
Learning to Paraphrase Sentences to Different Complexity Levels

Alison Chi, Li-Kuang Chen, Yi-Chen Chang∗, Shu-Hui Lee∗, Jason S. Chang
National Tsing Hua University, Hsinchu, Taiwan

achi@gapp.nthu.edu.tw, lkchen@gapp.nthu.edu.tw,
yichen@nlplab.cc, shlee@nlplab.cc, jason@nlplab.cc

Abstract

While sentence simplification is an active
research topic in NLP, its adjacent tasks
of sentence complexification and same-level
paraphrasing are not. To train models on all
three tasks, we present two new unsupervised
datasets. We compare these datasets, one la-
beled by a weak classifier and the other by
a rule-based approach, with a single super-
vised dataset. Using these three datasets for
training, we perform extensive experiments
on both multitasking and prompting strate-
gies. Compared to other systems trained on
unsupervised parallel data, models trained on
our weak classifier labeled dataset achieve
state-of-the-art performance on the ASSET
simplification benchmark. Our models also
outperform previous work on sentence-level
targeting. Finally, we establish how a handful
of Large Language Models perform on these
tasks under a zero-shot setting.

1 Introduction

Paraphrasing a sentence to a targeted level of
complexity is a natural language processing task
that has not received much attention. Most work
focuses solely on sentence simplification: de-
creasing the syntactic and lexical complexity
of a sentence in order to make it easier to
understand while preserving its original mean-
ing (Siddharthan, 2002, 2006; Zhu et al., 2010;
Woodsend and Lapata, 2011; Xu et al., 2015;
Zhang and Lapata, 2017; Alva-Manchego et al.,
2020b). This task has applications for second lan-
guage (L2) learners and people with neural con-
ditions that impede their reading comprehension
abilities (Alva-Manchego et al., 2020b). There
has been limited work on sentence complexifi-
cation, which is the exact opposite of sentence

∗Equal contribution.

simplification: increasing the syntactic and lex-
ical complexity of a given sentence (Berov and
Standvoss, 2018).

As far as we know, there has not been any
work done on same-level paraphrasing, which we
define as paraphrasing a given sentence with-
out changing its complexity level. However, all
three tasks have important potential applications
in computer-assisted language learning.

Services like Grammarly1 and LinggleWrite
(Tsai et al., 2020) aim to correct grammatical and
lexical writing errors, especially for L2 learners.
Others aim to generate example usage sentences
for new words (Huang et al., 2017), as well as sug-
gest potential paraphrases of learners’ sentences
in order to improve the diversity of their writ-
ing (Chen et al., 2015). In addition to suggesting
general paraphrase rewrites, the online writing
assistant WordTune2 allows users to control both
the length (correlated to complexity) and formality
level of its paraphrase suggestions (Zhao, 2022).

Despite the existence of these paraphrasing
systems commercially, to the best of our knowl-
edge, there has been no academic work on para-
phrasing to different complexity levels. Writing
assistants and general language learning systems
could benefit from this. A learner might want to see
more concise ways of expressing their ideas (sim-
plifications), more advanced or idiomatic ways of
expressing them (complexifications), or sugges-
tions that match their writing level (same-level
paraphrases). We present models for all three
tasks. For these tasks, we construct two automati-
cally labeled (unsupervised) datasets and compare
them to one human-labeled (supervised) dataset.

Our first automatic labeling method is rule-
based according to Flesch-Kincaid Grade Level
(FKGL). FKGL can be calculated automatically

1https://www.grammarly.com.
2https://www.wordtune.com.
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as a weighted score consisting of sentence length
and syllable information (Kincaid et al., 1975). A
lower score means simpler output, and the lowest
possible score is −3.40. Although this metric
has been widely used for automatic evaluation
of sentence simplification systems, it has been
criticized for being easy to manipulate without
increasing the simplification quality of the output
(Tanprasert and Kauchak, 2021).

Our second automatic labeling method is weak
classification according to the six Common Eu-
ropean Framework of Reference for Languages
(CEFR) levels. The CEFR is used in standardized
testing around the world to describe the language
ability of L2 learners.3 It contains six levels in the
order of increasing complexity: A1, A2, B1, B2,
C1, and C2.4 Unlike FKGL, the CEFR is based
on a holistic combination of lexical, syntactic, and
conceptual features and requires professionals to
determine scoring (Council of Europe, 2001). We
construct a new, weakly labeled CEFR-annotated
sentence and phrase dataset from the English Pro-
file and Cambridge Dictionary, which we call
CEFR-CEP (CEFR-Cambridge-English-Profile).
We train a classifier to classify sentences and
phrases into any of the six levels.

From the ParaNMT dataset (Wieting and
Gimpel, 2018), we create both CEFR-labeled and
FKGL-labeled unsupervised sentence simplifica-
tion, complexification, and same-level paraphras-
ing datasets. We also use a supervised dataset
called Newsela-Auto (Jiang et al., 2020). On all
three datsets, we fine-tune T5 models. We conduct
ablation studies on multitasking configurations,
comparing performance of single-task, two-task,
and three-task models. We also compare two
prompting strategies: absolute prompting, where
we prepend target complexity level to the in-
put sentence, and relative prompting, where we
prepend level direction to the input sentence. Fi-
nally, we assess how Large Language Models
(LLMs) perform on these tasks in a zero-shot
setting. Our contributions are as follows:

• To our knowledge, we are the first to attempt
the task of changing complexity level in any

3https://www.cambridgeenglish.org/exams
-and-tests/cefr.

4Levels that fall within the same letter are closer together
than those that belong to different letters. For example, A1
and A2 are more similar to each other than A1 and B1.

direction. From our in-depth fine-tuning ex-
periments as well as a brief study on how
well LLMs can change complexity, we es-
tablish new benchmarks.

• Our CEFR-labeled ParaNMT dataset pro-
duces state-of-the-art results on the ASSET
simplification benchmark for models trained
on unsupervised parallel data.

• Our absolute prompting models outper-
form previous level targeting work on the
Newsela-Manual benchmark.

• We release our ParaNMT data, CEFR classi-
fier, and best fine-tuned paraphrasing models
to the public.5 We also release the CEFR-
CEP test data used for human evaluation.
The source dataset is publicly available on
EVP, EGP, and Cambridge websites and can
be obtained via their data request process.6

2 Related Work

2.1 Sentence Complexity Classification

Much work has been done on complexity level
classification as a component of Automatic Read-
ability Assessment, but it has mostly focused on
the document level (Xia et al., 2016; Lee et al.,
2021) and not the sentence level due to a short-
age of sentence-level datasets. In English, data
from Newsela,7 which contains articles that have
been manually simplified to four different target
levels, has been widely used (Xu et al., 2015;
Lee et al., 2021; Lee and Vajjala, 2022). Newsela
sentence levels can be automatically derived for
sentence-level research. However, since Newsela
levels (US grade ranges) are per document, not ev-
ery sentence level corresponds to its document’s
level. The OneStopEnglish corpus (Vajjala and
Lučić, 2018), which consists of sentences and
documents labeled at three ESL levels, is also
widely used. Since readability is highly subjective
and dependent on a specific audience or set of
standards, it is difficult to apply a single readabil-
ity assessment scheme to a variety of domains.
Lee and Vajjala’s (2022) pairwise ranking model

5https://github.com/alisonhc/change-complexity.
6https://languageresearch.cambridge.org

/academic-research-request-form.
7https://newsela.com.
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has made progress on this, demonstrating strong
accuracy on out-of-domain (OOD) data.

