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Abstract
Named Entity Recognition (NER) has so far
evolved from the traditional flat NER to over-
lapped and discontinuous NER. They have
mostly been solved separately, with only sev-
eral exceptions that concurrently tackle three
tasks with a single model. The current best-
performing method formalizes the unified NER
as word-word relation classification, which
barely focuses on mention content learning
and fails to detect entity mentions compris-
ing a single word. In this paper, we propose
a two-stage span-based framework with tem-
plates, namely, T 2-NER, to resolve the uni-
fied NER task. The first stage is to extract
entity spans, where flat and overlapped enti-
ties can be recognized. The second stage is
to classify over all entity span pairs, where
discontinuous entities can be recognized. Fi-
nally, multi-task learning is used to jointly
train two stages. To improve the efficiency
of span-based model, we design grouped tem-
plates and typed templates for two stages to
realize batch computations. We also apply an
adjacent packing strategy and a latter pack-
ing strategy to model discriminative boundary
information and learn better span (pair) repre-
sentation. Moreover, we introduce the syntax
information to enhance our span representa-
tion. We perform extensive experiments on
eight benchmark datasets for flat, overlapped,
and discontinuous NER, where our model
beats all the current competitive baselines, ob-
taining the best performance of unified NER.

1 Introduction

Named entity recognition (NER) is the task of
recognizing mentions that represent entities in
text. It has been a fundamental task in natural lan-
guage processing (NLP), due to its wide ap-
plication in various knowledge-based tasks like
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entity linking and data mining (Le and Titov,
2018; Cao et al., 2019).

Research on NER has evolved early from flat
NER (Sang and Meulder, 2003; Pradhan et al.,
2013b), later to overlapped NER (Doddington
et al., 2004; Walker et al., 2006), and recently to
discontinuous NER (Karimi et al., 2015; Pradhan
et al., 2013a). As shown in Figure 1, flat NER sim-
ply detects the entity mentions and their types,
while the problems of overlapped and discon-
tinuous NER are more complicated, i.e., over-
lapped entities contain overlapping fragments, and
discontinuous entities may contain several non-
adjacent fragments. Regarding unified NER, this
refers to recognize all types of named entities in
the input text, regardless of whether they are flat,
overlapping, or discontinuous.

Many methods have been developed to solve
three NER tasks (Lu and Roth, 2015; Wang and
Lu, 2018; Ju et al., 2018; Wang et al., 2018). The
majority of them focus on flat and overlapped
NER, with only several exceptions that center on
unified NER. Yan et al. (2021) adopt a generative
method to obtain position indexes of entity spans.
Yet generative models potentially suffer from the
exposure bias issue. Li et al. (2022) achieve the
current best performance. They use convolution
neural networks to obtain two types of word pair
relation, and respectively fill them into the upper
and lower triangular regions of a word-pair grid
for decoding. However, their method decodes
entities word by word, without integrally model-
ing the entity content, which is important for en-
tity classification. It also fails to detect one-word
entities as they are only assigned one relation in
the grid diagonal. Moreover, it needs to clas-
sify over all word pairs, including redundant non-
entity ones. Therefore, designing an effective
unified NER model is still challenging.
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Figure 1: (a)–(c) Examples of three kinds of entity
mentions. (d) We propose a two-stage span based
framework to solve NER tasks in a unified way.

By contrast, span-based methods (Luan et al.,
2019; Sohrab and Miwa, 2018) directly model
the span content for entity classification and nat-
urally recognize one-word entities. In light of
this, we investigate an alternative unified NER
formalism with a two-stage span-based frame-
work. This framework resolves the unified NER
by modeling it as span pair relation classification.
Such relation is pivotal for recognizing overlapped
and discontinuous entities as they describe the
semantic relations between entity fragments. To
illustrate: In Figure 1(d), in order to recognize
the discontinuous entity ‘‘aching in shoulders’’,
effectively capturing the discontinuous relation
between spans ‘‘aching in’’ and ‘‘shoulders’’ is
indispensable.

Specifically, the proposed framework works
as follows. In the first stage, Span Extraction
classifies the enumerated spans to find all entity
spans, which are defined as text spans that either
form entity mentions on their own or present as
fragments of discontinuous entity mentions. In
the second stage, Span Pair Classification clas-
sifies entity span pair relation to merge spans
into entities. We define two types of relations for
this goal: Next-Fragment and Overlapped,
which are used for discontinuous and overlapped
mentions respectively, as shown in Figure 1(d).
We adopt multi-task learning to jointly train these
two stages. This framework naturally solves the
problems in Li et al. (2022).

However, it is still a toy framework, as we
find three key issues that need to be considered,
which may greatly facilitate unified NER.

1. Improving the efficiency: This toy frame-
work needs to classify over all candidate
spans and entity span pairs, which inevita-
bly suffers from the inefficiency issue and
considerable model complexity.

2. Modeling the discriminative span boundary:
Span boundary is essential to discriminate
different entity spans. However, this toy
framework uses embeddings learned from
span content to classify spans, which is inad-
equate in learning from other spans to acquire
discriminative span boundary information.

3. Learning the discriminative span pair repre-
sentation: Span pair representation directly
affects the results of span pair classification.
However, this toy framework reuses repre-
sentations of candidate span pairs from the
first stage for relation classification, failing
to learn from other pairs to get discrimina-
tive pair representation.

Based on the above observations, we introduce
the full model T 2-NER, which defuses these issues
from the following aspects:

1. To speed up the inference process, we are
inspired by Zhong and Chen (2021) and pro-
pose to equip the toy model with templates,
which are packs of markers highlighting
the corresponding spans. Templates enable
the model to re-use the computations of
text tokens and realize an efficient batch
computation.

