
Calibrated Interpretation: Confidence Estimation in Semantic Parsing

Elias Stengel-Eskin
Johns Hopkins University, USA

elias@jhu.edu

Benjamin Van Durme
Johns Hopkins University, USA

vandurme@jhu.edu

Abstract

Sequence generation models are increasingly
being used to translate natural language into
programs, i.e., to perform executable semantic
parsing. The fact that semantic parsing aims
to predict programs that can lead to executed
actions in the real world motivates developing
safe systems. This in turn makes measuring
calibration—a central component to safety—
particularly important. We investigate the cal-
ibration of popular generation models across
four popular semantic parsing datasets, finding
that it varies across models and datasets. We
then analyze factors associated with calibra-
tion error and release new confidence-based
challenge splits of two parsing datasets. To
facilitate the inclusion of calibration in seman-
tic parsing evaluations, we release a library for
computing calibration metrics.1

1 Introduction

When probabilistic models are used for decision-
making or interaction, we not only want the
model to be accurate but also to be calibrated,
meaning that the probability the model assigns to
a decision should roughly correspond to its like-
lihood of being correct. For example, if a model
translates a user instruction into a program for
a robot, the confidence that the program accu-
rately captures the person’s intent may inform
whether the robot executes the program. Because
of its importance to safety and usability, a large
body of work has addressed calibration, with most
research considering single-timestep classifica-
tion models (i.e., one output decision per input).
However, probabilistic models are also com-
monly applied to multi-timestep tasks. In these

1Models/Analysis/Data: https://github.com/esteng
/calibration miso, Metric: https://github.com
/esteng/calibration metric.

tasks, the model generates a sequence of deci-
sions, with each subsequent decision dependent
on the input and the previous decisions. For ex-
ample, text generation models typically predict
sequences of words one at a time, with each new
word conditioned on the previous outputs. Al-
though calibration has been measured in some text
generation tasks like machine translation (Kumar
and Sarawagi, 2019; Wang et al., 2020), deter-
mining the accuracy of generated text sequences
can be challenging, making calibration—the rela-
tionship between accuracy and confidence—hard
to estimate. As sequence generation models, es-
pecially large language models, play a role in a
growing variety of tasks, measuring their calibra-
tion has become extremely important.

The task of executable semantic parsing, where
a model predicts an executable program from a
natural language instruction, is often modeled as
a sequence generation task. Such parsing mod-
els are used in systems that interact with the real
world, such as human–robot interfaces (Tellex et al.,
2020) and digital assistants (Gupta et al., 2018;
Cheng et al., 2020; Semantic Machines et al.,
2020). Since actions in these domains—especially
physical domains—can have irreversible effects,
the importance of ensuring model safety cannot
be understated. Thus, semantic parsing provides
a clear motivation for having a well-calibrated
sequence generation model: At low confidence,
we may prefer for the system to defer action or
request clarification, while when confidence is
high, these actions may unnecessarily annoy a user
and make the system unusable. This reasoning
presupposes that the model’s confidence is well-
correlated with its probability of success.

Simultaneously, the constrained and executable
nature of semantic parses makes accuracy easier
to measure. In many text-based sequence gen-
eration tasks like machine translation, summari-
zation, long-form question-answering (QA), and

1213

Transactions of the Association for Computational Linguistics, vol. 11, pp. 1213–1231, 2023. https://doi.org/10.1162/tacl a 00598
Action Editor: Katrin Elisabeth Erk. Submission batch: 1/2023; Revision batch: 5/2023; Published 9/2023.

c© 2023 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:elias@jhu.edu
mailto:vandurme@jhu.edu
https://github.com/esteng/calibration_miso
https://github.com/esteng/calibration_miso
https://github.com/esteng/calibration_metric
https://github.com/esteng/calibration_metric
https://doi.org/10.1162/tacl_a_00598

open-ended dialogue, evaluating the quality and
correctness of a generation poses a variety of
challenges, often due to the fact that there are
many ways of stating roughly the same propo-
sition in language. Because calibration measures
the relationship between accuracy and confidence,
our ability to measure calibration will only be as
good as our ability to measure accuracy. In exe-
cutable semantic parsing, the model generates a
program (rather than text) with a more restricted
vocabulary and known syntactic rules. This gener-
ally limits the number of reasonable semantically
equivalent outputs and makes quantifying accu-
racy easier. Furthermore, the executable nature
of the programs allows us to measure accuracy
via denotation (i.e., the result of program execu-
tion) rather than form. These factors make it an
ideal domain for benchmarking the calibration of
sequence generation models.

In Section 4, we conduct what is to our
knowledge the first large-scale investigation of
calibration in sequence generation models as ap-
plied to semantic parsing tasks. We examine a
variety of commonly used models and measure
their calibration across four popular semantic
parsing datasets drawn from two different do-
mains: task-oriented dialogue (TOD) and text-to-
SQL. We first document the model’s calibration
profiles, asking how well-calibrated modern se-
mantic parsing systems are; this includes a large
pre-trained model queried in a few-shot setting,
as well as more traditional fine-tuned models. Us-
ing qualitative and quantitative metrics, we find
that most TOD models are already fairly well-
calibrated. However, the same models are poorly
calibrated on text-to-SQL datasets. In Section 5,
we analyze various factors implicated in calibra-
tion, attempting to shed light on the differences
documented in Section 4. We first find that da-
taset size does not account for the difference in
calibration between TOD and SQL models. Us-
ing measures of input and program difficulty, we
then explore the relationship between difficulty
and calibration, finding that for SQL programs,
the difficulty of the input and output are associ-
ated with poor calibration. Finally, we find that on
TOD datasets, each model’s low-confidence ex-
amples are challenging for other models; this leads
us to propose two confidence-based challenge
datasets. Because of calibration’s importance to
semantic parsing specifically—and sequence gen-
eration tasks generally—we introduce an open-

source library for computing calibration metrics
and plotting confidence, compatible with the
Transformers library (Wolf et al., 2020).

2 Related Work

2.1 Calibration in NLP

Given the utility of calibrated models in decision-
making, a large body of research has focused on
describing the calibration characteristics of dif-
ferent architectures and models, with some work
finding neural networks to be relatively well-
calibrated (Niculescu-Mizil and Caruana, 2005;
Minderer et al., 2021; Carrell et al., 2022)—
including neural encoders pre-trained on text data
(Desai and Durrett, 2020)—and other research in-
dicating they are not (Guo et al., 2017; Wang et al.,
2020; Si et al., 2022). These mixed results pre-
clude drawing general conclusions about neu-
ral models’ calibration, and motivate studies like
ours documenting the calibration characteristics
of standard models.

Past work has examined a variety of classi-
fication problems, often focusing on binary or
multi-class classification (Naeini et al., 2015; Guo
et al., 2017; Minderer et al., 2021; Khojah et al.,
2022). Some papers have addressed sequential
NLP tasks: For example, Jagannatha and Yu (2020)
address calibration in structured prediction tasks.
More related to our sequence generation setting,
Kumar and Sarawagi (2019) and Wang et al.
(2020) examine calibration in machine transla-
tion, both finding models to be over-confident.
Measuring calibration in translation tasks is lim-
ited by the metrics used, which are noisy proxies
for accuracy and have well-documented limita-
tions (Callison-Burch et al., 2006; Mathur et al.,
2020). In semantic parsing specifically, past work
has focused on improving confidence estimation
for certain parsers. Dong et al. (2018) propose
a confidence estimation method based on model
and input features. Similarly, Chen et al. (2022)
introduce an additional confidence-estimation
model for semantic parses. In our work, we extract
confidence scores from the same model used for
parsing, and focus on analyzing calibration rather
than improving it.

Calibration in LLMs We focus on calibration
in pre-trained large language models (LLMs),
which has also been addressed in other lines of
work, first by Mielke et al. (2022), who examine

1214

Dataset Train Dev Test Example Input Example Output

SMCalFlow 108, 753 12, 271 13, 496 Do I have anything going on
tonight?

(Yield (> (size
(QueryEventResponse.
results(. . .))) 0L))

TreeDST 121, 652 22, 910 22, 841 I want to book a flight to Paris (plan (∧ (Flight). . .
(Flight.dest. . .)))

Spider 7, 794 865 1, 034 What are the numbers of
all flights coming from Los
Angeles?