As the CEFR is a widely used international
standard, readability classification into CEFR lev-
els has been attempted (Xia et al., 2016; Khallaf
and Sharoff, 2021; Arase et al., 2022). But most
of this work has focused on documents, collec-
tions of documents, and individual words (Settles
et al., 2020; Kerz et al., 2021; Schmalz and Brutti,
2021; Gaillat et al., 2022). There is a very limited
amount of work on sentence level classification
(Volodina et al., 2013; Khallaf and Sharoff, 2021;
Arase et al., 2022). Arase et al. (2022) present
CEFR-SP, the first human-labeled CEFR English
sentence-level dataset, sourcing sentences from
Newsela-Auto and Wiki-Auto (Jiang et al., 2020)
in addition to the Sentence Corpus of Remedial
English (SCoRE).8 A BERT classifier trained on
CEFR-SP achieves 84.5% F1 on the in-domain
test set (Arase et al., 2022).

2.2 Changing Sentence Complexity

Most work in changing sentence complexity fo-
cuses on lowering sentence level to specific grades.
The Newsela corpus (Xu et al., 2015; Jiang et al.,
2020) has been used to train controlled simplifi-
cation models to target level (Scarton and Specia,
2018; Agrawal and Carpuat, 2019; Nishihara et al.,
2019; Kew and Ebling, 2022; Tani et al., 2022).
To our knowledge, there have been three previ-
ous attempts at sentence complexification, also
known as text or discourse embellishment. Berov
and Standvoss (2018) introduce the task and train
a LSTM on a story corpus and the inverse of a
simplification corpus, WikiLarge, which contains
aligned sentence pairs from English and Simple
English Wikipedia articles (Zhang and Lapata,
2017). Naskar et al. (2019) also use WikiLarge.
And more recently, Sun et al. (2023) train BART
(Lewis et al., 2020) on reversed simplification
sentence pairs from Newsela. There has been no
previous work on same-level paraphrasing.

2.3 Sentence Simplification

Supervised Data Many sentence simplification
systems adopt the architecture of machine trans-
lation, requiring complex-simple sentence pairs
to train (Zhu et al., 2010; Wubben et al., 2012;
Narayan and Gardent, 2014; Zhang and Lapata,
2017; Alva-Manchego et al., 2020b). WikiLarge

8https://www.score-corpus.org.

(Zhang and Lapata, 2017), described in Sec-
tion 2.2, has been widely used. Models trained
on this dataset can be easily applied to test sets
that source their data from Wikipedia such as
ASSET (Alva-Manchego et al., 2020a) and the
Turk Corpus (Xu et al., 2016). Newsela, also de-
scribed in Section 2.2, has been a popular source
for sentence simplification datasets (Xu et al.,
2015; Zhang and Lapata, 2017). Jiang et al. (2020)
present a sentence alignment model to generate the
larger datasets of Wiki-Auto and Newsela-Auto.
Their human annotators also developed the smaller
Newsela-Manual dataset. Although most of the
aforementioned corpora contain sentences that are
automatically aligned, they are still considered
supervised because the text was simplified by
humans.

Unsupervised Data Since there are few su-
pervised datasets, methods have been proposed
to generate unsupervised datasets, which often
consist of mined paraphrases. Backtranslation, or
translating a sentence into a language and then
back into the original language, has been used to
generate paraphrases (Lu et al., 2021). Other work
has used heuristics like embedding similarity to
mine semantically similar sentence pairs (Martin
et al., 2022). An effective way of training on un-
supervised parallel data is the use of control to-
kens to allow models to hone in on features that
correlate with sentence simplicity. For example,
the ACCESS method prepends tokens that spec-
ify output length, similarity of output and input,
output word rank, and output tree depth to the
beginning of each input sentence (Martin et al.,
2021). As these tokens are by default prepended
in plain text before tokenization, they are func-
tionally a form of prompt learning.

Multitask Learning Multitask learning has
proven useful for overcoming lack of data and
improving simplification quality. Entailment (Guo
et al., 2018), paraphrase generation (Guo et al.,
2018; Maddela et al., 2021), copy prediction
(Maddela et al., 2021), translation (Agrawal and
Carpuat, 2019; Mallinson et al., 2020), and sum-
marization (Dmitrieva and Tiedemann, 2020) have
all been used as auxiliary tasks for simplification
models. It has been shown in the past that train-
ing a model on multiple very similar tasks can
improve its performance on each individual task
(Ratner et al., 2018; Liu et al., 2019). Although
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simplification, complexification, and same-level
paraphrasing belong to the same general task of
changing sentence complexity, training a multi-
task model with all three has not previously been
attempted. The use of prompts for both train-
ing and inference has proven particularly useful
for multitasking with pretrained models. Scialom
et al. (2022) fine-tune a T5 model with eight
new tasks, including sentence simplification, with
prompts either prepended to the input text or em-
bedded as part of a template depending on the
task.

Inference with Large Language Models Re-
search has been done on whether LLMs can
simplify text without further training. Feng et al.
(2023) show that GPT-3.5-Turbo produces a SARI
score of 44.67 for zero-shot prompting and 47.06
for single-shot prompting, surpassing previous
state-of-the-art scores. Ryan et al. (2023) find
that BLOOM (Scao et al., 2023) achieves high
meaning preservation and fluency but fails to
simplify as well as smaller fine-tuned models.
Aumiller and Gertz (2022) use an ensemble of
prompts on GPT-3 (Brown et al., 2020), produc-
ing state-of-the-art results for lexical simplifica-
tion specifically.

3 CEFR Level Classification

In order to automatically label paraphrase data
with complexity levels, we first train a sentence-
level classification model. In theory, any of the
few English sentence-level readability datasets
can be used for training. However, CEFR-SP
(Arase et al., 2022) and Newsela (Xu et al., 2015)
may contain data that we use for training and
testing our later paraphrasing models, so we do
not use either of those. The other option of
OneStopEnglish (Vajjala and Lučić, 2018) has
very few sentence pairs, and upon inspection,
we find its simplest level to appear more com-
plex than CEFR A1. Therefore, we create a new
CEFR-labeled corpus for our needs, CEFR-CEP.

3.1 Data

We combine data from the English Profile and
Cambridge Dictionary.9 Our main source, En-
glish Profile (Capel, 2012), contains CEFR levels
that map to word senses or grammar concepts. It

9https://dictionary.cambridge.org.

Source Distribution
EVP: 32079

EGP: 3620

Cambridge Dict: 3714

Level Distribution

A1: 1790

A2: 3890

B1: 7445

B2: 10558

C1: 5921

C2: 9809

Sentence vs. Phrase
Sentence Count: 28638

Phrase Count: 10775

Table 1: CEFR-CEP information.

contains two searchable databases, English Vo-
cabulary Profile (EVP)10 and English Grammar
Profile (EGP).11

Each entry in EVP corresponds to a word, and
each of its possible definitions (word senses) is
marked with its CEFR level along with one or
more example usage sentences or phrases from
either a real learner or a dictionary. EVP words,
but not example sentences, have been used in
the past to create lexical simplification datasets
(Uchida et al., 2018; Fujinuma and Hagiwara,
2021). EGP and the Cambridge Dictionary are
structured similarly to EVP, containing CEFR lev-
els and examples for grammar concepts and word
senses respectively. We automatically label these
EVP, EGP, and dictionary examples with their en-
tries’ CEFR levels. We eliminate any duplicates
from our combined dataset. Further details about
CEFR-CEP are shown in Table 1.

This method assumes that for each word
sense or grammar concept, its example sentences/
phrases match its CEFR level. This is likely
false some of the time. However, analysis on
the CEFR-CEP sentences shows that our assumed
CEFR levels correlate strongly with other metrics
associated with sentence complexity: word count,
tree depth, and FKGL, as shown in Figure 1.

3.2 Model

On CEFR-CEP, we train a BERT classifier
(Devlin et al., 2019) in addition to SVM and LSTM

10https://www.englishprofile.org/wordlists
/evp.