2. To model the discriminative span boundary,
we design an adjacent packing strategy in the
first stage. This strategy integrally models
adjacent spans (i.e., spans with the same start
tokens) by packing adjacent markers into a
training instance. As the model learns from
adjacent spans, more precise span boundary
information can be learned.

3. To learn the discriminative span pair repre-
sentation, we design a latter packing strategy
in the second stage. This strategy integrally
models the interrelation between span pairs
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by packing the former markers with the re-
lated latter ones into a training instance. It
enables the model to compare same-former
spans to learn discriminative span pair
representation. Moreover, we utilize syn-
tax information to enhance the span (pair)
representation.

Our main contributions are as follows:

• We identify the deficiency of existing NER
methods in solving the unified NER task,
and propose a new solution T 2-NER, to
boost the performance. This is done by (1)
modeling the unified NER as span pair rela-
tion classification, and offering a two-stage
span-based framework to realize it; (2) ex-
ploiting templates to realize accelerating; and
(3) designing adjacent packing strategy and
latter packing strategy to get better span (pair)
representations.

• We empirically evaluate our proposal on flat,
overlapped, and discontinuous NER tasks
against 13 baselines. The comparative results
demonstrate the superiority of T 2-NER.

2 Related Work

Sequential Labeling-based Methods These
solve NER tasks through various tagging schemes.
These studies usually use neural models such as
CNN (Collobert et al., 2011) and Transformer
(Yan et al., 2019) for representation, followed by
a CRF layer (Lafferty et al., 2001) for classifi-
cation. However, it is hard for them to directly
detect overlapped or discontinuous entity men-
tions. Shibuya and Hovy (2020) try to decode
the tags in a layered manner for overlapped en-
tity mentions. Tang et al. (2018) adopt a BIOHD
tagging scheme to resolve the discontinuous NER
task. Despite the fact that sequence labeling is
reconciled with various NER tasks, it fails to
solve these tasks with a unified scheme.

Hypergraph-based Methods These are first
introduced into the NER task in Lu and Roth
(2015), where they construct hypergraphs by the
structure of overlapped mentions and exponen-
tially represent them. Muis and Lu (2016) further
explore the application of hypergraphs on discon-
tinuous NER. Wang and Lu (2018) utilize deep
neural networks to enhance the hypergraph repre-
sentation, and decode overlapped entity mentions

with hypergraphs. Although hypergraphs can rep-
resent all types of entity mentions, they require
careful manual design of graph nodes and edges
to avoid the structural ambiguity issue. Moreover,
these models gradually generate graphs along
the words, which may lead to error propagation
issue.

Transition-based Methods These are first pro-
posed for nested NER in Wang et al. (2018). They
design transition actions, and maintain a stack as
well as a buffer to store entities, enabling the rep-
resentation of nested mentions. Follow-up work
includes Dai et al. (2020), which further extends
this model for discontinuous NER, through using
multiplicative attention to capture the discontin-
uous dependency. However, these methods need
manual intervention for the design of transition
actions. And they also face the error propagation
issue as transitions are conducted word by word
along the sentence.

Generative Methods These adopt generative
models such as BART (Lewis et al., 2020) and
pointer networks to directly get structured results.
Cui et al. (2021) design templates and employ
BART for pre-training and fine-tuning on tem-
plates to obtain entity types of given spans. Fei
et al. (2021) use a generative model with pointer
network for discontinuous NER, directly getting
a list of entity mentions. Yan et al. (2021) solve
the unified NER with BART and pointer network,
aiming to generate a sequence of entity start-end
indexes and types. Generative methods unavoid-
ably face the decoding efficiency issue as well as
the exposure bias issue.

Span-based Methods Recently, NER has been
frequently formulated as a span enumeration and
classification task. To overcome the enumeration
inefficiency issue, Sohrab and Miwa (2018) pro-
pose to set the maximum span length. Li et al.
(2020) convert NER to a machine reading com-
prehension (MRC) task and extract entity spans
with a MRC model. Shen et al. (2021) design a
filter and a regressor to select span proposals. Li
et al. (2021) formalize discontinuous NER as a
subgraph finding task. Yu et al. (2020) use de-
pendent embeddings as input to a multi-layer
BiLSTM and a biaffine model to score spans in
a sentence. Although the span-based framework
has the innate ability to cope with the overlapped
NER, the above methods are subject to enumer-
ation nature, failing to balance the performance
and efficiency well.
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Other Methods Wang et al. (2021) formulate
discontinuous NER as a task of discovering max-
imal cliques in a segment graph. Li et al. (2022)
model the unified NER as word-word relation
classification. They achieve the current state-of-
the-art (SOTA) performance on the unified NER.
However, this work fails to learn the mention
content integrally and suffers from the efficiency
issue as it needs to classify over all word pairs,
including redundant ones.

To sum up, existing work mainly focuses on the
flat and overlapped NER, only a few studies seek
to resolve the unified NER (Yan et al., 2021; Li
et al., 2022). We reconcile the span-based frame-
work to the unified NER with a formalism as
span pair relation classification. Our model sub-
stantially avoids the drawbacks in previous base-
lines, by effectively modeling span boundary and
learning better span pair representation.

3 Preliminaries

In this section we first introduce the definition of
entity span pair relation and the marker. Then we
formalize the unified NER problem.

Definition 1 (Entity Span Pair Relation).
We define the following three kinds of entity
span pair relation and we also give an exam-
ple as demonstrated in Figure 1(d) for better
understanding.

