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Abstract

The events in a narrative are understood as
a coherent whole via the underlying states
of their participants. Often, these participant
states are not explicitly mentioned, instead left
to be inferred by the reader. A model that
understands narratives should likewise infer
these implicit states, and even reason about
the impact of changes to these states on the
narrative. To facilitate this goal, we intro-
duce a new crowdsourced English-language,
Participant States dataset,PASTA. This dataset
contains inferable participant states; a coun-
terfactual perturbation to each state; and the
changes to the story that would be necessary
if the counterfactual were true. We introduce
three state-based reasoning tasks that test for
the ability to infer when a state is entailed
by a story, to revise a story conditioned on a
counterfactual state, and to explain the most
likely state change given a revised story. Ex-
periments show that today’s LLMs can reason
about states to some degree, but there is large
room for improvement, especially in problems
requiring access and ability to reason with
diverse types of knowledge (e.g., physical,
numerical, factual).1

1 Introduction

Understanding narrative text requires forming a
coherent representation of the scenario, including
filling in details that are unstated in the text. One
type of detail that is usually not mentioned is the
state of its participants2 (e.g., ‘‘she unlocked the
door’’ implies the possession state that ‘‘she has

†Work done during internship at Stony Brook University.
1Code and the dataset are available at https://github

.com/StonyBrookNLP/pasta.
2We define participants to include both animate entities

and inanimate objects in the narratives.

a key’’). The reader easily infers these implicit
states and their causal relationships with the nar-
rative’s explicit events, creating a detailed mental
picture of the described world that is only par-
tially observable from the text. Many cognitive
theories have been proposed to capture aspects
of this in their representations, such as scripts
(Schank and Abelson, 1975), frames (Fillmore,
1985), and state/time formalisms (Galton, 1990).
Without committing to any one particular for-
mal theory, this paper adds a theory-agnostic re-
source to test such theories by listing implicitly
assumed participant states in simple narratives.

Consider the story in Figure 1 from the ROC-
Stories corpus (Mostafazadeh et al., 2016). Hu-
mans create a detailed mental representation of this
spilled-soda scenario by inferring its common-
sense states. In this story, using our common-
sense knowledge about emotions and habituals,
we can infer from the first two lines that Kate’s
mother liked keeping her car clean (a state about
Kate’s mother). Similarly, based on our physi-
cal commonsense of a lid, i.e., that lids prevent
spilling, we can also assert from the spill that
the soda’s lid was loose (a state about the soda).
We can also reason about the likely change to
the story due to a counterfactual state, i.e., if
the soda’s lid was tight, then most likely the soda
wouldn’t spill. To the best of our knowledge, no
such resource exists that captures this kind of
participant state knowledge.

To capture this type of commonsense knowl-
edge needed to understand and reason about
participant states in narratives, we introduce
PASTA, a crowd-sourced dataset in English. As
shown in Figure 1, for a given story S, PASTA
provides a participant state α that is likely to
be inferred from S, a perturbation state α′ that
is counterfactual to S along with the minimal
changes to S that are required to make α′ likely
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Figure 1: For a given story S, PASTA provides an (unstated) inferred state α, a minimal set of justification
sentences (yellow highlight), a counterfactual state α′, and a revised story S′, such that α′ can be inferred from it.

Figure 2: Examples of three PASTA tasks. Input for
each is on the left. The boxes indicate systems required
to solve the tasks with example output on the right.

to be inferred from the revised story S′. PASTA
includes 10,743 instances of these story/state/
counterfactual/revision tuples. With this new da-
taset, we hope to enable models to make the kinds
of state-based inferences that move beyond surface
text understanding and lead to deeper reasoning.
To this end, we describe three new state-based
reasoning challenges with PASTA which are il-
lustrated in Figure 2.

The first is Story State Inference: Given a
story and an inferred participant state, predict if
the state is likely to be inferred from a given set of
sentences in the context of the story. We formulate
this as a binary classification task, and we create
contrastive examples for training and evaluation
purposes to guard against artifact-based reasoning.
This can be seen as a form of textual entailment, a
capability useful for applications such as question
answering (Harabagiu and Hickl, 2006; Trivedi
et al., 2019), claim verification (Yin and Roth,
2018; Hanselowski et al., 2018), etc.

The other two challenge tasks are generative.
The second task, Story Revision for Counterfac-
tual States, measures the ability to reason about
counterfactuals. Given a story and a counterfac-
tual state (i.e., a state that is not consistent with
the story), the task is to revise the story such
that the counterfactual state is now likely to be
inferred from it. These types of counterfactual
revisions serve as a test of reasoning (Qin et al.,
2019) and can support interactive story generation
tasks (Goldfarb-Tarrant et al., 2019; Brahman
et al., 2020). The third task, State Change Gen-
eration, requires the model to take a story and its
perturbed version as input and then generate the
two corresponding states (e.g., ‘lid was loose’ and
‘lid was tight’) that explain the differences in the
way they unfold. From an application perspective,
generating the underlying states that account for
the differences between two narratives can assist
with fake news detection using reliable sources
(Figueira and Oliveira, 2017; da Silva et al., 2019;
Ghadiri et al., 2022) and information fact checking
(Brandtzaeg et al., 2018).

These three challenge tasks require a unique
combination of commonsense abilities, thus
helping to evaluate models on reasoning and
knowledge capacity. These tasks require not
only basic entailment ability, but also knowledge
(numerical, factual, physical, etc.) and broader
narrative understanding. Having just one of these
abilities will not suffice. To evaluate current mod-
els for these capabilities, we benchmark the LLMs
T5 (Raffel et al., 2020), BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and GPT3
(Brown et al., 2020). For the generative tasks,
we evaluate model performance through exten-
sive human and automatic evaluations. The results
show that, though these models can reason about
states to some degree, there is substantial room
for improvement on all tasks, suggesting avenues
for future research.
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2 Related Work

There are many formal theories on mental states
and reasoning. The seminal work by Schank and
Abelson (1975) introduced scripts as a way to
structure knowledge about stereotypical event se-
quences with their participants. Frames (Fillmore,
1985) and theories of time (Galton, 1990) pro-
vide related views. This paper does not commit
to a formal theory, instead providing a challenge
dataset to test aspects of them. Statistical work on
events (Chambers and Jurafsky, 2008; Chambers
and Jurafsky, 2009; Balasubramanian et al., 2013;
Ferraro and Van Durme, 2016; Sha et al., 2016)
curated event knowledge in an unsupervised man-
ner from large text corpora. This paper augments
their view with state-based knowledge about event
participants.