11https://www.englishprofile.org/english
-grammar-profile/egp-online.
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Figure 1: For texts in CEFR-CEP, the average word
count, tree depth, and FKGL per CEFR level.

baselines, with an 80-10-10 train-validation-test
split. The BERT-base-cased [CLS] token embed-
ding serves as the sentence representation and the
input to our classifier, which is made up of one
linear layer and trained with cross-entropy loss as
in previous work (Arase et al., 2022). Its outputs
are softmax probabilities for each of the six CEFR
levels, and we use an Adam optimizer (Kingma
and Ba, 2015) with the best learning rate of 3e-5.12

In addition to the BERT model, we train
two baselines on the same data. The first is a
Support Vector Machine (SVM) classifier with
Term Frequency-Inverse Document Frequency
(TF-IDF) for its embeddings and a Radial Ba-
sis Function kernel (Scholkopf et al., 1997). We
use the optimal cost and gamma hyperparameters
of 10 and 1, respectively. We also train a LSTM
classifier with a single dense layer and Word2Vec
Google News vectors (Mikolov et al., 2013) as
its embedding layer, Adam optimization with an
optimal learning rate of 4e-3, softmax activation,
and cross entropy loss.

3.3 Evaluation

We perform automatic evaluation on our held-out
CEFR-CEP test data with four evaluation metrics.
Our F1 scores are weighted to take label imbalance
into account.

• 6-Level F1 (6-F1): The prediction F1 for the
six CEFR levels.

12On a single NVIDIA GPU, we use the AllenNLP li-
brary (Gardner et al., 2018) to train for three epochs with a
batch size of 32.

Model 6-F1↑ 3-F1↑ Adj-Acc↑ MAE↓
SVM 57.40 71.29 80.54 0.68

LSTM 53.17 70.00 82.04 0.71

BERT 59.78 76.80 90.64 0.52

Table 2: CEFR classifier results on CEFR-CEP
test set.

• 3-Level F1 (3-F1): The prediction F1 for the
three CEFR levels A, B, and C.

• Adjacent Accuracy (Adj-Acc): the percent-
age where the prediction’s deviation from the
test label is less than or equal to one.13

• Mean Absolute Error (MAE): a number
between 0 and 5. The average amount that
the prediction deviates from the test label.14

Table 2 shows the results for each metric on
the baseline and BERT models. For every metric,
the BERT model performs better. But 6-F1 is only
59.78%, and we posit that it is so difficult to get an
exact match with dataset CEFR level because of
dataset flaws mentioned in Section 3.1: namely,
that we label each example text according to the
level of its corresponding word sense or grammar
concept, which is not always correct. But Adj-Acc
is a high value of 90.64%, showing that our model
has very close estimation, and the low MAE of
0.52 is consistent with this. Our SVM baseline
scores similarly to the LSTM despite having much
more information-rich embeddings.

Since we will use our classifier to add CEFR
labels to the OOD ParaNMT dataset, we conduct a
study to see to what extent its labels match human
labels on the ParaNMT data. On our preprocessed
ParaNMT set (see Section 4.2 for details), we
sample 60 sentence pairs: 20 where their classified
levels are the same and 40 where their classified
levels differ by at least two (e.g., A2-B2 but not
A2-B1). We split the different-level pairs into
two groups: simplification where the higher level
sentence comes first and complexification where
the lower level one does. We then ask four native
English speakers to examine each sentence pair

13Under this metric, a prediction of A2 would be consid-
ered accurate if the test label was A1, A2, or B1, because the
deviation from A2 is one or less.

14Prediction 0 (A1), test label 1 (A2) corresponds to MAE
of 1. Prediction 1, test label 5 (C2) corresponds to MAE of 4.
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Category CEFR F1 FKGL F1

Simplification 53.33 46.15

Complexification 50.0 64.52
Same Level 12.50 28.57

Table 3: F1 of CEFR classifier vs. FKGL predic-
tions on 39 human labels.

and label which sentence is simpler: the first, the
second, or neither. These three labels map to the
categories of complexification, simplification,
and same-level paraphrasing, respectively.

Inter-rater agreement, or nominal Krippendorff’s
Alpha (Krippendorff, 2011), is a fairly low 0.27,
where 0 means no agreement (chance) and 1
means perfect agreement. Because we want to
evaluate on only reliable labels, we just consider
the sentence pairs where three or more of the
raters agree. These amount to 39 out of 60 pairs
with agreement of 0.48. We test both our CEFR
classifier and FKGL on these 39 gold labels.

We compare our CEFR classifier’s predictions
with those of FKGL. Table 3 shows the F1 of the
CEFR versus FKGL methods on the gold labels
for each of the three categories of simplification,
complexification, and same-level paraphrasing.
FKGL performs better for classifying complexifi-
cation and same-level paraphrasing, while CEFR
classification performs better for simplification.
However, F1 is universally low, casting doubt on
the reliability of our weak labeling approaches.
Our gold human labels are also potentially prob-
lematic: Only six of the 60 sentence pairs that were
rated as same-level paraphrasing met our criterion
of three out of four raters agreeing, compared to
15 and 18 for simplification and complexification
respectively. From these results, we tentatively
hypothesize that sentence simplification models
trained on data labeled by the CEFR classifier will
perform better than those trained on FKGL-labeled
data, while complexification and same-level para-
phrasing models trained FKGL-labeled data will
perform better than those trained on CEFR-labeled
data.

4 Paraphrasing Data

Next, we construct datasets for simplification,
complexification, and same-level paraphrasing.
Details are included in Table 4.

Dataset Tasks Size

Newsela-Auto Simplification 238,597

Complexification 238,662
ParaNMT-CEFR Simplification 1,287,794

Complexification 1,287,795

Same Level 1,287,795
ParaNMT-FKGL Simplification 1,287,794

Complexification 1,287,794

Same Level 1,287,794

Table 4: Paraphrasing dataset details.

4.1 Supervised Data

Our supervised data source is Newsela-Auto,15

a sentence simplification corpus derived from
Newsela news articles targeted at five levels and
written by education professionals, where level
0 is the complex original and 1–4 are simplifi-
cations of increasing degree (Xu et al., 2015).
Their sentences must be aligned to create a sen-
tence pair corpus from these original articles.
Previous methods have aligned using metrics
like Jaccard similarity (Zhang and Lapata, 2017).
Newsela-Auto’s pairs are aligned according to a
neural CRF model (Jiang et al., 2020), and its
pairs are more numerous (666k) and creatively
rewritten than previous Newsela alignments.16

Newsela-Auto does not contain level labels, so
we use string matching with the original Newsela
to find each sentence’s level (Xu et al., 2015).17

A limitation of Newsela-Auto and other sim-
plification datasets like WikiLarge (Zhang and
Lapata, 2017) and Wiki-Auto (Jiang et al., 2020) is
that they are only meant to contain different-level
pairs. Therefore, we only conduct simplification
and complexification experiments on this dataset.
For the two-task dataset, we flip the order of
exactly half of the sentence pairs. For the two
single-task datasets, we extract all simplifica-
tion and complexification pairs from the two-task
dataset but perform an additional filtering step
of removing all pairs that were labeled as the
same level according to our retroactive labeling

15Request data at https://newsela.com/data.
16To stay consistent with previous work, we employ the

same train-test-validation split.
17Due to the limitations of this retroactive approach, our

resulting corpus is slightly smaller than the original: 394,108
instead of 394,300 for training and 43,305 instead of 43,317
for validation.
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algorithm. These pairs only number into a few
thousand and are not enough to train a comparable
same-level paraphrasing model.

4.2 Unsupervised Data

To contrast with our supervised dataset and fill
the gap of missing same-level paraphrase pairs,
we create two unsupervised datasets. We use
ParaNMT, one of the largest paraphrase pair
datasets available to the public, with 50 million
sentence pairs generated through backtranslation
of the Czeng1.6 corpus (Wieting and Gimpel,
2018). It contains data sourced from movie and
educational video subtitles, European legislation
proceedings, and medical websites (Bojar et al.,
2016). ParaNMT has been used for sentence
simplification in the past (Martin et al., 2022).

