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Abstract

Automatic subtitling is the task of automat-
ically translating the speech of audiovisual
content into short pieces of timed text, i.e.,
subtitles and their corresponding timestamps.
The generated subtitles need to conform to
space and time requirements, while being syn-
chronized with the speech and segmented in
a way that facilitates comprehension. Given
its considerable complexity, the task has so
far been addressed through a pipeline of com-
ponents that separately deal with transcribing,
translating, and segmenting text into subtitles,
as well as predicting timestamps. In this paper,
we propose the first direct speech translation
model for automatic subtitling that generates
subtitles in the target language along with
their timestamps with a single model. Our
experiments on 7 language pairs show that
our approach outperforms a cascade system in
the same data condition, also being competi-
tive with production tools on both in-domain
and newly released out-domain benchmarks
covering new scenarios.

1 Introduction

With the growth of websites and streaming plat-
forms such as YouTube and Netflix,1 the amount
of audiovisual content available online has dra-
matically increased. Suffice to say that the number
of hours of Netflix original content has increased
by 2,400% from 2014 to 2019.2 This phenomenon
has led to a huge demand for subtitles, which
is becoming more and more difficult to satisfy

∗ Work done while at FBK.
1https://www.insiderintelligence.com

/insights/ott-video-streaming-services/.
2https://www.statista.com/statistics

/882490/netflix-original-content-hours/.

only with human resources. Consequently, au-
tomatic subtitling tools are spreading to reduce
subtitlers’ workload by providing them with sug-
gested subtitles to be post-edited (Álvarez et al.,
2015; Vitikainen and Koponen, 2021). In general,
subtitles can be either intralingual (hereinafter
captions), if source audio and subtitle text are
in the same language, or interlingual (hereinafter
subtitles), if the text is in a different language. In
this paper, we focus on automatizing interlingual
subtitling, framing it as a speech translation (ST)
for subtitling problem.

Differently from ST, in automatic subtitling the
generated text has to comply with multiple re-
quirements related to its length, format, and the
time it should be displayed on the screen (Cintas
and Remael, 2021). These requirements, which
depend on the type of video content and target
language, are dictated by the need to keep users’
cognitive effort as low as possible while maxi-
mizing comprehension and engagement (Perego,
2008; Szarkowska and Gerber-Morón, 2018). This
often leads to a condensation of the original spo-
ken content, aimed at reducing the time re-
quired for reading subtitles while increasing that
of watching the video (Burnham et al., 2008;
Szarkowska et al., 2016).

Being such a complex task, automatic subtitling
has so far been addressed by dividing the process
into different steps (Piperidis et al., 2004; Melero
et al., 2006; Matusov et al., 2019; Koponen et al.,
2020; Bojar et al., 2021): automatic speech recog-
nition (ASR), timestamp extraction from audio,
segmentation into captions, and their machine
translation (MT) into the final subtitles. More
recently, drawing from the evidence that direct
models achieve competitive quality with cascade
architectures (Ansari et al., 2020), Karakanta et al.
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(2020a) proposed an ST system that jointly trans-
lates and segments into subtitles, arguing that di-
rect models are able to better exploit speech cues
and prosody in subtitle segmentation. However,
their system does not generate timestamps, hence
missing a critical aspect to reach the goal of fully
automatic subtitling. Furthermore, the current lack
of benchmarks hinders a thorough evaluation of
the technologies developed for automatic subti-
tling. In fact, the only corpus publicly available to
date is MuST-Cinema (Karakanta et al., 2020b),
which contains only single-speaker audio in the
TED-talks domain with verbatim translations.

To fill these gaps, this paper presents the first
automatic subtitling system that performs the
whole task with a single direct ST model, and in-
troduces two new benchmarks. Our contributions
can be summarized as follows:

• We propose the first direct ST model for auto-
matic subtitling able to produce both subtitles
and timestamps. Code and pre-trained mod-
els are released under the Apache License
2.0 at: https://github.com/hlt-mt
/FBK-fairseq/;

• We introduce two (en→{de, es}) bench-
marks for automatic subtitling, covering
new domains, news/documentaries and in-
terviews, with the presence of background
noise and multiple speakers. We release
them under the CC BY-NC 4.0 license at:
https://mt.fbk.eu/ec-short-clips/
and https://mt.fbk.eu/europarl
-interviews/;

• We conduct the first extensive comparison
between automatic subtitling systems based
on cascade and direct ST models on all 7 lan-
guage pairs of MuST-Cinema (en→{de, es,
fr, it, nl, pt, ro}), showing the superiority of
our direct solution, while also demonstrating
its competitiveness with production systems
on both MuST-Cinema and out-of-domain
benchmarks.

2 Background

2.1 Direct Speech Translation

While the first cascaded approach to ST was pro-
posed decades ago (Stentiford and Steer, 1988;

Waibel et al., 1991), direct models3 have recently
become increasingly popular (Bérard et al., 2016;
Weiss et al., 2017) due to their ability to avoid er-
ror propagation (Sperber and Paulik, 2020), their
superior exploitation of prosody and better audio
comprehension (Bentivogli et al., 2021), and their
lower computational cost (Weller et al., 2021).
Motivated by these advantages, direct models are
rapidly evolving and their initial performance gap
with cascade architectures (Niehues et al., 2019)
has been significantly reduced, leading to a sub-
stantial parity in the latest IWSLT campaigns
(Ansari et al., 2020; Anastasopoulos et al., 2021,
2022). Such improvements can be partly attributed
to the development of specialized architectures
for speech processing (Chang et al., 2020; Papi
et al., 2021; Burchi and Vielzeuf, 2021; Kim
et al., 2022; Andrusenko et al., 2022), which
are all variants of a Transformer model (Vaswani
et al., 2017) preceded by convolutional layers that
reduce the length of the input sequence (Bérard
et al., 2018; Di Gangi et al., 2019). Among them,
Conformer (Gulati et al., 2020) is currently the
best-performing model in ST (Inaguma et al.,
2021). For this reason, we build our systems
with this architecture and test, for the first time,
its effectiveness in the challenging task of fully
automatic subtitling.

2.2 Subtitling Requirements

Subtitles are short pieces of timed text, gen-
erally displayed at the bottom of the screen,
which describe, transcribe, or translate the di-
alogue or narrative. A subtitle is composed of
two elements: the text, shown into ‘‘blocks’’, and
the corresponding start and end display time (or
timestamps).4

Depending on the subtitle provider and the au-
diovisual content, different requirements have to
be respected concerning both the text space and
its timing. These constraints typically consist in:
i) using at most two lines per block; ii) keeping
linguistic units (e.g., noun and verb phrases) in the
same line; iii) not exceeding a pre-defined num-
ber of characters per line (CPL), spaces included;

3According to the official IWSLT definition (https://
iwslt.org/2023/offline), a direct model is a system that
does not use intermediate discrete representations to generate
the outputs from audio segments and whose parameters used
during decoding are all trained altogether on the ST task,
while it does not consider the audio segmentation.

