ. Evaluation 683

B
io

m
ed

ic
al PubMed Abstracts MLM Domain pretrain. 4.2M

MedNLI – Romanov and Shivade NLI Evaluation 1.4K
PubMed ‘ShortSum’ Summ. Evaluation 5K
MedSTS – Yanshan et al. Similarity Evaluation 371

Table 2: Datasets used in the study for task/
domain pretraining (‘pretrain.’) and evaluation.
The tasks are NLI, text summarization (‘Summ.’),
and document retrieval based on text embed-
ding similarity.

sentences, we finetune a SOTA sentence embed-
ding model with a contrastive loss. Specifically,
we continually finetune the all-mpnet-base-v25

model with a variant of InfoNCE (Oord et al., 2018)
modified to handle multiple positives (Miech
et al., 2020). The learned embedding space is then
used for query-document retrieval or for comput-
ing text similarity.

4 Experiment

We introduce our experimental setup in §4.1,
briefly discuss baseline approaches in §4.2, and
present results in §4.3.

4.1 Experimental Setup

Details of the datasets used for training and eval-
uation are given in Table 2.

Pretraining Datasets As our continual pre-
training is a multi-task process, we balance the
in-domain and general-domain datasets in each
batch via up/downsampling as needed: For ra-
diology, we upsample MIMIC-CXR samples via
duplication, whereas for biomedicine we down-
sample PubMed abstracts, in each case matching
the general-domain task dataset size. We also bal-
ance the number of samples coming from each
task, downsampling the summarization dataset

5https://discuss.huggingface.co/t/train-the
-best-sentence-embedding-model-ever-with-1b
-training-pairs/7354.
https://huggingface.co/sentence-transformers
/all-mpnet-base-v2.

Figure 3: Varying the prevalence of in-domain MLM
and task data in DOT5small training.

to roughly match that of NLI (‘# Examples’ in
Table 2). Experiments with DOT5small (Figure 3)
indicate that downstream task performance could
be boosted by tuning the relative prevalence of
the data sources, with a task-dependent optimal
value. In this proof-of-concept study, we fix a
ratio of 1:1.

We generate counterfactual summaries of
Gigaword based on Rajagopal et al. (2022). Spe-
cifically, we run a named entity recognition model
on the documents from the Gigaword summari-
zation training data, specifically the ‘‘en core
web sm’’ trained SpaCy pipeline (Honnibal et al.,
2020). For each document that contains a named
entity, we randomly sample an entity and replace
it with a different named entity of the same
category from the training corpus. This is our
‘counterfactual’ example.6 We also filter out noisy
data when the generated counterfactual contains
UNK or #. The resulting dataset, as listed in
Table 2, consists of 50% document-‘wrong sum-
mary’ pairs (i.e., 500k pairs), one for each true
document-summary pair. To create pseudo NLI
data for the self-finetuning process, we use all
premises from the RadNLI/MedNLI development
set and generate one entailed, one neutral, and
one contradictory hypothesis for each premise. In
total, we have 1440 and 4185 pseudo examples
for RadNLI and MedNLI, respectively.

Evaluation Datasets and Metrics All the eval-
uation datasets are from domain-specific tasks
(Table 2). For NLI, we report accuracy and

6Note that a counterfactual is not always a contra-
diction. We approximate contradiction this way and use
the ‘contradictory’ control code in our experiments for
consistency.
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macro-F1 (out of 100, for legibility) on the test set
of RadNLI and MedNLI. For summarization in ra-
diology, we evaluate on findings-to-impression7

summarization on the test split of the Open-I da-
taset (Demner-Fushman et al., 2016). For biomed-
ical summarization, we create an abstract-to-title
summarization dataset, ‘PubMed ShortSum’. The
data for this task is sampled from PubMed and
filtered to abstracts shorter than 1000 characters.
Compared with the traditional article-to-abstract
PubMed summarization task, which evaluates
long summary generation for long text (Cohan
et al., 2018), PubMed ShortSum evaluates ex-
treme summarization for short text and is a more
comparable task to our general domain Gigaword
summarization. For summarization evaluation, we
use standard lexical metrics (BLEU-4, ROUGE-L)
and domain-specific factuality metrics: named
entity matching (NEM) for both radiology (Miura
et al., 2021) and biomedical (Alambo et al., 2022)
summarization, and CheXbert (Smit et al., 2020)8

for radiology.
We evaluate embeddings trained for the bio-

medical domain on MedSTS (Yanshan et al.,
2020), a clinical text similarity benchmark. Since
the radiology domain has no text similarity
datasets available, we design an impression-to-
findings retrieval task on the Open-I test set, and
report Accuracy@1/5/10. This retrieval task can
also evaluate embedding quality as it requires
the model to differentiate text from same/differ-
ent reports by encoding texts from matching
findings-impression pairs (from the same report)
with similar representations.