To determine our filtering techniques, we in-
spect samples from the corpus and find pairs that
are identical or almost identical, very different in
meaning, or that contain incomplete sentences. To
alleviate these problems, we remove pairs where
one sentence is contained in the other or where
any sentence has less than three words.

To encourage our models not to directly copy
the input sentence—a problem that occurs in
both sentence simplification (Dong et al., 2019)
and paraphrase generation (Thompson and Post,
2020)—we only include aggressive paraphrases.
We remove pairs where Sentence-BERT cosine
similarity (Reimers and Gurevych, 2019) is be-
low 60% or above 80%. From our observations,
these thresholds exclude pairs that are different
in meaning or too similarly phrased.

We want ParaNMT-CEFR and and
ParaNMT-FKGL to be as similar as possi-
ble for the sake of comparison. From our filtered
data, we use the CEFR classifier to label the level
of each sentence. To maximize the likelihood
that a level difference between the two sentences
exists (see Table 2’s Adj-Acc), we only select
pairs where the level difference is two or greater.18

For the same-level dataset, we select pairs where
the sentences are classified as exactly the same
level.19

We are left with 2,575,589 different-level pairs
and 6,207,876 same-level pairs. For both the
CEFR-based and FKGL-based labeling schemes,

18For example, we keep A1-B1 pairs but remove A2-B1
pairs.

19For example, A1-A1 but not A1-A2.

Task Prompt(s)

Simplification ‘‘level down: ’’, ‘‘change to level X: ’’

Complexification ‘‘level up: ’’, ‘‘change to level X: ’’

Same-level ‘‘same level: ’’

Table 5: Prompt(s) for each task. For same-level
paraphrasing single-task models, we only train
REL prompt ablations. For simplification, com-
plexification, and all two-task and three-task
configurations, both REL and ABS prompt ab-
lations are trained.

we derive all of our simplification, complexifi-
cation, and same-level paraphrasing data from
these two sets. For ParaNMT-CEFR, we halve
the different-level dataset and re-order it to cre-
ate one simplification and one complexification
dataset. We then sample from the same-level pairs
to get an equal-sized same-level set. To create
ParaNMT-FKGL, we calculate the FKGL of each
sentence (rounded to two decimal points). If the
FKGL of the two sentences in a pair differs at all,
we consider it a different-level pair. If it is ex-
actly the same, we consider it a same-level pair.
We are able to derive 65.16% of our different-
level pairs from the ParaNMT-CEFR different-
level set. The other 878,449 are taken from the
ParaNMT-CEFR same-level pairs. We sample
from the resulting data to match ParaNMT-
CEFR’s in size. The train-validation-test split is
80-10-10 for both ParaNMT datasets. We have
made these data available to the public.20

5 Paraphrasing Experiments

We train models on the three tasks of sentence
simplification, sentence complexification, and
same-level paraphrasing. We train ablations for
training dataset (Newsela-Auto, ParaNMT-CEFR,
ParaNMT-FKGL), multitasking configuration (1–3
tasks), and prompting strategy (relative/absolute).
Including our baselines, we train 42 models in
total. See Table 5 for details.

5.1 Models

For all models, we use a single NVIDIA GPU,
a batch size of 32 after gradient accumulation,
and maximum decoding length of 300 tokens. We
fine-tune 34 ablations on T5 (Raffel et al., 2020),

20https://github.com/alisonhc/change-complexity.
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a pre-trained transformer.21 We also perform lim-
ited experiments with Flan-T5-base (Chung et al.,
2022), a more recent instruction-tuned version
of T5. We train ParaNMT-CEFR single-task and
2-task simplification and complexification abla-
tions (6 models). However, since we find in
Section 6.1.4 that it does not perform as well
as T5, we focus our main experiments on T5.

5.2 Prompting Strategies

At inference time, we prepend the correspond-
ing prompt to the beginning of each input sen-
tence, as this strategy was used for T5 (Raffel
et al., 2020).

Relative Simplification, complexification, and
same-level paraphrasing correspond exactly to the
prompts ‘‘level down: ’’, ‘‘level up: ’’, and ‘‘same
level: ’’. We train on the data of one, two, or all
three tasks, adding the corresponding task prompt
to the front of each input sentence. We call this
relative (REL) prompting because the prompt de-
notes the relative difference between the levels of
the input and output sentence: down, up, or same.
This scheme has 7 possible task combinations.

Absolute For each task combination besides
single-task same-level paraphrasing, we use
prompts that specify absolute (ABS) output level.
For training, we insert ‘‘change to level X: ’’,
where X is the level of the output.22 ABS prompt-
ing theoretically has an advantage over REL
prompting because we can change the prompt
to match the level of a test dataset’s output sen-
tence. To compare the two prompting strategies
on equal footing, we remove this advantage. With
the exception of Section 6.1.6, for ABS prompt-
ing inference, we use the same prompt for every
test input no matter the output level. Therefore,
we can only evaluate these models on simplifica-
tion and complexification and not on same-level
paraphrasing.

5.3 Baselines

We train paraphrasing baselines, the first trained
on the entire ParaNMT-CEFR dataset and the

21We fine-tune T5-base with the transformers library
(Wolf et al., 2020). After 3 epochs, we automatically select
the model checkpoint with the lowest validation loss.

22For ParaNMT-CEFR, X is the CEFR level A/B/C. For
ParaNMT-FKGL, X is FKGL rounded to two decimal points.
And for Newsela-Auto, X is one of the Newsela levels 0–4.

other trained on ParaNMT-FKGL. Each dataset
consists of one third simplification data, one third
complexification data, and one third same-level
paraphrasing data, but at train time, we use the
prompt ‘‘paraphrase: ’’ for each input.23

6 Paraphrasing Evaluation

We perform both automatic and human evaluation.
To compare all 40 experiment models, we only
report automatic evaluation results. We perform
human evaluation on just one model per task.

6.1 Automatic Evaluation

We first discuss each individual task. Then, we
discuss our ablation results more generally.

Metrics We report SARI and FKGL.24

• SARI (System output Against References
and against the Input sentence) is the most
important automatic metric for text sim-
plification. Ranging from zero to 100, it
represents the F1 for a model’s added, kept,
and deleted n-grams when comparing the
input and reference sentences (Xu et al.,
2016).

• FKGL (Flesch–Kincaid Grade Level) is a
weighted score with sentence length and syl-
lable information (Kincaid et al., 1975). It
was introduced in Section 1. We consider the
best FKGL score to be that closest to the gold
reference FKGL in a given test set.

Data For simplification and complexification, we
use ASSET and Newsela-Manual. These simpli-
fication benchmarks can be easily reversed for
the complexification task. There are no existing
benchmarks that can be applied to same-level para-
phrasing. Therefore, we use sentence pairs from
the ParaNMT corpus. In all tables and figures, we
denote task type to u/d/s for up (complexification),
down (simplification), and same.

• ASSET has 359 test sentences, each with 10
human-written reference sentences (Alva-
Manchego et al., 2020a). For simplification,

23We also train an LSTM baseline per task per ParaNMT
dataset using REL prompting, but we do not report the results
because they do not add to the analysis.

24We use the EASSE Python library to compare with
previous sentence simplification research (Alva-Manchego
et al., 2019).
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we use this dataset as-is. For complexifi-
cation, we consider each reference sentence
to be an input and the corresponding test
sentence to be an output, resulting in 3590
one-to-one pairings.

• Newsela-Manual contains Newsela sentence
pairs where each pair is annotated as aligned,
partially aligned, or not aligned (Jiang et al.,
2020).25 We collect all aligned and partially
aligned pairs and follow Kew and Ebling’s
(2022) method to automatically fix the align-
ments between partially aligned pairs. We
include pairs from all input levels to all out-
put levels and remove pairs where the output
is an exact copy of the input, resulting in
2,748 pairs.26

• Newsela-Manual by Level contains sen-
tences where the complex level 0 maps to
each of the simple levels 1–4. To evaluate
our models’ level targeting ability, we use
the same configuration as Kew and Ebling
(2022).27 We also create a complexification
version with the simple input of level 4 and
the possible output levels 3-0.

