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Abstract

Automating discovery in mathematics and sci-
ence will require sophisticated methods of
information extraction and abstract reason-
ing, including models that can convincingly
process relationships between mathematical
elements and natural language, to pro-
duce problem solutions of real-world value.
We analyze mathematical language process-
ing methods across five strategic sub-areas
(identifier-definition extraction, formula re-
trieval, natural language premise selection,
math word problem solving, and informal the-
orem proving) from recent years, highlighting
prevailing methodologies, existing limitations,
overarching trends, and promising avenues for
future research.

1 Introduction

Prove that there is no function f from
the set of non-negative integers into it-
self such that f(f(n)) = n + 1987 for
every n.

Show that the nearest neighbor inter-
action Hamiltonian of an electronic
quasiparticle in Graphene can be writ-
ten as H = �Ω

∑
q(fqb

†
qaq + f ∗

qa
†
qbq).

How is the sun’s atmosphere hotter than
its surface?

If we hope to use machines to derive mathe-
matically rigorous and explainable solutions to
address such questions, models must reason over
both natural language and mathematical elements
such as equations, expressions, and variables.
Given some input problem description, the ideal
model is at least capable of recalling relevant
statements (premise selection), assigning contex

tual descriptions to math elements within that text
(identifier-definition extraction), and performing
robust manipulation of equations and expressions
towards an explainable reasoning argument (in-
formal theorem proving). Previous years have
advanced many of the components required to
deliver this vision. Transformer-based (Vaswani
et al., 2017), large language models (LLMs)
(Brown et al., 2020; Chen et al., 2021) have be-
gun to exhibit mathematical (Rabe et al., 2020)
and logical (Clark et al., 2020) capabilities. Graph-
based models also show competence in premise
selection (Ferreira and Freitas, 2020b), math
question answering (Feng et al., 2021), and
math word problems (MWPs) (Zhang et al.,
2022b). The evolutionary path of mathemat-
ical language processing can be traced from
MWPs (Feigenbaum and Feldman, 1963; Bobrow,
1964; Charniak, 1969) and linguistic analysis
of formal proofs (Zinn, 1999, 2003), to the
present day, where transformers and graph-based
models deliver leading metrics in math and
language reasoning tasks, complemented by
symbolic methods (Zhong et al., 2022). This
survey provides a synthesis of this recent evo-
lutionary arch: We consider five representative
tasks with examples, describe contributions lead-
ing to the current state-of-the-art, discuss notable
limitations of the current solutions, overarching
trends, and promising research directions.

2 Representative Tasks

There is an abundance of tasks considering
mathematical language, such as question answer-
ing (Hopkins et al., 2019; Feng et al., 2021;
Lewkowycz et al., 2022; Mansouri et al., 2022b)
and headline generation (Yuan et al., 2020; Peng
et al., 2021). Mathematical language processing
(MLP) itself has been described in the context of
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Figure 1: Extractive tasks tend to not require inference chains to solve them, compared to more abstractive tasks.
Identifier-definition extraction assigns identifiers (e.g., ψ(x)) to their context. Formula retrieval considers the
structure of formulae, and scores them based on similarity to a query formula. Premise selection selects state-
ments most likely to be useful for solving a proof. Solving MWPs (math word problems) involves calculating
solutions to arithmetic problems. Informal theorem proving involves the production of proofs and inference
chains combining natural and mathematical language.

various targeted texts, such as linking variables to
descriptions (Pagael and Schubotz, 2014), grad-
ing answers (Lan et al., 2015), and deriving ab-
stract representations for downstream applications
(Wang et al., 2021). We take an inclusive stance,
selecting a few choice tasks spanning surface-level
retrieval, as seen in identifier-definition extrac-
tion and formula retrieval tasks, through models
which require the encoding of formal abstractions
and implicit reasoning chains, such as solving
MWPs and informal theorem proving. These ar-
eas are projected onto an inference spectrum dis-
played in Figure 1. Extractive tasks are positioned
to the surface form of the text (information re-
trieval perspective), including identification of
relevant mathematical statements, ranking lists
of formulae, and linking variables to contextual
definitions. Logical puzzle solvers (Groza and
Nitu, 2022) and informal reasoning generation
models (Lewkowycz et al., 2022) exist far into the
abstractive side, due to the step-wise and some-
times symbolic reasoning required to address
them. The use of ‘‘formal’’ versus ‘‘informal’’ dif-
ferentiates strict automated theorem prover (ATP)
approaches requiring the use of a consistent for-
mal language representation (Rudnicki, 1992) and
hard-coded logic (Bansal et al., 2019), from ap-
proaches that input mathematical language and
infer without necessary reliance on strict symbolic
and logical inference mechanisms. Autoformal-
ization (Szegedy, 2020; Wu et al., 2022) aims to
cross this divide. We consider informal methods
for solving five representative tasks in this con-
text, with examples given below, visually dis-
played in Figure 1.

Identifier-Definition Extraction. The assign-
ment of meaning to otherwise vague mathematical
elements. Without context, equations such as p =
�k are ambiguous. What meaning is attributed
to k? This task involves finding (identifier, defi-
nition) pairs, such as (k,wavevector) (Kristianto
et al., 2012; Stathopoulos et al., 2018).

Formula Retrieval. Mathematical language in-
cludes math elements written in markup lan-
guages such as LaTeX. Given a query formula,
the Wikipedia Formula Browsing task (Zanibbi
et al., 2016a; Mansouri et al., 2022b) involves
ranking a list of candidate formulae in terms
of their similarity to that formula. For example,
given the query x2 + y2 = r2, the formula a2 +
b2 = c2 should rank higher than y = mx+ c.

Natural Language Premise Selection (NLPS).
Given a mathematical statement s that requires
proof, and a collection of premises P , this task
consists of retrieving the premises in P that are
most likely to be useful for proving s (Ferreira
and Freitas, 2020a; Valentino et al., 2022). For
example, given the purple claim statement in
Figure 1, a NLPS model should select the green
statements as premises, excluding the red.

Math Word Problem Solving. Solving arith-
metic (Roy and Roth, 2016) or algebra (Kushman
et al., 2014) word problems. Andrew has 3 dogs.
If they each give birth to 2 others, how many
dogs will he have? An example requiring premise
selection and identifier-definition extraction is
given in Figure 1.
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Informal Theorem Proving. Outputting reason-
ing chains from premises in order to ‘‘prove’’ a
mathematical language statement. From Figure 1,
the energy of the particle is Ek = γmc2. Substi-
tuting v = 0 into the Lorentz factor gives γ = 1,
and substituting γ = 1 into Ek = γmc2 gives
Ek = mc2. Such informal reasoning does not
rely on formal frameworks, such as Fitch-style
proofs, to infer quantitative results (Lewkowycz
et al., 2022).