SELECT flno FROM
flight WHERE origin
= ‘‘Los Angeles’’

CoSQL 6, 598 745 1, 007 How many people are named
Janessa? | Do you mean the
number of people whose first
name is Janessa? | Yes

SELECT ...AS T1 JOIN
. . . T2.first name =
‘‘Janessa’’

Table 1: Number of train, validation, and test examples per dataset and example inputs and outputs.
For SQL tasks, column and table names are also included in the input (these are omitted here for
readability).

calibration in large pre-trained dialogue models.
They focus on ‘‘linguistic calibration,’’ describ-
ing a guided generation method for introducing
verbalized statements of uncertainty (e.g., ‘‘I be-
lieve’’, ‘‘I’m not sure, but...’’, ‘‘I am certain...’’)
into QA responses. Our experiments use logit-
based numerical confidence estimates instead.
Similarly, Lin et al. (2022) analyze both logit-
based and verbalized uncertainty in GPT-3. Si
et al. (2023) examine LLM calibration through the
lens of reliability, focusing on QA data and us-
ing logit-based confidence estimation. Kadavath
et al. (2022) examine whether LLMs are well-
calibrated by measuring the probability an answer
is true. Finally, Zhou et al. (2023) examine how
teaching models to interpret and express certainty
and uncertainty impacts calibration and perfor-
mance. With the exception of Kadavath et al.
(2022), these studies focus on single-prediction
classification settings: Mielke et al. (2022) exam-
ine TriviaQA questions (Joshi et al., 2017), Lin
et al. (2022) use math questions, and both Zhou
et al. (2023) and Si et al. (2023) consider multi-
ple QA benchmarks including TriviaQA. While
studying these settings is valuable, our focus is
on longer-form sequence generation, perhaps a
more typical use-case for LLMs.

This divergence is also pointed out by Kadavath
et al. (2022), who, in addition to several experi-
ments on QA benchmarks like MMLU (Hendrycks
et al., 2021), include experiments on HumanEval
code generation examples (Chen et al., 2021) and
their own dataset of Python code generation prob-

lems. Our experiments differ from theirs along a
few axes. Firstly, although making claims about
the calibration of ‘‘language models’’ broadly,
Kadavath et al. only consider a single pre-trained
model (of varying sizes) and a single program
synthesis task; we consider several models across
four datasets. Furthermore, while we consider
both fine-tuned and few-shot models, Kadavath
et al. measure calibration only in a few-shot set-
ting. While we obtain confidence estimates from
the token probabilities, Kadavath et al. extract
their estimates via an additional prompt that asks
the model to label a predicted program or answer
as ‘‘True’’ or ‘‘False’’, where the confidence is
taken to be P (True). This is a natural formula-
tion for few-shot models, but is less compati-
ble with fine-tuned models, which are far more
common in practice. Note that Kadavath et al.’s
method incurs roughly twice the cost of program
generation, as the generated program must be re-
encoded to obtain a confidence estimate.

3 Methods

Our first goal is to determine the typical calibra-
tion characteristics of models applied to semantic
parsing tasks. For this, we choose a range of stan-
dard semantic parsing tasks, datasets and models.

3.1 Tasks and Datasets

In total, we examine four datasets across two
tasks; statistics and examples of each are provided
in Table 1. All of the datasets we examine are

1215

in English. Two are TOD parsing datasets: SM-
CalFlow (Semantic Machines et al., 2020) and
TreeDST (Cheng et al., 2020).

In the TOD task, a user engages in a dialogue
with a digital assistant in order to achieve some
goal, e.g., booking a flight or scheduling a meet-
ing. For each user turn, the agent predicts an
executable program and provides a response to
the user based on the outcome of the program’s
execution; thus, the modeling task is to predict a
program from a user input and a dialogue history.
As neither SMCalFlow nor TreeDST has an avail-
able execution suite, we measure correctness by
exact match to the reference program. For both
TOD datasets, we use the preprocessed data from
Platanios et al. (2021), who converted TreeDST
into a format shared with SMCalFlow that re-
sembles Lisp, and use the SMCalFlow data splits
given by Roy et al. (2022).

Our second task is database querying. As in
TOD tasks, the modeling target is a program;
however, the program here is a SQL query that
can be executed against a database (DB) to re-
turn an answer. Crucially, this text-to-SQL task
differs from the TOD task in that the programs
are highly dependent on the structure of the exe-
cution environment. The DB’s schema influences
the program and changes depending on the DB
being used. For the text-to-SQL task, we con-
sider two popular datasets: Spider (Yu et al.,
2018) and CoSQL (Yu et al., 2019). Both datasets
contain queries over a shared set of 200 DBs; how-
ever, while Spider queries are single-turn, CoSQL
queries are multi-turn dialogues between a user
and an agent. For SQL, we do have access to an
execution engine, allowing us to measure both ex-
ecution accuracy and exact-match accuracy. Here
also, we use the splits and preprocessing scripts
from Roy et al. (2022).

3.2 Models

Given our goal of benchmarking the calibration
characteristics of different approaches commonly
in use in semantic parsing, we measure calibration
via two extant modeling paradigms: fine-tuning
and in-context learning (ICL).

Fine-tuning In the fine-tuning paradigm, we
take a model pre-trained with a self-supervised
objective on text or code data and continue to train
it (i.e., fine-tune it) using a supervised objective

on the training data for each dataset in Table 1.2

We train seven models from two commonly
used semantic parsing paradigms: transductive
and sequence-to-sequence (seq2seq). Transductive
models (Zhang, 2020) treat the parsing problem
as a sequence-to-graph task. While the executable
programs found in SMCalFlow and TreeDST are
expressed as Lisp-like sequences, they also have
an underlying execution graph. Rather than learn-
ing to generate the surface form, the transductive
approach seeks to directly model the underlying
graph, predicting a sequence of nodes as well as
labeled, directed edges. Zhang et al. (2019a) and
Zhang et al. (2019b) introduced the MISO trans-
ductive parsing framework for predicting directed
acyclic graphs from text inputs. MISO combines
an encoder-decoder model for predicting nodes
paired with a biaffine parser (Dozat and Manning,
2017) for edge prediction. It features source and
target copy operations allowing special tokens
(such as names and numbers) to be copied from
the input and previously generated tokens to be
re-generated (in the case of re-entrancy in the ex-
ecution graph). This kind of model represents an
‘‘engineering-heavy’’ approach where inductive
bias for parsing is encoded in the model archi-
tecture. We take MISO as an example of this
class, motivated by its application across a variety
of semantic parsing tasks (Zhang et al., 2019a,b;
Stengel-Eskin et al., 2020, 2021, 2022; Li et al.,
2021). We use Stengel-Eskin et al.’s (2022) best
model, which has a RoBERTa (Liu et al., 2019)
encoder and contains 127 million (M) parameters.

The seq2seq paradigm instead directly models
the output sequence. While predicting the syntac-
tic nuances of a parse (e.g., generating the correct
number of closing parentheses) can be challeng-
ing, seq2seq models are better able to leverage
large pre-trained Transformers, often enabling
them to outperform methods with stronger induc-
tive biases, like MISO. We use the BenchCLAMP
framework (Roy et al., 2022) to finetune seq2seq
models for all TOD and SQL datasets; specifi-
cally, we examine the T5 (Raffel et al., 2020) and
BART (Lewis et al., 2020) architectures, both of
which have frequently been applied to semantic
parsing benchmarks (Shaw et al., 2021; Scholak
et al., 2021; Desai and Aly, 2021; Banerjee et al.,

2Excepting MISO, for which only part of text encoder
is pre-trained and the rest of the model is trained from
scratch.

1216

2022). Both are large encoder-decoder Transform-
ers (Vaswani et al., 2017) pre-trained on text
data with self-supervised objectives. Since SQL
is used in many open-source applications (unlike
SMCalFlow and TreeDST), code scraped from
the web is likely to contain examples of it; thus,
for Spider and CoSQL, we also examine Code-T5
(Wang et al., 2021), a T5 architecture pre-trained
on large amounts of web-scraped code. As MISO
is not commonly used in text-to-SQL tasks, we
choose to omit it in our SQL experiments. We
examine T5-small (60M parameters), T5-base
(220M), T5-large (770M), BART-base (139M),
and BART-large (406M), as well as Code-T5-
base (220M). Note that while BenchCLAMP al-
lows for constrained decoding according to a
context-free grammar, restricting the model to
producing only valid parses, we choose to de-
code in an unconstrained fashion. Because the
constrained decoding process intervenes on the
output logit space, zeroing out invalid continua-
tions and renormalizing, it could affect the mod-
el’s calibration characteristics.