• ParaNMT-s Since there is no publicly avail-
able same-level paraphrasing dataset, we
sample from both the FKGL and CEFR ver-
sions of the ParaNMT-same set to collect
128,779 pairs.28 This corpus is inherently
noisy due to its unsupervised nature. We
hope that in future work, a cleaner same-level
paraphrasing dataset with human labels will
be available.

6.1.1 Simplification Results
We report results in Table 6 on both the ASSET
and Newsela-Manual test sets. Besides baselines,
we divide the table into two sections, one for mod-
els trained on unsupervised data and the other for
supervised data. We only report our two best per-
forming ablations per training dataset. For ABS
prompting CEFR and Newsela-Auto (News) mod-
els, we try all possible prompts. For FKGL models,
we try a range of prompts (0.0-7.0) and pick the

25There is no overlap between Newsela-Auto training or
validation data and Newsela-Manual test data.

26For simplification, we use the dataset as-is, and for
complexification, we reverse it.

27This configuration does not filter out input-output copies.
28There is no overlap between our resulting test set and

either of the training or validation sets.

ASSET Newsela-Manual

Model SARI↑ FKGL SARI↑ FKGL

Baselines
Reference 44.89 6.49 – 5.80

T5-CEFR-Para 39.58 9.88 36.13 9.73

T5-FKGL-Para 39.45 9.90 36.0 9.69

Unsupervised Data
MUSS-mined 42.65 8.23 38.80 7.26

Lu et al. 2021 42.69 7.94 – –
T5-CEFR-u-d-ABS (B) 43.65 7.91 39.13 8.09

T5-CEFR-d-s-ABS (B) 43.45 8.51 39.67 8.24

T5-FKGL-d-ABS (see caption) 42.38 7.03 37.81 2.47

T5-FKGL-d-s-ABS (3.0) 42.31 6.81 39.29 5.90

Supervised Data
MUSS-wiki-mined 44.15 6.05 41.38 6.67

Clive et al. 2022 43.58 5.97 – –
T5-News-d-ABS (4) 40.87 5.96 41.54 5.76
T5-News-u-d-REL 39.97 5.92 42.44 5.91

Table 6: Simplification on ASSET and Newsela-
Manual. Models abbreviated to [Model]-[Data]-
[Tasks]-[ABS or REL prompting]. MUSS-mined
and MUSS-wiki-mined come from Martin et al.
(2022). MUSS and Clive et al. (2022) use AC-
CESS prompting (Martin et al., 2021). Lu et al.
(2021) create their own corpus via backtransla-
tion. For ABS models, we enclose in parentheses
the target level we used for prompting at infer-
ence time. T5-FKGL-d-ABS uses 3.0 for ASSET
and 0.0 for Newsela-Manual.

best ones. For MUSS models, which are open
source (Martin et al., 2022), we report their best
scores on ASSET and do our own parameter search
on the Newsela-Manual validation set to derive
optimal prompts. On both benchmarks, all models
outperform baselines in SARI score. We achieve
a new state-of-the-art for unsupervised parallel
data, with the highest SARI score of 43.65 on AS-
SET going to T5-CEFR-u-d-ABS (prompt B).29

Our supervised model T5-News-u-d-REL has
the highest SARI score on the Newsela-Manual
benchmark, outperforming baselines and MUSS.

6.1.2 Complexification Results
We report SARI and FKGL on reversed ASSET
and reversed Newsela-Manual. Table 7 contains
results arranged in the same way as for simpli-
fication. For FKGL prompts, we try a range of

29We say unsupervised parallel data because GPT-
3.5-Turbo, mentioned in Section 2.3, has a higher score
(Feng et al., 2023).
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ASSET Newsela-Manual

Model SARI↑ FKGL SARI↑ FKGL

Baselines
Reference – 10.46 – 10.14

T5-CEFR-Para 42.09 7.46 39.41 6.92

T5-FKGL-Para 42.28 7.40 39.83 6.93

Unsupervised Data
MUSS-mined 44.06 7.92 38.46 7.85
T5-CEFR-u-ABS (C) 43.87 7.79 40.98 7.61

T5-CEFR-u-s-ABS (C) 43.44 7.70 39.60 7.50

T5-FKGL-u-ABS (12.0) 43.86 13.76 40.21 12.36

T5-FKGL-u-s-ABS (11.0) 44.07 11.87 40.32 11.10

Supervised Data
MUSS-wiki-mined 42.51 7.89 37.97 7.40

Sun et al. (2023) 40.0 8.30 – –
T5-News-u-ABS (0) 38.96 9.82 42.21 9.46
T5-News-u-REL 36.90 8.10 42.07 7.64

Table 7: Complexification on ASSET and
Newsela Manual. See Table 6’s caption for nam-
ing details. We obtained model weights and data
for Sun et al.’s (2023) ComplexBART model and
ran inference ourselves. However, since their
Newsela training data overlaps with the Newsela-
Manual test set, we only report ASSET scores for
ComplexBART.

10.0–17.0. We do a grid search to find MUSS
parameters. MUSS-mined almost matches our
best performing model’s SARI on ASSET, even
beating its supervised data counterpart and Sun
et al.’s (2023) ComplexBART. But it falls much
shorter of our best models on Newsela-Manual.

Between ParaNMT-CEFR and ParaNMT-
FKGL models, the latter produce the highest
SARI on ASSET and highest FKGL on both test
sets. However, after inspecting model outputs,
we find that for every FKGL model whose SARI
surpasses our highest ParaNMT-CEFR SARI
score, the outputs contain many degenerate rep-
etitions. For example, consider the ASSET input
simple sentence The state capital is Aracaju.
T5-CEFR-u-s-ABS with prompt C produces the
slightly longer sentence the capital of the state
is Aracaju. But T5-FKGL-u-s-ABS with prompt
11.0 produces a 295-word output starting with
the capital of the state is Aracaju, the capital
of the state is the capital of the state of the state
of. MUSS SARI also surpasses ParaNMT-CEFR
on ASSET. However, their outputs contain fewer
degenerate repetitions according to an inspection

Model SARI↑ FKGL

Baselines
Reference – 2.82

T5-CEFR-Para 49.40 2.76

T5-FKGL-Para 48.21 2.82
Experiment Models
T5-CEFR-u-d-s-REL 48.26 2.86

T5-FKGL-u-d-s-REL 45.75 2.90

Table 8: Same-level paraphrasing on ParaNMT-s.
See Table 6’s caption for naming details.

of the outputs. We believe this quality difference
is due to problems with the ParaNMT dataset
that are exacerbated by organizing it by FKGL
score, a length-based metric. The MUSS-mined
training data contains human-written sentences
that were mined according to similarity metrics
(Martin et al., 2022). ParaNMT, on the other
hand, is the result of machine translation (Wieting
and Gimpel, 2018), which can sometimes enter
repetitive loops during decoding (Holtzman et al.,
2019; Welleck et al., 2019). Future work on
backtranslation datasets could attempt to filter out
sentences that contain these repetitions.

We also find that degenerate repetitions are not
adequately captured by SARI, which only counts
unique n-grams that are added, kept, and deleted
compared to the gold references (Xu et al., 2016;
Alva-Manchego et al., 2019). This means that as
long as a model’s repetitions have added no
or very few unique new words to the sentence,
they will not be reflected in SARI. Therefore,
we suggest that for sentence complexification, a
modified SARI should be used that takes word
counts into consideration. We leave this to future
work.