Training Details Models are trained for 10
epochs with validation loss used for checkpoint
selection. We use distributed data parallelism on
eight GPUs with the largest batch size permissi-
ble given computational constraints, resulting in
batch sizes of 1024, 512, and 128 for small, base,
and large models. With a dataset of ∼8M samples,
we thus train the large model for ∼64,000 steps
per epoch. We use AdaFactor (Shazeer and Stern,
2018) with learning rates of 10−3 for MIMIC-
CXR and 2× 10−5 for PubMed pretraining.

7In a radiology report, the ‘‘findings’’ section is a de-
tailed description and the ‘‘impression’’ section is a sum-
mary of the findings with follow-up recommendation.

8The average of the weighted-F1 score across 14 path-
ological observations labelled by CheXbert.

Baselines In-domain General domain
Text NLI/Summ.

BERT – Miura et al. ✓ ∼ / −
CXR-BERT – Boecking et al. ✓ ∼ / −
ESIM – Chen et al. ✗ ✓ / −
T0 & T0++ ✗ ✗ / ✓

GPT-3 ✗ ✗ / ✗

GPT-3-{NLI, GW} ✗ ✓ / ✓

CXR-BERT-NLI ✓ ✓ / −
PubMedBERT-NLI ✓ ✓ / −
SciFivelarge-{NLI, GW} ✓ ✓ / ✓

T5large-MLM → Task ✓ ✓ / ✓

DOT5 ✓ ✓ / ✓

Table 3: Baseline comparisons grouped into
three categories: (1) task-specific zero-shot base-
lines (green) , (2) large language models (grey) ,
and (3) sequential training on in-domain text and
general-domain task labels (pink) . ‘‘✓’’ and
‘‘✗’’ specify whether the given data source was
used for training. ‘‘Summ.’’ means summariza-
tion. Models only evaluated on NLI do not require
summarization data, hence ‘‘−’’. ‘‘∼’’ indicates
that BERT and CXR-BERT were finetuned on
MedNLI, a ‘near-domain’ NLI dataset.

4.2 Baselines

We have three categories of baselines: (1) task-
specific zero-shot baseline models reported from
the literature (where applicable); (2) LLMs in-
cluding T0 and GPT-3; and (3) sequential train-
ing first on in-domain unlabelled data and then
on general-domain task labels. All the baseline
models in our study must satisfy one constraint:
not using any in-domain labels for the task, but
they may differ in the required training resources
(detailed comparison is found in Table 3). We
compare with (2) as LLMs are known to be ex-
cellent zero-shot and few-shot learners for an
unseen task, and should serve as a reasonable
baseline for domain transfer. We provide (3) as
a straightforward baseline to sequentially com-
bine in-domain MLM training and general-domain
task training as opposed to our proposed multi-
task training.

Task-specific Zero-shot Baselines We com-
pare with the strongest task-specific zero-shot
models from the literature. For the NLI task, we
compare with Miura et al. (2021) and Boecking
et al. (2022), which both finetune a BERT model
with MedNLI training data and then test on
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RadNLI. Boecking et al. (2022) perform better
as they use radiology-specific BERT model. Note
that MedNLI is a nearby-domain corpus rather
than general-domain task data, and in fact there
has not been successful attempts in the literature
to transfer general-domain NLI to RadNLI. Note
that in the later sequential training section we will
establish such baselines from finetuning CXR-
BERT on general-domain NLI. For MedNLI, we
compare with the best transfer learning results
so far, ESIM (MultiNLI) which was trained on
MultiNLI datasets (Romanov and Shivade, 2018).
For radiology summarization, to our knowledge,
we are the first to report results on direct
transfer from general-domain summarization. For
biomedical summarization, since we use a new
dataset (PubMed ShortSum), there is no prior
comparison.