4The most widespread subtitle format is SubRip or srt.
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iv) not exceeding a pre-defined reading speed,
measured in number of characters per second
(CPS). While a typical value used as maximum
CPL threshold is 42 for most Latin languages,5

there is no agreement on the maximum CPS al-
lowed. For instance, Netflix guidelines6 allow up
to 17 CPS for adult and 15 for children pro-
grams, TED guidelines7 up to 21 CPS, and Amara
guidelines8 up to 25 CPS.

To convey the meaning of the audiovisual
product while adhering to time and space con-
straints, in some domains and scenarios subtitles
require compression or condensation (Kruger,
2001; Gottlieb, 2004; Aziz et al., 2012; Liu et al.,
2020a; Buet and Yvon, 2021). Due to the re-
hearsed nature of TED talks, the subtitles in
MuST-Cinema have a limited degree of conden-
sation, and the translation is mostly verbatim.
In addition, the audio conditions (no background
noise and a single speaker) are not representa-
tive of all the diverse contexts where subtitling
is applied, such as news and movies. To fill this
gap, we introduce two new benchmarks that fea-
ture different domains, scenarios (e.g., multiple
speakers), and levels of subtitle condensation.

2.3 Automatic Subtitling

Attempts to (semi-)automatize the subtitling pro-
cess have been done with cascade systems made
of an ASR, a segmenter, and an MT model. Most
work focused on adapting the MT module to
subtitling with the goal of producing shorter and
compressed texts. This has been performed either
using statistical approaches trained on subtitling
corpora (Volk et al., 2010; Etchegoyhen et al.,
2014; Bywood et al., 2013) or by developing
specifically tailored decoding solutions on statisti-
cal (Aziz et al., 2012) and neural models (Matusov
et al., 2019). In particular, recent research efforts
focused on controlling the MT output length so as
to satisfy isometric requirements between source
transcripts and target translations (Lakew et al.,
2019; Matusov et al., 2020; Lakew et al., 2021,

5https://www.ted.com/participate/translate
/subtitling-tips.

6https://partnerhelp.netflixstudios.com
/en-us/articles/219375728-Timed-Text-Style
-Guide-Subtitle-Templates.

7https://www.ted.com/participate/translate
/subtitling-tips.

8https://blog.amara.org/2020/10/22/create
-quality-subtitles-in-a-few-simple-steps/.

2022). In addition, several research groups (Öktem
et al., 2019; Federico et al., 2020; Virkar et al.,
2021; Tam et al., 2022; Effendi et al., 2022) proved
the usefulness of injecting prosody information
about speech cues, such as pauses, in determin-
ing subtitle boundaries. Given the possibility for
direct ST systems to access this information and
their advantages mentioned in §2.1, Karakanta
et al. (2020a, 2021) built the only (to the best
of our knowledge) automatic subtitling system
using a direct ST model, confirming with their
results that the ability of direct ST systems to le-
verage prosody has particular importance for sub-
title segmentation. However, their solution only
covers the translation and segmentation into sub-
titles, neglecting the timestamp generation. Our
study is hence the first to complete the entire
subtitling process with a direct ST model and
to evaluate its performance on all aspects of the
subtitling task.

3 Direct Speech Translation
for Subtitling

Motivated by all the advantages discussed in
§2.1 and §2.3, we build the first automatic sub-
titling system solely based on a direct ST model
(Figure 1). Our system works as follows: i) the
audio is fed to a Subtitle Generator (§3.1) that
produces the (untimed) subtitle blocks; ii) the
computed encoder representations are passed to
the Source Timestamp Generator (§3.2) to obtain
the caption blocks and their corresponding times-
tamps; iii) the subtitle timestamps are estimated
by the Source-to-Target Timestamp Projection
(§3.3) from the generated subtitles, captions, and
source timestamps. These modules are described
in the rest of this section.

3.1 Subtitle Generation

We train a direct ST Conformer-based model that
jointly performs the ST task and the segmentation
of the generated translation into (untimed) sub-
title blocks and lines. To this end, we add two
special tokens to the vocabulary of our system,
<eob> and <eol>, which respectively represent
the end of a subtitle block and the end of a line
within a block. Both at training and inference
time, <eob> and <eol> are treated as any other
token, without giving them different weights, or
adding specific loss. Additionally, we do not in-
corporate losses aimed at minimizing the number
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Figure 1: Architecture of the direct ST system for automatic subtitling.

of generated characters or explicitly optimizing
for CPL and CPS compliance.

3.2 Source Timestamp Generation
Estimating timestamps for the generated subtitle
blocks from source audio is a challenging task.
Current sequence-to-sequence models, in fact,
generate target sequences that are decoupled from
the input and, therefore, their tokens do not have a
clear relationship with the frames they correspond
to. To recover this relationship, we start from
the observation that direct ST models are often
trained with an auxiliary Connectionist Temporal
Classification or CTC loss (Graves et al., 2006) in
the encoder to improve model convergence (Kim
et al., 2017; Bahar et al., 2019). The CTC maps
the input frames to the transcripts—in our use
case, captions—and we propose to leverage this
CTC module at inference time to estimate the
block timestamps.

In particular, the encoder representations com-
puted during the forward pass are fed to the CTC
module that provides the frame-level probabil-
ity distribution over the source vocabulary tokens
(including <eob>, <eol>, and the additional
CTC blank token). This sequence of CTC prob-
abilities over the source vocabulary serves two
purposes. First, it is used to predict the caption
with the CTC beam search algorithm (Graves
and Jaitly, 2014).9 Second, it is fed, together
with the generated caption, to the CTC-based
segmentation algorithm (Kürzinger et al., 2020),
whose task is to find the most likely alignment
between caption tokens and audio frames. The
algorithm builds a trellis over the time steps for

9We also tested a greedy decoding, in which the most
likely label for each time step is chosen to obtain the output
sequence. However, this approach did not prove effective.

the generated tokens and, at each time step, only
three paths are possible: i) staying at the same
token (self-loop); ii) moving to the blank token;
iii) moving to the next token. To avoid forcing
the caption to start at the beginning of the audio,
the transition cost for staying at the first token
is set to 0. Otherwise, the transition cost is the
CTC-predicted probability for a given token in
that time step. The trellis is then backtracked from
the time step with the highest probability in the
last token of the generated caption, until the first
token is reached. In our case, since we are inter-
ested in the timestamps of the subtitle blocks,
we extract block-wise alignments that corre-
spond to the start and the end time of each block.
This means finding the time in which the first
word of each subtitle is pronounced and the time
in which the corresponding <eob> symbol is
emitted by using the aforementioned algorithm.

3.3 Source-to-Target Timestamp Projection

After generating the untimed subtitles (§3.1), and
captions with their timestamps (§3.2), the next
step is to obtain the timestamps for subtitle blocks
on the target side. In general, caption and subtitle
segmentations may differ for many reasons (e.g.,
due to different syntactic patterns between lan-
guages) and imposing the caption segmentation
on the subtitle side—as done in most cascade ap-
proaches (Georgakopoulou, 2019; Koponen et al.,
2020)—could be a sub-optimal solution. For this
reason, we introduce a caption-subtitle alignment
module that projects the source timestamps to the
target blocks. To perform this task, we tested the
three alternative methods described below.

