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Abstract

Within Open Relation Extraction (ORE) tasks,
the Zero-shot ORE method is to generalize
undefined relations from predefined relations,
while the Unsupervised ORE method is to ex-
tract undefined relations without the need for
annotations. However, despite the possibility
of overlap between predefined and undefined
relations in the training data, a unified frame-
work for both Zero-shot and Unsupervised
ORE has yet to be established. To address this
gap, we propose U-CORE: A Unified Deep
Cluster-wise Contrastive Framework for both
Zero-shot and Unsupervised ORE, by lever-
aging techniques from Contrastive Learning
(CL) and Clustering.1 U-CORE overcomes
the limitations of CL-based Zero-shot ORE
methods by employing Cluster-wise CL that
preserves both local smoothness as well as
global semantics. Additionally, we employ
a deep-cluster-based updater that optimizes
the cluster center, thus enhancing the accu-
racy and efficiency of the model. To increase
the stability of the model, we adopt Adaptive
Self-paced Learning that effectively addresses
the data-shifting problems. Experimental re-
sults on three well-known datasets demonstrate
that U-CORE significantly improves upon
existing methods by showing an average im-
provement of 7.35% ARI on Zero-shot ORE
tasks and 15.24% ARI on Unsupervised ORE
tasks.

1 Introduction

Relation Extraction (RE) is a fundamental task in
Natural Language Processing (NLP) that aims to
extract the relationships between pairs of entities

∗Hongkui Tu is the corresponding author.
1The code can be found at: https://github.com

/2kjiejie/U-CORE.

mentioned in a given text, such as identifying the
Effect-Cause relation between ‘‘fire’’ and ‘‘fuel’’
in the sentence ‘‘The fire was caused by explod-
ing fuel.’’ RE is an essential component of NLP
systems that can facilitate diverse downstream
tasks, including Question Answering (Soares and
Parreiras, 2020), Knowledge Graphs (Ji et al.,
2021), and Dialogue Systems (Chen et al., 2017).

While supervised methods have demonstrated
great success in extracting predefined relations,
in reality, new relations frequently arise, and it
can be time-consuming and labor-intensive to de-
fine them manually. As a result, open-domain
relation extraction has become a popular research
topic. Based on prior studies, Open Relation Ex-
traction (ORE) tasks can be categorized into two
types, namely, Zero-shot Open Relation Extrac-
tion (ZORE) and Unsupervised Open Relation
Extraction (UORE). ZORE aims to extract novel
relational facts where the target relation types
are not observed in the training set (Levy et al.,
2017). On the other hand, UORE has the ob-
jective of extracting undefined relations without
any annotation or prior knowledge (Elsahar et al.,
2017).

In recent years, significant attention has been
devoted to ORE tasks (Obamuyide and Vlachos,
2018; Hu et al., 2020; Chen and Li, 2021). De-
spite variations in complexity and annotations,
both ZORE and UORE aim to develop an op-
timal encoder that can generate an appropriate
relational representation using limited resources.
Additionally, practical scenarios involving ZORE
and UORE may overlap, such as when training
data contain both predefined and undefined re-
lations. Consequently, the previous ZORE and
UORE methods, which concentrate on predefined
or undefined relations, respectively, may yield
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suboptimal results due to their inability to account
for all relations. Given the similarities between
ORE techniques, as well as their potential over-
lap in practical applications, we propose a unified
framework that addresses diverse ORE tasks.

Recent studies have attempted to improve rela-
tion representation in ZORE by leveraging Con-
trastive Learning (CL) approaches (Chen and Li,
2021; Wang et al., 2022). These methods typi-
cally rely on instance-wise CL, which aims to
bring together relations from the same instances
while separating those from different instances.
However, Li et al. (2021) have pointed out that
instance-wise CL may treat instances with similar
semantic information as negative pairs, leading
to a drift in their representations and resulting
in performance degradation. In the ORE task,
instances that belong to the same relation type
share ‘‘similar semantic information’’ and should
not be treated as negative paris. To address this
limitation, we propose employing a cluster-wise
contrastive learning approach, which facilitates
the alignment of relations within the same clusters
and the separation of relations across different
clusters.

Contrarily, in UORE tasks, the training pro-
cess is unsupervised, and existing models tend to
learn structural information from clustering tech-
niques (Hu et al., 2020; Liu et al., 2021). How-
ever, the majority of existing UORE methods depend
on conventional clustering algorithms, such as
k-means, for defining clustering centers. Re-
clustering at the end of each epoch is typically
required, which may be time-consuming and com-
putationally intensive. Consequently, we incor-
porate deep clustering into our ORE framework
to eliminate the need for frequent re-clustering
and enhance the clustering performance.

The combination of cluster-wise contrastive
learning and deep clustering plays a crucial role
in our unified ORE framework. Deep clustering
enhances the performance of cluster-wise CL by
providing more accurate clusters, while cluster-
wise CL improves deep clustering by generating
better relation representations. However, during
the training process, while the encoder is updated
in each minibatch, the clustering assignment is
only updated at the end of each epoch. This in-
consistency between the relation representations
and cluster centers in the feature space is known
as the data-shifting problem, which has been iden-
tified in previous works (Liu et al., 2022). This

problem requires careful attention in our unified
framework to avoid the misalignment between the
relation representations and the cluster centers.