Large Language Models T0 (Sanh et al., 2022)
and GPT-3 (Brown et al., 2020) are massively
pretrained language models that can be used
off-the-shelf for zero-shot or few-shot inference.
T0 is pretrained with multiple tasks including
general-domain summarization datasets (but not
NLI), and shows strong transfer ability (Sanh
et al., 2022). T0 can be seen as a strong general-
domain summarization model and also strong
zero-shot domain transfer baseline on summa-
rization. T0 is also particularly effective in trans-
ferring to unseen tasks. Therefore, we include
T0 as a zero-shot baseline for NLI even though
it has not been trained with any NLI data. We
test T0 (3B) and the most powerful T0++ (11B)
model. GPT-3 (Brown et al., 2020) (davinci)
is a massive language model with 175B param-
eters, pretrained on raw text with an autoregres-
sive language modelling objective.

In the general domain, both models are shown
to have performed reasonably well on NLI and
summarization with prompting. We test their
zero-shot-inference capabilities in our experi-
ments, following the original papers for prompt
design. For the NLI task, both T0 models and
GPT-3 use the ANLI prompt template described
in Brown et al. (2020): ‘‘<premise> Question:
<hypothesis> True, False or Neither?’’. For the
summarization task, T0 used the prompt: ‘‘<docu-
ment> \n === \n Generate a title for this article:’’.
For GPT-3 summarization, we used the prompt
(‘‘<document>\n\n Tl;dr:’’) as recommended in

the OpenAI GPT-3 playground example.9 Since
GPT-3 benefits when few-shot examples are in-
corporated in the prompt, we create two additional
baselines (GPT-3-NLI and GPT-3-GW10) that
perform in-context learning of the task from
general-domain NLI training data (30 examples,
randomly selected) and Gigaword summarization
training data (20 examples, randomly selected)
respectively (Table 2).

Sequential Training The most straightforward
way to exploit both in-domain unlabelled data and
task labels is to first train on in-domain MLM
and then further finetune on general-domain
task labels.11 We provide two variants of this
baseline. The first type performs contin-
ual training with general-domain task labels
from SOTA domain-specific pretrained mod-
els. We adopt SciFive (Phan et al., 2021), a T5
model pretrained on large biomedical corpora,
CXR-BERT-General (Boecking et al., 2022),
a radiology-specialized BERT model, and the
PubMed-specific PubMedBERT (Gu et al., 2021).
For finetuning these models we use the same
general-domain task data as provided to DOT5,
where for the BERT models we only do fine-
tuning on NLI. This results in baseline models
SciFivelarge-NLI, SciFivelarge-GW (summariza-
tion), CXR-BERT-NLI, and PubMedBERT-NLI.
We further improve SciFivelarge-NLI by including
our proposed self-finetuning stage (SciFivelarge-
NLI + SFT). Since there is no radiology-pretrained
T5 model, we compare with SciFive on both
domains.

The second baseline type strictly compares
multi-task training (DOT5) and sequential train-
ing. Here, we first pretrain T5 with in-domain
MLM, and then continually pretrain on the
general-domain task data, ensuring other factors
remain the same including the training dura-
tion, use of NLGU, and use of self-finetuning
where appropriate. We call this setting T5large-
MLM → Task.

9https://beta.openai.com/examples/default
-tldr-summary.

10These are still zero-shot baselines as they do not use
in-domain task examples.

11This baseline category is similar to contemporaneous
work (Pan et al., 2022) where domain-task transfer is
achieved through sequential in-domain off-task training fol-
lowed by general-domain in-task training. Here we do not
use in-domain task data of any kind.
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Model Accuracy F1-score

Radiology (RadNLI)
BERT (Miura et al., 2021) 53.3 −
CXR-BERT (Boecking et al., 2022) 65.2 −
T0 (3B) 24.2 21.2
T0++ (11B) 35.4 33.3
GPT-3 22.1 18.9
GPT-3-NLI 26.7 25.6
CXR-BERT-NLI 75.0 73.5
SciFivelarge-NLI 47.5 35.4
SciFivelarge-NLI + SFT 70.2 66.3
T5large-MLM → Task 78.3 75.6
DOT5large 82.1 79.8