• OTHER, indicating that the entity span pair
has an other relation or does not have any
relation defined in this paper.

• Next-Fragment, indicating that two en-
tity spans belong to a single entity mention
and they are successive.

• Overlapped, indicating that two entity
spans are overlapped.

Definition 2 (Span Marker). We explicitly
insert a pair of span markers before and after the
candidate span to highlight it. We define those of
the ith span as <Mi> and </Mi>.

Definition 3 (Span Pair Marker). We explic-
itly insert two pairs of typed span markers before
and after two candidate spans to highlight them.
We define these markers as <F :ex>, </F :ex>
and <Li : ei>, </Li : ei>, where ex, ei ∈ E and
E denotes a pre-defined entity type set.

Problem 1 (T 2-NER: Unified NER as A
Two-Stage Span-Based Framework). The uni-
fied NER can be formalized as follows: Given
an input text of N tokens X = {x1, x2, . . . , xN},
the first stage aims to perform span extraction,
i.e., representing and classifying the span mark-
ers to detect out all entity spans in X of up to
length L, e.g., sa,b = {xa, xa+1, ...xb}, as well
as its entity type e ∈ E . After this stage, both
the flat and overlapped entity spans could be
recognized.

Then, the second stage aims to perform span
pair classification by taking sa,b and sc,d as in-
put and utilizing span pair markers to find their
relation r ∈ R, where R is predefined, in-
cluding Next-Fragment, Overlapped, and
OTHER. Through this stage, the discontinuous
entity mentions could be detected. Also, the flat
and overlapped entity mentions would be double
checked by recognizing the Overlapped and
Other relations between span pairs.

4 T 2-NER Model

As shown in Figure 2, T 2-NER contains four
main components, which are elaborated by the
following subsections.

4.1 Span Extraction with Grouped
Templates

Span extraction aims to find all text spans and
determine whether these spans are entity spans.
Different from prior span-based work which sim-
ply follows the line of enumerating and classify-
ing (Lee et al., 2017; Luan et al., 2019), we resort
to construct templates for each input text to re-
alize an approximate operation, thus accelerating
the inference process. In form, these templates
are composed of span markers.

Specifically, given an input text with N tokens,
X = {x1, x2, . . . , xN}, and a maximum span
length L, we first enumerate all text spans in
X , obtaining a candidate span set as S(X) =
{s(1,1), . . . , s(1,L), . . . , s(N−L+1,N), . . . , s(N,N)}.

Dispersedly training and inferring for all can-
didate spans requires large computation costs
(Luan et al., 2019). To alleviate this issue, we
neatly pack these spans into multiple instances
at first. To fully utilize the boundary character-
istics of spans, we propose an adjacent packing
strategy. It clusters adjacent spans with the same
start tokens in order into a group. For instance,
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Figure 2: Model overview. (a) The first stage which adopts the adjacent packing strategy to construct tem-
plates. (b) The second stage which adopts the latter packing strategy to construct templates. (c) We employ
the AGGCN module to encode the syntax information into span (pair) representations. (d) We jointly train two
stages and decode the results with Next-Fragment relations.

we cluster spans, {s(1,1), s(1,2) . . . , s(1,L)} into the
group S1. As shown in Figure 2(a), for the
sample sentence ‘‘aching in legs and shoulders’’
with a maximum span length 5, the group S1 =
{aching, aching in, aching in legs, aching in
legs and, aching in legs and shoulders}.

Then we construct a template for each group,
which is the sequentially concatenation of marker
pairs of all spans in this group. Specifically,
for the candidate span si, we make the corre-
sponding marker pairs share the same position
embeddings with the start and end tokens of this
span, i.e., p(<Mi>), p(</Mi>) := p(xstart(i)),
p(xend(i)). In this way, the position embeddings
of original tokens will remain unchanged after
the template insertion. As shown in Figure 2(a),
the template for group S1 is <M1></M1>
<M2>< /M2><M3>< /M3><M4>< /M4>
<M5>< /M5>.

Finally, we separately append each template
to the input text and feed the sequence into a
pretrained BERT module. In order to re-use the
representations of text tokens, we harness a direc-
tional attention mask matrix in the attention layer

(Zhong and Chen, 2021). Specifically, the text
tokens only attend to text tokens and not attend to
span markers while a span marker can attend to all
the text tokens and its partner marker associated
with the same span. As a result, we can dispers-
edly process all groups in multiple runs, and batch
spans in each group in one run.

After the BERT calculation, we obtain the
representation of the whole sequence, which corre-
sponds to a matrix X = {x1,x2, . . . ,xÑ}, where
Ñ is the length of the appended sequence. We de-
note contextualized representations of span markers
of s(a,b) as xstart

a and xend
b . The span represen-

tation is the concatenation of them:

h(s(a,b)) = [xstart
a ;xend

b ;w], (1)

where w is the learned embeddings of span width
features and [; ] is the concatenation operation.

To recognize all candidate entity spans, we
use a MLP layer with ReLU activations for
prediction:

p1(e|s(a,b)) = Softmax(MLP1(h(s(a,b))), (2)
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where p1 denotes the probability distribution of
the entity span type e ∈ E ∪ {none}, E denotes a
set of predefined entity types and none indicates
that the span s(a,b) is not an entity span.

4.2 Span Pair Classification with Typed
Templates

Span pair classification takes candidate span pairs
as the input and determine relations for them.
Prior work simply re-uses and shares span rep-
resentations for classifying span pair relations
(Luan et al., 2019; Li et al., 2021), failing to learn
discriminative representations of different span
pairs. Considering this, we propose to compensate
by constructing typed templates for each input
sequence and learning span pair representations
from typed templates.