More recent work by Speer et al. (2017), Sap
et al. (2019), and Hwang et al. (2021) capture
everyday inferential knowledge associated with
an action performed by someone. This knowledge
is organized through a fixed set of relationship
classes between action and inferences. A subset of
these classes is about participant mental states, but
this commonsense knowledge is non-contextual
in nature. In contrast, our work requires inferring
commonsense knowledge about participant states
in the context of coherent narratives.

Most similar to our work is the TIME-TRAVEL
dataset by Qin et al. (2019). It includes the Coun-
terfactual Story Rewriting task to edit a short story
based on a counterfactual context. The authors in-
sert an explicit counterfactual at a fixed position
(2nd sentence) in the story, and the revision task
is then conditioned on this observed change. It is
a language modeling generation task. In contrast,
our work introduces unobserved counterfactual
outside of the story’s text, and the revised story
must be generated with deeper state-based rea-
soning. This introduces additional complexity for
the revision task. Also, TIME-TRAVEL requires
the revisions to be restricted to the story ending,
which cannot be assumed in our setting. Our states
can be inferred from any part of the story.

Bhagavatula et al. (2019) proposed tasks that
predict a plausible hypothesis for two given ob-
servations, and curate a dataset for the same.
Their work mainly focuses on what happened
in-between? type of inferences. Mostafazadeh
et al. (2020) introduced the GLUCOSE dataset,
which focuses on several types of causal knowl-

edge that are required to explain a causal event
in narrative text. Neither of these focuses entirely
on implicit states (some GLUCOSE annotations
are relevant, but not directly so), and neither ad-
dresses story revision in the face of counterfactual
changes.

Recent work on understanding entity states has
mostly focused on tracking entity state change in
text. Dalvi et al. (2018) introduced PROPARA,
which captures physical state changes (creation,
destruction, and movement), Bosselut et al. (2018)
proposed the task of tracking ingredients in cook-
ing recipes, and Rashkin et al. (2018) tracks the
emotional reactions and motivations of characters
in simple stories, for a fixed/small set of attributes.

Tandon et al. (2019) introduced the WIQA
dataset for analyzing the effect of perturbing a
process described by a procedural text on the
elements (entities, events, etc.) of the text, as
an influence graph of the process. However, the
influence graph was assumed to have a fixed
causal structure. It captured a very limited set
of cause-effect relationships obtained as a result
of analyzing perturbations that either accelerated
or decelerated the main outcome of the process.
Tandon et al. (2020) introduced a dataset for
tracking state changes in procedural text as a set
of state change tuples of entity, attribute, before-
state, and after-state for each step of the process.
The elements of the tuples were in free-form
text instead of belonging to a set of pre-defined
categories.

Our work differs from the above in several key
ways: (i) participant states are unstated, (ii) partic-
ipant state inferences do not depend on sentence
ordering assumptions, (iii) state perturbations af-
fect the entire discourse of the narrative, and
(iv) captures how the participant states change
between an original and a perturbed narrative.

3 PASTA: PArticipant STAtes

PASTA is a dataset of story pairs (S, S′) where
each story S has a revised version of itself, S′,
that hinges on a particular state that was changed
in its revision. The story pairs thus have corre-
sponding state pairs (α, α′), containing an original
state α and its counterfactual α′. Refer to Figure 1.
These story/state pairs allow us to analyze unique
narrative challenges. We can test if a model can
identify whether a given participant state is con-
sistent with it. We can ask what would happen if
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an assumed story state is no longer true. We can
also ask if a model can identify what/how a state
changes between two similar but different stories.
This section describesPASTA, the crowd-sourcing
process that created it, quality control details, and
its basic statistics.

3.1 Data Annotation

To create the PASTA dataset, we use stories from
the extended ROCStories (Mostafazadeh et al.,
2016) corpus for annotation by crowd work-
ers. ROCStories narratives describe a rich set
of causal and temporal commonsense relations
between daily events, and its stories are short
enough that the world described by them are
self-contained. They thus are a good fit for testing
state inferences.

Figure 1 illustrates the process followed to
collect responses from the crowd workers.3

The annotation process has four main steps:

1. Infer a participant state: For a story S, the
annotator infers a participant (or object) state
α that is likely to be true at some point in S;
α is a free-form sentence. Most stories have
several inferrable states, so the annotator may
identify whatever jumps out to them the most.

2. Select minimal justification sentences: For
the inferred α, the annotator selects the min-
imal set of sentences JS

α in S, that they used
to infer α from S.

3. Perturb the state: The annotator perturbs α
to create α′ such that α′ is very unlikely to
be true for the story S. α′ is also a free-form
sentence.

4. Revise the story: The annotator revises S
into S′, so that α′ can be inferred from S′

but α is unlikely to be inferred from S′.
The annotator is instructed to make minimal
revisions in order to avoid creating S′ with
other narrative side-effects.

We provide detailed instructions about how to
infer a state, and these are repeated not just in the
instructions and examples, but also in the actual
form the participants fill out. The inferred state
must be a property or attribute of a participant or

3The project was reviewed and approved by the local
institutional review board for human subjects research.

object (e.g., she was angry or the rock is heavy);
it must not be an action (e.g., Susan is running
or Jake cooks food); and it must not be explicitly
stated in the story. These constraints ensure that
the states are not readily available from the story
text, and must be inferred by reasoning and world
knowledge. The next section describes how we
monitored the workers and mitigated improper
responses.

3.2 Quality Control

For crowdsourcing the data collection, we used
the Amazon-MTurk platform (AMT). Each story
was provided to three different crowd workers for
annotation. We priced the HIT at $0.35 based on
initial worker response times and interest gleaned
from multiple pilot runs. For filtering out noisy
data from the collected responses, we follow a
two-stage filtering process.