Based on the above analysis, we propose
U-CORE: A Unified Deep Cluster-wise Contras-
tive Framework for Open Relation Extraction
in this article. The proposed framework aims to
establish a unified approach to enhance the per-
formance of both ZORE and UORE methods.
Specifically, the Cluster-wise Contrastive Learn-
ing approach is employed in our ORE framework,
which increases the inter-cluster spacing of clus-
ters while minimizing intra-cluster spacing, en-
abling us to overcome the limitations of previous
CL-based ZORE methods. To mitigate the need
for regular re-clustering and enhance overall ac-
curacy and efficiency, we introduce a deep Clus-
ter Center Updater. Moreover, we propose the
integration of Adaptive Self-paced Learning in
the proposed U-CORE to address issues regarding
data-shifting and produce a more stable model.
The framework is capable of obtaining an effec-
tive representation of relations and able to han-
dle both Zero-shot ORE and Unsupervised ORE
tasks. Overall, our proposed U-CORE framework
contributes towards the development of highly
effective and versatile techniques for Open Re-
lation Extraction. The architecture of our frame-
work is shown in Figure 1.

We briefly summarize our contribution as
follows:

• We propose U-CORE, a novel deep cluster-
wise contrastive framework that effectively
addresses both zero-shot open relation ex-
traction and unsupervised open relation
extraction tasks.

• We introduce the Cluster-wise Contrastive
Module for the ORE task, which combines
instance-wise and cluster-wise Contrastive
Learning to optimize relation representations
both locally and globally.

• We introduce a deep-cluster-based Cluster
Center Updater and Adaptive Self-paced
Learning techniques, which enhance the ef-
ficiency and stability of our model.

• We conduct experiments on 3 well-known
datasets. The results demonstrate that U-
CORE outperforms existing state-of-the-art
methods in both ZORE and UORE tasks.
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Figure 1: Framework of U-CORE. The Entity Markers representations generated by the PLM encoder Ψ and
MLP projection will proceed through three parallel modules, namely, the Cluster-wise CL, Instance-wise CL,
and Relation Prediction module. To further improve the efficiency and stability of U-CORE, the Cluster Center
Updater and Adaptive Self-paced Learning (ASP) are incorporated.

2 Related Work

In this section, we survey the related work on
Open Relation Extraction, Contrastive Learning,
and Deep Clustering.

Open Relation Extraction In recent years,
ORE has emerged as a significant research topic
due to its practical applicability and downstream
task potential. ORE tasks can be broadly classified
as Zero-shot and Unsupervised open relation ex-
traction. The former aims to distinguish novel
relations without relying on prior training in-
stances. Some researchers, such as Levy et al.
(2017) and Obamuyide and Vlachos (2018), have
drawn a parallel between this goal and reading
comprehension or question answering. Zhao et al.
(2021) have proposed a relation-oriented cluster-
ing method to solve the ZORE problem. In con-
trast, UORE is an unsupervised learning method
that identifies semantic relation features from
unannotated data. Several authors have pursued
this strategy: Elsahar et al. (2017) have used re-
weighted word embeddings for clustering free
text, while Hu et al. (2020) have employed
clustering-based techniques to generate pseudo-
labels for new relation discovery. Both ZORE
and UORE require robust representations of the
relations. The key difference is that while ZORE
is focused on extracting undefined relations from

pre-existing ones, UORE optimizes representa-
tions from undefined relations themselves. Our
proposed model U-CORE leverages supervised
and self-supervised learning to optimize represen-
tation, making it well-suited for both ZORE and
UORE tasks.

Contrastive Learning Contrastive Learning
(CL) is a powerful strategy that extracts com-
mon attributes for each data class by contrasting
samples while simultaneously identifying dis-
tinguishing characteristics. The effectiveness of
Contrastive Learning was first widely recognized
in the field of computer vision (He et al., 2020;
Chen et al., 2020). This strategy has also seen
successful applications in NLP. For instance,
SimCSE (Gao et al., 2021) has been developed
for NLP tasks. Recently, some researchers have
attempted to apply CL for ZORE tasks. For exam-
ple, Wang et al. (2022) employed instance-wise
CL and a relational classification module in the
ZORE task. These CL methods used in ZORE
rely on instance-wise Contrastive Learning de-
signed to emphasize the relationships among sim-
ilar instances while distinguishing them from
different instances. However, Li et al. (2021) has
highlighted a critical issue with instance-wise CL,
as it can often regard entity pairs with similar
semantic information as negative pairs, result-
ing in a local smoothness but ignoring the global
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semantics. Accordingly, in our ORE framework,
U-CORE implements the cluster-wise contrastive
learning approach, which aligns relations in the
same clusters and separates relations in different
ones. By doing so, we can avoid treating rela-
tions with similar semantics as negative pairs,
thereby achieving improved performance.

Deep Clustering Deep clustering (Ma et al.,
2019; Guo et al., 2019) has demonstrated signifi-
cant improvements over conventional algorithms
in recent years. Subakti et al. (2022) has provided
evidence that DEC (Xie et al., 2016) and IDEC
(Guo et al., 2017) perform better than k-means in
clustering sentence embeddings. In the past two
years, several studies (Li et al., 2021; Caron et al.,
2020; Liu et al., 2022) have attempted to integrate
clustering into contrastive learning optimization.
However, these works have primarily used con-
ventional clustering algorithms such as k-means.
These algorithms require re-clustering at the end
of each epoch, which can significantly drain com-
putational resources, particularly when processing
massive datasets. Therefore, we have integrated
deep clustering into our models. This approach
results in two key benefits: 1) clustering centers
can be refined in every epoch without excessive
time or memory usage, and 2) the deep cluster-
ing approach has further improved the perfor-
mance of cluster-wise contrastive learning.