Similarly, we propose to pack all candidate
span pairs into multiple groups. To learn the dis-
criminant span pair representation, we propose a
latter packing strategy. As shown in Figure 2(b),
it clusters span pairs with the same former span
into a group. This strategy enables an integral
modeling for the same-former spans. Thus, these
same-former spans can be compared to obtain
discriminative representations.

Specifically, given all of the recognized entity
spans in the input text, we sequentially take one
of them as the former span, and the others that
appear after the former one as the latter spans.
Then, we cluster the former span s(a,b) and the
corresponding latter spans {s(c1,d1), s(c2,d2), . . . ,
s(cm,dm)} into a group. As shown in Figure 2(b),
the former span aching in and the latter spans
{aching in legs, shoulders} are packed into a
group.

We then construct a typed template for each
group, which is the sequential concatenation of
span pair markers of all pairs in this group.
Specifically, for the group {s(a,b), s(c1,d1), s(c2,d2),
. . . , s(cm,dm)}, we keep the markers <F : ex>,
</F :ex> of the former span s(a,b) fixedly lo-
cated before and after it in the original sentence.
We then concatenate marker pairs of the latter
spans, i.e., <L1 : e1 > </L1 : e1 > <L2 : e2 >
< /L2 : e2 > . . . < Lm : em > </Lm : e3 >.
These marker pairs also share the same posi-
tion embedding with the start and end tokens of
corresponding entity spans. The typed template is
composed of the fixed markers and the concat-
enated markers. We argue that these particular

templates could capture the dependencies be-
tween candidate span pairs, bridging the problem
of the prior work that only capture contextual in-
formation around each individual candidate span.

Then, we append each typed template to the
input text. The whole sequence is denoted as:
...<F:ex>xa...xb</F:ex>...xc1 ...xd1 ...xc2 ...

xd2 ...<L1:ey></L1:ey><L2:ez></L2:ez>...
Correspondingly, the appended sequence

for the sample sentence in Figure 2(b) is
<F:Dis> aching in </F:Dis> legs and shoulders
<L1:Dis></L1:Dis><L2:Dis></L2:Dis>.

We feed the sequence into another BERT
module and we harness a similar attention mask
matrix. After the calculation, we obtain the con-
textualized representation of the whole sequence,
which corresponds to a matrix X = {x1,x2,
. . . ,xÑ}, where Ñ is the length of the appended
sequence. We denote representations of the mark-
ers of s(a,b) as xa−1 and xb+1, and that of the
markers of s(c,d) as xstart

c and xend
d . The span

pair representation is the concatenation of them:

h(s(a,b), s(c,d)) = [xa−1;xb+1;x
start
c ;xend

d ], (3)

where [; ] denotes the concatenation operation.

Finally, we harness another MLP with ReLU
activations for prediction:

p2(r|X) = Softmax(MLP2(h(s(a,b), s(c,d))), (4)

where p2 is probability distribution of span pair
relation type r ∈ R, and R is the relation type
set.

Moreover, we introduce a reverse setting from
the latter to the former for a bidirectional pre-
diction. For the candidate span pair s(a,b), s(c,d),
we follow the above operation, obtaining former
marker representations xstart

a and xend
b , and lat-

ter marker representations xc−1 and xd+1. These
embeddings are added in (3) to get the final span
pair representation. We argue that this reverse
setting would also provide supplemental infor-
mation with integral modeling of the same-latter
spans.

4.3 Enhancing Span Representation with
Syntax Information

Dependency syntax information is commonly ne-
glected in the unified NER work. It has been
explored in flat NER (Finkel and Manning, 2009).
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In this paper, we use it to enhance our model.
Specifically, we harness a dependency parser to
transform the appended sequence into an adja-
cency matrix A, where Aij = 1 indicates that
there is a dependency edge going from token xi
to token xj , otherwise Aij = 0. Notably, each
marker token shares the same syntax information
with the corresponding text token.

We then harness an attention-guided GCN (AG-
GCN) (Guo et al., 2019) to encode the syntax
graph. To illustrate the AGGCN module, we
start with the traditional GCN (Kipf and Welling,
2017). Given the representations of the appended
text X = {x1,x2, . . . ,xÑ(Ñ)}, where Ñ(Ñ) is
the length of the appended text, the GCN module
updates them with syntax information as follows:

x
(l)
i = σ(

Ñ(Ñ)∑
j=1

AijW
(l)x

(l−1)
j + b(l)), (5)

where W(l) and b(l) are the weight matrix and
bias vector of the lth layer.

AGGCN improves the original GCN by trans-
forming the adjacency matrix A into an attention
guided adjacency matrix Ã, where Ãij is the
weight of the edge going from token xi to the
token xj . Ã is computed through multi-head
self-attention (Vaswani et al., 2017):

Ãt = Softmax(
XtWt

Q × (XtWt
K)T

√
d

), (6)

where Wt
Q and Wt

K are the matrices which
project Xt to the query and the key, d is the in-
put feature dimension. Ãt is the attention guided
adjacency matrix of the tth head and t ≤ Nhead

where Nhead is a hyper-parameter.
Then AGGCN adopts densely connected lay-

ers to update X with Ã, following the similar
operation in (5). The output is X̃t. Then the
information from different layer is integrated:

X̃ = [X̃1, X̃2, . . . , X̃Nhead ]W1, (7)

where W1 is the weight. X̃ is then concatenated
with the original token representations to obtain
the final token representations X

′
= [X, X̃W2],

where W2 denotes a linear transformation for
dimension reduction. The final syntax-enhanced
representations X

′
would be used in (1) and (3)

for the following span (pair) representation.