Stage 1: We only allowed workers with a long
history of consistent performance who satisfied
the following criteria:

1. have responded to at least 5000 HITs

2. have at least 98% accuracy on their past HITs

3. must reside in USA or Canada; this helps to
prevent language-based artifacts

Although the above is strict, we still observed
responses that did not follow the instructions. One
difficulty was how workers wrote their revised
stories. Even minor changes to the original story
can render it logically inconsistent, so care is
needed to ensure the counterfactual is inferrable
while still maintaining coherence. Other annota-
tion errors were ‘states’ describing actions, states
directly mentioned in the story, and non-entailed
states.

Stage 2: Despite the above errors, we received
excellent responses with clear states and inter-
esting revised stories. This gave us confidence
that the task is achievable, but it just needed ex-
pert crowd workers. To this end, we performed
an ‘‘expert review’’ of the responses to identify
‘‘proficient workers’’: workers who can perform
the task with a high degree of correctness. Our
expert reviewers are two student researchers who
work in the field of common-sense reasoning and
NLP in general. Stage 1 resulted in a total of
9656 responses from 136 workers. The experts
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evaluated a subset of these to identify proficient
workers by using the process described below:

1. For each worker, we manually evaluated their
performance on a random sample of their
responses.

2. The number of evaluated responses for each
worker was decided by the formula below.
If the ith worker provides ni responses, then
the minimum number of their responses, ei,
that needs to be expert-reviewed to evaluate
their proficiency is given by:

ei =

⎧⎪⎨
⎪⎩

0.3 ∗ ni ni < 100

0.2 ∗ ni + 10 100 ≤ ni < 150

40 150 ≤ ni

3. Each evaluated response was categorized as
correct or reject. A response was rejected
if there was an error in any of the four
steps of the annotation process. A response is
correct if all the components of the annotation
adheres to the instructions.

4. A worker was identified as proficient if they
submitted ≥ 50 responses with a rejection
rate ≤ 20%. After identifying proficient
workers, all other responses from profi-
cient workers were then auto-accepted. We
also kept the smaller number of non-reject
responses that our experts labeled from
non-proficient workers.

With this process, we identified 28 workers
who were proficient. We accepted all of their
annotations, totaling ∼ 6, 000. To this we added
the annotations the experts accepted in the review,
which added another 360 high-quality instances.
We then ran a second round of data collection
using only the proficient workers. We added this
to the high-quality instances from the first round
to form our full PASTA dataset.

The responses in the pool of expert-reviewed
responses were used to create the test set of the
data. We also made sure that there is no story
overlap in the train, validation, and test sets.

3.3 Dataset Statistics
PASTA includes a total of 10,743 (8476 train, 1350
validation, and 917 test) 4-tuples. Each 4-tuple is
a story S, an associated inferred state α, counter-
factual state α′, and a revised story S′. Annotators
almost always changed the justification sentences

# of unique stories 5,028
Avg. # of tokens in an inferred state 5.7 tokens
Avg. # of tokens in a perturbed state 6 tokens
Avg.# of justification sentences for a state 1.5
Avg. # of sentences revised in a story 1.48
% of justification sentences that are revised 90.54%

% of revised sentences that were justification 91.9%

% tokens in inferred state, common in perturbed state 71.9%

% story tokens common in revised story 90.3%

Table 1: PASTA dataset statistics.

of the inferred state in order to revise the story. In-
structions to make minimal changes to the revised
story results in a high degree of similarity between
the original and revised stories. On average 1.5
out of 5 story sentences are changed to create the
revised story, with 90.3% average token overlap
between them. Similarly, the inferred state and
its counterfactual on average show high lexical
similarity with 72% token overlap, both having
similar token length. Additional statistics can be
seen in Table 1.

4 State-based Reasoning Tasks

Inferring each component of a PASTA 4-tuple re-
quires a different commonsense reasoning ability
about a participant’s state in a narrative, which
enables us to use PASTA to test models for these
abilities. As illustrated in Figure 2, we introduce
three PASTA tasks, one classification and two
generative, each of which can be used to evaluate
current NLP models for the capabilities required
to understand a participant’s state in a narrative
text. In the subsections below we provide the
motivation and formal task definition for each
task.

4.1 Story State Inference

We propose a classification task to evaluate a
model’s ability to understand what state is likely
or unlikely to be inferred from a story. We deem a
state is likely to be inferred from a story if a typical
human reading the story would conclude that the
state is most likely true. To test this capability
in models, we pose the Story State Inference
classification task.

Task Definition: Given a story S, a ‘query’
state αq, and a supporting set s, which is a subset
of the sentences in S, the task is to predict whether
αq is likely to be inferred from s in the context
of S.
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Effects of Data Collection on Performance:
We provide additional dataset analysis in sub-
section 6.1 to analyze the robustness of our data
collection procedure that helped avoid unintended
artifacts in the data for this task.

4.2 Story Revision for Counterfactual States
A model that can understand participant states in
narrative text should also be able to reason about
counterfactual states and their potential effects on
the narrative. We introduce the Story Revision for
Counterfactual States task to address this.

Task Definition: Given a story S, and a partici-
pant stateαq that is counterfactual toS (a state that
is not consistent with S), make minimal revisions
to S to generate S′ such that αq is unstated in S′

and can be inferred from S′, i.e., P (αq|S′) ≈ 1
and P (αq|S′) � P (αq|S).

4.3 State Change Generation
A corollary of being able to reason about the
effects of a counterfactual state on the discourse
of a narrative is the ability to identify the state
changes (and how they changed) which led to
the new narrative. In other words, when given
a revised story with its original, what original
state and its counterfactual explains the change?
To assess this, we introduce the State Change
Generation task.

Task Definition: Given a story S and its re-
vision S′, the task is to generate participant
states α, α′ that describe the change of state
from S to S′, i.e., P (α|S) � P (α|S′) and
P (α′|S′) � P (α′|S).