3 Methods

We highlight key points abstracted from task ap-
proaches in bold, give an overview of methods in
Table 1, and discuss approach specific limitations
in the Appendix.

3.1 Identifier-Definition Extraction

A significant proportion of variables or identi-
fiers in formulae or text are explicitly defined
within a discourse context (Wolska and Grigore,
2010). Descriptions are usually local to the first
instance of the identifiers in the discourse. It is
the broad goal of identifier-definition extraction
and related tasks to pair-up variables with their
intended meaning.

The task has not converged to a canonical
form. Despite the clarity of its overall aim,
the task has materialized into different forms:
Kristianto et al. (2012) predict descriptions given
expressions, Pagael and Schubotz (2014) predict
descriptions given identifiers through identifier-
definition extraction, Stathopoulos et al. (2018)
predict if a type matches a variable through vari-
able typing, and Jo et al. (2021) predict notation
given context through notation auto-suggestion
and notation consistency checking tasks. More con-
cretely, identifier-definition extraction (Schubotz
et al., 2016a) involves scoring identifier-definiens
pairs, where a definiens is a potential natural lan-
guage description of the identifier. Given graph
nodes from predefined variables V and types T ,
variable typing (Stathopoulos et al., 2018) is the
task of classifying whether edges V × T are
either existent (positive) or non-existent (neg-
ative), where a positive classification means a
variable matches with the type. Notation auto-
suggestion (Jo et al., 2021) uses the text of both
the sentence containing notation and the previ-
ous sentence to model future notation from the

vocabulary of the tokenizer. This area can be
traced from an early ranking task (Pagael and
Schubotz, 2014) reliant on heuristics and rules
(Alexeeva et al., 2020), through ML-based edge
classification (Stathopoulos et al., 2018), to lan-
guage modeling with Transformers (Jo et al.,
2021). Different datasets are proposed for each
task variant.

There is a high variability in scoping defi-
nitions. The scope from which identifiers are
linked to descriptions varies significantly, and
it is difficult to compare model performance
even when tackling the same variant of the task
(Schubotz et al., 2017; Alexeeva et al., 2020).
At a local context, models such as Pagael and
Schubotz (2014) and Alexeeva et al. (2020) match
identifiers with definitions from the same doc-
ument ‘‘as the author intended’’, while other
identifier-definition extraction methods (Schubotz
et al., 2016a, 2017) rely on data external to a given
document, such as links to semantic concepts on
Wikidata and NTCIR-11 test data (Schubotz et al.,
2015). At a broader context, the variable typing
model proposed in Stathopoulos et al. (2018) relies
on an external dictionary of types (Stathopoulos
and Teufel, 2015; Stathopoulos and Teufel, 2016;
Stathopoulos et al., 2018) extracted from both the
Encyclopedia of Mathematics1 and Wikipedia.

Vector representations have evolved to trans-
fer knowledge from previous tasks, allowing
downstream variable typing tasks to benefit
from pre-trained embeddings. Overall, vec-
tor representations of text have evolved from
feature-based vectors learned from scratch for
a single purpose, to the modern paradigm of pre-
trained embeddings re-purposed for novel tasks.
Kristianto et al. (2012) input pattern features into
a conditional random fields model for the pur-
pose of identifying definitions of expressions in
LaTeX papers while Kristianto et al. (2014a)
learn vectors through a linear-kernel SVM with
input features comprising of sentence patterns,
part-of-speech (POS) tags, and tree structures.
Stathopoulos et al. (2018) extend this approach
by adding type- and variable-centric features as a
baseline also with a linear kernel. Alternatively,
Schubotz et al. (2017) use a Gaussian scoring

1https://encyclopediaofmath.org.
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Work Learning Approach Dataset Metrics Math Format

Identifier-Definition Extr.
Kristianto et al. (2012) S CRF with linguistic pattern features arXiv papers P, R, F1 MathML
Kristianto et al. (2014a) S SVM with linguistic pattern features arXiv papers P, R, F1 MathML
Pagael and Schubotz (2014) R Gaussian heuristic ranking Wikipedia articles P@K, R@K MathML
Schubotz et al. (2016a) UNS Gaussian ranking + K-means clusters NTCIR-11 P, R, F1 LaTeX
Schubotz et al. (2017) S Gaussian rank + pattern matching + SVM NTCIR-11 P, R, F1 LaTeX
Stathopoulos et al. (2018) S Link prediction with BiLSTM arXiv papers P, R, F1 MathML
Alexeeva et al. (2020) R Odin grammar and open-domain causal IE MathAlign-Eval P, R, F1 LaTeX
Jo et al. (2021) S BERT fine-tuning S2ORC Top1, Top5, MRR LaTeX
Ferreira et al. (2022) S SciBERT fine-tuning with aug. data arXiv papers P, R, F1 MathML
van der Goot (2022) S Shared encoder + multi-task decoders Symlink P, R, F1, F-score LaTeX
Ping and Chi (2022) S BERT fine-tuning with aug. data Symlink P, R, F1, F-score LaTeX
Popovic et al. (2022) S SciBERT enc. with entity and relation extr. Symlink P, R, F1, F-score LaTeX
Lee and Na (2022) S SciBERT enc. with MRC + tokenizer Symlink P, R, F1, F-score LaTeX

Formula Retrieval
Kristianto et al. (2014b) S + R SVM desc. extr. + leaf-root path search NTCIR-11 P@5, P@10, MAP MathML
Kristianto et al. (2016) S + R MCAT (2014) + multiple linear regr. NTCIR-12 P@K MathML
Zanibbi et al. (2016b) R Inverted index rank + MSS rerank search NTCIR-11 R@K, MRR MathML

Davila and Zanibbi (2017) S Two-stage search for OPT and SLT NTCIR-12 P@K, Bpref, nDCG@K LaTeXmerged with linear regression

Zhong and Zanibbi (2019) R OPT leaf-root path search NTCIR-12 P@K, Bpref LaTeXwith K largest subexpressions
Mansouri et al. (2019) UNS n-gram fastText OPT and SLT embs NTCIR-12 Bpref LaTeX/MathML

Peng et al. (2021) SS pre-training BERT with tasks related NTCIR-12 Bpref LaTeXto arXiv math-context pairs and OPTs
Zhong et al. (2022) R + S Approach0 + dense passage retrieval enc. NTCIR-12 Bpref LaTeX

Premise Selection
Ferreira and Freitas (2020b) S DGCNN for link prediction PS-ProofWiki P, R, F1 LaTeX