Biomedicine (MedNLI)
ESIM (MultiNLI) (Chen et al., 2017) 51.7 −
T0 (3B) 37.0 23.9
T0++ (11B) 55.2 44.6
GPT-3 39.9 38.5
GPT-3-NLI 39.2 28.8
PubMedBERT-NLI 75.7 75.8
SciFivelarge-NLI 50.1 41.4
SciFivelarge-NLI + SFT 67.3 65.8
T5large-MLM → Task 71.4 71.5
DOT5large 71.2 69.9

Table 4: Zero-shot NLI results, showing micro
accuracy and macro F1. BERT and CXR-BERT
are trained on MedNLI, we reproduce numbers
from Miura et al. (2021) and Boecking et al.
(2022) respectively. ESIM (Chen et al., 2017) is
the highest-performing directly transferred model
reported by Romanov and Shivade (2018). T0
(Sanh et al., 2022) and GPT-3 (Brown et al.,
2020) baselines were conducted by us, matching
stated hyperparameters where possible. Models
with ‘‘-NLI’’ are finetuned or prompted baselines.
‘SFT’ means with self-finetuning.

4.3 Main Results
NLI (Table 4) DOT5large establishes new SOTA
for zero-shot domain transfer on RadNLI and
competitive results on MedNLI (Table 4). On
RadNLI, DOT5large reaches an impressive 82.1%
on accuracy and is the best performing model. It
outperforms the strongest reported number from
the literature (CXR-BERT) by more than 15%,
and our baseline CXR-BERT-NLI by almost 7%.
Comparing DOT5 to T5large-MLM → Task on
RadNLI reveals the benefit of multitask training
for compositional transfer.

On MedNLI, DOT5large outperforms ESIM
(MultiNLI) by almost 20% (accuracy), but does
not quite reach the 75.7% accuracy achieved by
PubMedBERT-NLI, which establishes a new

Model NEM CheXbert BLEU-4 ROUGE-L

Radiology (Open-I Summarization)
T0 (3B) .054 .243 .027 .088
T0++ (11B) .019 .145 .012 .061
GPT-3 .050 .219 .006 .063
GPT-3-GW .093 .304 .019 .127
SciFivelarge-GW .019 .124 .002 .036
T5large-MLM → Task .050 .256 .015 .077
DOT5large .082 .258 .038 .117

Biomedicine (PubMed ShortSum)
T0 (3B) .293 − .053 .291
T0++ (11B) .290 − .066 .341
GPT-3 .197 − .017 .184
GPT-3-GW .272 − .046 .266
SciFivelarge-GW .109 − .010 .149
T5large-MLM → Task .230 − .044 .232
DOT5large .263 − .047 .260

Table 5: Zero-shot summarization results.
NEM (named entity matching) and CheXbert
(radiology-specific) assess domain-specific fac-
tuality, while BLEU and ROUGE are standard
lexical metrics. In all cases higher is better. GW =
Gigaword. T0 (Sanh et al., 2022) and GPT-3
(Brown et al., 2020) baselines were conducted
by us.

SOTA in zero-shot domain transfer on MedNLI—
supervised SOTA is 86.6% (Phan et al., 2021).
Although factors such as tokenization and pre-
training strategies may contribute, we speculate
that the domain gap between MedNLI and our
biomedical pretraining corpus explains the weaker
performance of DOT5 on MedNLI. MedNLI was
sourced from clinical notes in MIMIC-III, which
differ distributionally from biomedical articles
in PubMed. Supporting this hypothesis, we ob-
served that DOT5 pretrained on radiology text,
and the sequential baseline T5large-MLM → Task
achieved similar performance on MedNLI (70%
accuracy), indicating that results on MedNLI may
not fully reflect compositional domain knowl-
edge transfer in our setup. In this case, a strong
NLI-specific model is most performant, while
lacking potentially advantageous versatile text
generation/summarization capabilities.