4.4 Task-specific Data Creation
The three tasks above use the PASTA 4-tuple
(S, α, α′, S′) to create task specific data instances
in the following manner:

1. Story State Inference: Let S = (s1, · · · , s5)
and S′ = (s′1, · · · , s′5). We create four data
instances for the task, positive data instances
((S, s, α), 1) and ((S′, s′, α′), 1), and negative
instances ((S, s, α′), 0) and ((S′, s′, α), 0). The
supporting set s for S is JS

α , i.e., the minimal
set of sentences used to infer α from S. For S′,
s′ = {s ∈ {s′1, · · · , s′5}|s′i �= si, ∀ i ∈ 1 to5}, i.e.,
the set of sentences in S that were changed when
revising S to S′.

2. Story Revision for Counterfactual States:
We created two data instances for the task of the
form ((S, α′), S′) and ((S′, α), S).

3. State Change Generation: We created two
data instances for the task of the form ((S, S′),
(α, α′)) and ((S′, S), (α′, α)).

5 Experimental Setup

To establish modern baselines and measure their
performance, we built benchmark models from
GPT3, T5, BERT, and RoBERTa. This section
describes how each was setup for the three tasks.

5.1 GPT3
We benchmarked GPT3 with few-shot prompt-
ing (Brown et al., 2020) on the two genera-
tion tasks (Story Revision and State Change).
We created prompts with task examples from the
training set, followed by an incomplete prompt
from the eval set that the model must complete.
For the Story Revision for Counterfactual States
task, the prompt included n examples followed
by the final query: (S1, α

′
1, S

′
1) · · · (Sn, α

′
n, S

′
n)

(Sq, α
′
q,−) where (Si, α

′
i, S

′
i) is the ith task ex-

ample. The model must generate S′
q for the fi-

nal query (Sq, α
′
q,−). Similarly, the State Change

Generation task uses a similar prompt: (S1, S
′
1,

α1, α
′
1) · · · (Sn, S

′
n, αn, α

′
n)(Sq, S

′
q,−,−).

To select prompt examples, we tried three ap-
proaches. (i) EXPERT CURATED: We selected
a fixed set of diverse, unambiguous examples that
requires multi-step reasoning and covers different
type of states, and used the same prompt exam-
ples for all the query instances, (ii) RANDOM
SELECTION: We randomly selected examples,
(iii) NEAREST NEIGHBOR (Liu et al., 2022):
For each query instance, we selected examples
that were most similar to it. For this, we com-
puted the cosine similarity between the [CLS]
representation of the instances obtained from
RoBERTa-large fine-tuned on the Story State
Inference task. For each approach, we tried cre-
ating prompts with 5, 10, and 15 examples.
Prompt examples were selected from a set of
200 high-quality, expert-selected instances drawn
from the training set, similar to West et al. (2022).

We treat the number of prompt examples and
their selection as hyperparameter combinations,
and evaluated each of them on 200 random
samples from the validation set. Since human eval-
uations are expensive, we use BERTScore, which
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# of examples in prompt
APPROACH 5 10 15

EXPERT CURATED 81.6 81.6 82.5

RANDOM SELECTION 81.2 81.8 82.3

NEAREST NEIGHBOR 81.7 83.3 82.0

(a) Story Revision for Counterfactual States

# of examples in prompt
APPROACH 5 10 15

EXPERT CURATED 53.0 52.8 51.9

RANDOM SELECTION 51.4 51.2 52.1

NEAREST NEIGHBOR 52.1 51.5 50.2

(b) State Change Generation

Table 2: GPT3 hyperparameter selection.
Few-shot performance (BERTscore) of GPT-3
for combinations of (i) prompt example selection
approach and (ii) # of examples in prompt.

has the highest correlation with human-evaluated
validity of output, among the automatic met-
rics we tried (see Table 9). Table 2 shows that
the combinations perform roughly similarly but
there is a two-point gap between the best and
the worst combination. For the Story Revision
for Counterfactual States task, we use NEAREST
NEIGHBOR with 10 prompt examples, and for the
State Change Generation task, we use EXPERT
CURATED with 5 examples.

We used the text-davinci-002 GPT3
model for both tasks. We set the generation tem-
perature parameter to 0.9, frequency penalty to
0.5, and maximum generation length to 100.

5.2 T5

We benchmarked base (T5-b) and large (T5-l)
variants of T5 on all three state-based tasks by
fine-tuning them on the task-specific instances
created from PASTA, as explained in Section 4.4.
Examples of T5 input-output format for each task
are shown in Figure 3. For all the tasks, T5-b
and T5-l were trained for 7 and 5 epochs, respec-
tively. For model training, we used the AdamW
(Loshchilov and Hutter, 2017) optimizer with a
learning rate of 10−4 and weight decay of 10−6.
For T5-l the batch-size for tasks 1, 2, and 3 were
8, 4, and 4, respectively. Whereas for T5-b, the
corresponding batch-sizes were 16, 12, and 10.
For text generation, we used nucleus sampling
with 0.93 top-p; 100 as max generation length.

Figure 3: Examples of T5 formats. An asterisk ∗ is
prepended to the supporting set sentences in the stories
in task (1). The output in task (2) includes special
tokens like <extra id 4> and <extra id 5> to indicate
revisions to the 4th and 5th sentences.

5.3 BERT \ RoBERTa

We benchmarked base (BERT-b) and large
(BERT-l) variants of BERT-uncased, and
base (RoBERTa-b) and large (RoBERTa-l) of
RoBERTa on only the Story State Inference task
since they are non-generative models. The input
format for the models is identical to that of T5.
For all the models, we used the AdamW optimizer
with a learning rate of 5e−6 and weight decay of
1e−6. The large and base models were trained for
5 and 7 epochs respectively.

T5-b, BERT-b, BERT-l, RoBERTa-b, and
RoBERTa-l were trained on an NVIDIA-TITAN-
X 24GB, and T5-l was trained on an NVIDIA-
A6000 48GB GPU.

6 Results and Analysis

We now analyze the performance of these recent
language models on the three PASTA tasks.

6.1 Story State Inference

We evaluated model performance with standard
accuracy and contrastive accuracy. In contrastive
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accuracy, the model gets a point only if it makes
correct predictions for both inferred and the coun-
terfactual states for a story. For all models, we train
with five random seeds and report their average
performance with standard deviation.