Ferreira and Freitas (2021) S Self-attention for math and language PS-ProofWiki P, R, F1 LaTeX+ BiLSTM with siamese network
Coavoux and Cohen (2021) S Weighted bipartite matching + self-attention SPM MRR, Acc MathML
Han et al. (2021) S LLM fine-tuning (webtext + webmath) NaturalProofs R@K, avgP@K, full@K LaTeX
Welleck et al. (2021a) S Fine-tuning BERT with pair/joint param. NaturalProofs MAP, R@K, full@K LaTeX
Dastgheib and Asgari (2022) UNS keywords fastText emb. with Jacardian sim PS-ProofWiki MAP LaTeX
Kovriguina et al. (2022) SS MathBERT enc. with GPT-3 prompting PS-ProofWiki MAP LaTeX
Kadusabe et al. (2022) SS SMPNet with cosine similarity PS-ProofWiki MAP LaTeX
Tran et al. (2022) SS RoBERTa with Manhattan similarity PS-ProofWiki MAP LaTeX

MWP Solving
Liu et al. (2019a) S BiLSTM seq enc. + LSTM tree-based dec. Math23K Acc NL
Xie and Sun (2019) S GRU encoder + GTS decoder Math23K Acc NL

Li et al. (2020) S word-word graph + phrase structure graph MAWPS, MATHQA Acc NLHetero. graph enc. + LSTM tree-based dec.

Zhang et al. (2020) S Word-number graph enc. + MAWPS, Math23K Acc NLNumber-comp graph enc. + GTS dec.
Shen and Jin (2020) S Seq multi-enc. + tree-based multi-dec. Math23K Acc NL

Kim et al. (2020) S ALBERT seq enc. + Transformer seq dec. ALG514, DRAW-1K, Acc NLMAWPS

Qin et al. (2020) S Bi-GRU seq enc. + HMWP, ALG514, Acc NLsemantically-aligned GTS-based dec. Math23K, Dolphin18K
Cao et al. (2021) S GRU-based encoder + DAG-LSTM decoder DRAW-1K, Math23K Acc NL
Lin et al. (2021) S Hierarchical GRU seq encoder + GTS decoder Math23K, MAWPS Acc NL
Qin et al. (2021) S Bi-GRU enc. + GTS dec. with att. and UET Math23K, CM17K Acc NL
Liang et al. (2021) S BERT encoder + GTS decoder Math23K, APE210K Acc NL

Zhang et al. (2022b) S word-word + word-num + num-comp graph MAWPS, Math23K Acc NLHeterogeneous graph encoder + GTS decoder

Jie et al. (2022) S RoBERTa enc. with bottom-up relation extr. MAWPS, Math23K, Acc NLSVAMP, MathQA

Zhang et al. (2022a) S Top-down and bottom-up reasoning with MAWPS, Math23K, Acc NLknowledge injection and contrastive learning MathQA

Informal Theorem Proving

Wang et al. (2020) S + UNS RNNs, LSTMs, transformers LaTeX, Mizar, BLEU, Perplexity LaTeXTPTP, ProofWiki Edit distance
Welleck et al. (2021a) S Fine-tuning BERT with pair/joint param. NaturalProofs MAP LaTeX

Welleck et al. (2021b) SS BART enc. with denoising pre-training NaturalProofs SBleu, Meteor, Edit, P, R, F1 LaTeXand Fusion-in-Decoder
Wu et al. (2022) S Fine-tuned LLMs + formal theorem prover MiniF2F, MATH Acc LaTeX/Isabelle

Lewkowycz et al. (2022) SS/S Fine-tuned PaLM model MATH, GSM8K, Acc LaTeX/NLMMLU-STEM

Table 1: Summary of different approaches for addressing tasks related to mathematical language
processing. The methods are categorized in terms of (i) Learning: Supervised (S), Self-supervised
(SS), Unsupervised (UNS), Rule-based (R) (no learning); (iii) Approach; (iv) Dataset; (v) Metrics:
MAP (Mean Average Precision), P@K (Precision at K), Perplexity, P (Precision), R (Recall), F1, Acc
(Accuracy), BLEU, METEOR, MRR (Mean Reciprocal Rank), Edit (edit distance); (vi) Math format:
MathML, LaTeX, natural language (NL), Isabelle formal language. Diagrammatic representations of
approaches in identifier-definition extraction (Figure 3), formula retrieval (Figure 4), and MWP solving
(Figure 5) can be found in the Appendix.

function (Schubotz et al., 2016b) and pattern
matching features (Pagael and Schubotz, 2014)
as input to an SVM with a radial basis function
(RBF) kernel, to account for non-linear feature

characteristics. Alternative classification methods
(Kristianto et al., 2012; Stathopoulos et al., 2018)
do not use input features derived from non-linear
functions, such as the Gaussian scoring function,
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and hence use linear kernels. Embedding spaces
have been learned in this context for the purpose
of ranking identifier-definiens pairs through la-
tent semantic analysis at the document level, fol-
lowed by the application of clustering techniques
and methods of relating clusters to namespaces
inherited from software engineering (Schubotz
et al., 2016a). These cluster-based namespaces
are later used for classification (Schubotz et al.,
2017) rather than ranking, but do not posi-
tively impact SVM model performance, despite
previous evidence suggesting they resolve co-
references (Duval et al., 2002) such as ‘‘E is
energy’’ and ‘‘E is expectation value’’. Neither
clustering nor namespaces have been further ex-
plored in this context. More recent work learns
context-specific word representations after feed-
ing less specific pre-trained word2vec (Mikolov
et al., 2013; Stathopoulos and Teufel, 2016) em-
beddings to a bidirectional LSTM for classifica-
tion (Stathopoulos et al., 2018). The most recent
work predictably relies on more sophisticated pre-
trained BERT embeddings (Devlin et al., 2018)
for the language modeling of mathematical no-
tation (Jo et al., 2021). VarSlot (Ferreira et al.,
2022) obtains SOTA results on variable typing
(Stathopoulos et al., 2018), and demonstrates ro-
bustness to variable renaming, by fine-tuning the
sentence transformers (Reimers and Gurevych,
2019) SciBERT (Beltagy et al., 2019) encoder on
augmented data, learning separate representation
spaces for variables and mathematical language
statements. Four BERT encoder-based approaches
(Lee and Na, 2022; Popovic et al., 2022; Ping and
Chi, 2022; van der Goot, 2022) were submitted
to the Symlink task (Lai et al., 2022), follow-
ing the trend of knowledge transfer through pre-
trained embeddings.

3.2 Formula Retrieval

The task of retrieving similar equations to a query
equation, with applications in math-aware search
engines (Mansouri et al., 2022a). Guidi and Coen
(2016) and Zanibbi and Blostein (2011) empha-
size the encoding of formulae and their context
for retrieval tasks.

Combining formula tree representations im-
proves retrieval. There are two prevalent types
of tree representations of formulae: Symbol Lay-
out Trees (SLTs) and Operator Trees (OPTs),
shown in Figure 2.