In-Context Learning The ICL paradigm in-
stead uses a model that has only been trained with
a self-supervised objective. Brown et al. (2020)
find that a sufficiently large model pre-trained
on text data can perform many tasks after being
shown a few examples, without any updates to
the gradients. This has been extensively explored
in the semantic parsing domain, where grammar-
constrained decoding has been combined with
ICL, allowing models to predict dataset-specific
programs from only a few retrieved examples
(Shin et al., 2021; Shin and Van Durme, 2022; Roy
et al., 2022). Following this paradigm, for a given
test query, we retrieve a set of relevant input-
output examples from the training data and con-
catenate them into the model’s input, or prompt,
as instructive examples. The model then predicts
a parse, constrained by the grammar of the do-
main language. Past work in ICL for semantic
parsing has used OpenAI’s Codex model (Chen
et al., 2021), a LLM based on the GPT architec-
ture and trained on web-scraped text and code.
However, in addition to being costly, Codex was
recently slated for removal from the OpenAI’s
public API. To ensure our results are not affected
by similar decision in the future, we instead opt
to use open-source publicly released models for
our ICL experiments. We use Codegen (Nijkamp

et al., 2022), which is available through the Trans-
formers library (Wolf et al., 2020). Codegen
models are also auto-regressive GPT-style mod-
els pre-trained on code, with strong performance
across code generation tasks; we explore 4 model
sizes: 350M parameters, 2B, 6B, and 16B.

For each test example, we construct a prompt
by retrieving 5 similar training examples and con-
catenating them into the context.3 We follow Roy
et al. (2022) and use a BM25 retriever (Robertson
and Zaragoza, 2009) over the full training set,
indexed by the input utterance. Examples are or-
dered by similarity, with the most similar example
appearing last (i.e., immediately before the test
input).

Input Representation In TOD datasets like
SMCalFlow and TreeDST, the user communi-
cates with the agent over the course of a dialogue;
we follow previous work in using the previous
dialogue turn as input if available. Thus, each dat-
apoint consists of an input X = (U0,A0,U1) and
an output program P , where U0 is the previous
user utterance (if it exists), A0 is an automatically
generated agent response to the previous utterance,
and U1 is the current user utterance. Similarly, for
CoSQL we include the previous dialogue turn in
the input (if available). Correctly predicting a SQL
program relies on knowledge of the DB schema;
to inform the model of the schema, we follow
past work in concatenating schema information
(column and table names) into the input.

Confidence Estimation The models used (ex-
cept for MISO) predict subword tokens, rather
than the whitespace-delimited tokens of a pro-
gramming language. For example, the SQL token
SELECT is split into 3 subwords by the BART
tokenizer; in other words, the model will produce
3 probabilities for this single program token. We
estimate program token confidence by first obtain-
ing estimates for subwords and then aggregating.
When measuring token-level accuracy, we also
use program tokens rather than subwords.

To estimate subword-level confidence, we use
the baseline estimator introduced by Hendrycks

3The number of examples was chosen in light of hardware
memory limitations when running the largest models. Simi-
larly, all billion-parameter models were run at half precision,
and memory constraints precluded running constrained de-
coding on the 16B model, so we do not provide sequence-level
accuracies for this model.

1217

and Gimpel (2016), which is robust across many
tasks (Varshney et al., 2022). More specifically,
we take the maximum probability across the output
vocabulary at each timestep. We then aggregate
the probabilities across subwords of a given token
using min. Intuitively, a prediction is only as
good as its weakest link. Given a sufficiently
long sequence of subwords, aggregation methods
like meanmay obscure low-confidence decisions.
In practice, using mean pooling on subwords
gives qualitatively similar results, as the number
of subwords per whitespace token tends to be
small. However, in Section 4.4 we see that mean
leads to high ECE on sequence-level calibration,
indicating that min may be the better overall
choice.

3.3 Metrics

For TOD and SQL datasets, we evaluate our mod-
els’ semantic parsing ability using exact match
accuracy (EM), where a prediction is considered
correct it it exactly matches the reference pro-
gram. This can be quite strict and lead to false
negatives; for example, the snippet x > 0 AND
x < 5 is logically identical to the snippet x < 5
AND x > 0 but would result in an EM score of
0. In the case of SQL, we could mitigate this by
executing programs against the provided DBs and
comparing the result of the execution to the ref-
erence result. This metric is perhaps too lenient,
and can result in false positives, e.g., if the gold
program yields a null result, then any program
yielding a null result will be counted as correct,
even if it does not correspond at all to the user’s
input. In light of this, Zhong et al. (2020) introduce
test-suite accuracy, which executes each program
against a suite of test DBs optimized for high
code coverage. A program is counted as correct if
it matches the gold program’s denotations on all
DBs in the suite. This reduces the false positive
rate and provides a much tighter upper-bound on
performance.

We follow past work in using expected calibra-
tion error (ECE) (Naeini et al., 2015; Guo et al.,
2017) as our calibration metric. To compute ECE,
predictions are binned by the model’s confidence;
since each prediction has an accuracy of either
0 or 1, accuracies must be averaged across ex-
amples falling in a confidence range to obtain an
expected accuracy for a given confidence score. In
its original formulation, the number of bins used

is a hyperparameter. However, Ding et al. (2020)
find that a fixed binning approach used in ECE
can be suboptimal. Intuitively, because confidence
scores are often distributed non-uniformly, a fixed
binning strategy may result in bins containing
few samples, leading to high-variance accuracy
estimates within these bins. In general, there is a
tradeoff between introducing many small bins
(estimating accuracy with high variance) and
maintaining a few large bins (estimating accuracy
with high bias). They instead introduce adaptive
binning, which correlates the number of samples
in a bin with the bin’s range: In regions where
confidence estimates are sparse, adaptive binning
introduces more bins, such that a smaller range is
covered by each bin (reducing bias), while when
estimates are dense, adaptive binning includes
fewer bins, reducing the variance of the estimate.
The number of samples for each bin is given by
n = 0.25

(Zα/2
ε

)2, where Zα/2 is the standard nor-
mal distribution’s Z-score, 1−α is the confidence
interval, and ε is a small positive value included
for numerical stability.4

The expected calibration error is the difference
between the average accuracy of each bin and its
confidence, weighted by the size of the bin. Let
Ẑ be the model’s distribution over the output vo-
cabulary V , and let Ĉ = max Ẑ , Ŷ = argmax Ẑ .
Let Y be the true class indices and define a bi-
nary accuracy vector A s.t. ai = δ(ŷi, yi). After
binning Ŷ into N bins B, ECE(B) is defined as:

ECE(B) = 100∗
N∑

i=1

|Bi|
N

∣∣∣

∑
j∈Bi

aj

|Bi|
−

∑
j∈Bi

cj

|Bi|

∣∣∣ (1)

In other words, ECE is the mean absolute error
between each bin’s average confidence and aver-
age accuracy; we scale ECE by a factor of 100
for readability. In addition to ECE, we qualita-
tively analyze calibration by plotting the average
accuracy against the bin confidence. To encourage
calibration to be measured in semantic parsing, we
release our metric and plotting library as a Python
package.

4 Benchmarking Calibration

Calibration can be measured at the token-level
or the sequence-level. Sequence-level calibration
is most relevant to safety; in a system using

4Like Ding et al. (2020), we found that the metric is not
sensitive to changing hyperparameters.

1218

Figure 1: Token-level model confidence and mean accuracy, binned by confidence across models (sorted by size)
for TOD datasets. Point size reflects the number of tokens in the bin. Points above the line reflect overconfidence,
while those below reflect underconfidence. Exact Match accuracy (EM, higher is better) and Expected Calibration
Error (ECE, lower is better) are given. All models show relatively low ECE.

Figure 2: Token-level calibration curves for few-shot code models tested on SMCalFlow.

an executable parsing model, the predicted pro-
gram will be executed as a whole (i.e., as a
sequence). However, absent a (potentially expen-
sive) external model, sequence-level confidence
scores will be composed of token-level scores, just
as sequences are composed of tokens. Moreover,
token-level scores can reveal phenomena obscured
by sequence-level scores. Rather than only mea-
suring the model’s accuracy and confidence on
a whole sequence, it may be more informative
to examine on which types of tokens the model
makes mistakes or has high calibration error. For
example, token-level confidence scores can allow
us to examine which specific functions the model
is struggling on.