Human Evaluation: We conducted human
evaluation on the task instances (see Section 4.4.1)
created from PASTA. We randomly selected 200
4-tuples from the test set,4 and created 800
story-state inference instances from them. Each
task instance, (S, αq, s) was evaluated by three
crowd workers who rated the likelihood of infer-
ring αq from s in context of S, on a 5-point Likert
scale - Extremely unlikely, Unlikely, Cannot Say,
Likely, and Extremely likely. We threshold the
Likert value to a binary 0/1 value with the map-
ping {Extremely unlikely to Cannot Say} → 0
and rest → 1. The human prediction for an in-
stance was computed by majority voting, which,
along with its true label, was used to compute the
human performance.5

Story State Inference is a Hard Task Table 3
shows that even for just standard accuracy, there
is room for improvement (7.8%) when com-
paring the best performing model (RoBERTa-l)
to humans on this simple binary classification
task. This performance gap further increases to
10.5% when considering contrastive accuracy. In-
creasing model size from base to large yields
3.7% (BERT) to 8% (RoBERTa) gains on stan-
dard accuracy. For contrastive measure, both base
and large variants of each models fare substan-
tially worse, with performance drops ranging from
5.4% (RoBERTa-l) to 9.8% (BERT-b). For hu-
mans, the corresponding performance drop is only
∼ 2.7%. This suggests that predicting whether a
state is likely to be inferred from a story is diffi-
cult for these LLMs, even when fine-tuning on a
relatively large number of examples.

We also analyze the performance of the mod-
els when they don’t have direct access to the
justification sentence information in the story. We
fine-tuned large variants of the three baseline mod-
els on this task. From Tables 3 to 4, we see that the
task performance drops across all the models on
both evaluation metrics, with a 2.4% to 3.5% drop

4Model performance for this test subset differed by
< 0.5% from that of the overall test set

5The instance label assignment is explained in Section 4.4.

Accuracy (%) Contrastive Accuracy (%)

BERT-b 73.8± 0.3 64.0± 0.5

T5-b 79.8± 0.6 70.7± 0.5

RoBERTa-b 81.2± 0.6 73.0± 0.8

BERT-l 77.5± 0.4 68.7± 0.7

T5-l 83.1± 0.9 75.3± 1.4

RoBERTa-l 89.1± 0.4 83.7± 0.5

Human� 96.9 94.2

Table 3: Story State Inference - Model evalua-
tion: Accuracy is the % of instances where the
model made correct predictions. Contrastive Ac-
curacy gives a credit to the model if it correctly
predicts the inferability for both the inferred and
counterfactual states for a story.

Accuracy (%) Contrastive Accuracy (%)

BERT-l 74.9± 0.3 64.6± 0.3

T5-l 79.6± 0.6 69.8± 1.0

RoBERTa-l 86.7± 0.4 80.4± 0.6

Human� 93.5 88.9

Table 4: Story State Inference - without the justifi-
cation sentences: Model performance on a harder
variant of the Story State Inference task, where
they don’t have direct access to the justifica-
tion sentences of a state when predicting it’s
inferability for a story.

in accuracy, and 3.3% to 5.5% in contrastive ac-
curacy. The gap between the human performance
and the best performing model is still substantial.
This shows that justification sentences are indeed
important to solve the task, but the models often
still make reasonable decisions without them.

Importance of the Data Collection Design:
It is important to note that we included con-
trastive examples in our train-set. To illustrate
its importance, we trained a model on the
dataset created from just the original sto-
ries (D1 = {((Si, si, αi), 1), ((Si, si, α

′
i), 0)}Ni=1),

and another on the modified stories (D2 =
{((S′

i, s
′
i, α

′
i), 1), ((S

′
i, s

′
i, αi), 0)}Ni=1). We then

trained and tested on these different dataset, results
of which are reported in Table 5.

Generalization accuracy is significantly worse
if we had only constructed positive and negative
states for a collection of stories. For exam-
ple, training on Dtr

1 and testing on Dte
2 leads

to an 11.1% drop in accuracy compared to
in-distribution test on Dte

1 . For Dtr
2 , the corre-

sponding drop is 6.6%, which supports the quality
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Test data
Train data Dte

1 Dte
2 Dte

1 ∪ Dte
2

Dtr
1 90.2(84.4) 79.1(70.8) 84.8(77.9)

Dtr
2 81.5(73.6) 88.1(82.6) 84.8(78.1)

Dtr
1 ∪ Dtr

2 90.2(85.3) 88.1(82.3) 89.1(83.7)

Table 5: Story State Inference - Dataset Anal-
ysis: Accuracies and contrastive accuracies of
RoBERTa-large when trained and tested on
dataset partitions created from original stories
(D1), modified stories (D2), and their union
(D1 ∪ D2). tr and te denotes the corresponding
training and test splits.

of our stories/states and shows that both original
and counterfactual state inferences are learnable.
Had we not collected the revised story, then mod-
els could potentially learn artifact-based heuristics
(e.g., guessing whether the state is original or mod-
ified) resulting in the lack of generalization that
we observe here. Because PASTA includes the
revised stories, we can train on the full dataset
Dtr = Dtr

1 ∪ Dtr
2 , and see that the performance

is uniform across the different test partitions. This
highlights the challenges in constructing negative
examples for such tasks and the importance of
including contrastive examples for both training
and test for proper generalization.

6.2 Story Revision for Counterfactual States

This generation task requires the model to revise
a given story, such that the revised story is con-
sistent with the given counterfactual participant
state. We use human judgments to evaluate the
revised stories because reference-based automatic
evaluation metrics (BLEU [Papineni et al., 2002],
BERTscore [Zhang et al., 2019] etc.) are inade-
quate for multiple reasons: (i) valid revised stories
often exist that are different from the references,
(ii) original and revised stories overlap heavily
which can skew the metrics, and (iii) small lexical
changes that don’t change automatic metrics can
affect logical consistency. We thus evaluate gen-
eration quality using our proficient workers from
Section 3.2.