3 Proposed Model

3.1 Relation Representation
Relation Representation is dedicated to gener-
ating features that represent each token in the
input sentence. In this study, we presume that
the entities included in the sentence have been
recognized before inputting them. Based on the
previous finding from Baldini Soares et al. (2019),
we choose Entity Marker for relation represen-
tation. To include entities e1 and e2 in an input
sentence S = [w1, . . . , wn], we augment S with
four reserved word pieces to mark the start and
end of each entity mention in the relation state-
ment. We introduce 〈e1〉, 〈/e1〉, 〈e2〉, 〈/e2〉 and
modify S to

Ŝ = [w1, . . . , 〈e1〉, e1s . . . , e1e , 〈/e1〉, . . . ,
〈e2〉, e2s , . . . , e2e , 〈/e2〉, . . . , wn]

(1)

where Ŝ will be the input sentence for the
encoder.

Then we choose BERT (Devlin et al., 2019) as
the encoder to generate the sentence embedding
H ∈ R

n×d :

H = [h1, . . . , h〈e1〉, hi, . . . , hj , h〈/e1〉, . . . ,

h〈e2〉, hk, . . . , hl, h〈/e2〉, . . . , hn]
(2)

where d is the hidden dimension of BERT.
We utilize the concatenated results of the re-

served word pieces to represent the relation r
between e1 and e2:

r = MLP (h〈e1〉 ⊕ h〈e2〉) (3)

where ⊕ is the concatenation operator and r ∈
R

2×d. MLP is a a non-linearity projection from
Chen et al. (2020) to generate enhanced repre-
sentation, defined as MLP (·) = ReLU(W (·)).

3.2 Instance-wise Contrastive Module

3.2.1 Data Augmentation

In order to implement instance-wise contrastive
learning, it is essential to utilize an appropriate
augmentation method to generate positive pairs.
Following the approach employed in prior re-
search such as SimCSE (Gao et al., 2021), we
employ Dropout noise as our data augmentation
method. Specifically, the generated positive pairs
consist of identical sentences with embeddings
that differ only in terms of their dropout masks.
For a relation r, its positive pair r̂ = Dropout(r).
Therefore, for a randomly sampled minibatch
B = {ri}Mi=1, we use Dropout noise to gener-
ate a pair of augmentations for each relation in-
stance in B. This results in an augmented batch
B̂ with double the size, represented as B̂ =
{r̂i}2Mi=1.

3.2.2 Instance-wise Contrastive Loss

Instance-wise Contrastive Loss aims to bring
closer relations from the same instance and sepa-
rate relations from different instances. For every
minibatch B, the Instance-CL loss is determined
by the augmented pairs in B̂. A positive pair is
represented by ri, r̂i ∈ B̂, while the remaining
(2M − 2) relations in B̂ are considered as neg-
ative instances in relation to this positive pair.
For the relation ri, we aim to distinguish r̂i
from all negative instances in B̂ by minimizing
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the InfoNCE Loss (Oord et al., 2018) presented
below:

LInst =

M∑
i=1

− log
exp(sim(ri, r̂i)/τ)∑2M

j=1 1j 	=iexp(sim(ri, r̂j)/τ)
(4)

where 1j 	=i is an indicator function evaluating
to 1 iff j 	= i and τ is a temperature hyper-
parameter. sim(ri, r̂i) indicates the cosine simi-
larity between ri, r̂i, which is ri
r̂i/‖ri‖‖r̂i‖.

3.3 Cluster-wise Contrastive Module

As described in Section 3.2, instance-wise con-
trastive learning results in an embedding space
where each instance is distinctly separated and
exhibits local smoothness. However, instance-
wise contrastive learning treats two samples as
a negative pair as long as they are from differ-
ent instances, irrespective of whether they belong
to the same relation type, causing alienation of
the instances from the same type in the embed-
ding space. To tackle this challenge, we integrate
Cluster-wise Contrastive Learning.

3.3.1 Cluster Centers Initialization

At the beginning of training, we conduct
k-means clustering on all representation vectors
R, using varying numbers of clusters K, and
assess the resultant clustering outcomes via the
Davies–Bouldin index (DBI).

DBI =
1

K

K∑
j=1

max
k 	=j

{
Dj +Dk

d(cj , ck)

}
(5)

where cj is the center of cluster j, Dj is the
average distance from the data points in cluster
i to its center, d(cj , ck) is the distance between
the centers of clusters j and k, and the maximum
is taken over all pairs of clusters. The number
of clusters with the lowest DBI value will be se-
lected for utilization in our model.

3.3.2 Cluster-wise Contrastive Loss

Following Li et al. (2021), we take the same
approach as NCE and use all negative cluster
centers to calculate the normalization term:

�iClus = − log
exp(sim(ri, cj)/φj)∑K
k=1 exp(sim(ri, ck)/φk)

(6)

where ri belongs to cluster j. φj is the normalized
density for cluster j, defined as:

φj =

∑J
i ‖ri − cj‖2

J log(J + a)

where J is the number of relations in cluster j
and a is a smooth parameter. The difference be-
tween τ in LInst and φj is that the value of φj

varies between different clusters. A smaller value
of φj indicates a better concentration of rela-
tions within the cluster.