To measure token-level accuracy against a ref-
erence program at time t, all predicted tokens at
timesteps 1, . . . , t − 1 must match the reference
program’s prefix; thus, we use teacher forcing,
feeding the model the gold prefix up to the current
timestep. That is, when predicting the confidence
of token ŷt, we use tokens y1, . . . , yt−1 taken from
the gold program P , not the predicted program

P̂ . Note that this differs from the setting used for
computing EM accuracy in Figure 1, Figure 2,
and Figure 4, where we compare the gold pro-
gram P = y1, . . . , yT to the predicted program
P̂ = ŷ1, . . . , ŷT . For sequence-level confidence,
we use P̂ .

4.1 Task-oriented Dialogue Results

Figure 1 shows the token-level calibration plots
and ECE scores for all fine-tuned models on TOD
datasets. Note that in our plots, the model’s con-
fidence is shown on the y-axis, and the accuracy
on the x-axis. While this is non-standard, it leads
to a more natural interpretation of the plot w.r.t.
the line y = x: Points above the line are overcon-
fident bins (confidence > accuracy); those under
the line are underconfident. The models are ranked
by size. The size of each point is based on the log
of the number of elements in that bin (following
Mielke et al. [2022]); the largest bin for all models
is the most confident bin. This is consistent with
the Exact Match (EM) accuracy results reported

1219

Figure 3: Empirical trade-off between accuracy and
calibration. Note that the y-axis is flipped (lower cal-
ibration error is better). Several models exist at the
Pareto front.

in Figure 1; for a model to achieve high accuracy,
all its output tokens must exactly match the ref-
erence tokens on most programs, i.e., the vast
majority of tokens must be predicted correctly.

We note that all models are relatively well-
calibrated. For the T5 series, calibration improves
with scale, while the opposite is true for BART. In
Figure 3, we plot the trade-off between accuracy
and calibration error for SMCalFlow models on
the test set. Here, we observe a Pareto front, with
BART models having higher accuracy but worse
ECE than comparable T5 models. Importantly,
BART’s calibration curves are non-monotonic,
which is particularly troubling. Given monotonic
distortions (e.g., a sigmoid calibration curve), re-
gression models can be fit to the validation set to
correct the calibration curve (Zadrozny and Elkan,
2002). Such correction is much harder to do for
non-monotonic distortions.

4.2 Few-shot Calibration
Figure 2 shows the calibration curves for ICL mod-
els with 5 prompt examples on the SMCalFlow
test set. First, we note that the exact-match results
here are obtained with constrained decoding, since
without fine-tuning models are generally unable
to produce syntactically-correct programs. How-
ever, the token-level confidence scores are ob-
tained without constraints (as in Section 4.1), so
the curves are comparable to those in Figure 1.
Even with constraints, the exact match perfor-
mance of these models is lower than that of the
fine-tuned models; however, they are shown only
five examples per input, while the fine-tuned mod-
els are trained on over 100, 000 examples. The
ECE of the ICL models is higher than the ECE of
finetuned models. While ECE increases initially
with model scale, the ECE of the 16B model is

slightly lower than the ECE of the 6B model,
suggesting that the trend could be U-shaped, a
phenomenon that has been documented in other
large models (Wei et al., 2022). Qualitatively
and quantitatively, the ICL calibration curves are
remarkably similar to the BART-large curve in
Figure 1, despite the fact that BART-large is
fine-tuned on the training data. We qualitatively
analyze the spikes seen in many BPE-based mod-
els like BART and Codegen in Section 5.1, finding
that they are driven by common syntactic tokens.

4.3 SQL Results

Figure 4 shows the token-level calibration char-
acteristics of models fine-tuned on SQL data.
Adaptive binning results in fewer bins here due to
the smaller sizes of the SQL test sets. We see both
qualitatively and quantitatively that many of the
same models which were well-calibrated on TOD
data are poorly calibrated on SQL datasets. All
models are substantially over-confident, and the
trends between models here are different than in
the TOD setting. BART-large is better-calibrated
than BART-base, which is the worst-calibrated
on both datasets. We also see each model has
higher ECE on CoSQL than Spider; this may
have to do with input complexity, since CoSQL
is multi-turn. We also note that the EM scores
for SQL are generally quite low; this tracks with
past results finding that EM is an excessively
strict metric for SQL (Zhong et al., 2020). We
found the execution accuracies for the models to
be in-line with those reported by Roy et al. (2022).

4.4 Sequence-level Calibration

The results in Figure 1 follow past calibration
work in using confidence estimates at the level
of individual classifications (i.e., tokens). How-
ever, unlike many of the NLP tasks where cal-
ibration has been explored in the past, the output
in semantic parsing is sequential, i.e., a series
of classifications, where each timestep is depen-
dent on the preceding decisions. Thus, to obtain
sequence-level confidence scores from token-
level scores, we need a method for aggregating
token-level estimates. We explore two aggrega-
tion functions: min and mean. These operate
over the token-level confidence scores generated
during decoding; note here the decoding takes
place without teacher-forcing, i.e., using the pre-
dicted program P̂ . Table 2 shows the ECE for

1220

Figure 4: Token-level model confidence and accuracy for SQL datasets, binned by confidence across models and
datasets. Unlike the models fine-tuned on TOD data (cf. Figure 1) models fine-tuned on SQL are poorly calibrated.

Model ECE (Min.) ECE (Mean)

MISO 5.57 5.49
BART-large 6.23 16.85
T5-large 8.29 18.01

Table 2: Sequence-level ECE for representative
models on SMCalFlow.

sequence-level confidence scores with the two ag-
gregation methods on the SMCalFlow dataset.
Since min is typically better, especially on
BART-large and T5-large, where mean results
in high over-confidence, we adopt min mov-
ing forward. As mentioned in Section 3.2, mean
may result in high ECE because over a long se-
quence, a single low-confidence prediction may be
‘‘washed out’’ by a sequence of high-confidence
predictions. This is especially true in program
prediction tasks, where syntactic constraints mean
that many tokens can be easily predicted with
high confidence (most SQL programs begin with
SELECT, etc.).

5 Discussion and Analysis

In Section 4, we found that for a fixed dataset,
different models have varying calibration char-
acteristics, even when the models have similar
architectures and pre-training data. Similarly, we
saw that the same models often differ between
datasets, and especially differ between domains
(TOD vs. text-to-SQL). Finally, we found that
some models show conspicuous spikes in cali-
bration error in some regions of the confidence

space, and that these spikes hold across models.
In light of these differences and quirks, we con-
duct additional analyses on factors associated with
model calibration.

5.1 Qualitative Analysis

Error Spikes In Figure 1 (for BART-large) and
in Figure 2 (for all models), we see a spike in
calibration error in the higher-confidence region.
This spike generally becomes more pronounced
as the size of the model increases. Given that these
models all share a tokenizer and that the spikes
are located in similar regions of the confidence
space, we hypothesize that they might be related
to the identity of the tokens in the bins. We isolate
predictions in bins within each spike (i.e., bins
with high confidence and lower accuracy, where
the curve deviates from the y = x line.) We find
that many of the tokens are shared between mod-
els and datasets; while each bin for each dataset
does contain ‘‘content’’ tokens (e.g., function
names, value names), all bins for all models
contain a large number of very frequent ‘‘syn-
tactic’’ tokens (e.g., (,),=,>, etc.) shared by
SMCalFlow and TreeDST. Given how common
these tokens—especially parentheses—are in the
Lisp datasets, it is likely that the error spikes
are driven by overconfidence on these syntactic
tokens.

Common Errors We find that most models are
over-confident; we can see over-confidence ei-
ther as a failure of confidence estimation (i.e., the
model predicts a higher confidence value than is
appropriate) or a failure of prediction (i.e., the

1221

model makes mistakes that lead to low accuracy).
Following the second interpretation, we exam-
ine some common errors that models make on
text-to-SQL and TOD datasets. For SQL datasets,
we find that higher-confidence programs (> 0.5)
sometimes are semantically correct, but fail ac-
cording to exact match because of a syntactic
difference. For example, some programs use single
quotes rather than double quotes; while this does
not affect the execution result, it counts as a failure
for exact-match accuracy. We discuss the short-
comings of exact-match further in Section 5.4.
In SMCalFlow, many high-confidence errors are
due to mismatches in capitalization, and others
are due to confusion between similar functions,
e.g., substituting AttendeeListHasRecip-
ientConstraint for AttendeeListHas-
Recipient.