Block-Wise Projection (BWP) This method
operates at character level to project the predicted
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Figure 2: Example of BWP projection with (a) same
number of blocks and (b) different number of blocks
between caption and subtitle.

source-side (captions) timestamps on the target
side (subtitles) without alterations. When the num-
ber of caption and subtitle blocks is equal, a
condition that occurs in ∼80% of the cases, the
timestamps of each caption block are directly
assigned to the corresponding subtitle block.10

This process is depicted in Figure 2.a, in which
‘‘C’’ and ‘‘B’’ respectively stand for characters
and blocks in the caption and subtitle. When the
number of caption and subtitle blocks is different
(Figure 2.b), the target segmentation is discarded
and replaced with the caption segmentation. In this
case, line and block boundaries (<eol>/<eob>)
are inserted in the target side by matching the
number of characters each line/block has in the
caption. If the insertion falls in the middle of
a word, the <eol>/<eob> is appended to the
word. This approach has two main weaknesses.
First, it assumes that, when captions and subtitles
have the same number of blocks, these blocks
contain the same linguistic content, although this
is not guaranteed. Second, it ignores the subtitle
segmentation in ∼20% of the cases.

Levenshtein-based Projection (LEV) To over-
come the above limitations, our second method
exploits the Levenshtein distance-based align-
ment (Levenshtein, 1966) between captions and
subtitles. This method estimates the target-side

10Selecting the candidates with the closest number of
blocks among the source and target n-best lists had negligible
effects.

Figure 3: Example of Levenshtein-based projection.

timestamps from the source-side timestamps
without ever altering the original target-side seg-
mentation. First, all the non-block characters are
masked with a single symbol (‘‘C’’). For instance,
‘‘This is a block’’ <eob> is converted into ‘‘CC-
CCCCCCCCCCCCCB’’, where ‘‘B’’ stands for
<eob>. Then, the masked caption and subtitle are
aligned with the weighted version of Levenshtein
distance, in which the substitution operation is
forbidden so as to avoid the replacement of a char-
acter with a block and vice versa. If the positions of
a block in the aligned caption and subtitle match,
its caption timestamp is directly assigned to the
subtitle block. If they do not match, the timestamps
of the subtitle blocks are estimated from the cap-
tion timestamps based on the alignment of ‘‘B’’s
and the number of characters. For instance, given
the caption ‘‘CCCBCCCCBCCCCCB’’ and the
subtitle ‘‘CCCCCCBCCBCCCB’’, the optimal
source-targ et alignment with the corresponding
timestamp calculation is shown in Figure 3. In
detail, the first subtitle block (CCC-CCC-B) is
matched with the first two caption blocks (CC-
CBCCCCB) and the corresponding timestamp
(00:01,5) is directly mapped. This also hap-
pens with the timestamp 00:02,5 of the last
caption (BCC-CCCB) and subtitle block (CCCB).
For the second subtitle block (CCB), the times-
tamp (00:01,9) is estimated proportionally from
the caption (BCC-CCCB) using the character ratio
between the orange block and the orange + green
blocks.

Semantic-based Projection (SEM) The third
method projects the predicted source-side times-
tamps on target blocks by looking at the semantic
content of the generated captions and subtitles.
The method is based on SimAlign (Jalili Sabet
et al., 2020), which combines semantic embed-
dings from fastText (Bojanowski et al., 2017),
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Figure 4: Example of Semantic-based projection.

Dataset de es fr it nl pt ro

MuST-Cinema 388 479 469 441 421 364 410
Europarl-ST 75 74 − − − − −
CoVoST2 412 412 − − − − −
CommonVoice 885 885 − − − − −
TEDlium 444 444 − − − − −
VoxPopuli 519 519 − − − − −

Table 1: Number of hours of the training sets.

VecMap (Artetxe et al., 2018), mBERT,11 and
XLM-RoBERTa (Conneau et al., 2020) to align
source and target texts at the word level. Specif-
ically, we first align captions and subtitles word
by word (<eol>/<eob> included) with Sim-
Align. Then, when all <eob>s of a subtitle are
aligned with <eob>s in the caption (66% of the
cases), we assign the corresponding timestamp
(Figure 4). Otherwise, i.e., when at least one
<eob> in the subtitle is aligned with a caption
word or <eol> or is not aligned at all, one of
the two previous methods is applied as a fall-
back solution.

4 Data

4.1 Training Data

For the comparison between cascade and direct
architectures (§6.2), we train the models in a
controlled and easily reproducible data setting
by using MuST-Cinema v1.1, the only publicly
available subtitling corpus also containing the
source speech. It covers one general domain (TED
talks), and 7 language pairs, namely, en→{de, es,
fr, it, nl, pt, ro}. The number of hours in the
training set of each language pair is shown in the
first row of Table 1.

For the comparison with production tools (§6.3),
we experiment in a more realistic unconstrained
data scenario and we focus on en→de, and

11https://github.com/google-research/bert
/blob/master/multilingual.md.

en→es.12 For training, we use MuST-Cinema,
two ST datasets (Europarl-ST [Iranzo-Sánchez
et al., 2020] and CoVoST2 [Wang et al., 2020b])
and three ASR datasets (CommonVoice [Ardila
et al., 2020], TEDlium [Hernandez et al., 2018],
and VoxPopuli [Wang et al., 2021]). We trans-
late the ASR corpora with the Helsinki-NLP MT
models (Tiedemann and Thottingal, 2020) and
filter out data with a very high or low transcript/
translation character ratio, as per Gaido et al.
(2022). The use of automatic translations as tar-
gets, also known as sequence-level knowledge
distillation (Kim and Rush, 2016), is a popular
data augmentation method used in the most recent
IWSLT evaluation campaigns (Anastasopoulos
et al., 2021, 2022) to enhance the performance
of ST systems. Since none of the training sets,
except for MuST-Cinema, includes the subtitle
boundaries (<eob> and <eol>) in the target
translation, we automatically insert them by em-
ploying the publicly released multimodal and
multilingual segmenter by Papi et al. (2022). The
segmenter takes the source audio and the unseg-
mented text as input and outputs the segmented
text, i.e., containing<eob> and<eol>. By doing
this, we can train our system to jointly translate
from speech and segment into subtitles without
the need for manually-curated subtitle targets,
which are hard to find and costly to create. The
number of training hours is reported in Table 1.

4.2 Test Data
The models are tested in both in-domain and
out-of-domain conditions. For in-domain exper-
iments, we use the MuST-Cinema test set, for
which we adopt both the original audio segmen-
tation (for reproducibility and for the sake of
comparison with previous and future work) and
more realistic automatic segmentation obtained
with SHAS (Tsiamas et al., 2022). Notice that this
audio segmentation is a completely different task
from determining subtitle boundaries. Its only
goal is splitting long audio files into smaller
chunks (or utterances) that can be processed by
ST systems, limiting performance degradation due
to information loss caused by sub-optimal splits
(e.g., in the middle of a sentence). In general,
each resulting utterance contains multiple sub-
title blocks. For instance, in the MuST-Cinema

12We select these two language pairs due to, respectively,
a different and similar word ordering with respect to the
source.