3.3.3 Cluster Centers Updater

Existing UORE methods that rely on cluster-
ing techniques frequently require the execution
of conventional clustering algorithms at the end
of each epoch, resulting in significant time in-
vestment. Furthermore, studies such as Subakti
et al. (2022) demonstrate that deep clustering out-
performs conventional clustering methods when
analyzing high-dimensional data. Given the crucial
role played by clustering quality in cluster-wise
contrastive learning, we propose incorporating a
deep-cluster-based updater for the cluster cen-
ter. Following Xie et al. (2016) we use the
Student’s t-distribution as a kernel to measure
the similarity between embedded relation ri and
center cj :

qij =

(
1 + ‖ri − cj‖2 /α

)−α+1
2

∑
j ′

(
1 + ‖ri − cj ′‖2 /α

)−α+1
2

(7)

where α are the degrees of freedom of the Stu-
dent’s t-distribution. qij can be interpreted as the
probability of assigning relation ri to cluster j
(i.e., a soft assignment).

We proceed to construct a new distribution pij :

pij =
q2ij/fj∑
j ′ q

2
ij ′/fj ′

(8)

where fj =
∑

j qij are soft cluster frequencies.
Compared to qij , distribution pij is capable of
placing greater emphasis on data points that have
been assigned high confidence while ensuring
that the feature space remains free from dis-
tortion caused by large clusters, owing to the
normalization through cluster frequencies fj .
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Therefore, we consider P as the target dis-
tribution for Q and set our objective as the KL
divergence loss between the soft assignments
Q and the auxiliary distribution P , as outlined
below:

LKL = KL [P‖Q] =
∑
i

∑
j

pij log
pij
qij

(9)

The clustering center will be optimized with
higher confidence and reduce the impact of over-
large clusters, thus improving the clustering ac-
curacy and the Cluster-wise Contrastive Module’s
performance. Furthermore, the optimization pro-
cess runs concurrently with the training process,
obviating the necessity for a separate re-clustering
procedure and yielding substantial reductions in
both time and computational resources.

3.4 Adaptive Self-Paced Learning

During the training process, the relational fea-
ture r is updated in each batch, but the cluster
assignment remains unchanged until the end of
the epoch, leading to possible representation shift
issues. This means that the representation of ri
and its corresponding cluster center cj may not
belong to the same feature space. To tackle this
problem, previous research (Li et al., 2021; Liu
et al., 2022) has employed a Momentum En-
coder to ensure a consistent relational feature
space. Nevertheless, with open relation extrac-
tion datasets that have fewer data and clusters,
the use of Momentum Encoder may hinder con-
vergence speed. Consequently, finding the right
hyper-parameter θ for the moving average that
balances both representation shift and conver-
gence speed poses a significant challenge. There-
fore, following Guo et al. (2019), we propose
an Adaptive Self-Paced Learning to the cluster-
wise contrastive loss as:

LClus =
M∑
i=1

vi�
i
Clus − λvi (10)

where

vi =

{
0, if �iClus < λ

1, otherwise

To have an adaptive λ, we define it as:

λ = μ(Lt
Clus) +

t

T
σ(Lt

Clus) (11)

where Lt
Clus denotes the LClus in t-th epochs,

T is the number of max epochs. μ(·) and σ(·)
are the means and standard deviation. λ is adap-
tive to the losses of the cluster-wise contrastive
module, not an independent hyper-parameter like
regular self-paced learning. Then the loss of all
the unsupervised modules above can be formu-
lated as:

Lunsup = LInst + LClus + ηLKL (12)

where η is used to balance the KL loss and
Contrastive loss.

3.5 Labeled Relation Prediction

All the modules we proposed above can be ex-
ecuted without the need for labeled relations.
Nonetheless, incorporating those predefined data
can enhance the encoder’s performance in terms
of generalization. Following this, we adopt a
Feed-forward layer as the classifier to facilitate
the prediction process. For a given input sentence
Si, the final output for the labeled entity pair (e1,
e2) can be expressed as:

ŷi = Softmax(W (ReLU(ri) + b) (13)

We apply cross-entropy to compute the classifi-
cation loss for the labeled data:

Llabel = − 1

N

N∑
i=1

y∗i log(ŷi) (14)

where N is the number of labeled relations and
y∗i is the ground truth.

If there are labeled data in the training set,
then the Labeled Relation Prediction loss will be
added to the final loss:

L = Llabel + γ ∗ Lunsup (15)

where γ is a hyper-parameter to balance two
objectives.

4 Experiment

4.1 Datasets

Following previous studies, we adopt two datasets
to evaluate zero-shot ORE: SemEval2010 Task8
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and FewRel. SemEval2010 Task8 (Hendrickx
et al., 2019) was designed to classify a set of se-
mantic relations between pairs of concepts, such
as cause-effect or instrument-agency. It contains
9 relations and an ‘‘Other’’ relation. Each relation
possesses a distinct direction (e.g., ‘‘son of’’ and
‘‘father of’’). Following previous works (Wang
et al., 2022), we do not consider the direction
of the 9 relations or use the ‘‘Other’’ relation in
experiments. We combine the instances of the
training set and testing set for each relation to
obtain the overall instances. This collection con-
sists of 10,717 instances, with different numbers
of instances allocated to each relation. FewRel
(Han et al., 2018), a publicly available dataset
that utilizes data from Wikipedia, is specifically
designed to evaluate the model’s performance in
carrying out few-shot relation extraction tasks.
Unlike SemEval2010 Task8, FewRel is a bal-
anced dataset comprising 80 relations, with 700
instances for each relation. Although FewRel is
primarily utilized for a few-shot learning ap-
proach, it can also be effective for zero-shot
learning if the relation labels between the train-
ing and testing data are distinct.