Figure 3: Inference and decoding cases of the sample
sentence. In this sentence, ‘‘aching in shoulders’’ is
made of three spans.

4.4 Joint Training and Decoding

We jointly train two stages through multi-task
learning:

L = −
∑

αlogp1(e
∗) + βp2(r

∗), (8)

where e∗ and r∗ denote the corresponding
gold-standard labels for entity spans and span
pairs, α and β are the hyper-parameters to control
the importance of two stages.

In the training process, three types of rela-
tions are all needed. In the inference process, the
flat and overlapped entities would be recognized
in the first stage, and the discontinuous entities
would be recognized through Next-Fragment
relation in the second stage. Thus, we choose
Next-Fragment relation for decoding.

The predictions of our model are the entity
spans and their relations, which can be consid-
ered as a directional span graph. The decoding
object is to find sub-graphs in which each entity
span connects with any other span by the Next-
Fragment relation. Each sub-graph corresponds
to an entity mention and the entities which are
made of more than two spans are also covered in
the decoding process. The sub-graph containing
a single entity span composes an entity mention
by itself. Figure 3 gives the cases for the infer-
ence and decoding of a sample sentence.
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Sentences Entity Mention

Datasets # Train # Dev # Test # Avg.Len # All # Ovlp. # Dis. # Avg.Len

CoNLL2003 17291 − 3453 14.38 35089 − − 1.45
OntoNotes5.0 59924 8528 8262 18.11 104151 − − 1.83

ACE2004 6802 813 897 20.12 27604 12626 − 2.50
ACE2005 7606 1002 1089 17.77 30711 12404 − 2.28
GENIA 15023 1669 1854 25.41 56015 10263 − 1.97

CADEC 5340 1097 1160 16.18 6316 920 679 2.72
ShARe13 8508 1250 9009 14.86 11148 663 1088 1.82
ShARe14 17404 1360 15850 15.06 19070 1058 1656 1.74

Table 1: Statistics of NER datasets. ‘‘#’’ denotes
the amount. ‘‘Ovlp.’’ and ‘‘Dis.’’ denote over-
lapped and discontinuous mentions, respectively.

5 Experimental Setting

5.1 Datasets and Evaluations

To evaluate T 2-NER for three NER tasks, we
experiment on eight benchmark datasets. Statis-
tics of these datasets are presented in Table 1.

• Flat NER Datasets, include CoNLL2003
(Sang and Meulder, 2003) and OntoNotes
5.0 (Pradhan et al., 2013b). CoNLL2003 is
an English dataset with four types of flat en-
tities. We follow the data processing in Lin
et al. (2019). For OntoNotes 5.0, we use the
same dataset settings as Yan et al. (2021).

• Overlapped NER Datasets, include
ACE20041 (Doddington et al., 2004),
ACE20052 (Walker et al., 2006), and GENIA
(Kim et al., 2003). ACE2004 and ACE2005
are derived from various domains, such as
newswire and online forums. We follow Lu
and Roth (2015), splitting the train/dev/test
as 8:1:1. For GENIA, we follow Yan et al.
(2021), collapsing all entity subtypes into
five types and splitting the train/dev/test as
8.1:0.9:1.

• Discontinuous NER Datasets, include
CADEC (Karimi et al., 2015), ShARe13
(Pradhan et al., 2013a), and ShARe14
(Mowery et al., 2014), all of which are col-
lected from biomedical or clinical domain.
We use the same data processing as Dai
et al. (2020).

1https://catalog.ldc.upenn.edu/LDC2005T09.
2https://catalog.ldc.upenn.edu/LDC2006T06.

We use strict evaluations that a predicted en-
tity is counted as true positive mention if both
its span and type match those of a gold entity.
As for a discontinuous entity, each span should
match a span of the gold entity. We use span-
level micro-averaged Precision (P), Recall (R),
and F1 score (F1) as evaluation metrics.

5.2 Implementation Details

Considering the dataset domains, we use Bio-
BERT (Lee et al., 2020) for GENIA and CADEC,
ClinicalBERT (Alsentzer et al., 2019) for ShARe13
and ShARe14, and vanilla BERT (Devlin et al.,
2019) for the other datasets. To obtain the de-
pendency syntax information, we harness the
Stanford CoreNLP parser 4.5.4 (Manning et al.,
2014), which is based on Shift-Reduce parsing
neural model (Zhu et al., 2013). This parser is
trained with a collection of syntactically anno-
tated data, i.e., the Penn Treebank corpus.3 We
directly apply it without using additional training
datasets to train this parser. The parser training
data do not overlap with the evaluation datasets.
Thus, there is no data contamination issue in
our work.

We incorporate cross-sentence information by
expanding the input to a fixed window size with
its context and ensuring that each text is located
in the middle of the expanded sequence. In prac-
tice, we use grid search to find the best exper-
imental configuration. Concretely, the window
size is chosen from [128, 256, 384], the size of
span width feature w from [150, 200], the loss
weight α and β from [0.6, 0.8, 1.0], the MLP
layer from [1, 2, 3]. As for the AGGCN part, the
GCN layer l is chosen from [1, 2], the GCN
head Nhead from [2, 4]. Balancing effectiveness
and efficiency, we choose the following config-
urations to produce the experimental results re-
ported in the following sections. The window size
is set to 256 for both stages, the span width fea-
ture size w to 150, the loss weight α and β to
1.0, the MLP layer to 2, the MLP size to 150,
the GCN layer l to 2 and the GCN head Nhead

to 4. These hyperparameters are the same for
all datasets. In the enumeration of the span, we
set the maximum span length L as 16 for Onto-
Notes5.0 and GENIA, and 8 for the other datasets.