1360

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md


training set there are ∼2.5 blocks per utterance,
even though utterances are quite short (6.4s on
average). When automatic segmentation methods
like SHAS are applied, this ratio significantly
increases, as audio segments are typically much
longer, with many segments lasting between 14
and 20 seconds (Gaido et al., 2021b; Tsiamas
et al., 2022).

For out-of-domain evaluations, we introduce
the two new (en→{de, es}) test sets described
below, which we also segment with SHAS.

EC Short Clips The first test set is composed
of short videos from the Audiovisual Service of
the European Commission (EC)13 recorded be-
tween 2016 and 2022. These informative clips
have an average duration of 2 minutes and cover
various topics discussed in EC debates such as
economy, environment, and international rights.
This benchmark presents several additional diffi-
culties compared to TED talks since the videos
often contain multiple speakers, and background
music is sometimes present during the speech.
We selected the videos with the highest sub-
title conformity (at least 80% of the subtitles
conforming to 42 CPL, and 75% conforming to
21 CPS), and removed subtitles describing on-
screen text. This resulted in 27 videos having a
total duration of 1 hour. The target srt files con-
tain ∼5,000 words per language.

EuroParl Interviews The second test set is
compiled from publicly available video interviews
from the European Parliament TV14 (2009–2015).
We selected 12 videos of 1 hour total duration,
amounting to ∼6,500 words per target language.
The videos present multiple speakers and some-
times contain short interposed clips with news
or narratives. Apart from the more challenging
source audio properties compared to the clean
single-speaker TED talks, here the target sub-
titles are not verbatim and demonstrate a high
degree of compression and reduction. As a con-
sequence, the CPL and CPS conformity is very
high (∼100%) but this comes at the cost of being
more difficult for automatic systems to perfectly
match the non-verbatim translations. Nonetheless,
to achieve real progress in automatic subtitling,
it is particularly relevant to evaluate automatic

13https://audiovisual.ec.europa.eu/.
14https://www.europarltv.europa.eu/.

systems on realistic and challenging benchmarks
like the ones we provide.

5 Experimental Settings

5.1 Training Settings

Our systems are implemented on Fairseq-ST
(Wang et al., 2020a), following the default settings
unless stated otherwise. The input is represented
by 80 audio features extracted every 10ms with
sample window of 25 and pre-processed by two
1D convolutional layers with stride 2 to reduce
the input length by a factor of 4. All segments
longer than 30s in the training set are filtered out
to speed up training. The models are based on
encoder-decoder architectures and composed by
a stack of 12 Conformer encoder layers and 8
Transformer decoder layers. We apply CTC loss
to the 8th encoder layer and use its predictions
to compress the input sequences to reduce RAM
consumption (Liu et al., 2020b; Gaido et al.,
2021a). Both the Conformer and Transformer
layers have a 512 embedding dimension and
2,048 hidden units in the linear layer. We set
dropout to 0.1 in the linear, attention, and convo-
lutional modules. In the convolutional modules,
we also set a kernel size of 31 for the point- and
depth-wise convolutions.

For the comparison between cascade and direct
architectures, we train a one-to-many multilin-
gual ST model that prepends a token represent-
ing the selected target language for decoding
(Inaguma et al., 2019) on all the 7 languages
of MuST-Cinema. Conversely, for the compar-
ison with production tools, we develop a dedi-
cated ST model for each target language (de, es).
For inference, we set the beam size to 5 for both
subtitles and captions.

We train with the Adam optimizer (Kingma
and Ba, 2015) (β1 = 0.9, β2 = 0.98) for 100,000
steps. The learning rate increases linearly up to
0.002 for the first 25,000 warm-up steps and then
decays with an inverse square root policy, apart
from fine-tunings, where it is the fixed value
0.001. Utterance-level Cepstral Mean and Vari-
ance Normalization (CMVN) and SpecAugment
(Park et al., 2019) are applied during training, as
per Fairseq-ST default settings. The vocabular-
ies are based on SentencePiece models (Sennrich
et al., 2016) with size 8,000 for the source lan-
guage. For the multilingual model trained on
MuST-Cinema, a shared vocabulary is built with
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System Num. params

Direct 124.6M

Cascade 341.9M

- ASR 116.4M

- Audio forced aligner 9.7M

- Segmenter 40.6M

- Multilingual MT 175.2M

Table 2: Number of parameters for the direct
(both multilingual and monolingual) and cascade
systems.

a size of 16,000; for the two models developed to
compare with production tools, we build German
and Spanish vocabularies with a size of 16,000
subwords each. The ASR of our cascade model
is trained using the same source language vo-
cabulary of size 8,000 used in the translation
setting. The MT model is trained using the stan-
dard hyper-parameters of the Fairseq multilingual
MT task (Ott et al., 2019), with the same source
and target vocabularies of the ST task.

For all models, we stop the training when the
validation loss does not improve for 10 epochs
and the final models are obtained by averaging 7
checkpoints (the best, the 3 preceding, and the 3
succeeding). Training is performed on 4 NVIDIA
A100 (40GB RAM), with 40k max tokens per
mini-batch and an update frequency of 2, except
for the MT models for which 8 NVIDIA K80
(12GB RAM) are used with 4k max tokens and
an update frequency of 1. Table 2 lists the total
number of parameters of our direct models, show-
ing that it is ∼1/3 of the cascade system used as
a term of comparison.

5.2 Terms of Comparison

We compare our direct ST system both with
a cascade pipeline trained under the same data
conditions and with production tools.

Cascade We build an in-domain cascade com-
posed of an ASR, an audio forced aligner, a
segmenter, and an MT system. The ASR has the
same architecture as our ST system (Conformer
encoder + Transformer decoder), and it is trained
on MuST-Cinema transcripts without <eob> and
<eol>. The audio forced aligner used to es-
timate the timestamps (Gretter et al., 2021) is

based on the Kaldi15 acoustic model. The subtitle
segmenter is the same multimodal segmenter we
used to segment the training data for the direct
system (§4.1). The MT is a multilingual model
trained on the MuST-Cinema (transcript, trans-
lation) pairs without <eob> and <eol>. The
pipeline works as follows. The audio is first tran-
scribed by the ASR and word-level timestamps
are estimated with the forced aligner. Then, the
transcript is segmented into captions with the seg-
menter and each block timestamp is obtained by
averaging the end time of the word before an
<eob> and the start time of the word after it.
The segmented text is then split into sentences
according to the <eob> and, finally, these sen-
tences are translated by the MT. The <eob>s
are automatically re-inserted at the end of each
sentence while <eol>s are added to the subtitle
translation using the same segmenter.