Summarization (Table 5) DOT5large achieves
competitive performance compared with the best
model in radiology (GPT-3-GW) and biomedi-
cal domains (T0 models) (Table 5). In radiol-
ogy, DOT5large is the second-best model. That the
strongest performing models on summarization
are LLMs with substantially many parameters is
not surprising; we observe in §5.2 that DOT5 too
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Radiology (Open-I Retrieval)
Model Acc@1 Acc@5 Acc@10

all-mpnet-base-v2 8.3 15.1 20.2
+ DOT5large (no-MLM) 12.0 19.9 22.8
+ DOT5large 13.3 20.4 25.5

Biomedicine (MedSTS)
Model r ρ

all-mpnet-base-v2 72.8 64.6
+ DOT5large (no-MLM) 76.4±0.04 67.1±0.06

+ DOT5large 76.9±0.00 67.9±0.09

Table 6: Text embedding learning results. Start-
ing from a state-of-the-art embedding model
(all-mpnet-base-v2), we finetune with DOT5-
generated data (indicated by ‘+’). Radiology
evaluation is retrieval: given the impression
section of a report, find the corresponding find-
ings section. For biomedicine, we report simi-
larity on MedSTS (Yanshan et al., 2020), where
r and ρ refer to Pearson’s r and ρ (scaled by
100 for legibility).

enjoys scaling effects. Most importantly, we again
demonstrate the benefit from multi-task compo-
sitional transfer as DOT5large significantly outper-
forms both T5large-MLM→Task and SciFive-GW
across all metrics in both domains. This further
verifies that a naı̈ve sequential training on these
two sources does not lead to effective composi-
tional knowledge transfer. We also acknowledge
it is more difficult to perform domain transfer for
generation tasks in general: We cannot perform
the data augmentation NLG and self-finetuning
pipeline as it amounts to training the model to
generate its own outputs.

Text Embedding Learning (Table 6) The
DOT5-generated examples greatly improve the
SOTA sentence embedding model’s capability on
both impression-to-findings retrieval in radiology
and semantic textual similarity (MedSTS) in the
biomedicine domain (Table 6). This is evidence
that DOT5-generated sentences are of high qual-
ity and have captured semantic similarity and con-
tradiction required for learning good embedding
model. We also compare with an ablated version
of DOT5 without in-domain MLM to generate data
and find that the full model performs better across
the board. his shows the importance of domain
training for generating good in-domain examples.
We explore this further in §5.1.

Setting RadNLI (acc.) Sum. (NEM)

DOT5large (full model) 82.1 .082

(1) no in-domain MLM 63.5 .015
(2) no NLGU & (3) 59.0 .052
(3) no self-finetuning 49.6 −

Table 7: Ablation study on DOT5 components,
evaluated on radiology. Removing MLM removes
in-domain text during pretraining. Removing
NLGU reduces NLI to purely discriminative (thus
also disabling self-finetuning) and summariza-
tion to purely generative tasks. Self-finetuning is
only used for NLI tasks. Sum. = summarization,
NEM = named-entity matching metric. Note that
the component is removed one by one but not
incrementally.

5 Further Analysis

In this section, we demonstrate the importance
of individual components of DOT5 (§5.1) and ex-
plore the role of model size (§5.2). Finally, we
provide fine-grained analysis on RadNLI to ver-
ify whether DOT5 has indeed acquired domain-
specific task knowledge from compositional
transfer (§5.3).

5.1 Ablation Study

Through ablations, we probe the contributions of
key components of DOT5: 1) In-domain MLM,
2) NLGU (combining NLU and NLG) (§3.1), and
3) self-finetuning for zero-shot NLI (§3.3). We
conduct these ablations on the radiology domain
on DOT5large. The results are shown in Table 7.

We observe that all components are essen-
tial to the success of the model. In-domain MLM
is especially important for summarization, without
which the model fails in zero-shot transfer as it
often just extracts a random subsequence of the
document. Removing NLGU harms both NLI and
summarization. Training without NLGU removes
the NLG component from NLI and therefore dis-
ables self-finetuning. Self-finetuning is the most
important component for boosting NLI perfor-
mance, without which the model’s accuracy drops
more than 30%. As shown in Table 4, SciFive also
benefits from self-finetuning in this way. This in-
dicates that the pseudo in-domain NLI task data
generated by NLGU is crucial. Training without
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Figure 4: Maximum attention weights assigned
to control code {label} (‘‘entailed’’, ‘‘neutral’’,
‘‘contradictory’’) in the prompt in NLI hypothesis
generation, averaged over 100 randomly sampled ex-
amples from the RadNLI dev set. Error bars represent
standard deviation.

Prompt: Generate a {label} sentence of {premise}:

premise: ‘‘Low lung volumes but no evidence of pneumonia.’’

l
a
b
e
l Entailment: ‘‘There is no evidence of pneumonia.’’