3https://catalog.ldc.upenn.edu/docs/LDC99T42.
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During the training process, we adopt the
Adam Weight Decay optimizer (Loshchilov and
Hutter, 2019) with a learning rate of 2e-5 to fine-
tune BERT and 1e-3 to finetune other parts of
the model. For the batch size, we search from
[4,8,16,32] and choose 8 for all datasets. For the
training epochs, we search from [3,5,8,10,15,50],
and finally choose 8 for CoNLL2003, 5 for
OntoNotes5.0, 15 for ACE2004, 10 for ACE2005,
50 for GENIA and CADEC, and 10 for ShARe13
and ShARe14. We run each experiment for 5
times and report the averaged score.

5.3 Baselines

Sequential Labeling-based Methods assign a
tag to each token with various tagging schemes,
including Seq2Seq (Straková et al., 2019)
and Second-Path (Shibuya and Hovy, 2020).
Hypergraph-based methods construct hyper-
graphs to represent and extract entities, including
Seg-Graph (Wang and Lu, 2018) and Two-Stage
(Wang and Lu, 2019). Transition-based meth-
ods maintain a stack and a buffer to represent and
infer entity mentions, including Transition (Dai
et al., 2020) and ARN (Lin et al., 2019). Gener-
ative methods generate entity index or word se-
quences with the decoder, including BART-Large
(Yan et al., 2021) and MAPtr (Fei et al., 2021).
Span-based methods enumerate spans and com-
bine them into entities, including BERT-MRC (Li
et al., 2020), Locate-Label (Shen et al., 2021),
and Extract-Select (Huang et al., 2022). Other
methods include MAC (Wang et al., 2021) and
W 2NER (Li et al., 2022) approaches.

We directly adopt the best parameter setup re-
ported in papers that originally introduced the
methods listed. The best results on each dataset
are denoted in bold. We use the two-tailed t-test
to measure the statistical significance. Signifi-
cant improvements of T 2-NER over the second
best model for p < 0.05 are marked with �.

6 Results and Analyses

6.1 Results for Flat NER

Table 2 presents the experimental results on two
flat NER datasets. As seen: (1) T 2-NER achieves
the SOTA performance with at least 1.06% and
0.87% F1 score improvements on CoNLL2003
and OntoNotes 5.0 datasets, respectively. (2)

CoNLL2003 OntoNotes 5.0

Model P R F1 P R F1

Seq2Seq (Straková et al., 2019) − − 92.98 − − −
Seg-Graph (Wang and Lu, 2018) − − 90.50 − − −
BART-Large (Yan et al., 2021) 92.56 93.56 93.05 89.62 90.92 90.27
BERT-MRC (Li et al., 2020) 92.33 94.61 93.04 92.98 89.95 91.11
Locate-Label (Shen et al., 2021) 92.13 93.73 92.94 − − −
Extract-Select (Huang et al., 2022) 92.10 94.03 93.05 − − −
W 2NER (Li et al., 2022) 92.71 93.44 93.07 90.03 90.97 90.50

T 2-NER 93.78 94.48 94.13� 91.83 92.13 91.98�

Table 2: Results on the flat NER datasets (%).

T 2-NER outperforms other unified NER models
(i.e., BART-Large and W 2NER) for the flat NER
task. We attribute this to the two-stage architec-
ture, which further double-checks the flat NER
results in the second stage. (3) T 2-NER outper-
forms other span-based models (i.e., BERT-MRC,
Locate-Label and Extract-Select). The reason may
be that we introduce the syntax information to en-
hance the span representation, and our templates
are more advantageous in learning span-wise
representation for span extraction.

6.2 Results for Overlapped NER

Table 3 presents the result comparisons on three
overlapped NER datasets. As seen: (1) T 2-NER
can effectively deal with the nested NER task,
achieving the SOTA performances with 1.01%,
2.58%, and 0.43% F1 score improvements on
ACE2004, ACE52005, and GENIA datasets, re-
spectively. (2) Different from other unified NER
models, T 2-NER achieves higher Precision while
relatively lower Recall, since it double-checks the
entity spans with ‘‘Overlapped’’ relation and fur-
ther filter spans that it believes to be low confident.
In contrast, the results of T 2-NER on the flat NER
task do not show a similar trend. We argue that
this occurs because the second stage does not con-
duct particular classification of flat entities. (3)
Moreover, the superiority of T 2-NER over other
span-based models also proves the effectiveness
of T 2-NER in obtaining better span representa-
tions, which we attribute to the adjacent packing
strategy and the utilization of syntax information.