Production Tools As a term of comparison for
the unconstrained data condition, we use produc-
tion tools for automatic subtitling. These tools
take audio or video content as input and return the
subtitles in various formats, including srt. We test
three online tools,16 namely: MateSub,17 Sonix,18

and Zeemo.19 We also compare with the AppTek
subtitling system,20 a cascade architecture whose
ASR component is equipped with a neural model
that predicts the subtitle boundaries before feed-
ing the transcripts to the MT component (Matusov
et al., 2019). For this system, two variants of
the MT model are evaluated: a standard model
and a model specifically trained to obtain shorter
translations in order to better conform to length
requirements (Matusov et al., 2020). Since we are
not interested in comparing the tools with each
other, all system scores are anonymized.

5.3 Evaluation

Translation quality, timing, and segmentation of
subtitles are measured with multiple metrics.
First, we compute SubER (Wilken et al., 2022),21

a tailored TER-based metric (the lower, the bet-
ter) that scores the overall subtitle quality by

15https://github.com/kaldi-asr/kaldi.
16All outputs were collected in August 2022.
17https://matesub.com/.
18https://sonix.ai.
19https://zeemo.ai/.
20https://www.apptek.com/.
21Version 0.2.0.
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en-de en-es
Model SubER (↓) Sigma (↑) CPL (↑) CPS (↑) SubER (↓) Sigma (↑) CPL (↑) CPS (↑)

Gold audio segmentation

Baseline 63.5 65.6 77.7 64.4 52.0 70.4 80.7 68.0
BWP 60.8 75.6 86.1 64.0 48.6 78.5 90.9 66.9

LEV 58.7 78.8 88.8 65.4 46.7 81.1 93.9 68.4
SEM 60.7 75.5 88.6 63.7 48.6 78.8 94.0 65.5

Automatic audio segmentation

Baseline 66.9 62.0 78.2 70.5 55.7 66.0 79.9 75.1
BWP 62.8 73.3 86.2 70.3 51.8 75.9 89.6 73.5

LEV 60.3 78.5 88.9 72.1 48.5 80.6 94.2 76.1
SEM 62.8 75.8 88.9 69.7 51.4 78.3 94.2 72.9

Table 3: Comparison of timestamp projection methods on the MuST-Cinema en→{de, es} test set.

considering translation, segmentation, and timing
altogether. We adopt the cased and with punctua-
tion version of the metric since these aspects are
crucial for the quality and comprehension of the
subtitles. Next, specifically for translation qual-
ity, we use SacreBLEU (Post, 2018)22 on texts
from which <eol> and <eob> have been re-
moved. The quality of segmentation into subtitles
is evaluated with Sigma from the EvalSub toolkit
(Karakanta et al., 2022). Since BLEU and Sigma
require the same audio segmentation between ref-
erence and predicted subtitles, we re-align the
predictions in case of non-perfect alignment with
the mWERSegmenter (Matusov et al., 2005).
Lastly, to check the spatio-temporal compliance
described in §2.2, we compute CPL conformity
as the percentage of lines not exceeding 42
characters, and CPS conformity as the percent-
age of subtitle blocks having a maximum reading
speed of 21 characters per second.23 Confidence
intervals (CIs) are computed with bootstrap re-
sampling (Koehn, 2004).

6 Results

In this section, we first (§6.1) choose the best
timestamp projection method among those in-
troduced in §3.3. Then (§6.2), we compare the
cascade and direct approaches trained in the same
data conditions. Lastly (§6.3), we show that our

22case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1.
23We used version 1.1 of the script adopted for the

IWSLT subtitling task (https://iwslt.org/2023
/subtitling): https://github.com/hlt-mt/FBK
-fairseq/blob/master/examples/speech to text
/scripts/subtitle compliance.py.

direct model, even though trained in laboratory
settings, is competitive with production tools. In
addition, in Appendix A, we analyze the perfor-
mance of the CTC-segmentation algorithm for
timestamp estimation compared to forced aligner
tools.

6.1 Timestamp Projection

The quality of source-to-target timestamp pro-
jection (§3) is crucial to correctly estimate the
target-side timestamps and, in turn, to produce
good subtitles. To select the best strategy, we
compare the methods in §3.3 using the constrained
model on the MuST-Cinema test sets for en→{de,
es}. To test the robustness of the various methods
when gold-segmented audio is not available, we
also report the results using the automatic audio
segmentation in addition to that obtained using the
gold one.

Results are shown in Table 3. BLEU is not
reported because the translated text is always
the same, regardless of the timestamp projection
method. We also report, as a baseline, a method
that completely ignores the target segmentation
and always maps the caption segmentation onto
the subtitle as in BWP when the number of caption
and subtitle blocks is different (§3.3). For the SEM
method, if the source-targ et alignment is not
found by SimAlign, the LEV method is applied
instead.24

The results highlight the superiority of the LEV
method, which outperforms the others on almost

24We also applied the baseline and the BWP method as a
fallback method for SEM but it led to worse results.
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all metrics, with similar trends for both language
pairs. The gap is more marked in the realistic
scenario of automatically-segmented audio, likely
due to the fact that the audio segments produced
by SHAS are longer than the manually annotated
ones (8.6s vs 5.5s). As such, each audio segment
contains more blocks to align, so the difference
between the methods emerges more clearly. The
low scores obtained by the baseline confirm that
the caption segmentation is not optimal for the
target language. Furthermore, SEM yields results
that are either comparable to or slightly bet-
ter than those obtained by BWP, especially in
terms of Sigma and CPL, while being always
worse than LEV. In addition, SEM exhibits lower
CPS conformity even compared to the base-
line. Consequently, its performance suggests that
semantically-motivated approaches are not the
best solution for timestamp projection.

Focusing on the LEV method, we observe that
segmentation quality (higher Sigma) and over-
all subtitle quality (lower SubER) are slightly
better when the gold segmentation is used, as ex-
pected. Conversely, CPS conformity is higher with
the automatic audio segmentation. This counter-
intuitive result can be explained as follows: au-
dio segmentation not only splits but sometimes
also cuts the audio according to speakers’ pauses,
while the manual segmentation delimits speech
boundaries more aggressively than the automatic
one. In our case, manual segmentation results in
audio segments that are about 2% shorter than
those obtained with the automatic segmentation,
thus ‘‘forcing’’ the generated subtitles to appear
on screen for a shorter time, which in turn leads
to a higher reading speed.

6.2 Cascade vs. Direct

After selecting LEV as our best timestamp pro-
jection method, we evaluate cascade and direct
ST systems trained in the same data condition.
Before this, to ensure the competitiveness of
our cascade baseline, we compare it with the
results obtained on the MuST-Cinema test set
by the other cascade systems presented in liter-
ature, namely: en→{de, fr} by Karakanta et al.
(2021), and en→fr by Xu et al. (2022). As these
works report only BLEU with breaks, i.e., BLEU
computed including also <eob> and <eol>, we
compare our cascade baseline with them on that

metric.25 Although these studies leverage large
additional training corpora for both ASR (e.g.,
LibriSpeech [Panayotov et al., 2015]) and MT
(e.g., OPUS [Tiedemann 2016] and WMT-14
[Bojar et al. 2014]), our cascade trained only
on MuST-Cinema performs on par with them. It
scores 20.2 on German and 26.2 on French, which
are similar, or even better than, respectively, the
results reported in Karakanta et al. (2021) (19.9
and 26.9, respectively), and the result of 25.8
on French from Xu et al. (2022). These results
confirm the strength of our baselines, and the
soundness of our experimental settings.