We compare performance of the models on a
subset of 200 test instances chosen at random.
We evaluated them for quality on three metrics:
(1) Inferable: How likely is it for the given
state α′ to be true at any point in the revised
story S′? This was rated on a 5-point Likert

Acceptability
%

Inferable
(A)

%
Logical

(B)
% ALL
(A & B)

Minimal
Revision

GPT3 - FS 50 86 48.5 86.33
T5-b FT 41.0 77.0 34.0 91.39
T5-l FT 58.5 84.0 54.0 89.17

Table 6: Story Revision for Counterfactual States -
Human evaluation: % of model generated stories
that satisfy evaluation criteria. Inferable and Log-
ical assure coherence of the revisions with the
required entity state. ALL indicates generations
that satisfied both the criteria. FS means few-shot
learning, FT means finetuned on PASTA dataset.

scale, which we thresholded to a 0/1 value (1
means inferrable). (2) Logical: Is the generated
story S′ logically correct? This was a YES/NO
question. (3) Minimal revison: What is the degree
of revision made to S to generate S′? This was
rated on a 5-point Likert-scale, with 4 indicating
minimal revision and 0 an entirely new story.
Higher scores indicate higher similarity between
S and S′. Inferability and Logical decide the
ultimate correctness of a response. We calculated
an overall model acceptability score (ALL in
Table 6) by finding the percentage of model output
that were both logical, and the input state can be
inferred from them.

Table 6 shows that T5-l outperforms T5-b and
GPT3 on the acceptability (ALL) of generated
outputs by a large margin of 20% and 5.5%, re-
spectively. GPT3 has the best performance on
logical validity of the generated output with T5-l
lagging behind by only 2%, but only 50% of
GPT3’s output satisfy the inferability criteria. In
fact all the models have low inferability score,
which brings down their overall acceptability
score. T5-b has the best performance on the ‘min-
imal revision’ made to the original story, however
this was not a primary metric of concern and
there is always a trade-off between doing well
on this score and generating an acceptable re-
sult. For example, revising a story conditioned on
a counterfactual that is connected to entities in a
different part of the story might require substantial
revisions.

Overall, only 54% of the output generated by the
best model, T5-l, are acceptable, indicating that
the task is challenging and there is large room for
improvement. Our results with GPT3 were based
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Model
% Valid % Valid % Not

% ALL
A, B & CAttribute Inferable in Story

(A) (B) (C)

GPT3 FS 86.5 67.46 81.5 47.7

T5-b FT 96.75 41.0 90.25 35.17

T5-l FT 99.25 58.75 97.0 55.50

Table 7: State Change Generation - Human eval-
uation: % of output that satisfy the evaluation
criteria. Valid attributes ensures that the gener-
ated states describe entity attributes, not actions.
Valid inferability indicates if both states can be
inferred from their correct stories. Not in Story
assures that the states are unstated in the stories.
ALL indicates the % of generations that satisfy
all the these criteria.

on few-shot prompting where we treated its de-
sign choices as a modelling hyperparameter that
were chosen based on automatic metric perfor-
mance on the validation set. Few-shot perfor-
mance of GPT3-scale models depends heavily on
prompt engineering, so this direction may require
further investigation.

6.3 State Change Generation

In this task, for given stories S and S′, the model
generates the two states α and α′. As in the
previous task, we do a human evaluation of a
randomly selected set of 200 model generated
outputs.

Model outputs were evaluated on the following
metrics: (1) Valid Attribute: Do the generated
states α, α′ describe entity attributes? This was
a YES or NO question. (2) Valid Inferability:
Are generated states α and α′ inferable from S
and S′, but not from S′ and S, respectively?
Workers rated α and α′’s likelihood of being
inferred independently, on a 5-point Likert scale,
which was thresholded to a 0/1 value. For instance,
if α is inferred from S, then LSα = 1 (otherwise
0). Based on these scores, the inferability change
for α is computed (1 for valid, 0 for invalid)
using max(0, LSα − LS′α). (3) Not in Story:
Are α and α′ unstated in both S and S′? This
was a multiple-choice question with 4 choices, 3
corresponding to the state being present in either
one or both the stories, and the 4th for neither
of the stories. An output (α, α′) gets full credit
on a metric if both α and α′ are correct for that
metric, half if only one of them (α or α′) is correct,

BERTscore GLEU rougeLsum

GPT3 FS 80.7 69.7 79.6
T5-b FT 81.6 73.2 81.7
T5-l FT 82.1 73.5 81.7

(a) Story Revision for Counterfactual States

BERTscore GLEU ROUGEL

GPT3 FS 55.4 11.6 28.9
T5-b FT 54.4 11.7 29.5
T5-l FT 56.9 13.4 32.4

(b) State Change Generation

Table 8: Automatic evaluation for generative
tasks: Model performance on the generative tasks
using BERTscore, GLEU, and ROUGE based
metrics.

and 0 otherwise. ALL indicates full credit on all
three metrics.

Table 7 shows the results. T5-l in general out-
performs both T5-b and GPT3 on all the metrics
except the Valid Inferability, where GPT3 out-
performs the other models by a large margin.
Interestingly, GPT3 is the worst performing model
on Valid Attribute and Not in Story. This indi-
cates that GPT3 is loosely ‘‘cheating’’ by copying
text in the story itself, which of course is inferable,
but violates the task’s requirement of an implicit
state. Overall, the best acceptability score (ALL in
Table 7) is only 55.5%, which suggests that gen-
erating an output that satisfies all the criteria for a
quality state change is an interesting challenge.

6.4 Automatic Evaluation for
Generative Tasks

For the two generative tasks, we reported hu-
man evaluation results for the best analysis (prior
sections). However, since human evaluation is ex-
pensive, we include here the results from three
automatic metrics: GLEU (Wu et al., 2016),
ROUGE (Lin, 2004), and BERTscore (Zhang
et al., 2019). For GLEU, we consider 1 to 4-grams
overlap between the output and reference. We
report ROUGELsum for the Story Revision for
Counterfactual States task since it is computed
over the entire story, and the sentence level
ROUGEL metric for State Change Generation.
From Tables 8a and 8b, we can observe that
even for automatic metrics, T5-l is still the best
performing model on both tasks.