Figure 2: Formula (a) y = ex with its Symbol Layout
Tree (SLT) (b), and Operator Tree (OPT) (c). SLTs rep-
resent formula appearance by the spatial arrangements
of math symbols, while OPTs define the mathematical
operations represented in expressions. For more detail,
see Mansouri et al. (2019).

Methods reliant solely on SLTs, such as the
early versions of the Tangent retrieval system
(Pattaniyil and Zanibbi, 2014; Zanibbi et al.,
2015, 2016b), or solely OPTs (Zhong and Zanibbi,
2019; Zhong et al., 2020) tend to return less rele-
vant formulae from queries. OPTs capture formula
semantics while SLTs capture visual structure
(Mansouri et al., 2019). Effective representation
of both formula layout and semantics within a
single vector allows a model exploit both repre-
sentations. Tangent-S (Davila and Zanibbi, 2017)
was the first evolution of the Tangent system to
outperform the NTCIR-11 (Aizawa et al., 2014)
overall best performer, MCAT (Kristianto et al.,
2014b; 2016), which encoded path and sibling in-
formation from MathML Presentation (SLT-based)
and Content (OPT-based). Tangent-S jointly inte-
grated SLTs and OPTs by combining scores for
each representation through a simple linear re-
gressor. Later, Tangent-CFT (Mansouri et al.,
2019) considered SLTs and OPTs through a fast-
Text (Bojanowski et al., 2017) n-gram embedd-
ing model using tree tuples. MathBERT (Peng
et al., 2021) does not explicitly account for SLTs,
claiming that LaTeX markup somewhat accounts
for SLTs, and therefore encode OPTs. They pre-
train the BERT (Devlin et al., 2018) model with
targeted objectives each accounting for differ-
ent aspects of mathematical text. They account
for OPTs by concatenating node sequences to
formula + context BERT input sequences, and
by formulating OPT-based structure-aware pre-
training tasks learned in conjunction with masked
language modeling (MLM).

Leaf-root path tuples deliver an effective mech-
anism for embedding relations between symbol
pairs. Leaf-root path tuples are now ubiquitous
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in formula retrieval (Zanibbi et al., 2015, 2016b;
Davila and Zanibbi, 2017; Zhong and Zanibbi,
2019; Mansouri et al., 2019; Zhong et al., 2020)
and their use for NTCIR-11/12 retrieval has var-
ied since their conception (Stalnaker and Zanibbi,
2015). Initially (Pattaniyil and Zanibbi, 2014)
pair tuples were used within a TF-IDF weighting
scheme, then Zanibbi et al. (2015, 2016b) pro-
posed an appearance-based similarity metric us-
ing SLTs, maximum subtree similarity (MSS).
OPT tuples are integrated (Davila and Zanibbi,
2017) later on. Mansouri et al. (2019) treat tree
tuples as words, extract n-grams, and learn fast-
Text (Bojanowski et al., 2017) formula embed-
dings. Zhong and Zanibbi (2019) and Zhong et al.
(2020) forgo machine learning altogether with an
OPT-based heuristic search (Approach0) through
a generalization of MSS (Zanibbi et al., 2016b).
Leaf-root path tuples effectively map symbol-pair
relations and account for formula substructure,
but there is dispute on how best to integrate them
into existing machine learning or explicit retrieval
frameworks.

Purely explicit methods still deliver compet-
itive results. Explicit representation methods
are those that rely on prescribed representations
(structural relations and associated types) rather
than learned implicit relationships. Tangent-CFT
(Mansouri et al., 2019) and MathBERT (Peng
et al., 2021) are two models to employ learning
techniques beyond the level of linear regression.
Each model is integrated with Approach0 (Zhong
and Zanibbi, 2019) through the linear combi-
nation of individual model scores. This respec-
tively forms the TanApp and MathApp baselines
in Peng et al. (2021). Approach0 achieves the
highest full bpref score of the individual mod-
els. While we focus primarily on the NTCIR-12
dataset, recent work (Zhong et al., 2022) evalu-
ates a selection of transformer-based models on
both NTCIR-12 and ARQMath-2 (Mansouri et al.,
2021b) datasets. They confirm that MathBERT
delivers SOTA performance on partial bpref, and
Approach0 combined with a fine-tuned dense pas-
sage retrieval (DPR) model (Karpukhin et al.,
2020) outperforms on full bpref (Approach0 +
DPR). Combining explicit similarity-based search
(Zhong and Zanibbi, 2019; Meadows and Freitas,
2021) with modern encoders (Khattab and Zaharia,
2020; Karpukhin et al., 2020) delivers leading
performance.

3.3 Natural Language Premise Selection

Formal and informal premise selection both in-
volve the selection of relevant statements for
proving a given conjecture (Irving et al., 2016;
Wang et al., 2017a; Ferreira and Freitas, 2020a).
The difference lies in the language in which the
premises and related proof elements are encoded
(either conforming to a logical form or as they
appear in mathematical text). Mathematical lan-
guage as it occurs in papers and textbooks (Wolska
and Kruijff-Korbayová, 2004) is not compatible
with existing provers without autoformalization;
a widely acknowledged bottleneck for the con-
struction of formal proof libraries (Irving et al.,
2016). Typically, when reasoning over large for-
mal libraries comprising thousands of premises,
the performance of ATPs degrades considerably,
while for a given proof only a fraction of the
premises are required to complete it (Urban et al.,
2010; Alama et al., 2014). Theorem proving is
essentially a search problem with a combinato-
rial search space, and the goal of formal premise
selection is to reduce the space, making theorem
proving tractable (Wang et al., 2017a). While for-
mal premises are written in the languages of formal
libraries such as Mizar (Rudnicki, 1992), infor-
mal premises, as seen in ProofWiki,2 are written
in combinations of natural language and La-
TeX (Ferreira and Freitas, 2020a; Welleck et al.,
2021a). Proposed approaches either rank (Han
et al., 2021) or classify (Ferreira and Freitas,
2020b, 2021) candidate premises for a given proof.
Natural language premise selection was originally
formulated as pairwise relevance classification,
evaluated with F1 (Ferreira and Freitas, 2020b,
2021), but has since been evaluated with rank-
ing metrics (Valentino et al., 2022). Alternatively,
Welleck et al. (2021a) propose mathematical ref-
erence retrieval as an analogue of premise selec-
tion. The goal is to retrieve the set of references
(theorems, lemmas, definitions) that occur in its
proof, formulated as a ranking problem.