Neutral: ‘‘The patient has a history of smoking.’’
Contradiction: ‘‘The patient has pneumonia.’’

premise: ‘‘The patient is rotated slightly which limits assessment.’’

l
a
b
e
l Entailment: ‘‘Assessment is limited due to patient rotation.’’

Neutral: ‘‘The patient is rotated to the left.’’
Contradiction: ‘‘The patient is oriented perfectly. ’’

Table 8: Pseudo-NLI data in the radiology do-
main generated by DOT5large for a given input
premise and label. Premises are taken from the
development split of the RadNLI dataset.

NLGU also removes the NLU task for summa-
rization and brings down the performance, in-
dicating that having an NLU task can also benefit
generation.

We hypothesize that NLU improves NLG by
forcing the model to be more sensitive to the
control code in the prompt, leading to improved
pseudo-data generation and better summarization.
To test this, following Tang et al. (2018), we
compute the maximum attention weights across all
attention heads to the control codes in the prompt
when generating an NLI hypothesis (Figure 4). We
compare DOT5large trained with or without NLU.
We see that the full model attends more on the
control codes, suggesting that NLU is increasing
label conditionality during generation. Table 8
shows some examples: When required to generate
an entailment, the model can usually correctly
paraphrase the original sentence; for negation,

Figure 5: Scaling-up effect on RadNLI (left) and Open-I
summarization (right). Both the full model and its ab-
lated versions are compared. Note that self-finetuning
is only applicable for the NLI tasks.

the model is usually able to correctly identify
modifiers to flip the logic (e.g., change ‘‘increase’’
to ‘‘decrease’’ and adding or removing ‘‘no’’);
for neutral, the model generates a thematically re-
lated sentence but not directly negating or agree-
ing with the original sentence.

5.2 Effect of Scaling Up

We have so far reported results on a large
T5 model (770M parameters). In Figure 5, we
plot the performance of small (70M) and base
(220M) DOT5 models with their ablated versions
for RadNLI and radiology summarization, show-
ing a clear trend of increasing performance as
the model size grows. Interestingly, this scaling
effect disappears when we remove in-domain
MLM, revealing the importance of domain train-
ing for larger models, especially for summariza-
tion. This is possibly because, without domain
training, scaling up the model leads to overfit-
ting to the general-domain task data. The compo-
sitional transfer framework from DOT5 however
regularises the model for more complex knowl-
edge acquisition, and thus is able to harness the
power from larger models.

5.3 Evidence of Compositional Transfer in
DOT5: A Case Study on RadNLI

Although RadNLI is a radiology-specific NLI
dataset, we observe that some examples may be
solvable using general-domain task knowledge
(e.g., syntactic cues) alone. A general-purpose
NLI model will likely detect that ‘There is no
pneumothorax’ contradicts ‘There is a pneu-
mothorax’ without requiring radiology-specific
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Does not require radiology expertise
Premise There is a small left pleural effusion.
Hypothesis No pleural effusion or pneumothorax is seen.
Label Contradiction

Requires radiology expertise
Premise The cardiac silhouette is top normal.
Hypothesis The heart is not enlarged.
Label Entailment

Table 9: Examples from RadNLI that do or do
not require radiology-specific knowledge to solve.
While all models listed in Table 10 correctly
solved the top example, only DOT5large solved the
more challenging second example.

knowledge such as an understanding of pneumoth-
orax. Therefore, higher performance on RadNLI
may not strictly guarantee the model has acquired
in-domain knowledge. To quantify how much
of DOT5’s transfer success is due to the acqui-
sition of the previously unseen domain-specific
task knowledge versus from direct application of
the general-domain task knowledge, we manually
annotated each of the 480 sentence pairs in the
RadNLI test set by whether it could be solved
without particular medical expertise.12 Examples
are shown in Table 9.

Table 10 compares three models on these sub-
sets: DOT5large (a), T5large-MLM → Task (b), and
DOT5large without in-domain MLM (c) (equiva-
lent to ‘T5large → Task’). We further test with
and without self-finetuning to probe its capacity
to strengthen domain-specific competence.