6.1.3 Same-level Paraphrasing Results

In Table 8, we report results for all of our
baselines along with our best performing CEFR
and FKGL models. Notably, both of our CEFR
and FKGL paraphrasing baselines outperform
their corresponding experiment models, which
were trained on the exact same data, the only
difference being prompting strategy. When we
compare T5-CEFR-Para’s outputs with those of
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Simplification (d) Complexification (u)

Model ASSET News ASSET News

Best T5-CEFR 43.65 39.67 43.87 40.98
CEFR-ABS-d (B) 42.91 39.28 – –

CEFR-ABS-u (see caption) – – 42.84 40.57
CEFR-ABS-u-d (d-B, u-C) 42.45 38.81 42.33 39.46
CEFR-REL-d 42.46 38.75 – –

CEFR-REL-u – – 42.73 40.55

CEFR-REL-u-d 42.64 38.79 42.12 39.66

Table 9: Flan-T5 SARI for all trained ablations.
For ABS models, the best prompt(s) are shown in
parenthesis. CEFR-ABS-u uses B for ASSET and
C for News.

T5-CEFR-u-d-s-REL, we find that after tokeniza-
tion, the former copies the input 4.40% of the time,
while the latter does so 10.42% of the time. The
ParaNMT-s test set copies input 0.31% of the time
after tokenization. Since we are unable to perform
a quantitative human evaluation comparing these
outputs, we are left with two possible theories.

The first is that our T5 paraphrasing baselines
are actually learning to same-level paraphrase.
When presented with data where a third increases
level, a third decreases level, and a third keeps
level the same, the model picks the average option,
which is same-level paraphrasing. The second
theory is that the sentences in our same-level
paraphrasing data are not actually the same level.
After all, both our CEFR and FKGL methods in
Section 3.3 have extremely low F1 on human la-
bels for same-level paraphrasing: 12.5% for CEFR
and 28.57% for FKGL. However, we doubt this
theory because of our positive human evaluation
results (see Section 6.2).

6.1.4 Flan-T5 Results
Table 9 shows SARI for the six Flan-T5 abla-
tions we trained along with the best SARI scores
from our T5 experiments on the same dataset of
ParaNMT-CEFR. Interestingly, the best Flan-T5
scores never surpass the best from T5. And when
directly comparing scores for each ablation, T5
outperforms Flan-T5 for 12 out of the 16 cases.

This may be surprising, as Flan-T5 performs
better on a variety of tasks and benchmarks for
zero- and few-shot inference (Chung et al., 2022).
But Flan-T5 has not been shown to be better than
T5 for fine-tuning on new datasets. We suspect
that the reason for its degraded performance com-

pared to T5 is that fine-tuning incurs catastrophic
forgetting, diminishing the benefits gained from
its previous instruction-tuning. While Scialom
et al. (2022) report that T5 models can continu-
ally learn new tasks without catastrophic forget-
ting, rehearsal (Shin et al., 2017) is still required
for the models to retain their previously learned
skills.

6.1.5 Ablation Study Results

Figure 2 shows results for all T5 experiment
models on all test sets, the x-axis being number
of tasks per model and the y-axis being SARI
score. Each data point is annotated with task
combination.

Multitasking There is no clear winner among
multitasking configurations. Single- and two-task
models often perform better than three-task ones,
with the exception of same-level models, where
SARI increases with the number of tasks. Many
high-scoring two-task models were trained on
tasks that are not opposite (i.e., u-s and d-s but
not u-d). However, for simplification, the highest
scoring models for ASSET and Newsela-Manual
were both trained on the u-d ablation. For
T5-News-u-d-REL, this is not noteworthy be-
cause REL prompts are distinct for each task (see
Table 5). But strikingly, T5-CEFR-u-d-ABS
scores best on ASSET with prompt B even though
in theory, upon seeing the middle prompt B
(as opposed to A or C), the model should not
know whether to increase or decrease a sentence’s
complexity. Upon further investigation, we find
that the reason for this is likely that the train-
ing dataset contains approximately double the
amount of C → B simplifications as A → B
complexifications.

Prompt Type For FKGL models, ABS prompt-
ing always performs better than REL prompting.
For News models, ABS prompting performs bet-
ter in all but one case. For CEFR models, re-
sults are mixed, but ABS prompting performs
slightly better on average. Compared to CEFR
and Newsela levels, FKGL is very fine-grained,
with up to two decimal point precision. The fact
that FKGL models always perform better for
ABS prompting than for REL, while CEFR and
News models do not, suggests that using prompts
that contain very fine-grained output information
might improve performance. Additionally, among
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Figure 2: All ablation results. Tasks abbreviated as u (up, complexification), d (down, simplification), and s (same,
same-level paraphrasing). ASSET-d and News-d correspond to the original ASSET and Newsela-Manual sets.
The -u indicates that they were reversed for complexification.

just single-task models, ABS prompting always
performs best, but this strategy is favored less
and less as the number of tasks increases. This
indicates that using a more complex prompting
strategy incurs a greater performance cost as the
number of tasks increases.

Data Labeling Scheme As expected, mod-
els trained on Newsela-Auto perform better on
Newsela-Manual than models trained on Para-
NMT data. However, they mostly fail to achieve
as high of SARI on non-Newsela data as Para-
NMT models achieve on Newsela data, and they
are some of the worst performing models on
ASSET. For ABS prompting, FKGL models
often outperform CEFR models on complexifi-
cation, but for REL prompting, FKGL models
almost universally do worse. For same-level
paraphrasing, it is notable that ParaNMT-CEFR
models have much higher SARI than ParaNMT-
FKGL ones despite the fact that the ParaNMT-s
test dataset is half ParaNMT-CEFR and half
ParaNMT-FKGL. This, and the fact that complex-
ification FKGL model outputs contain degenerate
repetitions that SARI does not reflect, shows that
the CEFR method is the most robust automatic
labeling method. Future work could experiment
with finer-grained CEFR labels (6, not 3) and
fewer fine-grained FKGL labels (intervals instead
of two decimal precision).

6.1.6 Level Targeting Results

Table 10 shows our Newsela-Auto models’ abili-
ties to target specific levels for simplification and
complexification. For brevity, we show results

Simplification Complexification
Target Level SARI↑ FKGL Target Level SARI↑ FKGL

0 → 1 – 9.05 4 → 3 – 5.46
MUSS 38.71 7.34 MUSS 35.14 6.24

Ours 39.81 10.30 Ours 41.82 4.90
0 → 2 – 7.13 4 → 2 – 7.05
MUSS 42.37 7.06 MUSS 37.25 6.22
Ours 41.81 7.82 Ours 40.97 5.90
0 → 3 – 5.51 4 → 1 – 9.06
MUSS 40.21 4.88 MUSS 37.19 6.10

Ours 44.81 6.31 Ours 41.52 6.85
0 → 4 – 3.89 4 → 0 – 11.46
MUSS 40.08 4.64 MUSS 34.53 5.80

Ours 46.77 4.83 Ours 42.44 8.33

Table 10: Level targeting for simplification and
complexification on Newsela-Manual. We com-
pare our scores to supervised MUSS (Martin
et al., 2022). Our simplification and complexi-
fication models are T5-News-u-d-ABS and T5-
News-u-ABS respectively. For each level, we
display reference FKGL. See Table 6 for naming
conventions.

from only one of our models per table along with
the best previous work baseline, supervised MUSS
(Martin et al., 2022), for which we derive opti-
mal parameters via grid search. For every level,
our models achieve higher SARI than previous
work, with the exception of 0 → 2 simplifica-
tion, where MUSS wins. However, it appears
that our models are better at targeting aggres-
sive simplifications and complexifications than
slight ones: SARI generally increases as target
level deviates further from input level. The results
from Section 6.1.5 show that even when we are
not using ABS prompting to its full strength, it
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often surpasses REL prompting in performance.
These level-targeting results confirm that ABS
prompting at its full strength does better.