6.3 Results for Discontinuous NER

Table 4 shows the performance comparison
on three discontinuous NER datasets. As seen,
T 2-NER outperforms the previous best model
W 2NER by 2.48%, 1.28%, and 0.37% in F1 score
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Model
ACE2004 ACE2005 GENIA

P R F1 P R F1 P R F1

Seq2Seq (Straková et al., 2019) − − 84.33 − − 83.42 − − 78.20
Second-Path (Shibuya and Hovy, 2020) 83.73 81.91 82.81 82.98 82.42 82.70 78.07 76.45 77.25
Seg-Graph (Wang and Lu, 2018) 78.00 72.40 75.10 76.80 72.30 74.50 77.00 73.30 75.10
ARN (Lin et al., 2019) − − − 76.20 73.60 74.90 75.80 73.90 74.80
BART-Large (Yan et al., 2021) 87.27 86.41 86.84 83.16 86.38 84.74 78.87 79.60 79.23
BERT-MRC (Li et al., 2020) 85.05 86.32 85.98 87.16 86.59 86.88 85.18 81.12 83.75
Locate-Label (Shen et al., 2021) 87.44 87.38 87.41 86.09 87.27 86.67 80.19 80.89 80.54
W 2NER (Li et al., 2022) 87.33 87.71 87.52 85.03 88.62 86.79 83.10 79.76 81.39
Extract-Select (Huang et al., 2022) 88.26 88.53 88.39 87.15 88.37 87.76 83.64 84.41 84.02

T 2-NER 90.88 87.97 89.40� 90.53 90.15 90.34� 85.09 83.82 84.45�

Table 3: Results on the overlapped NER datasets (%). For a fair comparison, we only present results of
Second-Path with the BERT model.

Model
CADEC ShARe13 ShARe14

P R F1 P R F1 P R F1

Two-Stage (Wang and Lu, 2019) 72.10 48.40 58.00 83.80 60.40 70.30 79.10 70.70 74.70
Transition (Dai et al., 2020) 68.90 69.00 69.00 80.50 75.00 77.70 78.10 81.20 79.60
BART-Large (Yan et al., 2021) 70.08 71.21 70.64 82.09 77.42 79.69 77.20 83.75 80.34
MAPtr (Fei et al., 2021) 75.50 71.80 72.40 87.90 77.20 80.30 − − −
MAC (Wang et al., 2021) 70.50 72.50 71.50 84.30 78.20 81.20 78.20 84.70 81.30
W 2NER (Li et al., 2022) 74.09 72.35 73.21 85.57 79.68 82.52 79.88 83.71 81.75

T 2-NER 78.33 73.22 75.69� 87.41 80.48 83.80� 80.53 83.77 82.12�

Table 4: Results on the discontinuous NER datasets (%).

on CADEC, ShARe13, and ShARe14, respec-
tively, obtaining new SOTA results. Although
some methods outperform T 2-NER for Precision
or Recall, they sacrifice another score, which re-
sults in lower F1 score. This observation can also
be found in the flat and overlapped NER results.

Recall that three discontinuous NER datasets
also contain flat and overlapped entities. Only
around 10% of entity mentions in these datasets are
discontinuous. To truly understand how T 2-NER
behaves on data with only discontinuous entities,
we follow Dai et al. (2020) and experiment on a
subset of the test set where only sentences with
at least one discontinuous entity mention are in-
cluded (Figure 4(a)). Since sentences in this subset
sometimes contain flat and overlapped mentions
as well, we further report the test results when
only discontinuous entity mentions are considered
(Figure 4(b)). We compare with several discon-
tinuous NER models and report the results on the
subset of three datasets in Figure 4. We can see
that our model can predict the discontinuous en-

tity mentions and consistently defeat the baseline
models in both settings.

6.4 Model Ablation Study

To elucidate the contribution of the main com-
ponents, we design five internal baselines for
comparison. We only report the results on
CoNLL2003, ACE2005, and CADEC datasets as
the findings on the other datasets are qualitatively
similar.

• w/o. Adjacent Packing: This variation re-
moves adjacent packing strategy and orderly
clusters spans into multiple groups of equal
size K. For instance, the group S1 would be
{s(1,1), s(1,2) . . . , s(	KL 
,K−�K−1

L �∗L)}. In prac-
tice, we set K to 128. Accordingly, the
grouped templates would also be different.

• w/o. Latter Packing: This variation leaves out
latter packing strategy and clusters all of
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Figure 4: Results of discontinuous entity mentions. (a) The F1 score on sentences that include at least one
discontinuous entity mention. (b) The F1 score only considering discontinuous entity mentions.

the span pairs into multiple groups. Specif-
ically, we batch candidate pairs by append-
ing 4 markers for each pair to the end
of the sentence, until the total number of
tokens exceeds 250. Accordingly, the ap-
pended markers form one template.

• w/o. Reverse Setting: This variation adopts
the uni-directional prediction, leaving out the
reverse span pair representation and only
using equation (3) for span pair classification.

• w/o. Syntax Information: This variation re-
moves syntax graph-guided AGGCN module.
The syntax-enhanced token representation
is removed accordingly, without influencing
the major goal.

• w. Untyped Span Pair Marker: This varia-
tion apply untyped span pair markers to con-
struct templates in the second stage.

Results are shown in Table 5. As seen: (1)
T 2-NER greatly or comparably outperforms five
internal baselines on the test set of three data-
sets. Compared to T 2-NER, w/o. Adjacent Pack-
ing drops 0.02%, 0.52%, and 0.94% F1 score
on CoNLL2003, ACE2005, and CADEC. The re-
sults demonstrate that it is sub-optimal to simply
pack spans equally into multiple groups. The rea-
son may be that the modeling of these groups

Model CoNLL2003 ACE2005 CADEC

w/o. Adjacent Packing 94.11(−0.02) 89.82(−0.52) 74.75(−0.94)

w/o. Latter Packing 94.12(−0.01) 88.36(−1.98) 74.28(−1.41)

w/o. Reverse Setting 94.08(−0.05) 90.17(−0.17) 75.37(−0.32)

w/o. Syntax Information 94.00(−0.13) 89.84(−0.50) 75.65(−0.04)

w. Untyped Span 94.13(0) 90.14(−0.20) 75.36(−0.33)Pair Marker

T 2-NER 94.13 90.34 75.69

Table 5: F1 scores of internal baselines (%).