Table 4 reports the scores of the constrained
direct and cascade models. The overall subti-
tle quality of the direct solution is significantly
higher compared to that of the cascade on all lan-
guage pairs, with a SubER decrease of 3.8–5.5
points, corresponding to an ∼8% improvement
on average. Since SubER measures translation,
segmentation, and timestamp quality altogether,
to disentangle the contribution of each of these
aspects we leverage the other metrics. The higher
Sigma of our system (+1.2 average improvement)
demonstrates that the joint generation of subtitle
content and boundaries results in superior seg-
mentation. This finding corroborates previous re-
search on the value of prosody (see §2.3), and the
ineffectiveness of projecting caption segmenta-
tion onto subtitles, as done by cascade approaches
(Georgakopoulou, 2019; Koponen et al., 2020).
The sub-optimal placement of block boundaries
in the cascade system can also account for the
superior translation quality of our method (+3.9
BLEU average improvement): As the MT com-
ponent translates the caption block-by-block,
inaccurate boundaries can impede access to in-
formation required for proper translation.

Looking at the conformity metrics, the direct
system complies with the length requirement of
42 characters (CPL) in almost 90% of cases
while the cascade system does so in only 78.1% of
cases. This difference is explained by the higher
number of <eol> generated by the direct model
(10–15% more than the cascade), although be-
ing still lower than that of the reference (8–10%
less). According to the statistics computed on the
outputs of the two systems, the cascade does not

25<eob> and <eol> are considered as a single token
and replaced, respectively, with § and μ as in the EvalSub
toolkit.
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Sys. en-de en-es en-fr en-it en-nl en-pt en-ro Avg.
SubER (↓)

Casc. 64.2 (64.2±2.4) 50.5 (50.5±2.2) 57.0 (57.0±1.8) 54.2 (54.2±1.7) 52.8 (52.8±1.8) 49.7 (49.7±1.7) 52.7 (52.7±2.0) 54.4

Dir. 58.7 (58.7±2.3) 46.7 (46.7±2.1) 52.9 (52.9±1.7) 50.4 (50.4±1.7) 47.4 (47.4±1.9) 44.6 (44.6±1.7) 48.5 (48.5±2.1) 49.9
BLEU (↑)

Casc. 18.9 (18.9±1.4) 32.4 (32.4±1.8) 25.1 (25.1±1.5) 26.0 (26.0±1.6) 25.8 (25.8±1.5) 31.4 (31.4±1.7) 28.4 (28.3±1.6) 26.9

Dir. 22.1 (22.1±1.6) 35.9 (35.8±1.9) 28.0 (28.0±1.6) 29.6 (29.6±1.8) 31.6 (31.6±1.8) 36.8 (36.7±1.7) 31.9 (31.8±1.8) 30.8

Sigma (↑)

Casc. 79.5 (79.5±2.0) 80.9 (80.9±1.5) 84.0 (84.0±1.7) 83.8 (83.8±1.6) 77.5 (77.4±1.8) 81.2 (81.2±1.7) 86.4 (86.4±1.5) 81.9

Dir. 78.8 (78.8±2.0) 81.1 (81.1±1.5) 84.1 (84.1±1.7) 85.1 (85.1±1.5) 83.1 (83.1±1.6) 84.5 (84.4±1.4) 85.3 (85.3±1.4) 83.1

CPL (↑)
Casc. 81.8 (81.8±1.9) 83.4 (83.3±1.8) 85.2 (85.2±1.7) 81.4 (81.4±1.9) 83.3 (83.2±1.9) 78.1 (78.1±2.0) 53.3 (53.3±3.0) 78.1

Dir. 88.9 (88.9±1.5) 94.0 (94.0±1.1) 91.9 (91.9±1.2) 89.3 (89.2±1.5) 84.0 (84.0±1.8) 88.2 (88.2±1.5) 92.1 (92.1±1.2) 89.8

CPS (↑)

Casc. 69.1 (69.1±2.6) 74.0 (73.9±2.7) 64.3 (64.3±2.9) 71.2 (71.2±2.8) 74.4 (74.4±2.5) 74.7 (74.7±2.6) 76.2 (76.2±2.4) 72.0
Dir. 65.4 (65.4±2.7) 68.4 (68.3±2.7) 60.7 (60.8±2.8) 67.9 (67.9±2.6) 72.2 (72.2±2.6) 71.9 (71.8±2.7) 76.0 (75.9±2.4) 68.9

Table 4: Cascade (Casc.) and direct (Dir.) results on all MuST-Cinema language pairs with 95% CI in
parentheses.

only have a higher average number of characters
per line (32 vs. 29), but its variance is 1.5–2
times greater, with lines sometimes close to or
even longer than 100 characters on all language
pairs. In contrast, most of the CPL violations
of the direct system are caused by lines shorter
than 60 characters, and lines never exceed 70
characters. The trend for CPS is instead differ-
ent, since the cascade generates subtitles with a
higher conformity to the 21-CPS reading speed
(72.0 vs 68.9). This can be partially explained
by looking at the generated timestamps: Upon a
manual inspection of 100 subtitles, we noticed
that the direct model tends to assign the start
times of the subtitles slightly after those of the
cascade (within 100ms of difference), and end
times slightly before those of the cascade (mostly
within 200ms). Overall, on the MuST-Cinema
test sets, this leads to a total of ∼2,940s with
subtitles on screen for the cascade, and ∼2,850s
for the direct (∼3% lower).

To sum up, our direct system proves to be the
best choice to address the automatic subtitling
task in the constrained data condition, reaching
better translation quality and more well-formed
subtitles. Our results also indicate that improving
the reading speed of the generated subtitles is
one of the main aspects on which to focus future
works.

6.3 Comparison with Production Tools

To test our approach in more realistic conditions,
we train our models on several openly available
corpora (unconstrained condition) and compare
them with production tools, which represent very
challenging competitors as they can leverage
large proprietary datasets. We focus on two lan-
guage pairs (en→{de, es}) for both the in-domain
MuST-Cinema, and on the two out-of-domain EC
Short Clips and EuroParl Interviews test sets. We
feed all systems with the full test audio clips, so
each system has to segment its audio. Only in the
case of EC Short Clips and EuroParl Interviews do
we clean the audio using Veed26 before processing
it, for the sake of a fair comparison with production
tools that have similar procedures.27 The impact
of audio cleaning is analyzed in Appendix B.