To further analyze automatic metrics as an
alternative to human evaluation, we computed
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BERTscore GLEU ROUGE

Task-1 .21 (6e-7) .14 (9e-4) .13 (2e-4)

Task-2 .27 (4e-22) .21 (1e-13) .22 (1e-15)

Table 9: Pearson Correlation between automatic
metric score of a model output and its validity as
determined by humans. Numbers in parenthesis
are p-value6 for the null hypothesis that they
are uncorrelated. Task-1 is Story Revision for
Counterfactual States, and Task-2 is State Change
Generation.

the correlation between them. We computed the
Pearson correlation between the automatic metric
score of an output and its validity as determined
by humans. The results are reported in Table 9.
The numbers in parenthesis are the p-values
for the null hypothesis (95% confidence inter-
val) that they are uncorrelated. We observed that
BERTscore has the highest correlation with hu-
man evaluated validity for both tasks, outperform-
ing other metrics by a substantial margin. The low
p-value further indicates that the correlation is
statistically significant. However, since the cor-
relation is low, we strongly recommend using hu-
man evaluations, and only use BERTscore as an
alternative where human evaluation is expensive.

6.5 Inter-Annotator Agreement

We measure the inter-annotator agreement (IAA)
for the human workers using Gwet’s Agreement
Coefficient (Gwet, 2008, 2014), which is a type
of generalized Kappa statistic.7 Its interpretation
is similar to generalized kappa (Viswanathan and
Berkman, 2012), with 0.6 − 0.8 ≡ substantial
and ≥ 0.8 ≡ almost perfect agreement. We use
Gwet’s coefficient because it is robust to the
paradoxical behaviors (Wongpakaran et al., 2013;
Gwet, 2014) seen in the commonly used IAA
Kappa metrics (e.g., Cohen’s and Fleiss). This
paradoxical behavior of these metrics can lead
to their IAA coefficients being lower even when
the agreement is strong (Feinstein and Cicchetti,
1990; Byrt et al., 1993).

Crowd Workers IAA Table 10 shows the IAA
coefficient for the tasks and their standard errors.

6The lower the p-value, the higher is the confidence for
rejecting the null hypothesis.

7Gwet’s normalizes the probability of observed agreement
with a percent chance agreement that is the propensity of
raters to agree on hard-to-rate instances (Gwet, 2014).

Task
Gwet’s coefficient
Coeff StdErr

Story State Inference 0.81 0.01
Story Revision from

0.72 0.02
a Counterfactual
State Change Generation 0.76 0.01

Table 10: Inter-Annotator Agreement for human
evaluation for the three tasks. Coeff is the cal-
culated IAA coefficients, and StdErr is the stan-
dard error.

For each task, we computed the IAA coefficient for
their respective evaluation metrics on their orig-
inal scale (pre-thresholding8), which were then
averaged to obtain the overall task scores. We
computed the unweighted IAA coefficient for an
evaluation metric if it was nominal, with quadratic
weight if it was ordinal. As can be observed from
the table, the crowd worker have strong agreement
for both the generative tasks and almost perfect
agreement for the classification task.

Experts IAA The two experts in Section 3.2
were responsible for accepting or rejecting a
worker response for the PASTA creation. To mea-
sure their IAA, we created a pool of 200 PASTA
instances that included both accepted and rejected
instances. The experts had a Gwet’s coefficient of
0.87 and agreed on 93.5% of those 200 instances.

7 Discussion

Here we discuss the main challenges and error
analyses that highlight areas for future work.

7.1 Challenges

The key challenge common across all tasks is ac-
cess to diverse types of knowledge (commonsense,
numerical, factual, etc.), as well as the ability to
combine and reason with them. For example,
task 1 in Figure 3 requires factual knowledge
about the temperatures at the North Pole, com-
monsense about snow and Christmas, and the
ability to combine these when reasoning to detect
the incompatibility of the input state.

The Story Revision Task has the added chal-
lenge of a model identifying the parts of the input
story that are inconsistent with the counterfactual

8Note that thresholding was only done for ordinal scale
metrics.
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state, and then finally generating logically coher-
ent text. For instance, in Figure 3 task 2, based on
the input story and state, the model must first infer
from sentences 2-4 that Connor had 12 coworkers.
Then to generate the revised story, it also needs
to reason about how the world state gets affected
if there were fewer people than the number of
doughnuts (e.g., now Connor would have some
doughnuts left over).

The main challenge in the State Change Gener-
ation task is that there can be numerous plausible
state pairs that are compatible with both stories,
but they don’t reflect a pertinent state change.
Each state needs to be incompatible with one of
the stories and compatible with the other, and this
differentiation is a big challenge for any model.
For example, in Figure 3 task 3, the observable
difference between the stories is the outcome from
coffee spilling on Joe. Using abductive reasoning
with commonsense knowledge about temperature,
one can easily infer that the change in state lead-
ing to a different ending comes from the coffee’s
temperature.

7.2 Error Analysis

We analyze the model’s errors on 200 randomly
selected instances from the validation set.

Story State Inference: We analyze model
performance on different types of entity states
following the categorization from Bhagavatula
et al. (2019). We expand their spatial category
to a broader set of physical attributes of entities
(weight, temperature, location, etc.), and include a
new Societal category to capture social constructs
and norms. Even though multiple categories may
apply to a state, to simplify our analysis we only
use the most relevant category for each state.