6.2 Human Evaluation

We carry out a human evaluation on all three
tasks. We use a 1-5 Likert scale across three sep-
arate categories: task performance, meaning pres-
ervation, and fluency. Due to limited resources,
we choose just one model per task. We choose
ParaNMT models for our evaluation. For simplifi-
cation, T5-CEFR-u-d-ABS with prompt B scores
best on ASSET, but due to the prompt B task
ambiguity discussed in Section 6.1.5, we choose
T5-CEFR-d-ABS with prompt B, which scores
second best with a SARI of 43.63. For complexi-
fication, we use the highest scoring CEFR model,
T5-CEFR-u-ABS with prompt C, even though
some of the FKGL models have higher SARI
scores on ASSET. This is because, as mentioned
in Section 6.1, FKGL models produce numerous
degenerate repetitions that do not hurt SARI score.
Finally, for same-level paraphrasing, we choose
T5-CEFR-u-d-s-REL because of its highest SARI
score on ParaNMT-s.

Due to limited human evaluation resources,
out of the three tasks, we only compare our
simplification model to a baseline. We choose
supervised MUSS (Martin et al., 2022), a pub-
licly available state-of-the-art model that we also
used in Section 6.1. We use its best-performing
ASSET prompts. So as to directly compare the
three tasks of simplification, complexification,
and same-level paraphrasing on the exact same
dataset, something not done in Section 6.1, we do
not use a benchmark simplification dataset. We
instead source data from the CEFR-CEP test set,
which our paraphrasing models have not seen and
our CEFR classifier has not been trained or vali-
dated on. However, because of this choice, there
are no reference paraphrases to compare model
outputs to, preventing us from using a reference
baseline. We do not use any baseline because in
the absence of a single one that fits all three tasks,
it would require dramatically more labeling work.

From CEFR-CEP, we sample 13 sentences from
each level A2-C1, amounting to 52 sentences that
we release to the public.30 We exclude A1 and
C2 because simplifying or complexifying those

30https://github.com/alisonhc/change-complexity.

Task Meaning Fluency

Simplification
MUSS 2.96±0.23 3.63±0.34 4.71±0.15

Agreement 0.33 0.63 0.28
Ours 3.04±0.26 4.24±0.27 4.74±0.14

Agreement 0.44 0.60 0.26
Complexification 2.35±0.23 4.12±0.33 4.64±0.14

Agreement 0.28 0.77 0.18
Same Level 3.85±0.18 4.72±0.15 4.77±0.11

Agreement 0.01 0.52 0.16

Table 11: Human evaluation results. Each row
contains a mean rating from 1 to 5 with a con-
fidence interval, plus inter-rater agreement be-
low it.

sentences may not have an effect. We then run
each of the four models on these sentences, pro-
ducing 208 outputs. Three native English speak-
ers each rate all outputs.31 For each output, we
average the ratings of the three evaluators. We
then take the 95% confidence interval across each
model’s rating category along with inter-rater
agreement using ordinal Krippendorff’s Alpha
(Krippendorff, 2011), a number between zero (ran-
dom agreement) and one (perfect agreement).

Table 11 shows our results. For simplification,
our model performs better than MUSS across
all categories, especially meaning preservation.
Across tasks, fluency is universally very high. This
is a testament to the quality of these fine-tuned lan-
guage models. Agreement is highest for meaning
preservation, perhaps the most objective metric.
We find that task performance is lowest for com-
plexification, which is consistent with our intuition
that this is the most difficult task, demanding the
most additions and leaving the most room for
error. Finally, same-level paraphrasing has the
highest scores out of 5 compared to the other
tasks, likely because it requires the least amount
of modification. This is particularly interesting
because of the fact that our paraphrasing baseline
T5-CEFR-Para outperformed this model accord-
ing to SARI on ParaNMT-s, calling into question
whether the task models were effective at all. We
told our raters to dock task performance points
when a model exactly copied its input, but upon

31The raters are not told which outputs are from our mod-
els and which are not.
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inspection of their ratings, we find that this is
very inconsistent. So, this may be why inter-rater
agreement is extremely low for task performance.

7 Can LLMs Change Complexity Level?

In this section, we perform an exploratory inves-
tigation into the simplification, complexification,
and same-level paraphrasing abilities of LLMs.

7.1 Experiments

7.1.1 Data

For simplification and complexification, we use
ASSET like in Section 6.1.32 For same-level para-
phrasing, we randomly sample 400 sentence pairs
from ParaNMT-s.33

7.1.2 Models

For all models, we set temperature to 1.0 and
limit output length to 50 tokens. We run inference
in a zero-shot setting and leave an investigation
into more sophisticated inference settings to fu-
ture work. Due to hardware limitations, we are
unable to run inference for models with more
than 20 billion parameters. We mostly select
instruction-tuned models because we expect them
to do better with new tasks and prompts. We
select five: GPT-3.5-Turbo,34 GPT-NeoX-20B
(Black et al., 2022), Flan-UL2 (Tay et al., 2023),
Flan-T5-xxl (Chung et al., 2022), and OPT-IML-
MAX-1.3B (Iyer et al., 2023).

7.1.3 Prompts

As in our fine-tuning experiments, we attempt
both ABS and REL prompting. However, in this
case, we construct prompts with more descrip-
tive wording to better fit the zero-shot setting.
Table 12 shows the prompts for each task. To
determine them, we try different wording with
GPT-3.5-Turbo to check for obvious differences
in behavior. We find that for complexification,
explicitly telling the model to ‘‘increase the com-
plexity’’ of a piece of text produces undesirably
long outputs, but the wording ‘‘advanced English

32We do not use Newsela-Manual because we were not
able to obtain clarity on whether sending data through Open-
AI’s API violates Newsela’s licensing agreement.

33Cutting down on the original 128,779 pairs reduces both
API costs and inference time.

34https://platform.openai.com/docs/model
-index-for-researchers.

Task REL Prompt ABS Prompt

Simplification ‘‘Please rewrite the ‘‘Please rewrite the

or following text to a following text so

Complexification [less/more] advanced that its [CEFR/FKGL]

English level: ’’ level is X: ’’
Same-level ‘‘Please rewrite the –

following text

to the same

English level: ’’

Table 12: Prompt(s) for each task. For CEFR
ABS prompting, we use A for simplification and
C for complexification. For FKGL ABS prompt-
ing, in two-point intervals, we try levels 0–6 for
simplification and 8–14 for complexification.

d u s

Model SARI↑ FKGL SARI↑ FKGL SARI↑ FKGL

Best Fine-tuned 43.65 7.03 44.07 9.82 48.26 2.86
GPT-3.5-Turbo 45.76 8.28 42.84 10.72 41.73 4.98

(d-A, u-8)

GPT-NeoX-20B 35.85 5.77 34.78 3.89 34.52 2.43

(d-2, u-REL)

Flan-UL2 32.50 4.91 34.58 5.51 21.85 2.73
(d-4, u-10)

Flan-T5-xxl 28.99 1.47 30.25 6.79 20.79 2.63

(d-A, u-10)

OPT-IML-MAX-1.3B 36.26 6.01 33.52 3.98 31.07 0.0

(d-0, u-8)

Table 13: LLM results based on best SARI per
model, tested on ASSET. Tasks are simplification
(d), complexification (u), and same-level para-
phrasing (s). For u and d, best prompts are included
in the Model column. Reference FKGL is 6.49 for
d, 10.46 for u, and 2.82 for s.

level’’ does not. We keep terminology consistent
across prompts.