MuST-Cinema The results of the unconstrained
models on the in-domain MuST-Cinema test set
are shown in Table 5. Compared to production
tools, our system shows better translation and
segmentation quality as well as a significantly

26https://www.veed.io/.
27For example, see https://www.apptek.com/post

/asr-in-captions-accessibility-series-article-7
and https://sonix.ai/articles/how-to-remove
-background-audio-noise.
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en-de
Model SubER (↓) BLEU (↑) Sigma (↑) CPL (↑) CPS (↑)
System 1 66.9 (66.9±2.8) 20.1 (20.2±1.5) 71.7 (71.6±2.4) 100 (100±0.0) 58.7 (58.6±3.1)
System 2 61.5 (61.5±2.4) 22.3 (22.2±1.6) 71.8 (71.8±2.3) 100 (100±0.0) 76.2 (76.2±2.7)
System 3 68.1 (68.1±1.5) 13.5 (13.5±1.2) 62.1 (62.0±2.6) 91.6 (91.7±1.4) 89.3 (89.3±1.8)
System 4 67.5 (67.1±7.3) 23.3 (23.2±1.7) 57.9 (57.9±2.2) 96.4 (96.4±0.9) 83.7 (83.7±2.3)
System 5 66.8 (66.8±2.9) 19.5 (19.5±1.5) 74.0 (74.0±2.0) 44.1 (42.8±3.0) 50.2 (50.2±3.1)
Ours 59.9 (59.9±3.2) 23.4 (23.4±1.6) 77.9 (78.0±2.1) 86.9 (86.9±1.6) 68.6 (68.6±2.7)

en-es
Model SubER (↓) BLEU (↑) Sigma (↑) CPL (↑) CPS (↑)
System 1 52.2 (52.2±2.7) 33.4 (33.3±1.8) 76.9 (76.9±1.9) 100 (100±0.0) 64.6 (64.6±2.9)
System 2 51.3 (51.2±2.4) 32.7 (32.6±1.8) 77.1 (77.0±2.0) 100 (100±0.0) 77.6 (77.6±2.5)
System 3 58.3 (58.3±1.7) 23.3 (23.2±1.4) 66.1 (66.0±2.3) 94.1 (94.1±1.2) 87.1 (87.1±2.0)
System 4 53.8 (53.8±4.7) 35.3 (35.3±2.0) 65.7 (65.7±1.8) 81.3 (81.3±2.2) 86.2 (86.1±2.2)
System 5 64.6 (64.6±2.0) 18.6 (18.6±1.3) 79.3 (79.3±1.9) 48.5 (48.5±3.0) 63.0 (62.9±2.8)
Ours 46.8 (46.7±2.2) 37.4 (37.5±2.0) 81.6 (81.7±1.5) 93.2 (93.3±1.1) 74.6 (74.6±2.5)

Table 5: Unconstrained results on MuST-Cinema with 95% CI in parentheses.

better overall quality on both languages. Gains
in BLEU are more evident in Spanish, where
we obtain a ∼6% improvement compared to the
second-best model (System 4). Also, considerable
Sigma improvements are observed with gains of
5.3–34.5% for German and 2.9-24.2% for Spanish,
which are in line with SubER improvements of,
respectively, 2.6–12.0% and 8.8–27.6%. A perfect
CPL conformity is reached by Systems 1 and 2
for both languages, while our system is on par
with System 3 on en-es and falls slightly behind
Systems 3 and 4 on en-de, with a ∼90% average
conformity for the two language pairs. System
5 is by far the worst, as it violates the 42 CPL
constraint in more than 50% of the lines. As
for CPS conformity, we observe that our system
achieves better scores compared to Systems 1 and
5 but it is worse than Systems 2, 3, and 4 on both
language directions, highlighting again the need
to improve this aspect in future work.

EC Short Clips This out-of-domain test set
presents additional difficulties compared to TED
talks, namely, the presence of multiple speakers
and background music during speech. It is worth
mentioning that our direct ST models have not
been trained to be robust to these phenomena, as
they are not present in the training data, whereas
production tools are designed to deal with any
condition, and may have dedicated modules to
handle them.

Nevertheless, the results in Table 6 show that,
even in these challenging conditions, our direct
ST models are competitive with production tools
on BLEU, Sigma, and SubER. Indeed, there is no
clear winner between the systems as the best score
for each metric is obtained by a different model,
which also varies across languages. Looking at
the conformity constraints, Systems 1, 2, and 4
achieve a perfect CPL conformity (100%), while
ours is comparable with System 3 and better than
System 5. This difference is likely motivated by
the number of <eol> inserted by our system,
which is considerably lower than that of System
4 (368 vs. 635 for German and 451 vs. 594 for
Spanish). Instead, the results for CPS conformity
follow the same trend observed in the constrained
data condition (§6.2).

Even though this scenario features completely
different domain and audio characteristics, some
trends are in line with the results shown in Table 5.
System 3 always achieves the best CPS confor-
mity, while Systems 1, 2, and 4 achieve perfect
CPL conformity on both languages. Moreover, al-
though System 4 achieves the best translation
quality (and it is the second best on MuST-
Cinema, after our system), its segmentation qual-
ity (Sigma) is always the worst, indicating that
its subtitles are not segmented in an optimal way
to facilitate comprehension. All in all, these results
suggest that each production tool has been opti-
mized on a different aspect of automatic subtitling
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en-de

Model SubER (↓) BLEU (↑) Sigma (↑) CPL (↑) CPS (↑)

System 1 63.0 (63.0±2.4) 23.8 (23.8±1.9) 71.6 (71.5±2.7) 100 (100±0.0) 76.1 (76.1±2.8)

System 2 60.8 (60.8±1.8) 22.1 (22.1±1.9) 67.2 (67.1±2.9) 100 (100±0.0) 91.1 (91.1±1.9)

System 3 59.0 (58.9±1.9) 25.0 (25.0±1.9) 70.4 (70.4±2.8) 84.6 (84.6±1.9) 95.4 (95.4±1.4)

System 4 61.5 (61.5±3.3) 28.2 (28.3±2.0) 59.4 (59.4±2.2) 100 (100±0.0) 94.9 (95.0±1.5)

System 5 62.4 (62.4±2.2) 24.2 (24.2±1.8) 71.3 (71.2±2.2) 39.8 (39.7±3.4) 71.3 (71.3±3.3)

Ours 59.9 (59.9±2.2) 25.3 (25.3±1.9) 70.8 (70.7±2.4) 81.3 (81.3±2.2) 79.9 (80.0±2.7)

en-es
Model SubER (↓) BLEU (↑) Sigma (↑) CPL (↑) CPS (↑)

System 1 52.9 (52.9±1.8) 33.7 (33.7±1.8) 76.0 (75.9±2.2) 100 (100±0.0) 80.4 (80.3±2.8)

System 2 51.7 (51.6±1.6) 32.2 (32.3±1.9) 75.6 (75.6±2.2) 100 (100±0.0) 93.5 (93.5±1.7)

System 3 49.7 (49.7±1.8) 35.5 (35.5±1.8) 74.9 (74.9±1.9) 87.3 (87.4±1.8) 95.3 (95.3±1.4)

System 4 50.2 (50.2±2.2) 39.6 (39.6±1.9) 61.9 (61.9±1.8) 100 (100±0.0) 93.4 (93.4±1.4)

System 5 64.9 (64.9±1.6) 21.9 (21.9±1.5) 79.7 (79.6±2.0) 41.7 (41.6±3.3) 73.1 (73.0±3.2)

Ours 52.7 (52.7±2.0) 34.8 (34.9±2.0) 72.6 (72.7±2.0) 88.6 (88.5±1.6) 79.1 (79.0±2.6)

Table 6: Unconstrained results on EC Short Clips with 95% CI in parentheses.