While DOT5large achieves the best performance
overall, it is specifically on challenging domain-
specific cases that it outperforms T5large-MLM →
Task, an increase of 15 points in F1. For exam-
ple, in Table 9, only DOT5large is able to solve
the second example which requires radiology-
specific knowledge (the model should know car-
diac silhouette includes heart size; and if the heart
is top normal, then it should not be enlarged).
This demonstrates the role of compositional trans-
fer for inferring the otherwise unseen in-domain
task knowledge (in this case, radiology NLI
knowledge) solving challenging cases that require
expertise.

12We determined 228 (47%) pairs could be solved with-
out medical/radiological expertise, 177 (37%) could not, and
the remaining 75 (16%) were ambiguous. Ambiguous cases
were excluded from the analysis.

Expertise required
Model All cases Yes No
a) DOT5large 80.7 70.1 86.4
No self-finetuning 51.0 43.3 50.8

b) T5large-MLM → Task 75.6 54.8 86.5
No self-finetuning 35.6 36.2 35.6

c) T5large → Task 59.5 35.3 70.1

No self-finetuning 37.5 36.1 35.1

Zero-rule baseline 24.6 29.0 20.0

Table 10: Macro F1 of DOT5 with and without
in-domain data during pretraining, on subsets of
RadNLI requiring radiology-specific expertise or
not. The zero-rule baseline always outputs the
most common class (for RadNLI, this is ‘Nei-
ther’). We report macro F1 to account for differ-
ing label distributions. Note that T5large → Task
is equivalent to DOT5large without in-domain
MLM training.

The two ablated versions help understand where
this domain-specific task knowledge is acquired.
In-domain MLM training is key as removing it
(c) significantly decreases the performance on
domain-expert cases in particular, producing a
model which cannot benefit from self-finetuning
at all for such cases. This is because without
in-domain MLM, the model is not able to gener-
ate good-quality pseudo in-domain labels in the
first place, and therefore self-finetuning has little
effect on the expert cases. Introducing in-domain
data sequentially (b) resolves the performance gap
on non-expert cases, but still underperforms on
domain-specific cases relative to multi-task train-
ing (a). We conclude that the compositional fu-
sion of task and domain knowledge happens
during DOT5’s multi-task pretraining phase with
in-domain MLM as the key element, and that
domain-specific competence is elicited through
self-finetuning.

6 Conclusion and Discussion

We propose DOT5, a compositional transfer learn-
ing framework to solve domain-specific NLP
tasks without requiring in-domain task labels. We
show the effectiveness of DOT5 on zero-shot
transfer to multiple tasks in the biomedicine and
radiology domains. DOT5 significantly outper-
forms T5 sequential training across all tasks,
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and achieves zero-shot SOTA in radiology NLI
with massive gains. We also conduct extensive
analyses to identify the contribution from each
model component and the benefits from scaling
up the model size, and demonstrate direct evi-
dence of domain-specific task knowledge learned
from DOT5’s compositional transfer.

Limitations of this work include the challenge
of drawing clear boundaries between domains
and the necessarily incomplete exploration of
hyperparameters and configurations. For exam-
ple, general domain texts may contain biomedical
or radiology sources, and our ‘biomedical’ NLI
evaluation set leans strongly clinical, introduc-
ing a degree of domain shift. Investigation of the
weighting of terms in the loss reveals the poten-
tial to improve performance through more ex-
haustive hyperparameter search—we emphasise
that this was a proof-of-concept study and al-
though DOT5 performs favourably, zero-shot
domain transfer could be further pushed, espe-
cially if only a single downstream task is required.

The proposed NLGU method and subsequent
self-finetuning was critical for improving down-
stream task performance. However, we observed
an intermittent negative effect wherein the model
would attempt to solve the NLU task when pre-
sented with an unusually long prompt. Further
work can be done to refine this approach. For
example, the benefit of NLGU in resource-rich
domains is unclear. As our focus is on domain
transfer and we do not evaluate on general-domain
tasks, we leave such experimentation to future
study.

Finally, we acknowledge that it is non-trivial
to apply our full framework to single-sentence/
paragraph classification tasks. While our most
basic setup (compositional training of in-domain
MLM and vanilla task training) can still be
transferable to any task format, NLGU and self-
finetuning would currently only work for tasks
that involve pairs of texts. Nonetheless, we be-
lieve DOT5 proves to be a highly effective zero-
shot domain transfer framework which will be
beneficial to domain-specific applications beyond
radiology and biomedicine.
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