Separate mechanisms for representing math-
ematics and natural language can improve
performance. Regardless of the task variation,
most current methods do not fully discriminate the
semantics of mathematics and natural language,
not specifically accounting for aspects of each
modality. Ferreira and Freitas (2020b) extract

2https://proofwiki.org/wiki/Main_Page.
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a dependency graph representing dual-modality
mathematical statements as nodes, and solve a
link prediction task (Zhang and Chen, 2018). Re-
cent transformer baselines (Ferreira and Freitas,
2020b; Welleck et al., 2021a; Han et al., 2021;
Coavoux and Cohen, 2021), and those at the
shared NLPS task (Valentino et al., 2022), also
do not differentiate between mathematical ele-
ments and natural language (Tran et al., 2022;
Kadusabe et al., 2022; Kovriguina et al., 2022).
STAR (Ferreira and Freitas, 2021) purposefully
separates the two modalities, encoding distinct
representations through self-attention. Explicit
disentanglement of the modalities forces STAR
to exploit relationships between natural language
and mathematics, through the BiLSTM layer.
Neuroscience research suggests the brain handles
mathematics separately to language (Butterworth,
2002; Amalric and Dehaene, 2016; Kulasingham
et al., 2021).

3.4 Math Word Problems

Solving math word problems dates back to the dawn
of artificial intelligence research (Feigenbaum
and Feldman, 1963; Bobrow, 1964; Charniak,
1969). It can be defined as the task of trans-
lating a problem description paragraph into a
set of equations to be solved (Li et al., 2020).
We focus on trends in the task since 2019, as
a detailed survey (Zhang et al., 2019) captures
prior work.

Use of dependency graphs is instrumental to
support inference. In graph-based approaches
to solving MWPs, embeddings of words, numbers,
or relationship graph nodes are learned through
graph encoders, which feed information through
to tree (or sequence) decoders. Embeddings are
decoded into expression trees which determine
the problem solution. Li et al. (2020) learn the
mapping between a heterogeneous graph repre-
senting the input problem, and an output tree.
The graph is constructed from word nodes with
relationship nodes of a parsing tree. This is ei-
ther a dependency parse tree or constituency tree.
Zhang et al. (2020) represent two separate graphs:
a quantity cell graph associating descriptive words
with problem quantities, and a quantity compar-
ison graph which retains numerical qualities of
the quantity, and leverages heuristics to represent
relationships between quantities such that solution

expressions reflect a more realistic arithmetic or-
der. Shen and Jin (2020) also extract two graphs: a
dependency parse tree and numerical comparison
graph. Zhang et al. (2022b) construct a heteroge-
neous graph from three subgraphs: a word-word
graph containing syntactic and semantic relation-
ships between words, a number-word graph, and
a number comparison graph. Although other im-
portant differences exist (such as decoder choice),
it seems models benefit from relating linguistic
aspects of problem text through separate graphs.

Multi-encoders and multi-decoders improve
performance by combining complementary
representations. Another impactful decision is
the choice of encoder/decoder, and whether to
consider alternative representations of a problem.
To highlight this, we consider the following com-
parison. Shen and Jin (2020) and Zhang et al.
(2020) each extract two graphs from the prob-
lem text. One is a number comparison graph,
and the other relates word-word pairs (Shen and
Jin, 2020) or word-number pairs (Zhang et al.,
2020). They both encode two graphs rather than
one heterogeneous graph (Li et al., 2020; Zhang
et al., 2022b). They both use a similar tree-based
decoder (Xie and Sun, 2019). A key difference
is that Shen and Jin (2020) include an addi-
tional sequence-based encoder and decoder. The
sequence-based encoder first obtains a textual
representation of the input paragraph, then the
graph-based encoder integrates the two encoded
graphs. Then tree-based and sequence-based de-
coders generate different equation expressions
for the problem with an additional mechanism
for optimizing solution expression selection. In
their own work, Shen and Jin (2020) demonstrate
the impact of multi-encoders/decoders over each
encoder/decoder option individually through ab-
lation. Zhang et al. (2022a) similarly combine
top-down and bottom-up reasoning to achieve
leading results.

Goal-driven decompositional tree-based decod-
ers are a significant component in the state-of-
the-art. Introduced in Xie and Sun (2019), this
class of decoder is considered by most of the dis-
cussed approaches, and includes non-graph-based
models (Qin et al., 2021; Liang et al., 2021). In
GTS, goal vectors guide construction of expres-
sion subtrees (from token node embeddings) in a
recursive manner, until a solution expression tree
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is generated. Proposed models do expand on the
GTS-based decoder through the inclusion of se-
mantically aligned universal expression trees (Qin
et al., 2020, 2021), though this adaptation is not as
widely used. Some state-of-the-art (Liang et al.,
2021; Zhang et al., 2022b) models follow the GTS
decoder closely.

Language models that transfer knowledge
learned from auxiliary tasks rival models based
on explicit graph representation of problem
text. As an alternative to encoding explicit re-
lations through graphs, other work (Kim et al.,
2020; Qin et al., 2021; Liang et al., 2021) relies on
pre-trained transformer-based models, and those
which incorporate auxiliary tasks assumed rele-
vant for solving MWPs, to learn such relations
latently. However, it seems the case that auxiliary
tasks alone do not deliver competitive perfor-
mance (Qin et al., 2020) without the extensive
pre-training efforts with large corpora, as we see
with BERT-based transformer models. These use
either both the ALBERT (Lan et al., 2019) encoder
and decoder (Kim et al., 2020), or BERT-based en-
coder with goal-driven tree-based decoder (Liang
et al., 2021). More recent work (Cao et al., 2021;
Jie et al., 2022; Zhang et al., 2022a) involves itera-
tive relation extraction frameworks for predicting
mathematical relations between numerical tokens.

3.5 Informal Theorem Proving

Formal automated theorem proving in logic is
among the most abstract forms of reasoning
materialised in the AI space. There are two ma-
jor bottlenecks (Irving et al., 2016) that formal
methods must overcome: (1) translating informal
mathematical text into formal language (autofor-
malization), and (2) a lack of strong automated
reasoning methods to fill in the gaps in al-
ready formalized human-written proofs. Informal
methods either tackle autoformalization directly
(Wang et al., 2020; Wu et al., 2022), or circum-
vent it through language modeling-based proof
generation (Welleck et al., 2021a,b), trading for-
mal rigor and inference control for flexibility.
Transformer-based models have been proposed
for mathematical reasoning (Polu and Sutskever,
2020; Rabe et al., 2020; Wu et al., 2021). Convert-
ing informal mathematical text into forms which
are interpretable by computers (Kaliszyk et al.,
2015a,b; Szegedy, 2020; Wang and Deng, 2020;
Meadows and Freitas, 2021) can strategically im-

pact the dialogue between knowledge expressed
in natural text, and a large spectrum of solvers.