We also see some errors due to ambiguous
examples, where the model predicts a valid in-
terpretation of the input which deviates from the
reference. For example, given the input ‘‘List
the number of different series names and con-
tents in the TV Channel table.’’, the BART-large
text-to-SQL model trained on Spider predicts the
program:
SELECT count (DISTINCT
series name) , content FROM
tv channel
which corresponds to the following valid parse
of the input: ‘‘[the number of different series
names] and [contents]...’’. The reference how-
ever is:
SELECT count (DISTINCT
series name) , count (DISTINCT
content) FROM tv channel;
which corresponds to ‘‘[the number of different
[series names and contents]]...".

5.2 Data Size

Given the dramatic differences in calibration be-
tween Figure 1 and Figure 4, a natural question
to ask is why SQL models are so much less cal-
ibrated. One simple hypothesis is dataset size:
Table 1 shows that the SQL datasets have between
14x and 18x less data available for fine-tuning
than the TOD datasets. Could simply increasing
the size of the dataset fix the poor SQL calibra-
tion seen in Figure 4?

If calibration were a result primarily of the
dataset size, we would expect an SMCalFlow

model trained on a small amount of data to
also have high ECE. To test this, we trained a
T5-small model on the first 7, 794 examples in
the SMCalFlow dataset—the same exact number
of training examples as are available for Spider.
We find that the model’s ECE increases from 1.27
to 2.40. While the ECE does increase, it is still
far lower than the ECE on Spider (7.64), indicat-
ing that low dataset size is not the primary driver
of poor calibration on text-to-SQL tasks.

5.3 Input and Output Difficulty

Having established that the difference in cali-
bration between TOD and text-to-SQL models
cannot be accounted for merely by dataset size,
we explore other factors that could be associated
with poor calibration. Specifically, we exam-
ine the difficulty of the input and output. For
the input, we examine out-of-distribution (OOD)
inputs, following past observations that models
are typically over-confident on OOD inputs (Bui
and Liu, 2023). We measure how OOD an input is
via perplexity from an LSTM LM (Hochreiter and
Schmidhuber, 1997). To exclude the possibility
of data leakage, we train this model from scratch,
without any pre-trained word embeddings. Inputs
are tokenized using BPE (Sennrich et al., 2016)
and the train split is used to build a vocabulary.
We autoregressively train 2-layer unidirectional
256-dimensional LSTMs on the training splits
of SMCalFlow and Spider, using an Adam op-
timizer (Kingma and Ba, 2015) with a learning
rate of 0.001.5 Training ends when the valida-
tion perplexity fails to decrease for 5 consecutive
epochs.

We consider sequence-level confidence bins
from models shared between SMCalFlow and
Spider (this excludes MISO and Code-T5). We
compute the average perplexity of the inputs in
each bin and plot the confidence and accuracy
against the mean perplexity in Figure 5. In all
cases, we expect to see accuracy decreasing with
perplexity: Intuitively, as inputs become more
OOD, they become harder for the model to parse.
If models are robust to OOD inputs, the confi-
dence should also decrease with perplexity, i.e.,
the model should be ‘‘aware’’ of the fact that it
is worse at predicting programs for OOD inputs.

5LSTMs were chosen over Transformers here because of
the relatively small size of the data combined with the desire
to train the model from scratch.

1222

Figure 5: Confidence and accuracy (y-axis) plotted by
perplexity of the input (x-axis).

On SMCalFlow, accuracy is correlated with in-
put perplexity, decreasing on more OOD inputs.
Confidence decreases with perplexity at a simi-
lar rate, indicating that the model has learned to
identify OOD inputs and produce lower con-
fidence values accordingly. That the slopes of
the two lines are very close aligns with the low
ECE seen on SMCalFlow across models: ac-
curacy, confidence, and input perplexity are all
‘‘coupled’’.

For Spider, on the other hand, there is no such
coupling. While accuracy is weakly correlated
with perplexity, confidence is positively corre-
lated with perplexity. In other words, as inputs
become more OOD, the model becomes more
over-confident in its predictions.6 This suggests
that the SQL models may not have learned to
recognize OOD inputs.

We also consider output difficulty in the SQL
domain, where use the difficulty labels provided
by Yu et al. (2018), who classify SQL programs
into easy, medium, hard, and extra-hard depend-
ing on the types of functions they involve. We
use T5-large, which is the best-calibrated (and
best-performing) model in Figure 4, and compute
the sequence-level ECE for programs separated
out by difficulty-type. We do note here that, due
to the relatively small number of programs in the

6Note that for Spider, the two outlier points with high
average perplexity (> 10) contain many tokens not seen in
training, like names of countries. Removing these outliers
does not have a qualitative impact on the results.

Figure 6: T5-large ECE by target program difficulty on
Spider (as defined by Yu et al. [2018]).

SQL test set, the bins here are often sparse, in-
troducing variance into the estimates. To account
for this, we train and evaluate models using 3
random seeds and plot the average performance.
These results are described in Figure 6, where
ECE generally increases with difficulty. The
extra-hard programs have roughly twice the ECE
of easy programs. Notably, accuracy decreases
as programs get harder; the high ECE values for
harder programs indicates that the model does
not lower the confidence appropriately for these
programs.

5.4 Execution Accuracy

Because SQL is executable, we can addition-
ally examine whether models are well-calibrated
with respect to execution accuracy. This is espe-
cially relevant in light of the results in Figure 4,
indicating that models are over-confident. Execu-
tion accuracy is typically more lenient than exact
match accuracy, which is prone to false nega-
tives; a program may vary syntactically from a
reference but still execute to the same result, i.e.,
have the same denotation.

Another more lenient form of accuracy is
accuracy@k (Acc@k, which measures whether
the correct program is in the top k programs re-
turned by the model after beam search. Intuitively,
if there are two equally valid programs for a given
input, we would expect Acc@2 to capture both,
while Acc@1 (i.e., standard EM accuracy) would
only have a 50% chance of being correct. While
Acc@k is more lenient, it is not a realistic met-
ric, since in practice we always need to choose
one single program to execute.

Figure 7 shows Acc@k and the execution ac-
curacy for T5-base on the Spider test set. The
dotted line connects Acc@1 to execution accu-
racy, showing the range. First, we note that while
all bins are over-confident, the execution ac-
curacy is generally better-calibrated (less over-
confident) than any of the Acc@k values. Note

1223

Figure 7: Execution accuracy and exact match accu-
racy@k. All accuracies result in over-confidence, but
execution accuracy is generally the best-calibrated.

that the model’s training signal only provides
indirect information about execution accuracy,
since the loss is computed against a single ref-
erence program (which ostensibly would execute
correctly), not against a set of equivalent pro-
grams. These results are promising: while the
T5-base model is very poorly-calibrated according
to exact match, it is not nearly as bad when con-
sidering test-suite eecution accuracy, which has
been demonstrated to be the more informative
metric (Zhong et al., 2020).

5.5 Easy and Hard TOD Subsets

Figure 1 shows that for many of the TOD mod-
els we examine, token-level confidence is well-
correlated with accuracy; in Table 2, using min
to aggregate token-level confidence scores, we
can obtain relatively low ECE at the sequence-
level as well, meaning we can predict (on aver-
age) how likely a test example is to be correct.
The ECE values in Table 2 tell us that the lower
a model’s min confidence is, the more likely it
is to make a mistake. Since different models have
qualitatively different calibration curves, and may
have complementary errors, we use an ensem-
ble of three different models (MISO, T5-large,
BART-large) to extract EASY and HARD splits of
high- and low-confidence programs. These splits
follow in the spirit of adversarial filtering (Zellers

Model HARD (SM) HARD (Tr)

MISO 33.31% 18.58%
BART-large 18.54% 44.50%
T5-large 23.15% 11.93%

Union 40.38% 50.50%

Table 3: Percentage of test examples labeled as
HARD by each model for SMCalFlow (SM) and
TreeDST (Tr).

et al., 2018) but are based on confidence rather
than accuracy.

The HARD subset contains the union of exam-
ples for which the sequence-level confidence falls
below a threshold – all other examples are in
EASY. The threshold for each dataset is chosen
by computing the 25th percentile over all of the
sequence-level probabilities across the three mod-
els. This threshold is 0.86 for SMCalFlow and
0.85 for TreeDST. The union is taken across the
three models, i.e., if any one model assigns an
example a confidence below the threshold, the
example is considered hard.