We also carry out our unsupervised open rela-
tion extraction experiments on TACRED (Zhang
et al., 2017), which is one of the largest and most
widely used datasets for relation classification.
TACRED is a comprehensive supervised relation
extraction dataset that focuses on Text Analysis
Conference’s Knowledge Base Population (TAC
KBP) relations. The dataset contains an extensive
collection of 21,773 positive examples sourced
through crowdsourcing, encompassing a wide
range of relationships.

4.2 Evaluation Settings

Zero-shot ORE Settings Following Wang et al.
(2022), we randomly select m relations as the
undefined relation set Rtest, and n relations as the
predefined relation set Rtrain. Note that (m + n)
equals to the whole numbers of relations in the
dataset and Rtrain ∩ Rtest = ∅. The training data
only contains the instances of predefined rela-
tions while the testing data only contains unde-
fined relations. We repeat experiments 10 times
on SemEval2010 Task8 and FewRel, then report
the average clustering results on k-means. To
show an appropriate clustering result, the cluster-
ing number is set to m.

Unsupervised ORE Settings The TACRED2

dataset has been officially split into the train-
ing, validation, and testing sets. Following Tran
et al. (2020) and Liu et al. (2022), we train the
unsupervised models on the training set and re-
port the clustering results of the testing set. For
our U-CORE model, we suppose the training and
testing set have the same relation types, so we
directly use the clustering centers generated in the
training process to assign cluster labels.

Evaluation Metrics To evaluate the effective-
ness of clustering, we choose three commonly
used metrics as our evaluation criteria, namely,
B3 (Bagga and Baldwin, 1998), Normalized Mu-
tual Information (NMI), and Adjusted Rand Index
(ARI) (Hubert and Arabie, 1985). B3 utilizes both
precision and recall to accurately assess the rate of
correctly assigning data points to their respective
cluster or clustering all points into a singular class.
Then B3 F1 score is computed as the harmonic
mean of the B3 precision and recall:

B3 prec = E
X,Y

P (g(X) = g(Y ) | c(X) = c(Y ))

B3 recall = E
X,Y

P (c(X) = c(Y ) | g(X) = g(Y ))

where g(X) and g(Y ) are the predicted la-
bels of two data points X and Y , respectively.
c(X) and c(Y ) are the true labels of X and Y ,
respectively. The NMI score quantifies the amount
of information shared between the predicted label
and the ground truth. A perfect partition of data
results in an NMI score of 1, while an independent
prediction and ground truth yield a score of 0.

NMI(Y ∗, Y ) =
2I(Y ∗, Y )

H(Y ∗) +H(Y )

where Y ∗ and Y are predicted labels and the
ground truth, respectively. I(Y ∗, Y ) is the mu-
tual information between Y ∗ and Y , and H(Y ∗)
and H(Y ) are the entropies of Y ∗ and Y ,
respectively.

The ARI metric gauges the level of confor-
mity between the cluster and golden distribution,
ranging from −1 to 1. A high score indicates

2https://nlp.stanford.edu/projects/tacred/.
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FewRel SemEval
m = 5 m = 10 m = 15 m = 4

Model F1 NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI
CNN 74.47 68.51 66.31 60.87 64.59 53.79 55.3 62.35 49.87 38.42 17.06 15.43
Att-BiLSTM 82.75 79.36 76.63 75.89 79.10 71.46 69.84 75.94 66.03 41.6 21.45 19.97
Supervised RSN 73.33 67.89 64.49 59.11 64.96 48.66 50.99 59.98 39.74 38.41 11.98 10.96
ZS-BERT 74.51 69.24 66.96 70.63 74.10 65.23 63.33 70.7 59.24 35.03 12.47 9.53
MTB 88.06 85.32 84.03 82.7 84.16 79.19 76.72 77.66 71.65 44.35 25.25 20.59
RCL 89.69 87.12 85.69 85.61 86.59 80.36 81.48 85.64 78.18 68.02 55.91 54.71
U-CORE 96.38 95.04 95.33 90.37 90.08 82.45 83.35 89.03 79.55 78.83 66.79 70.88

Table 1: Experiment results(%) on FewRel and SemEval in terms of B3 F1, NMI, and ARI. m denotes
the number of undefined relation types. The best results among these models are represented in bold.

greater consistency between the two distribu-
tions. The formula for ARI is as follows:

ARI =∑
ij

(
nij
2

)
− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2 [
∑

i

(
ai
2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
where n is the total number of samples, ai is the
number of samples in cluster Ci, bj is the number
of samples in golden relation rj , and nij is the
number of samples assigned to both cluster Ci

and relation rj .