Autoformalization could be addressed through
approximate translation and exploration
rather than direct machine translation. A
long-studied and challenging endeavour (Zinn,
1999, 2003), autoformalization involves convert-
ing informal mathematical text into language
interpretable by theorem provers (Kaliszyk et al.,
2015b; Wang et al., 2020; Szegedy, 2020).
Kaliszyk et al. (2015b) propose statistical learning
methods for parsing ambiguous formulae over
the Flyspeck formal mathematical corpus (Hales,
2006). Using machine translation models (Luong
et al., 2017; Lample et al., 2018; Lample and
Conneau, 2019), Wang et al. (2020) explore data-
set translation experiments between LaTeX code
extracted from ProofWiki, and formal libraries
Mizar (Rudnicki, 1992) and TPTP (Sutcliffe and
Suttner, 1998). The supervised RNN-based neural
machine translation model (Luong et al., 2017)
outperforms the transformer-based (Lample et al.,
2018) and MLM pre-trained transformer-based
(Lample and Conneau, 2019) models, with the
performance boost stemming from its use of
alignment data. Szegedy (2020) advises against
such direct translation efforts, instead proposing a
combination of exploration and approximate trans-
lation through predicting formula embeddings. In
seq2seq models, embeddings are typically gran-
ular, encoding word-level or symbol-level (Jo
et al., 2021) tokens. The method consists of
learning mappings from natural language input to
premise statements nearby the desired statement
in the embedding space, traversing the space be-
tween statements using a suitable prover (Bansal
et al., 2019). Guided mathematical exploration
for real-world proofs is still an unaddressed prob-
lem and does not scale well with step-distance
between current and desired conjecture. Wu et al.
(2022) directly autoformalize small competition
problems to Isabelle statements using language
models. Similar to previous indication (Szegedy,
2020), they also autoformalize statements as
targets for proof search with a neural theorem
prover.

The need for developing robust interactive nat-
ural language theorem provers. We discuss the
closest equivalent to formal theorem proving in an
informal setting. Welleck et al. (2021a) propose
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a mathematical reference generation task. Given
a mathematical claim, the order and number of
references within a proof are predicted. A refer-
ence is a theorem, definition, or a page that is
linked to within the contents of a statement or
proof. Each theorem x has a proof containing
a sequence of references y = (r1, . . . , r|y|), for
references rm ∈ R. Where the retrieval task as-
signs a score to each reference in R, the genera-
tion task produces a variable length of sequence
of references (r̂1, . . . , r̂|y|) with the goal of
matching y, for which a BERT-based model is
employed and fine-tuned on various data sources.
Welleck et al. (2021b) expand on their proof gen-
eration work, proposing two related tasks: next-
step suggestion, where a step from a proof y (as
described above) is defined as a sequence of to-
kens to be generated, given the previous steps and
x; and full-proof generation which extends this
to generate the full proof. They employ BART
(Lewis et al., 2019), an encoder-decoder model
pre-trained with denoising tasks, and augment the
model with reference knowledge using Fusion-in-
Decoder (Izacard and Grave, 2020). The interme-
diate denoising training and knowledge-grounding
improve model performance by producing better
representations of (denoised) references for de-
ployment at generation time, and by encoding
reference-augmented inputs. Minerva (Lewkowycz
et al., 2022) is a language model capable of
producing step-wise reasoning with mathemati-
cal language (LaTeX). They fine-tune a PaLM
decoder-only model (Chowdhery et al., 2022) on
webpages containing MathJax formatted expres-
sions, and evaluate on school-level math problems
(Hendrycks et al., 2021; Cobbe et al., 2021), a
STEM subset of problems (Hendrycks et al., 2020)
of varying difficulty, undergraduate-level STEM
problems, and the National Math Exam in Poland.
They evaluate for generalization capabilities by
generating 20 alternative evaluation problems,
perturbing problem wording and numerical values
in the MATH (Hendrycks et al., 2021) dataset,
and compare accuracy before and after the change.
While they suggest ‘‘minimal memorization’’, the
numerical intervention comparison does less to
support this claim.

4 Datasets

Various datasets have been proposed for tasks
related to identifier-definition extraction and var-

iable typing (Schubotz et al., 2016a; Alexeeva
et al., 2020; Stathopoulos et al., 2018; Jo et al.,
2021), with limited adoption. The Symlink shared
task (Lai et al., 2022) is an emerging solution,
with training data, annotations of 102 papers, and
high inter-annotator agreement. Formula retrieval
data exists through NTCIR-12 (Zanibbi et al.,
2016a), which has been expanded in the most
recent ARQMath task (Mansouri et al., 2022b),
removing formula duplicates and balancing query
complexity. Premise selection datasets include
PS-ProofWiki (Ferreira and Freitas, 2020a), used
in the NLPS shared task (Valentino et al., 2022),
and NaturalProofs (Welleck et al., 2021a). The
latter is more inclusive, comprising ProofWiki,
text books, and other sources. Modern consensus
MWP datasets include (easy) MAWPS (Koncel-
Kedziorski et al., 2016), (medium) Math23K
(Wang et al., 2017b), and (hard) MathQA (Amini
et al., 2019), comprising both Chinese and En-
glish problems. GSM8K (Cobbe et al., 2021)
claims to resolve diversity, quality, and language
(Huang et al., 2016) issues from previous data-
sets, involves step-wise reasoning and natural lan-
guage solutions, with balanced difficulty. MATH
(Hendrycks et al., 2021) is larger and more diffi-
cult than GSM8K. Informal theorem proving data
includes NaturalProofs (Welleck et al., 2021a),
and some MWP datasets involving step-wise rea-
soning with mathematical language, such as MATH
and GSM8K. However, there is no consensus data
for autoformalization or theorem proving from
mathematical language input involving sequence
learning. ProofNet (Azerbayev et al., 2022) aims
to remedy this, by providing 297 theorem state-
ments expressed in both natural and formal (Moura
et al., 2015) language, at undergraduate diffi-
culty. Some are accompanied by informal proofs.
MiniF2F (Zheng et al., 2021) is a neural theorem
proving benchmark of Olympiad-level problems
written in many formal languages. Lila (Mishra
et al., 2022) provides data for 23 math reasoning
tasks. Key datasets information is described in
Table 2.

Data Scarcity. Some datasets, such as MATH
and the Auxiliary Mathematics Problems and So-
lutions (AMPS) (Hendrycks et al., 2021) data-
sets, include detailed workings at high school
to undergraduate level difficulty. If we aim to
use models to produce new mathematics, equiva-
lent datasets composed of the research workings
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Name Tasks Size
Symlink Identifier-Def Extr. 31K entities, 20K relations

ARQMath-2 Task 2 Formula Retrieval 100 queries, 28M formulae

NTCIR-12 Formula Retrieval 40 formula queries, 590K formulae

PS-ProofWiki Premise Selection
14K theorems, 5K definitions

300 lemmas, 292 corollaries

NaturalProofs
Premise Selection 32K theorems/proofs, 14K definitions

Proof Generation 2K corollories + axioms

Math23K Math Word Problems 23K problems

MAWPS Math Word Problems 3K problems

MathQA Math Word Problems 37K problems

GSM8K Math Word Problems 8K problems

MATH
Math Word Problems

13K hard problems
Proof Generation

ProofNet Proof Generation 297 theorems/proofs

Table 2: Key datasets for the representative tasks.

of actual mathematicians would be invaluable.
Meadows and Freitas (2021) attempt to tackle
this problem for a single research paper in a very
limited setting.

