@article{meadows-freitas-2023-introduction,
title = "Introduction to Mathematical Language Processing: Informal Proofs, Word Problems, and Supporting Tasks",
author = "Meadows, Jordan and
Freitas, Andr{\'e}",
journal = "Transactions of the Association for Computational Linguistics",
volume = "11",
year = "2023",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2023.tacl-1.66",
doi = "10.1162/tacl_a_00594",
pages = "1162--1184",
abstract = "Automating discovery in mathematics and science will require sophisticated methods of information extraction and abstract reasoning, including models that can convincingly process relationships between mathematical elements and natural language, to produce problem solutions of real-world value. We analyze mathematical language processing methods across five strategic sub-areas (identifier-definition extraction, formula retrieval, natural language premise selection, math word problem solving, and informal theorem proving) from recent years, highlighting prevailing methodologies, existing limitations, overarching trends, and promising avenues for future research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="meadows-freitas-2023-introduction">
<titleInfo>
<title>Introduction to Mathematical Language Processing: Informal Proofs, Word Problems, and Supporting Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Meadows</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Freitas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Automating discovery in mathematics and science will require sophisticated methods of information extraction and abstract reasoning, including models that can convincingly process relationships between mathematical elements and natural language, to produce problem solutions of real-world value. We analyze mathematical language processing methods across five strategic sub-areas (identifier-definition extraction, formula retrieval, natural language premise selection, math word problem solving, and informal theorem proving) from recent years, highlighting prevailing methodologies, existing limitations, overarching trends, and promising avenues for future research.</abstract>
<identifier type="citekey">meadows-freitas-2023-introduction</identifier>
<identifier type="doi">10.1162/tacl_a_00594</identifier>
<location>
<url>https://aclanthology.org/2023.tacl-1.66</url>
</location>
<part>
<date>2023</date>
<detail type="volume"><number>11</number></detail>
<extent unit="page">
<start>1162</start>
<end>1184</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Introduction to Mathematical Language Processing: Informal Proofs, Word Problems, and Supporting Tasks
%A Meadows, Jordan
%A Freitas, André
%J Transactions of the Association for Computational Linguistics
%D 2023
%V 11
%I MIT Press
%C Cambridge, MA
%F meadows-freitas-2023-introduction
%X Automating discovery in mathematics and science will require sophisticated methods of information extraction and abstract reasoning, including models that can convincingly process relationships between mathematical elements and natural language, to produce problem solutions of real-world value. We analyze mathematical language processing methods across five strategic sub-areas (identifier-definition extraction, formula retrieval, natural language premise selection, math word problem solving, and informal theorem proving) from recent years, highlighting prevailing methodologies, existing limitations, overarching trends, and promising avenues for future research.
%R 10.1162/tacl_a_00594
%U https://aclanthology.org/2023.tacl-1.66
%U https://doi.org/10.1162/tacl_a_00594
%P 1162-1184
Markdown (Informal)
[Introduction to Mathematical Language Processing: Informal Proofs, Word Problems, and Supporting Tasks](https://aclanthology.org/2023.tacl-1.66) (Meadows & Freitas, TACL 2023)
ACL