Baselines To conduct the Zero-shot experi-
ment, we conduct a comparative analysis of
U-CORE against two distinct sets of models.
The first set comprises supervised relation extrac-
tion models, including CNN (Zeng et al., 2014),
Attention-BiLSTM (Zhou et al., 2016), and MTB
(Baldini Soares et al., 2019). These models have
demonstrated remarkable efficacy in supervised
learning settings; however, their effectiveness in
the zero-shot environment remains untested. The
second set includes three zero-shot relation ex-
traction models, namely, Supervised RSN (Wu
et al., 2019), ZS-BERT (Chen and Li, 2021), and
RCL (Wang et al., 2022). Following the previous
setting (Wang et al., 2022), we have modified
the supervised relational extraction models to fit
the zero-shot experiments. These models’ outputs
will be replaced with vectors that have the same
dimensionality as the U-CORE. Subsequently,
we utilize the k-means algorithm to predict un-
defined relations in our sample data.

For the Unsupervised Clustering experiment,
we choose five representative models. 1) RAE
(Marcheggiani and Titov, 2016) proposes a

reconstruction-based method for ORE by recon-
structing entities from pairing entities and pre-
dicted relations. 2) RW-HAC (Elsahar et al., 2017)
involves re-weighting word vectors based on the
sentence’s dependency parse tree. 3) EType+
(Tran et al., 2020) incorporates entity type knowl-
edge into the relation extraction task. 4) SelfORE
(Hu et al., 2020) leverages a pre-trained language
model to detect weak self-supervised signals
and group contextualized relational features into
clusters. 5) HiURE (Liu et al., 2022) introduces
a contrastive learning framework that utilizes
cross-hierarchy attention to derive hierarchical
signals from relational feature space. Note that in
the studies of EType+ (Tran et al., 2020) and
HiURE (Liu et al., 2022), their models were
trained on the NYT-FB dataset (Marcheggiani
and Titov, 2016) and tested on TACRED. How-
ever, we fail to obtain the NYT-FB dataset as it
is private. Thus, we train and test EType+ and
HiURE on TACRED. In order to ensure a fair
comparison, the number of clusters for each base-
line model has been set to 16, following previous
work (Tran et al., 2020).

4.3 Results

Results on Zero-shot Open Relation Tasks
Table 1 displays the results of our experiments
on ZORE tasks. Our proposed method U-CORE
outperforms other state-of-the-art models on Few-
Rel and SemEval datasets. U-CORE effectively
learns the relation representations from both pre-
defined relations and global semantics. A decrease
in performance is observed with an increase in
undefined relation set Rtest for all models. More-
over, our evaluation shows that SemEval is a
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TACRED

Model F1 P R NMI ARI

RAE 40.82 34.70 49.55 33.51 26.42
RW-HAC 50.94 42.61 63.33 51.67 28.15
EType+ 49.91 41.05 63.65 45.51 31.85
SelfORE 54.16 51.06 57.64 61.91 44.70
HiURE 57.12 54.13 60.46 63.03 46.16

U-CORE 63.74 59.61 68.49 75.77 61.40

Table 2: Experiment results(%) on TACRED in
terms of B3 precision, B3 recall, B3 F1, NMI,
and ARI.

more challenging dataset with the lower perfor-
mance of all models, attributable to its imbal-
anced data and limited relationship with the
general domains on pre-trained BERT, as also
observed by Wang et al. (2022). Directly using
pre-trained BERT for clustering only yields a
5.73% ARI.

The results of CNN, Att-BiLSTM, and
Supervised-RSN are relatively low without the
performance boost provided by Pre-trained Lan-
guage Models (PLMs). Although ZS-BERT can
achieve impressive ZORE performance, as dem-
onstrated in the original paper, it relies on a man-
ual description of novel relations, resulting in
decreased clustering performance. While MTB
can capture information from predefined relations
effectively, its ability to generalize on undefined
relations is insufficient. RCL, the previous
state-of-the-art method, uses instance-wise CL
to enhance performance, but it tends to separate
similar semantics and only preserve the local
smoothness of instances. The visualization of
RCL in Section 4.9 reveals its failure to differen-
tiate some similar relations. The performance of
U-CORE proves that it can optimize the encoder
both locally and globally to generate a better
relation representation.

Results on Unsupervised Open Relation Tasks
Table 2 displays the performance of various
models on the UORE tasks. The challenge of
TACRED is extracting undefined relations with-
out annotations. TACRED has 41 relations, yet
we used only 16 clusters based on previous work,
resulting in a higher value of B3 recall than B3

precision. Our proposed method, U-CORE, out-
performs state-of-the-art models on TACRED

Dataset Model F1 NMI ARI

SemEval

w/o CCM 68.85 53.17 54.17
w/o Updater 75.39 65.61 68.16
w/o ASP 73.44 60.35 62.71
U-CORE 78.83 66.79 70.88
w self-training 80.28 70.24 70.94

TACRED

w/o CCM 60.17 71.43 54.22
w/o Updater 61.07 73.25 58.19
w/o ASP 62.49 74.11 60.39
U-CORE 63.74 75.77 61.40
w self-training 67.33 78.41 62.25

Table 3: Effectiveness of each U-CORE operation.

datasets with remarkable improvements of 6.62%
B3 F1, 12.74% NMI, and 15.24% ARI. The
proposed cluster-wise contrastive module of
U-CORE minimizes intra-cluster distances while
maximizing inter-cluster distances, leading to a
more accurate clustering distribution closer to
the actual distribution. This has led to substan-
tial improvements, especially in the ARI value.
The performance on the UORE task shows that
U-CORE excels in self-training and can effec-
tively learn relation representations from global
semantics.