5 Discussion

State-of-the-art. In identifier-definition extrac-
tion, leading performance is obtained on Symlink
by Lee and Na (2022), using a SciBERT en-
coder and MRC-based model (Li et al., 2019).
Importantly, rather than the BERT tokenizer, they
use a rule-based symbol tokenizer, evidencing
the benefits of discerning natural language from
math elements. VarSlot (Ferreira et al., 2022)
leads in variable typing, and echoes the impor-
tance of such discrimination (see Section 3.2).
In formula retrieval, SOTA methods generally
include linear combinations of scores obtained
from symbolic and neural models. On NTCIR-12,
Zhong et al. (2022) show that MathBERT leads
on partial bpref, and Approach0 + DPR leads
on full bpref (see Section 3.2). Approach0 +
ColBERT (Khattab and Zaharia, 2020) leads on
ARQMath-2 (Mansouri et al., 2021b). This work
reinforces the importance of including formula
structure across multiple tasks. In premise selec-
tion, leading results are obtained on the shared
NLPS task by a fine-tuned RoBERTa-large en-

coder (Liu et al., 2019b), computing similar-
ity scores between statements with Manhattan
distance (Tran et al., 2022). However, none of
the competing models discern mathematical ele-
ments from natural language, or include for-
mula structure. In MWP solving, the multi-view
model (Zhang et al., 2022a) achieves state-of-the-
art results on Math23K, MAWPS, and MathQA.
Minerva, and the Diverse approach (Li et al.,
2022) based on OpenAI code-davinci-002, lead
on MATH. Minerva also beats the national 57%
average by 8% on the Polish national math exam.
In informal theorem proving, we discuss auto-
formalization and theorem proving from mathe-
matical language. In the former, code-davinci-002
leads on ProofNet. In the latter, a BART-based
model leads on NaturalProofs, and Codex (Chen
et al., 2021) fine-tuned on autoformalized theo-
rems (Wu et al., 2022), leads on MiniF2F. These
later methods, particularly those that score highly
on MATH, largely consist of fine-tuning gener-
ative LLMs also without distinctly considering
mathematical content or structure.

Separate Representations for Math and Nat-
ural Language. Many models do not benefit
from processing each modality separately. The
leading model on Symlink uses a special to-
kenizer to extract math symbols from scientific
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documents (Lee and Na, 2022). VarSlot improves
variable typing by learning representation spaces
for variables and mathematical language state-
ments (Ferreira et al., 2022). STAR (Ferreira
and Freitas, 2021) improves on a self-attention
baseline encoding combined math/language state-
ments, by separately encoding math and language
with the same encoder. MathBERT learns em-
beddings from tree and latex representations of
formulae, and natural language (Peng et al., 2021).
The Approach0 + [encoder] models linearly com-
bine scores from entirely different methods; one
designed for formulae, and one for language
(Zhong et al., 2022). Multi-view learns an embed-
ding each for words, quantities, and operations
(Zhang et al., 2022a). All of the above are state-
of-the-art and show advantage over baselines that
do not invoke separate mechanisms. Despite this
evidence, methods related to informal theorem
proving and premise selection, such as Minerva,
IJS (Tran et al., 2022), and others, do not dis-
criminate math from language. This is likely true
for other subfields of MLP.

Math as Trees. Many approaches do not incor-
porate formula structure. For problems involving
multi-variate mathematical terms, obvious choices
for this are OPTs and SLTs (Figure 2). For exam-
ple, Approach0 considers formula OPTs, without
learning, to achieve competitive results. Inclusion
of OPTs during BERT training has been shown to
improve performance over BERT in formula re-
trieval, formula headline generation, and formula
topic classification (Peng et al., 2021), and is also
used in math question answering (Mansouri et al.,
2021a).

Combining Complementary Representations
from the Same Input. Combined use of OPTs
and SLTs of the same formula has been sug-
gested to improve formula retrieval performance
(Davila and Zanibbi, 2017; Mansouri et al., 2019;
Mansouri et al., 2021a). This extends to dual-
modality mathematical language input. Shen and
Jin (2020) obtain sequence and graph encodings
of MWPs, and use sequence and tree-based de-
coders in unison, with an ablation describing ad-
vantage over single encoder representations. The
leading MWP solver (Zhang et al., 2022a) gener-
ates two independent solution expression embed-
dings, by top-down decomposition (Xie and Sun,
2019) and bottom-up construction, which are pro-
jected into the same latent space.

Conclusion. Delivering mathematical reason-
ing over discourse requires close integration be-
tween step-wise inference control over localised
explicit representations (symbolic perspective),
and distributed representations to approximate
and cope with incomplete knowledge (neural per-
spective). The current spectrum of mathematical
language processing techniques elicits the key
components, representational choices and tasks
which are central to the conceptualisation of math-
ematical inference. Integrating the best-performing
representational choices across different subtasks,
such as distinct mechanisms for processing natu-
ral language and formulae, learning complemen-
tary representations of mathematical problem text,
and incorporating formula structure, represents
a short-term opportunity to develop mathemati-
cally robust models capable of more coherent ar-
gumentation, reasoning, and retrieval.

Acknowledgments

This work was partially funded by the Swiss
National Science Foundation (SNSF) project
NeuMath (200021 204617).

References

Akiko Aizawa, Michael Kohlhase, Iadh
Ounis, and Moritz Schubotz. 2014. Ntcir-11
math-2 task overview. In NTCIR, volume 11,
pages 88–98.

Alan Akbik, Xinyu Guan, and Yunyao Li.
2016. Multilingual aliasing for auto-generating
proposition banks. In Proceedings of COLING
2016, the 26th International Conference on
Computational Linguistics: Technical Papers,
pages 3466–3474.