does not produce meaningful information, whereas
the adjacent packing strategy can learn discrim-
inative boundary information through the inte-
gral modeling of same-start-token spans. (2) w/o.
Latter Packing shows huge performance drop on
ACE2005 and CADEC. This result demonstrates
that the integral modeling of same-former spans
contributes to discriminative representations of
span pairs, impelling better Next-Fragment
and Overlapped relation classification. More-
over, w/o. Latter Packing suffers from a slight
F1 score decrease on CoNLL2003, which reveals
that the double check of Other relation in the
second stage is also effective. (3) When the re-
verse setting is removed, the F1 scores on all
datasets decrease, indicating the significance of
modeling the information from the latter span
to the former span. (4) Experimental results of
w/o. Syntax Information and w. Untyped Span
Pair Marker demonstrate that, after removing
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Model P R F1

Span Extraction 90.85 86.57 88.66
Span Extraction (+Span Pair Classification) 91.10 87.09 89.05

Table 6: Effect of joint training of two stages.
P, R and F1 are the results of span extraction
stage (%).

either AGGCN module or entity type informa-
tion, the F1 scores go down. This observation
suggests that syntax information and entity type
information are both effective for our model. (5)
After removing the Syntax information, the per-
formance drop on CoNLL2003 and ACE2005 da-
tasets is more significant compared to CADEC.
The reason may be that the parser performs bet-
ter in news domain than in biomedical domain,
as it is trained over the news text.

6.5 Analysis of Joint Training

To explore the influence of jointly training two
stages, we present the performance changes of
the first stage (i.e., Span Extraction) before and
after adding the second stage (i.e., Span Pair
Classification). The performance comparisons on
CADEC are shown in Table 6. We find that the
F1 scores of span extraction increases by 0.39%
after adding the span pair classification task. This
observation shows that the second stage could
benefit the first stage, revealing that joint training
is more advisable. Moreover, the double-checking
in the second stage may benefit the extraction of
flat and overlapped spans in the first stage.

6.6 Analysis of Complexity

Along with the significant performance improve-
ments, pre-trained language models (e.g., BERT)
usually face the issue of high computational costs.
Even worse, this issue become more severe as
the sequence length continues to increase. In this
paper, we insert markers and concatenate them
with the original texts. It is obvious that these
markers extend the length of input text.

For both stages, we group these markers into
several batches, which can control the length of
appended sequences. For the first stage, we enu-
merate spans in a small-length text and then use
its contexts to expand the text to 256 tokens, for
which the number of candidate spans in a text is
usually less than the context length. Hence, with

Model F1 Speed (Sentence/s)

Transition (Dai et al., 2020) 69.00 66.5
BART-Large (Yan et al., 2021) 70.64 19.2
MAC (Wang et al., 2021) 71.50 109.7
W 2NER (Li et al., 2022) 73.21 365.7

T 2-NER 75.69 190.3

Table 7: Running speed comparisons.

grouped templates consisting of a small number
of span markers, the complexity of T 2-NER is
still near-linearly to that of the model without
templates. For the second stage, after filtering
non-entity text spans in the first stage, the number
of candidate spans is relatively small, thus the
increased computation is limited.

We further present the comparison of infer-
ence speed between three baselines and T 2-NER
in Table 7. For fair comparison, all of these mod-
els are implemented by PyTorch and ran on a
NVIDIA RTX 3090 GPU environment. As we
can see, the inference speeds of T 2-NER are
around 3 times faster than Transition and 10 times
faster than BART-Large. By contrast, our model
achieves a 2.48% F1 improvement on CADEC
but sacrifices 48% speed compared to the W 2-
NER model. Considering the effectiveness and
efficiency of our model, we expect it to be effec-
tive in practice.

6.7 Case Study

We find that most mistakes are caused by incor-
rectly recalling some entities. As shown in Table 8,
the span ‘‘laceration in esophagus’’ in case 3 is
incorrectly recognized as an entity. Our model
may be confused by the preposition ‘‘in’’, and
tend to classify phrases such as ‘‘blood in stom-
ach’’ and ‘‘laceration in esophagus’’ as entities.
Nonetheless, three cases illustrate that T 2-NER
can recognize the flat, overlapped and discontin-
uous entities. From case 1, we find that three
overlapped entities from inside to outside are all
accurately recognized, revealing that T 2-NER can
recognize multi-level overlapped entities. From
case 2, we find that T 2-NER correctly recog-
nizes the reference phrase ‘‘both side’’, whereas
W 2NER incorrectly recognizes it as a PER en-
tity, revealing that T 2-NER can resolve ambigu-
ous entity reference.
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Table 8: Examples of predicted results of our model and W 2NER. Words annotated with the same
index are part of the same entity, subscripts indicate entity types, red brackets indicate golden entities,
blue brackets indicate entities predicted by the models, red highlights indicate wrong predictions of
models, blue highlights indicate entities that models fail to recognize.

7 Conclusion

In this paper, we introduce a two-stage span-
based framework with templates, named T 2-NER
for the unified NER task. T 2-NER formulate the
NER task as span pair relation classification, thus
naturally tackling the overlapped and discontin-
uous NER. Thanks to this formulation, T 2-NER
is quite effective for various NER tasks, achiev-
ing the SOTA performances on eight benchmark
datasets. As future work, T 2-NER will be im-
proved through discovering more advanced span
features and knowledge derived from external
sources such as Wikipeidia.
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Figure 5: Step-by-step examples of two stages and the result decoding process.

A Step-by-step Examples of Our Work

The detailed examples of our work step by step
are shown in Figure 5.
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