Table 3 shows the percentage of test data below
the threshold for each model. Note that, becausethe
models do not all assign low confidence to the
same examples, the union of examples exceeds
25% of the data. Similarly, because the thresh-
old is computed using the aggregated data from
across all 3 models, it is possible for a single
model to have more than 25% HARD examples,
as long as the average across all 3 models is
25%. For SMCalFlow, MISO contributes the most
HARD examples, while for TreeDST, BART-large
contributes more.

Table 4 shows the accuracy of each model
on our subsets. We see much lower performance
across all models on the HARD subset and much
higher performance on EASY. MISO’s perfor-
mance is lower than that of the other models;
the difference is larger than the performance dif-
ference in Figure 1. This is partly due to MISO
contributing a large percentage of low-confidence
examples to HARD (cf. Table 3)—low-confidence
examples are often more likely to be misclassified
(Hendrycks and Gimpel, 2016). We release our
HARD and EASY subsets for both SMCalFlow and
TreeDST, to act as challenge datasets for future
work.

1224

Dataset Model HARD EASY

SMCalFlow
MISO 53.43 96.05
BART-L 62.66 96.15
T5-L 60.28 96.25

TreeDST
MISO 80.32 94.42
BART-L 84.97 98.67
T5-L 84.10 98.61

Table 4: Exact match accuracy on the EASY and
HARD subsets for all models. L indicates ‘‘large’’
variant. All models perform significantly worse
on HARD.

5.6 Limitations
Our study is limited by the models, datasets, and
languages we consider. Firstly, we examine only
English datasets, limiting the impact of our re-
sults; future work may examine calibration across
typologically diverse languages. Additionally, al-
though we consider multiple datasets and models,
our datasets are drawn from two domains and
programming paradigms, and our models are lim-
ited to Transformer-based architectures. While
these choices are representative of current stan-
dards in executable semantic parsing, we encour-
age broader investigations spanning additional
models and datasets. Specifically, future work may
address programs that are interleaved into text-
based interactions. As sequence-models become
integrated into chat-bot interfaces, increasing at-
tention has been paid to augmenting these mod-
els with ‘‘tools’’, i.e., the ability to call APIs by
predicting short programs (Schick et al., 2023;
Mialon et al., 2023). Examining calibration in
these settings is particularly relevant. We exam-
ine only the highest-resource settings and leave
examining how calibration profiles change with
dataset size to future work.

We are also limited in how we measure calibra-
tion. ECE can be a brittle metric (Ovadia et al.,
2019; Si et al., 2022); we have tried to mitigate
this by using adaptive binning. However, there
are still hyperparameters and design choices in-
volved in measuring ECE, and raw ECE scores
can obscure a model’s true calibration character-
istics. We attempt to balance this using qualitative
assessments. Similarly, while accuracy is easier
to measure in semantic parsing than other text
generation tasks, we have noted some of the short-
comings of exact-match accuracy metrics.

6 Conclusion

Broadly, our results show that calibration is a
complex phenomenon with a multitude of in-
fluences. On a single dataset, different models
vary in their calibration error; moreover, the same
model often varies drastically between different
datasets, indicating that calibration is a function
of both the model and the dataset. Taken together,
these results point to the complexity of measur-
ing calibration, and suggest that care should be
taken when making claims about classes of mod-
els based on evidence from a limited number
of models or datasets. Given the utility of cali-
brated models and the importance of calibration to
safety, we advocate for considering calibration in
the standard evaluation suite for semantic parsing
models, and release our metric and visualization
suite as a standalone package to facilitate these
comparisons.

Acknowledgments

We would like to thank Zhengping Jiang, Anthony
Platanios, Chenglei Si, Subhro Roy, Kate Sanders,
Yu Su, Dan Klein, Matt Gardner, Anqi Liu, and
Daniel Khashabi for their feedback and point-
ers. We also thank the TACL reviewers and the
Action Editor, who provided valuable feedback.
Elias Stengel-Eskin is supported by an NSF GRFP,
and this work was additionally supported by NSF
#1749025.

References

Debayan Banerjee, Pranav Ajit Nair, Jivat Neet
Kaur, Ricardo Usbeck, and Chris Biemann.
2022. Modern baselines for sparql semantic
parsing. In Proceedings of the 45th Interna-
tional ACM SIGIR Conference on Research
and Development in Information Retrieval,
pages 2260–2265. https://doi.org/10
.1145/3477495.3531841

Tom Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared D. Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

1225

https://doi.org/10.1145/3477495.3531841
https://doi.org/10.1145/3477495.3531841

Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language models
are few-shot learners. Advances in Neural In-
formation Processing Systems, 33:1877–1901.

Ha Manh Bui and Anqi Liu. 2023. Density-
softmax: Scalable and distance-aware uncer-
tainty estimation under distribution shifts. arXiv
preprint arXiv:2302.06495.

Chris Callison-Burch, Miles Osborne, and
Philipp Koehn. 2006. Re-evaluating the role
of BLEU in machine translation research. In
11th Conference of the European Chapter of
the Association for Computational Linguistics,
pages 249–256.

Annabelle Carrell, Neil Mallinar, James Lucas,
and Preetum Nakkiran. 2022. The calibration
generalization gap. arXiv preprint arXiv:2210
.01964.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak,
Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. 2021.
Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.

Shijie Chen, Ziru Chen, Huan Sun, and Yu Su.
2022. Error detection for interactive text-to-sql
semantic parsing. In Proceedings of the Second
Workshop on Interactive Learning for Natural
Language Processing.

Jianpeng Cheng, Devang Agrawal, Héctor
Martı́nez Alonso, Shruti Bhargava, Joris
Driesen, Federico Flego, Dain Kaplan, Dimitri
Kartsaklis, Lin Li, Dhivya Piraviperumal,
Jason D. Williams, Hong Yu, Diarmuid Ó.
Séaghdha, and Anders Johannsen. 2020. Con-
versational semantic parsing for dialog state
tracking. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 8107–8117,
Online. Association for Computational Lin-
guistics. https://doi.org/10.18653/v1
/2020.emnlp-main.651

Shrey Desai and Ahmed Aly. 2021. Diagnosing
transformers in task-oriented semantic pars-
ing. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021,
pages 57–62. https://doi.org/10.18653
/v1/2021.findings-acl.5

Shrey Desai and Greg Durrett. 2020. Calibration
of pre-trained transformers. In Proceedings of
the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP),
pages 295–302. https://doi.org/10.18653
/v1/2020.emnlp-main.21

Yukun Ding, Jinglan Liu, Jinjun Xiong, and
Yiyu Shi. 2020. Revisiting the evaluation of
uncertainty estimation and its application to ex-
plore model complexity-uncertainty trade-off.
In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition
Workshops, pages 4–5. https://doi.org
/10.1109/CVPRW50498.2020.00010

Li Dong, Chris Quirk, and Mirella Lapata.
2018. Confidence modeling for neural se-
mantic parsing. In Proceedings of the 56th
Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Pa-
pers), pages 743–753. https://doi.org
/10.18653/v1/P18-1069

Timothy Dozat and Christopher D. Manning.
2017. Deep biaffine attention for neural depen-
dency parsing. In 5th International Conference
on Learning Representations, ICLR 2017,
Toulon, France, April 24–26, 2017, Confer-
ence Track Proceedings. OpenReview.net.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q.
Weinberger. 2017. On calibration of modern

1226

https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.18653/v1/2021.findings-acl.5
https://doi.org/10.18653/v1/2021.findings-acl.5
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.1109/CVPRW50498.2020.00010
https://doi.org/10.1109/CVPRW50498.2020.00010
https://doi.org/10.18653/v1/P18-1069
https://doi.org/10.18653/v1/P18-1069

neural networks. In International Confer-
ence on Machine Learning, pages 1321–1330.
PMLR.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj
Kumar, and Mike Lewis. 2018. Semantic pars-
ing for task oriented dialog using hierarchical
representations. In Proceedings of the 2018
Conference on Empirical Methods in Natu-
ral Language Processing, pages 2787–2792.
https://doi.org/10.18653/v1/D18
-1300

Dan Hendrycks, Collin Burns, Steven Basart,
Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. 2021. Measuring massive mul-
titask language understanding. In International
Conference on Learning Representations.