7.2 Results and Discussion

Table 13 shows results for each LLM and task,
and Figure 3 shows SARI for each LLM per task
and prompt type. On all tasks, GPT-3.5-Turbo
outperforms the rest of the models by a large
margin. None of the other models produce SARI
scores that come close to the paraphrasing base-
lines from Tables 6, 7, and 8, much less the
fine-tuned T5 scores. We confirm this by inspect-
ing model outputs: all besides GPT-3.5-Turbo
contain hallucinations. For example, in response
to CEFR prompting (and FKGL to a lesser de-
gree), Flan-T5-xxl and Flan-UL2 often return a
single letter instead of a sentence as the output,
while OPT-IML-MAX-1.3B and GPT-NeoX-20B
attach discussions of the CEFR to their outputs.
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Figure 3: All SARI scores per model, task, and prompt.

Despite the fact that the ABS prompting outputs
contain more hallucinations than those from REL
prompting, Figure 3 shows that ABS prompt-
ing generally produces higher SARI, echoing
our findings from the fine-tuning experiments.
For GPT-3.5-Turbo in particular, the ABS-CEFR
prompt produces outputs with higher SARI for
simplification than Feng et al.’s (2023) REL
prompting score of 44.67 in the zero-shot setting.

Notably, although GPT-3.5-Turbo outperforms
our fine-tuned models on simplification, it does
not on complexification, demonstrating the dif-
ficulty of the task. Models perform the worst at
same-level paraphrasing, but this may be due to
the unsupervised same-level dataset being worse
in quality than supervised ASSET.

The huge gap in performance between
GPT-3.5-Turbo and the other models may be in
part due to its size of 176B parameters being much
larger than the next largest size of 20B. However,
there is no obvious pattern regarding model size
for the other four: For example, the smallest model
of OPT-IML-MAX-1.3B performs competitively
with the two 20B-parameter models.

8 Conclusion

In this paper, we provide a general investiga-
tion of the task of changing sentence complexity,
with thorough fine-tuning experiments and brief
experiments with LLMs. For sentence simplifi-
cation, our models surpass or are comparable to
state-of-the-art systems. For sentence complexifi-
cation and same-level paraphrasing, we set new
benchmarks. We show that weak classification is
an effective way to create strong unsupervised

datasets and that target level absolute prompt-
ing is more effective than level direction relative
prompting.

This research leaves opportunities for future
work. For example, using a stronger level clas-
sifier to label paraphrase data might improve
performance for the paraphrasing tasks. In the
same vein, different filtering of ParaNMT or an-
other paraphrasing dataset (Hu et al., 2019) could
potentially be used. A human-labeled same-level
paraphrasing test dataset does not yet exist, and a
modified SARI metric that adequately penalizes
repetitions is needed for sentence complexifica-
tion. Our methods focus on English data, but
they can be easily applied to other languages
if a different classifier is trained (Khallaf and
Sharoff, 2021; Vásquez-Rodrı́guez et al., 2022)
and a non-English paraphrasing dataset is used
(Scherrer, 2020; Lu et al., 2021; Martin et al.,
2022). Finally, a thorough investigation on how
well LLMs can change sentence complexity is
necessary.

Acknowledgments

We thank the reviewers and editor Dr. Sara
Rosenthal for providing valuable feedback that
made this paper much better. We would also
like to thank Dr. Laura Vásquez-Rodrı́guez and
Jhih-Jie Chen for their helpful advice, as well as
Andrew Cavicchi for lending us compute power.
Finally, we thank those who provided assistance
with our human evaluation.

References

Sweta Agrawal and Marine Carpuat. 2019. Con-
trolling text complexity in neural machine
translation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1549–1564,
Hong Kong, China. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/D19-1166

Fernando Alva-Manchego, Louis Martin, Antoine
Bordes, Carolina Scarton, Benoı̂t Sagot, and
Lucia Specia. 2020a. ASSET: A dataset for

1346

https://doi.org/10.18653/v1/D19-1166
https://doi.org/10.18653/v1/D19-1166


tuning and evaluation of sentence simplifica-
tion models with multiple rewriting transfor-
mations. In Proceedings of the 58th Annual
Meeting of the Association for Computa-
tional Linguistics, pages 4668–4679, Online.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/2020
.acl-main.424

Fernando Alva-Manchego, Louis Martin, Carolina
Scarton, and Lucia Specia. 2019. EASSE:
Easier automatic sentence simplification eval-
uation. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations,
pages 49–54, Hong Kong, China. Association
for Computational Linguistics. https://
doi.org/10.18653/v1/D19-3009

Fernando Alva-Manchego, Carolina Scarton,
and Lucia Specia. 2020b. Data-driven sen-
tence simplification: Survey and benchmark.
Computational Linguistics, 46(1):135–187.
https://doi.org/10.1162/coli a 00370

Yuki Arase, Satoru Uchida, and Tomoyuki
Kajiwara. 2022. CEFR-based sentence diffi-
culty annotation and assessment. In Proceed-
ings of the 2022 Conference on Empirical
Methods in Natural Language Processing,
pages 6206–6219, Abu Dhabi, United Arab
Emirates. Association for Computational Lin-
guistics. https://doi.org/10.18653
/v1/2022.emnlp-main.416

Dennis Aumiller and Michael Gertz. 2022. UniHD
at TSAR-2022 shared task: Is compute all we
need for lexical simplification? In Proceed-
ings of the Workshop on Text Simplification,
Accessibility, and Readability (TSAR-2022),
pages 251–258. Association for Computational
Linguistics, Abu Dhabi, United Arab Emirates
(Virtual). https://doi.org/10.18653
/v1/2022.tsar-1.28

Leonid Berov and Kai Standvoss. 2018. Discourse
embellishment using a deep encoder-decoder
network. In Proceedings of the 3rd Work-
shop on Computational Creativity in Natu-
ral Language Generation (CC-NLG 2018),
pages 11–16, Tilburg, the Netherlands. Associ-

ation for Computational Linguistics. https://
doi.org/10.18653/v1/W18-6603

Sidney Black, Stella Biderman, Eric Hallahan,
Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell,
Jason Phang, Michael Pieler, Usvsn Sai
Prashanth, Shivanshu Purohit, Laria Reynolds,
Jonathan Tow, Ben Wang, and Samuel
Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In Pro-
ceedings of BigScience Episode #5 – Workshop
on Challenges & Perspectives in Creating Large
Language Models, pages 95–136, virtual+
Dublin. Association for Computational Lin-
guistics. https://doi.org/10.18653/v1
/2022.bigscience-1.9
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Subramonian, Aurélie Névéol, Charles Lovering,
Dan Garrette, Deepak Tunuguntla, Ehud Reiter,
Ekaterina Taktasheva, Ekaterina Voloshina,
Eli Bogdanov, Genta Indra Winata, Hailey

1351

https://doi.org/10.1145/3209889.3209898
https://doi.org/10.1145/3209889.3209898
https://pubmed.ncbi.nlm.nih.gov/30931438
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2023.acl-long.269
https://doi.org/10.18653/v1/2023.acl-long.269


Schoelkopf, Jan-Christoph Kalo, Jekaterina
Novikova, Jessica Zosa Forde, Jordan Clive,
Jungo Kasai, Ken Kawamura, Liam Hazan,
Marine Carpuat, Miruna Clinciu, Najoung Kim,
Newton Cheng, Oleg Serikov, Omer Antverg,
Oskar van der Wal, Rui Zhang, Ruochen
Zhang, Sebastian Gehrmann, Shachar Mirkin,
Shani Pais, Tatiana Shavrina, Thomas Scialom,
Tian Yun, Tomasz Limisiewicz, Verena Rieser,
Vitaly Protasov, Vladislav Mikhailov, Yada
Pruksachatkun, Yonatan Belinkov, Zachary
Bamberger, Zdeněk Kasner, Alice Rueda,
Amanda Pestana, Amir Feizpour, Ammar
Khan, Amy Faranak, Ana Santos, Anthony
Hevia, Antigona Unldreaj, Arash Aghagol,
Arezoo Abdollahi, Aycha Tammour, Azadeh
HajiHosseini, Bahareh Behroozi, Benjamin
Ajibade, Bharat Saxena, Carlos Muñoz
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