4.4 Ablation Study
Effect of Cluster-wise Contrastive Module
We have introduced a Cluster-wise Contrastive
Module (CCM) to prevent the identification of
instances with similar semantics as negative pairs.
As shown in Table 3, the performance of U-CORE
without CCM has a significant decrease. Addi-
tionally, the performance of U-CORE without
CCM on the SemEval dataset is similar to
that of RCL, which utilizes instance-wise con-
trastive learning. This highlights the ability of our
cluster-wise contrastive module to capture global
semantic structures and effectively generalize over
undefined relations.

Effect of Cluster Center Updater Our proposed
Cluster Center Updater is a deep-cluster-based
mechanism that enables U-CORE to update clus-
ter centers in parallel with the training process.
We show in Table 3 that U-CORE without Cen-
ter Updater, which utilizes k-means to update
the centers, results in an average performance
loss of 3.06% B3 F1, 1.85% NMI, and 2.97%
ARI compared to U-CORE. The experimental
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results demonstrate that the proposed module sig-
nificantly improves the accuracy of clustering.
Furthermore, the Center Updater also improves
efficiency, which will be discussed further in
Section 4.6.

Effect of Adaptive Self-paced Learning The
main objective of introducing the Adaptive
Self-paced Learning (ASP) module is to enhance
training stability by apprising the model of the
optimal timing for learning. Our preceding exper-
imental analyses reveal that SemEval represents a
demanding dataset with unsatisfactory clustering
outcomes in the absence of training. Addition-
ally, the feature space undergoes rapid changes
due to predefined relations, leading to significant
data-shifting problems. The results presented in
Table 3 demonstrate that U-CORE without ASP
performs considerably worse, exhibiting a loss of
5.29% inB3 F1, 6.34% in NMI, and 8.11% in ARI.
In comparison, the severity of the data-shifting
problem in TACRED is relatively lower due to
the self-supervised nature of UORE and conse-
quently results in relatively smaller performance
degradation in the absence of ASP.

4.5 Effect of Self-training on Testing Set

It is worth noting that U-CORE with self-training
represents a special case of our proposed model.
In Table 3, we present the results of conducting
self-training on U-CORE with testing data, which
yields improved performance over U-CORE in
both SemEval and TACRED, as it can optimize
relation representations without requiring any hu-
man annotations. This aspect is not featured in the
baseline comparison section, as no other baseline
in ZORE is capable of self-training in the absence
of predefined relations. Furthermore, our analysis
reveals that the scenarios of ZORE and UORE
may converge in situations where both predefined
and undefined relations are present. As a uni-
fied framework, U-CORE facilitates supervised
training on predefined data and self-training on
both predefined and undefined relations, leading
to an enhanced performance by optimizing global
semantics.

4.6 Efficiency Analysis

As previously discussed, U-CORE’s cluster
center updater is more efficient compared to con-
ventional clustering algorithms. To provide a
comparison, we employed HiURE, which uses

Epoch time Epoch Interval

HiURE 70.87s 40.83s
U-CORE 72.25s 10.87s

Table 4: Model’s epoch time and epoch interval.

Figure 2: Left: The results of models with different
numbers of predefined relations. Right: The differ-
ent metric scores of U-CORE with different numbers
predefined relations.

re-clustering with a k-means-based approach after
every epoch. Results are presented in Table 4,
indicating the average epoch time and epoch in-
terval of both methods on the TACRED dataset.
Despite having similar epoch time, U-CORE’s
epoch interval is only a quarter of HiURE’s.

4.7 Effect of Predefined Relations Numbers

This section investigates the impact of predefined
relation quantity on model performance on the
FewRel dataset. To this end, we selected 10 un-
defined relations for the testing set and varied the
number of predefined relations (n) in the training
set from 10 to 70. The experimental outcomes
are depicted in Figure 2 (Left). The results reveal
that U-CORE displays significant performance
improvements with increasing numbers of pre-
defined relations, achieving nearly a 10% lead
over both RCL and MTB models when trained
on equivalent quantities of data. It is noteworthy,
however, that the benefits of U-CORE are less
pronounced in settings with a small number of
relations, such as n = 5, highlighting potential
areas for future research.

Moreover, as illustrated in Figure 2 (Right),
the ARI score experiences a prominent upswing
within the range of n = 10 to n = 30, indicat-
ing an intensifying impact of the cluster-wise
contrastive loss, which is relation-based. This
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w/ Negative Relation Mixed Test Set

Model F1 NMI ARI F1 NMI ARI

MTB 32.03 16.10 11.87 30.06 14.02 10.22
RCL 55.52 44.64 39.55 53.52 46.86 35.58
U-CORE 64.63 55.57 52.23 58.17 54.68 49.54

Table 5: Experiment results(%) on SemEval with
additional complex real-world settings in terms
of B3 F1, NMI and ARI. ‘‘w/ negative relation’’
means ‘‘no relation’’ type is added to train and test
set. ‘‘Mixed Test Set’’ means the test set contains
both predefined and undefined relation types.

phenomenon can be attributed to the larger vo-
cabulary of relational knowledge that emerges as
the number of predefined relations rises, signif-
icantly amplifying the effect of this loss on the
model.