In particular, we categorize each instance into
one of the following: (i) Societal: knowledge about
societal constructs such as relationship (Jake is not
married, I have 5 brothers), norms (John is not so-
cially aware), etc. (ii) Emotional/Psychological:
knowledge about emotions (John felt embar-
rassed, John hated Jake), beliefs (Jake believed in
ghosts), etc. (iii) Physical: Knowledge about phys-
ical attributes of entities (Jake was in his school,
the rock was very heavy, the coffee was hot, etc.).
Table 11 breaks down the overall performance of
models across different categories. Models sig-
nificantly under-perform on the societal category

State Type Acc. %
Contrastive

Acc. %

All - 100% 79 71.5

BERT-l Societal - 14.5% 70.7 62.1

Emotional - 54% 80.8 74.1

Physical - 31.5% 79.8 71.4

All - 100% 85.7 80.5

T5-l Societal - 14.5% 81.9 75.9

Emotional - 54% 87 81.5

Physical - 31.5% 85.3 81

All - 100% 90.6 86.6

RoBERTa-l Societal - 14.5% 83.6 77.6

Emotional - 54% 93.5 89.4

Physical - 31.5% 88.9 86.5

Table 11: Story State Inference: Model perfor-
mance for predicting the state inferability of
different type of states.

compared to the other two. In addition to the dif-
ficulty of modeling societal knowledge, we find
that relatively more number of instances in this
category require numerical commonsense, which
adds additional complexity for the models. Phys-
ical commonsense is a broad category and its
instances thus tend to cover a broad range of
physical knowledge which could contribute to the
difficulty of these instances. Emotional category
has the best model performance since the inferred
state include strong lexical indicators of emo-
tions and feelings, similar to the observations in
Bhagavatula et al. (2019).

The proposed generative tasks can have multi-
ple correct outputs, each using a different set of
commonsense knowledge. This makes it difficult
to associate a unique knowledge category for the
task instance. Therefore we manually analyze the
outputs of the best performing model (T5-large)
and identified common types of generation errors
made by the model on the task.

Story Revision for Counterfactual States: The
model output is correct for ∼ 58% cases and in-
correct for ∼ 42%. On analyzing the incorrect
output, we found four main categories of error
that we list in Table 12. The ‘‘illogical revised
story’’ occurs when models produced revised sto-
ries that are logically incoherent (30% of er-
rors). Generating logically coherent long text is
still a challenging task for models, and to a cer-
tain extent can be attributed to their tendency to
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Error Category Percentage
Illogical revised story 30.1
Irrelevant change 27.7
Contradiction 20.5
Input state not entailed 20.5
State explicit in the revision 1.2

Table 12: Categories of different type of errors for
the Story Revision for Counterfactual States
task.

Figure 4: Representative examples of top failure cat-
egories for the Story Revision for Counterfactual
States task. Parts of the story that are changed are
highlighted in pink , and the contradictory elements
are highlighted in yellow.

forget attributes of specific entities (Welleck et al.,
2018), ignore previously inferred facts (Sinha
et al., 2019) and background information, or con-
tradict previous statements (Brown et al., 2020).

Error Category Percentage
Contradiction 37.4
Irrelevant states 35.2
Illogical state change 13.2
States reversed 4.4
No change in state 4.4
State directly stated in the story 4.4
Actions instead of states 1.1

Table 13: Categories of different type of errors
for the State Change Generation task.

Moreover, 20.5% of the revised stories are cate-
gorized as contradiction as they clearly contradict
the input counterfactual state. This corroborates
previous findings on the challenges in reasoning
about contradictions and negations (Hossain et al.,
2020). Models also struggle to keep the changes
relevant to the task criteria of the input state,
which should be inferable from the revised story
but not directly mentioned in it. They sometimes
make Irrelevant changes (27.7% of errors) where
they revise parts of the story that are not affected
by the input counterfactual state. Other times they
make revision that are inconsistent with the in-
put counterfactual state (Input state not entailed,
20.5%) or the input State is explicit in the revision
(1.2%), both of which do not meet the primary
task requirements.

Figure 4 shows examples of the biggest error
categories for the task.

State Change Generation: The model is cor-
rect for 54.5% of cases and fails for 45.5% when
generating state changes. Table 13 shows the main
error categories. While the model learns to gener-
ate both the α and α′ states about the same entity,
it makes many types of logical errors. Contra-
dictions (37.4% of errors) are when a generated
state is contradicted by its story, either directly or
by deduction. Illogical State Changes (13.2%) are
those where the generated states and input stories
were topically related, but the states were simply
illogical nonsensical. Both types of errors can be
attributed to the challenges associated with making
the relevant state inference, generating logically
coherent text and reasoning about contradictions
and negations. Irrelevant States (35.2%) are those
where at least one of the generated states has no
connection to its story. The error categories of
State Reversed (4.4%), No change in state infer-
ability (4.4%), State is directly stated in the story
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Figure 5: Examples of top failure categories for the
State Change Generation task. For the contradiction
category, the conflicting parts are highlighted.

(4.4%), and outputs are Actions instead of states
(1.1%) are due to models’ inability to correctly
understand the task constraints. Figure 5 shows
example of the major error categories for the task.

7.3 Interactive Feedback with LLMs
Based on the error analysis for the tasks per-
formed above, the majority of the error categories
can be attributed to the model’s inability to
maintain factual and logical consistency in the
generated output. For the Story State Inference
task, the lack of consistency is further demon-
strated by the low contrastive accuracy on the
task. Conversation-based LLMs such as ChatGPT
(OpenAI, 2022) or LaMDA (Thoppilan et al.,
2022), have been shown to have both knowledge
at the scale of LLMs such as GPT3 and an ability
to incorporate human feedback for NLU tasks.
These capabilities may enable them to leverage
feedback about inconsistencies (if detected) in the

initially generated output to correct these inconsis-
tencies in the subsequent generations. However,
when the task is to be performed at scale, the feed-
back that guides the model to the correct output
needs to be automatically generated instead of a
human guiding the model. As such, this type of
model presents a fruitful and challenging research
direction to address some of the issues and further
improve performance on the tasks.

8 Conclusion

In this work, we introduced a new resource,
PASTA, that captures unstated commonsense
knowledge required to understand and reason
about participant states in a narrative. PASTA
opens the door to developing more complex
reasoning abilities, especially those that require
access to implicit information. We described three
PASTA reasoning tasks, one classification and
two generation, that test for different aspects of
state-based reasoning. This work shows that with
careful crowdsourcing and contrastive design we
can obtain a high-quality dataset that can be used
to evaluate deeper reasoners. Benchmarking re-
sults suggest that PASTA tasks are not within
the reach of current large sized models, as of
yet, and encourages future research in modeling
commonsense knowledge with states.
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