Dan Hendrycks and Kevin Gimpel. 2016. A base-
line for detecting misclassified and out-of-
distribution examples in neural networks. arXiv
preprint arXiv:1610.02136.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780. https://doi.org/10.1162
/neco.1997.9.8.1735, PubMed: 9377276

Abhyuday Jagannatha and Hong Yu. 2020.
Calibrating structured output predictors for nat-
ural language processing. In Proceedings of
the Association for Computational Linguistics
Meeting, volume 2020, page 2078. NIH Pub-
lic Access. https://doi.org/10.18653/v1
/2020.acl-main.188, PubMed: 33612961

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and
Luke Zettlemoyer. 2017. Triviaqa: A large
scale distantly supervised challenge dataset for
reading comprehension. In Proceedings of the
55th Annual Meeting of the Association for
Computational Linguistics, Vancouver, Canada.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/P17
-1147

Saurav Kadavath, Tom Conerly, Amanda Askell,
Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield Dodds, Nova
DasSarma, Eli Tran-Johnson, Scott Johnston,
Sheer El-Showk, Andy Jones, Nelson Elhage,
Tristan Hume, Anna Chen, Yuntao Bai, Sam
Bowman, Stanislav Fort, Deep Ganguli, Danny
Hernandez, Josh Jacobson, Jackson Kernion,
Shauna Kravec, Liane Lovitt, Kamal Ndousse,

Catherine Olsson, Sam Ringer, Dario Amodei,
Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah,
and Jared Kaplan. 2022. Language models
(mostly) know what they know. arXiv preprint
arXiv:2207.05221.

Ranim Khojah, Alexander Berman, and Staffan
Larsson. 2022. Evaluating n-best calibration
of natural language understanding for dialogue
systems. In Proceedings of the 23rd Annual
Meeting of the Special Interest Group on
Discourse and Dialogue, pages 582–594.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In 3rd
International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA,
May 7–9, 2015, Conference Track Proceedings.

Aviral Kumar and Sunita Sarawagi. 2019.
Calibration of encoder decoder models for
neural machine translation. arXiv preprint
arXiv:1903.00802.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. In Proceed-
ings of the 58th Annual Meeting of the
Association for Computational Linguistics,
pages 7871–7880. https://doi.org/10
.18653/v1/2020.acl-main.703

Zhuowan Li, Elias Stengel-Eskin, Yixiao Zhang,
Cihang Xie, Quan Tran, Benjamin Van Durme,
and Alan Yuille. 2021. Calibrating concepts
and operations: Towards symbolic reasoning
on real images. In Proceedings of the IEEE/
CVF International Conference on Computer
Vision (ICCV). https://doi.org/10.1109
/ICCV48922.2021.01464

Stephanie Lin, Jacob Hilton, and Owain Evans.
2022. Teaching models to express their un-
certainty in words. Transactions on Machine
Learning Research.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

1227

https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://pubmed.ncbi.nlm.nih.gov/9377276
https://doi.org/10.18653/v1/2020.acl-main.188
https://doi.org/10.18653/v1/2020.acl-main.188
https://pubmed.ncbi.nlm.nih.gov/33612961
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1109/ICCV48922.2021.01464
https://doi.org/10.1109/ICCV48922.2021.01464

Nitika Mathur, Timothy Baldwin, and Trevor
Cohn. 2020. Tangled up in BLEU: Reeval-
uating the evaluation of automatic machine
translation evaluation metrics. arXiv preprint
arXiv:2006.06264. https://doi.org/10
.18653/v1/2020.acl-main.448

Grégoire Mialon, Roberto Dessı̀, Maria Lomeli,
Christoforos Nalmpantis, Ram Pasunuru,
Roberta Raileanu, Baptiste Rozière, Timo
Schick, Jane Dwivedi-Yu, Asli Celikyilmaz,
et al. 2023. Augmented language models: A
survey. arXiv preprint arXiv:2302.07842.

Sabrina J. Mielke, Arthur Szlam, Emily Dinan,
and Y-Lan Boureau. 2022. Reducing conversa-
tional agents’ overconfidence through linguis-
tic calibration. Transactions of the Association
for Computational Linguistics, 10:857–872.
https://doi.org/10.1162/tacl a 00494

Matthias Minderer, Josip Djolonga, Rob
Romijnders, Frances Hubis, Xiaohua Zhai,
Neil Houlsby, Dustin Tran, and Mario Lucic.
2021. Revisiting the calibration of modern
neural networks. Advances in Neural Informa-
tion Processing Systems, 34:15682–15694.

Mahdi Pakdaman Naeini, Gregory Cooper, and
Milos Hauskrecht. 2015. Obtaining well cali-
brated probabilities using bayesian binning. In
Twenty-Ninth AAAI Conference on Artificial
Intelligence. https://doi.org/10.1609
/aaai.v29i1.9602

Alexandru Niculescu-Mizil and Rich Caruana.
2005. Predicting good probabilities with su-
pervised learning. In Proceedings of the 22nd
International Conference on Machine Learn-
ing, pages 625–632.https://doi.org/10
.1145/1102351.1102430

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. 2022. Codegen: An
open large language model for code with
multi-turn program synthesis. arXiv preprint
arXiv:2203.13474.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary
Nado, David Sculley, Sebastian Nowozin,
Joshua Dillon, Balaji Lakshminarayanan, and
Jasper Snoek. 2019. Can you trust your
model’s uncertainty? Evaluating predictive un-
certainty under dataset shift. Advances in
Neural Information Processing Systems, 32.

Emmanouil Antonios Platanios, Adam Pauls,
Subhro Roy, Yuchen Zhang, Alexander
Kyte, Alan Guo, Sam Thomson, Jayant
Krishnamurthy, Jason Wolfe, Jacob Andreas,
and Dan Klein. 2021. Value-agnostic conversa-
tional semantic parsing. In Proceedings of the
59th Annual Meeting of the Association for
Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers),
pages 3666–3681, Online. Association for
Computational Linguistics. https://doi.org
/10.18653/v1/2021.acl-long.284

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu.
2020. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal
of Machine Learning Research, 21(140):1–67.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends R© in Infor-
mation Retrieval, 3(4):333–389. https://
doi.org/10.1561/1500000019

Subhro Roy, Sam Thomson, Tongfei Chen,
Richard Shin, Adam Pauls, Jason Eisner, and
Benjamin Van Durme. 2022. Benchclamp:
A benchmark for evaluating language mod-
els on semantic parsing. arXiv preprint arXiv:
2206.10668.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀,
Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas
Scialom. 2023. Toolformer: Language models
can teach themselves to use tools. arXiv pre-
print arXiv:2302.04761.

Torsten Scholak, Nathan Schucher, and Dzmitry
Bahdanau. 2021. PICARD: Parsing incremen-
tally for constrained auto-regressive decoding
from language models. In Proceedings of the
2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 9895–9901.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/2021
.emnlp-main.779

Semantic Machines, Jacob Andreas, John Bufe,
David Burkett, Charles Chen, Josh Clausman,
Jean Crawford, Kate Crim, Jordan DeLoach,
Leah Dorner, Jason Eisner, Hao Fang, Alan

1228

https://doi.org/10.18653/v1/2020.acl-main.448
https://doi.org/10.18653/v1/2020.acl-main.448
https://doi.org/10.1162/tacl_a_00494
https://doi.org/10.1609/aaai.v29i1.9602
https://doi.org/10.1609/aaai.v29i1.9602
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.18653/v1/2021.acl-long.284
https://doi.org/10.18653/v1/2021.acl-long.284
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779

Guo, David Hall, Kristin Hayes, Kellie Hill,
Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman,
Percy Liang, Christopher H. Lin, Ilya
Lintsbakh, Andy McGovern, Aleksandr
Nisnevich, Adam Pauls, Dmitrij Petters, Brent
Read, Dan Roth, Subhro Roy, Jesse Rusak,
Beth Short, Div Slomin, Ben Snyder, Stephon
Striplin, Yu Su, Zachary Tellman, Sam
Thomson, Andrei Vorobev, Izabela Witoszko,
Jason Wolfe, Abby Wray, Yuchen Zhang,
and Alexander Zotov. 2020. Task-oriented di-
alogue as dataflow synthesis. Transactions of
the Association for Computational Linguistics,
8:556–571. https://doi.org/10.1162
/tacl_a_00333

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2016. Neural machine translation of
rare words with subword units. In Proceedings
of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1:
Long Papers), pages 1715–1725, Berlin, Germany.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/P16
-1162