4.8 Effect of Additional Complex Settings

In our previous experiments, we follow main-
stream work to design our evaluation settings for
fair comparisons. In this section, we delve deeper
into assessing the robustness of U-CORE by ex-
ploring additional complex real-world scenarios.
In realistic scenarios, the ‘‘no relation’’ type may
appear in the dataset, and the test set may con-
tain both predefined and undefined relation types.
We present the experimental results for these two
challenging real-world settings on the SemEval
dataset in Table 5. Additionally, we include the
results of the two best-performing models from
our previous experiments, RCL and MTB. In the
‘‘w/ negative’’ setting, we add the ‘‘no relation’’
type based on the proportion of train and test
sets. In the ‘‘Mixed Test Set’’ setting, we ran-
domly allocated 20% of the data in predefined
relation types to the test set. The experimental
results demonstrate that the ‘‘Mixed Test Set’’
setting presents a greater challenge, as it involves
reduced training data and an increased number
of relation types in the test set. Consequently,
all models experience a significant performance
loss in this scenario. However, even under these
more complex real-world conditions, U-CORE
consistently outperforms the other models and
achieves the best performance. This highlights
the robustness and effectiveness of U-CORE in
handling these intricate settings.

Figure 3: t-SNE visualization of RCL and U-CORE on
FewRel dataset (m = 5).

4.9 Visualization

To visually illustrate how our method enhances the
understanding of undefined relations, we employ
t-SNE (Van der Maaten and Hinton, 2008) to
visualize the representation by mapping relation
representation to a low-dimensional space. We
choose undefined categories (m = 5) for the
zero-shot experiment on the FewRel dataset. In
each figure, the relation instances are colored
according to their ground truth labels. As depicted
in Figure 3a, the RCL struggles to differentiate
between the five relationship types effectively.
Due to Instance-wise CL implementation, blue
dots representing the same relation are pushed
away from each other. In contrast, U-CORE has
effectively separated and categorized these five
types, exhibiting a noteworthy capability in iden-
tifying differences. This success may be attrib-
uted to the cluster-wise contrastive module that
collaborates with Adaptive Self-paced learning
to optimize relation clustering performance by
expanding inter-cluster spacing while minimizing
intra-cluster spacing.

5 Conclusion

In this paper, we present a unified deep cluster-
wise contrastive framework, U-CORE, for Open
Relation Extraction tasks. Our proposed frame-
work can tackle various ORE tasks and over-
come the limitations of previous instance-wise
CL-based methods. Furthermore, we introduce
the cluster center updater and adaptive self-paced
learning to enhance the stability and efficiency
of our model. The results of our experiments on
three datasets provide evidence of the effective-
ness of our framework, achieving new state-of-
the-art performance. Recently, Large Language
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Models (LLMs) like ChatGPT3 have demon-
strated remarkable performance in various NLP
tasks, but Han et al. (2023) and Li et al. (2023)
indicate that LLMs exhibit subpar performance
in ORE tasks. From our aspect, we believe that
LLMs have the potential to address ORE tasks.
In light of this, our feature work is to further ex-
plore the potential of LLMs in ORE tasks.
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Models F1 NMI ARI

MTB 55.40 46.41 40.11
RCL 73.97 64.53 61.18
U-CORE 85.77 79.94 76.86

Table 6: Experiment results (%) on SemEval when
setting popular relation types as predefined.

A Appendix

A.1 Implement Details
In the U-CORE model, the encoder utilized is
BERT-base-uncased, and it undergoes 10 epochs
of training with an AdamW optimizer (Loshchilov
and Hutter, 2019) set to a learning rate of 1e-5,
β1 = 0.9, β2 = 0.999, and weight decay of 0.01.
Additionally, the values of τ and γ are set to 0.05
and 0.6, respectively. The value of η is set to
10. Following Gao et al. (2021), the dropout rate
in data augmentation is 0.1. The training process
utilizes double NVIDIA RTX 3090 with 24 GB
memory, and the batch size is 128.

A.2 Popular Relations only as Predefined
In this section, we conduct an experiment consid-
ering only popular relation types as predefined,
and the corresponding results are presented in
Table 6. In this scenario, each model exhibits
even better performance due to the availability of
a larger training dataset.

Dataset Model F1 NMI ARI

SemEval
w/o CCI 78.25 66.34 68.70
w/o φj 77.82 64.55 69.72
U-CORE 78.83 66.79 70.88

TACRED
w/o CCI 61.97 74.08 60.51
w/o φj 60.52 73.27 58.53
U-CORE 63.74 75.77 61.40

Table 7: Effectiveness of CCI and φj .

A.3 Additional Ablation Studies
In this section, we have included two additional
ablations. The first ablation replaces the Cluster
Centers Initialization method in Section 3.3.1 by
manually setting the number of clusters to match
the number of predefined relation types during the
training process. The second ablation replaces φj

in Equation (6) with a fixed value, which is equiv-
alent to τ in Equation (4). Table 7 presents the
results of these two ablations. Note that in some
cases CCI has no effect on the performance of
U-CORE, as the number of clusters generated by
CCI may align with the number of predefined rela-
tion types. CCI (Cluster Centers Initialization) and
φj were introduced to avoid the artificial setting of
two hyperparameters: the number of clusters and
the temperature of cluster-wise contrastive loss.
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