Jesse Alama, Tom Heskes, Daniel Kühlwein,
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A Approach-specific Limitations

Identifier-Definition Extraction Limitations.
Methods considering the link between identifiers
and their definitions have split off into at least
three recent tasks: identifier-definition extraction
(Schubotz et al., 2017; Alexeeva et al., 2020),
variable typing (Stathopoulos et al., 2018), and
notation auto-suggestion (Jo et al., 2021). A lack
of consensus on the framing of the task and data
prevents a direct comparison between methods.
Schubotz et al. (2017) advise against using their
gold standard data for training due to certain
extractions being too difficult for automated sys-
tems, among other reasons. They also propose
future research should focus on recall due to cur-
rent methods extracting exact definitions for only
1/3 of identifiers, and suggest use of multilingual
semantic role labeling (Akbik et al., 2016) and
logical deduction (Schubotz et al., 2016b). Logi-
cal deduction is partially tackled by Alexeeva et al.
(2020), which is based on an open-domain causal
IE system (Sharp et al., 2019) with Odin grammar
(Valenzuela-Escárcega et al., 2016), where tem-
poral logic is used to obtain intervals referred to
by pre-identified time expressions (Sharp et al.,
2019). We assume the issues with superscript
identifiers (such as Einstein notation, etc.) from
Schubotz et al. (2016b) carry over into Schubotz
et al. (2017). The rule-based approach proposed
by Alexeeva et al. (2020) attempts to account for
such notation (known as wildcards in formula re-
trieval). They propose that future methods should
combine grammar with a learning framework,

1181

https://doi.org/10.1145/2911451.2911512
https://doi.org/10.1145/2911451.2911512
https://doi.org/10.1109/TPAMI.2019.2914054
https://doi.org/10.1109/TPAMI.2019.2914054
https://pubmed.ncbi.nlm.nih.gov/31056490
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.1109/TASLP.2022.3145314
https://doi.org/10.1109/TASLP.2022.3145314
https://doi.org/10.1007/978-3-030-45439-5_47
https://doi.org/10.1007/978-3-030-45439-5_47
https://doi.org/10.1007/978-3-030-31624-2
https://doi.org/10.1007/978-3-030-31624-2
https://doi.org/10.1093/jigpal/11.4.457
https://doi.org/10.1093/jigpal/11.4.457


extend rule sets to account for coordinate con-
structions, and create well-annotated training data
using tools such as PDFAlign and others (Asakura
et al., 2021).

Formula Retrieval Limitations. Zhong and
Zanibbi (2019) propose supporting query expan-
sion of math synonyms to improve recall, and
note that Approach0 does not support wildcard
queries. Zhong et al. (2020) later provide basic
support for wildcards. Tangent-CFT also does not
evaluate on wildcard queries, and the authors sug-
gest extending the test selection to include more
diverse formulae, particularly those that are not
present as exact matches. They propose integrating
nearby text into learned embeddings. MathBERT
(Peng et al., 2021) performs such integration, but
does not learn n-gram embeddings. MathBERT
evaluates on non-wildcard queries only.

Informal Premise Selection Limitations. Lim-
itations involve a lack of structural consideration
of formulae and limited variable typing abili-
ties. Ferreira and Freitas (2020b) note that the
graph-based approach to premise selection as link
prediction struggles to encode mathematical state-
ments which are mostly formulae, and suggest
inclusion of structural embeddings (e.g., Math-
BERT [Peng et al., 2021]) and training BERT
on a mathematical corpus. They also describe
value in formulating sophisticated heuristics for
navigating the premises graph. Later, following
a Siamese network architecture (Ferreira and
Freitas, 2021) reliant on dual-layer word/expres-
sion self-attention and a BiLSTM (STAR), the
authors demonstrate that STAR does not appro-
priately encode the semantics of variables. They
suggest that variable typing and representation are
a fundamental component of encoding mathemat-
ical statements. Han et al. (2021) plan to explore
the effect of varying pre-training components,
testing zero-shot performance without contrastive
fine-tuning, and unsupervised retrieval. Coavoux
and Cohen (2021) propose a statement-proof
matching task akin to informal premise selection,
with a solution reliant on a self-attentive encoder
and bilinear similarity function. The authors note
model confusion due to the proofs introducing
new concepts and variables rather than referring
to existing concepts.

Math Word Problem Limitations. In Graph2-
Tree-Z, Zhang et al. (2020) suggest considering
more complex relations between quantities and
language, and introducing heuristics to improve
solution expression generation from the tree-based
decoder. In EPT, Kim et al. (2020) find error prob-
ability related to fragmentation issues increases
exponentially with number of unknowns, and pro-
pose generalizing EPT to other MWP datasets.
HGEN (Zhang et al., 2022b) note three areas of
future improvement: Combining models into a
unified framework through ensembling multiple
encoders (similar to Ferreira and Freitas, 2021);
integrating external knowledge sources (e.g., How-
Net (Dong and Dong, 2003), Cilin (Hong-Minh
and Smith, 2008)); and real-world dataset devel-
opment for unsupervised or weakly supervised
approaches (Qin et al., 2020).

Informal Theorem Proving Limitations. Wang
et al. (2020) suggest the development of high-
quality datasets for evaluating translation mod-
els, including structural formula representations,
and jointly embedding multiple proof assistant
libraries to increase formal dataset size. Szegedy
(2020) argues that reasoning systems based on
self-driven exploration without informal commu-
nication abilities would suffer usage and evalua-
tion difficulties. Wu et al. (2022) note limitations
with text window size and difficulty storing large
formal theories with current language models. Af-
ter proposing the NaturalProofs dataset, Welleck
et al. (2021a) characterize error types for the
full-proof generation and next-step suggestion
tasks, noting issues with: (1) hallucinated ref-
erences, meaning the reference does not occur
in NaturalProofs; (2) non-ground-truth reference,
meaning the reference does not occur in the
ground-truth proof; (3) undefined terms; and (4)
improper or irrelevant statement, meaning a state-
ment that is mathematically invalid (e.g., 2/3 ∈ Z)
or irrelevant to the proof; and (5) statements
that do not follow logically from the preceding
statements. Dealing with research-level physics,
Meadows and Freitas (2021) note the significant
cost of semi-automated formalization, requiring
detailed expert-level manual intervention. They
also call for a set of well-defined computer al-
gebra operations such that robust mathematical
exploration can be guided in a goal-based setting.
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B Diagrammatic Categorization of
Approaches

Figure 3: Categorisation of approaches related to identifier-definition extraction. The shorthand notation used
such as (K 2012) and (J 2021) refer to the references in the first four boxes, i.e., (Kristianto 2012) and (Jo
2021). The first four boxes are task variations, then arrows point to other categories that may group approaches.
For example, (Stathopoulos 2018) is Variable Typing, considers a Classification task, involves a large machine
Learning element, uses a BiLSTM, learns Vector representations of input text without pretraining, and relies
on information outside of the instance text (Extra-doc), which is a Types Dictionary.

Figure 4: Categorisation of approaches in formula retrieval. The number at the bottom right of boxes refers to
their respective Bpref score (Peng et al., 2021).
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Figure 5: Categorisation of approaches in math word problem solving.
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