Peter Shaw, Ming-Wei Chang, Panupong Pasupat,
and Kristina Toutanova. 2021. Compositional
generalization and natural language variation:
Can a semantic parsing approach handle both?
In Proceedings of the 59th Annual Meet-
ing of the Association for Computational
Linguistics and the 11th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers), pages 922–938, On-
line. Association for Computational Linguistics.
https://doi.org/10.18653/v1/2021
.acl-long.75

Richard Shin, Christopher Lin, Sam Thomson,
Charles Chen Jr., Subhro Roy, Emmanouil
Antonios Platanios, Adam Pauls, Dan Klein,
Jason Eisner, and Benjamin Van Durme. 2021.
Constrained language models yield few-shot
semantic parsers. In Proceedings of the 2021
Conference on Empirical Methods in Natu-
ral Language Processing, pages 7699–7715.
https://doi.org/10.18653/v1/2021
.emnlp-main.608

Richard Shin and Benjamin Van Durme. 2022.
Few-shot semantic parsing with language
models trained on code. In Proceedings of

the 2022 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
pages 5417–5425. https://doi.org/10
.18653/v1/2022.naacl-main.396

Chenglei Si, Zhe Gan, Zhengyuan Yang,
Shuohang Wang, Jianfeng Wang, Jordan
Boyd-Graber, and Lijuan Wang. 2023. Prompt-
ing GPT-3 to be reliable. International Con-
ference on Learning Representations.

Chenglei Si, Chen Zhao, Sewon Min, and Jordan
Boyd-Graber. 2022. Re-examining calibration:
The case of question answering. In Findings
of the Association for Computational Linguis-
tics: EMNLP 2022, pages 2814–2829, Abu
Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Elias Stengel-Eskin, Kenton Murray, Sheng
Zhang, Aaron Steven White, and Benjamin
Van Durme. 2021. Joint universal syntactic and
semantic parsing. Transactions of the Associa-
tion for Computational Linguistics. https://
doi.org/10.1162/tacl a 00396

Elias Stengel-Eskin, Emmanouil Antonios
Platanios, Adam Pauls, Sam Thomson, Hao
Fang, Benjamin Van Durme, Jason Eisner,
and Yu Su. 2022. When more data hurts: A
troubling quirk in developing broad-coverage
natural language understanding systems. Pro-
ceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing
(EMNLP). https://doi.org/10.18653
/v1/2022.emnlp-main.789

Elias Stengel-Eskin, Aaron Steven White, Sheng
Zhang, and Benjamin Van Durme. 2020. Uni-
versal decompositional semantic parsing. In
Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics,
pages 8427–8439. https://doi.org/10
.18653/v1/2020.acl-main.746

Stefanie Tellex, Nakul Gopalan, Hadas Kress-
Gazit, and Cynthia Matuszek. 2020. Robots
that use language. Annual Review of Control,
Robotics, and Autonomous Systems, 3:25–55.
https://doi.org/10.1146/annurev
-control-101119-071628

Neeraj Varshney, Swaroop Mishra, and Chitta
Baral. 2022. Investigating selective prediction
approaches across several tasks in iid, ood, and

1229

https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2022.naacl-main.396
https://doi.org/10.18653/v1/2022.naacl-main.396
https://doi.org/10.1162/tacl_a_00396
https://doi.org/10.1162/tacl_a_00396
https://doi.org/10.18653/v1/2022.emnlp-main.789
https://doi.org/10.18653/v1/2022.emnlp-main.789
https://doi.org/10.18653/v1/2020.acl-main.746
https://doi.org/10.18653/v1/2020.acl-main.746
https://doi.org/10.1146/annurev-control-101119-071628
https://doi.org/10.1146/annurev-control-101119-071628

adversarial settings. In Findings of the Associa-
tion for Computational Linguistics: ACL 2022,
pages 1995–2002. https://doi.org/10
.18653/v1/2022.findings-acl.158

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in Neural
Information Processing Systems 30: Annual
Conference on Neural Information Process-
ing Systems 2017, December 4–9, 2017, Long
Beach, CA, USA, pages 5998–6008.

Shuo Wang, Zhaopeng Tu, Shuming Shi, and
Yang Liu. 2020. On the inference calibration
of neural machine translation. In Proceed-
ings of the 58th Annual Meeting of the
Association for Computational Linguistics,
pages 3070–3079. https://doi.org/10
.18653/v1/2020.acl-main.278

Yue Wang, Weishi Wang, Shafiq Joty, and
Steven C. H. Hoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder
models for code understanding and genera-
tion. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Pro-
cessing, pages 8696–8708. https://doi.org
/10.18653/v1/2021.emnlp-main.685

Jason Wei, Najoung Kim, Yi Tay, and Quoc
V. Le. 2022. Inverse scaling can become
u-shaped. arXiv preprint arXiv:2211.02011.

Thomas Wolf, Lysandre Debut, Victor Sanh,
Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf,
Morgan Funtowicz, et al. 2020. Trans-
formers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 conference
on empirical methods in natural language pro-
cessing: System demonstrations, pages 38–45.
https://doi.org/10.18653/v1/2020
.emnlp-demos.6

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric
Xue, Bo Pang, Xi Victoria Lin, Yi Chern
Tan, Tianze Shi, Zihan Li, Youxuan Jiang,
Michihiro Yasunaga, Sungrok Shim, Tao
Chen, Alexander Fabbri, Zifan Li, Luyao Chen,
Yuwen Zhang, Shreya Dixit, Vincent Zhang,
Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019. Cosql:
A conversational text-to-sql challenge towards

cross-domain natural language interfaces to
databases. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing and the 9th International
Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1962–1979.
https://doi.org/10.18653/v1/D19
-1204

Tao Yu, Rui Zhang, Kai Yang, Michihiro
Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman,
Zilin Zhang, and Dragomir Radev. 2018.
Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing
and text-to-sql task. In Proceedings of the 2018
Conference on Empirical Methods in Natu-
ral Language Processing, pages 3911–3921.
https://doi.org/10.18653/v1/D18
-1425

Bianca Zadrozny and Charles Elkan. 2002.
Transforming classifier scores into accurate
multiclass probability estimates. In Proceed-
ings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining, pages 694–699. https://doi.org
/10.1145/775047.775151

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and
Yejin Choi. 2018. Swag: A large-scale ad-
versarial dataset for grounded commonsense
inference. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural
Language Processing (EMNLP). https://
doi.org/10.18653/v1/D18-1009

Sheng Zhang. 2020. Transductive Semantic
Parsing. Ph.D. thesis, The Johns Hopkins
University.

Sheng Zhang, Xutai Ma, Kevin Duh, and
Benjamin Van Durme. 2019a. AMR parsing
as sequence-to-graph transduction. In Pro-
ceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 80–94, Florence, Italy. Association for
Computational Linguistics. https://doi
.org/10.18653/v1/P19-1009

Sheng Zhang, Xutai Ma, Kevin Duh, and
Benjamin Van Durme. 2019b. Broad-coverage
semantic parsing as transduction. In Proceed-
ings of the 2019 Conference on Empirical

1230

https://doi.org/10.18653/v1/2022.findings-acl.158
https://doi.org/10.18653/v1/2022.findings-acl.158
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.1145/775047.775151
https://doi.org/10.1145/775047.775151
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009

Methods in Natural Language Processing and
the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP),
pages 3786–3798, Hong Kong, China. Associ-
ation for Computational Linguistics. https://
doi.org/10.18653/v1/D19-1392

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Se-
mantic evaluation for text-to-sql with distilled
test suites. In Proceedings of the 2020 Confer-

ence on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 396–411.
https://doi.org/10.18653/v1/2020
.emnlp-main.29

Kaitlyn Zhou, Dan Jurafsky, and Tatsunori
Hashimoto. 2023. Navigating the grey area:
Expressions of overconfidence and uncertainty
in language models. arXiv preprint arXiv:
2302.13439.

1231

https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29

	Introduction
	Related Work
	Calibration in NLP

	Methods
	Tasks and Datasets
	Models
	Metrics

	Benchmarking Calibration
	Task-oriented Dialogue Results
	Few-shot Calibration
	SQL Results
	Sequence-level Calibration

	Discussion and Analysis
	Qualitative Analysis
	Data Size
	Input and Output Difficulty
	Execution Accuracy
	Easy and Hard TOD Subsets
	Limitations

	Conclusion