(e.g., System 3 has been optimized to achieve
high CPS conformity). In contrast, our direct
model, which has been trained without prioritiz-
ing any specific aspect, performs on average, also
achieving competitive results in out-of-domain
scenarios.

EuroParl Interviews The EuroParl Interviews
set represents the most difficult of the three test
sets: It contains multiple speakers, and the target
translations are not verbatim since they are com-
pressed to perfectly fit the subtitling constraints
(§2.2). This characteristic is very challenging for
current automatic subtitling tools, especially for
our direct model since it has not been trained on
similar data.

The results are shown in Table 7. As on the
EC test set, our system performs competitively
with production tools, even achieving the best
Sigma for German. For CPL, instead, most sys-
tems have high length conformity, even reaching
100%. As already noticed on the other test sets,
the CPL conformity is strongly correlated with
the number of <eol> inserted by a system: Our
model has an average conformity of 85.5% with
only 451 <eol> inserted, nearly half of those
inserted by System 1 (864), System 2 (711),

and System 4 (774) that always comply with the
CPL constraint. CPS conformity shows the same
trend as with the other test sets.

Compared to the results in Tables 5 and 6,
we can see that all systems struggle in achiev-
ing a comparable overall subtitle quality (SubER),
high-quality segmentations (Sigma), and, above
all, high translation quality (BLEU). The trans-
lation quality of all systems degrades by at least
10 BLEU compared to the values observed on
the MuST-Cinema and EC test sets. However, as
previously mentioned, these results are expected
since the EuroParl Interviews test set contains
condensed translations of the source speech.

All in all, we can conclude that our direct
ST model, even though not developed as a
production-ready system (it is not trained on huge
amounts of data and different domains), is com-
petitive with production tools. Indeed, considering
the SubER metric computed over the three test sets
(Table 8), our direct ST approach is the best on
both German (67.0) and Spanish (57.2). As only
the scores of System 2 fall within the confidence
interval of our direct model in both cases, we can
conclude that our model is on par with the best
production system and outperforms the others in
terms of SubER.
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en-de
Model SubER (↓) BLEU (↑) Sigma (↑) CPL (↑) CPS (↑)

System 1 84.9 (85.0±2.4) 12.3 (12.3±1.1) 64.8 (64.8±2.8) 100 (100±0.0) 67.6 (67.7±2.8)

System 2 78.4 (78.4±2.0) 13.2 (13.2±1.1) 63.9 (63.9±2.9) 100 (100±0.0) 79.8 (79.8±2.3)

System 3 78.1 (78.1±1.9) 13.6 (13.6±1.1) 69.6 (69.6±2.8) 86.9 (86.9±1.6) 93.2 (93.3±1.4)

System 4 80.1 (80.1±2.7) 15.8 (15.8±1.3) 56.9 (56.9±2.8) 100 (100±0.0) 83.8 (83.9±2.2)

System 5 85.1 (85.1±1.9) 11.4 (11.4±1.1) 69.8 (69.8±2.5) 44.4 (44.4±2.8) 59.2 (59.3±2.7)

Ours 80.3 (80.3±2.4) 12.5 (12.5±1.1) 70.0 (70.0±2.8) 80.9 (81.0±1.9) 68.8 (68.8±2.5)

en-es

Model SubER (↓) BLEU (↑) Sigma (↑) CPL (↑) CPS (↑)

System 1 75.5 (75.5±2.3) 19.8 (19.8±1.3) 72.7 (72.7±2.2) 100 (100±0.0) 72.7 (72.8±2.5)

System 2 71.4 (71.4±2.1) 20.9 (20.9±1.4) 73.8 (73.8±2.0) 100 (100±0.0) 81.4 (81.5±2.3)

System 3 70.0 (70.1±2.2) 20.8 (20.8±1.4) 72.8 (72.8±2.0) 90.5 (90.5±1.4) 93.7 (93.7±1.3)

System 4 68.6 (68.5±2.5) 25.4 (25.4±1.4) 61.6 (61.6±2.0) 100 (100±0.0) 91.5 (91.5±1.8)

System 5 80.8 (80.8±1.7) 13.0 (12.9±1.1) 77.3 (77.3±2.4) 52.1 (52.1±2.8) 67.4 (67.5±2.7)

Ours 72.3 (72.3±2.2) 20.8 (20.9±1.4) 70.4 (70.4±2.0) 90.1 (90.1±1.3) 76.9 (76.9±2.4)

Table 7: Unconstrained results on EuroParl Interviews with 95% CI in parentheses.

System 1 System 2 System 3 System 4 System 5 Ours

en-de 72.0 (72.0±1.6) 67.2 (67.1±1.3) 69.0 (69.0±1.2) 70.1 (70.1±3.3) 71.9 (71.9±1.7) 67.0 (67.0±1.7)

en-es 60.3 (60.3±1.5) 58.2 (58.2±1.3) 59.8 (59.8±1.2) 57.8 (57.8±2.4) 70.2 (70.2±1.1) 57.2 (57.1±1.5)

Table 8: SubER (↓) over the three test sets with 95% CI in parentheses.

7 Conclusions

In this paper, we proposed the first approach
based on direct speech-to-text translation models
to fully automatize the subtitling process, includ-
ing translation, segmentation into subtitles, and
timestamp estimation. Experiments in constrained
data conditions on 7 language pairs demonstrated
the potential of our approach, which outperformed
the current cascade architectures with a ∼7% im-
provement in terms of SubER. In addition, to
test the generalizability of our findings across
subtitling genres, we extended our evaluation set-
ting by collecting two new test sets for en→{de,
es} covering different domains, degrees of sub-
title condensation, and audio conditions. Finally,
we compared our models with production tools
in unconstrained data conditions on both existing
benchmarks and the newly collected test sets. This
comparison further highlighted that our approach

represents a promising direction: Although trained
on a relatively limited amount of data, our sys-
tems achieved comparable quality with production
tools, with improvements in SubER ranging from
0.2 to 5.0 on en→de and from 0.6 to 13.0 on
en→es over the three test sets.
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Bremerman, Roldano Cattoni, Maha Elbayad,
Marcello Federico, Xutai Ma, Satoshi Nakamura,
Matteo Negri, Jan Niehues, Juan Pino, Elizabeth
Salesky, Sebastian Stüker, Katsuhito Sudoh,
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Alina Karakanta, Franćois Buet, Mauro Cettolo,
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A Timestamp Extraction Method

To validate the effectiveness of extracting
source-side timestamps with the CTC-based seg-
mentation algorithm, we conduct an ablation study
where we replace it with the forced aligner tool
of the Cascade architecture (§5.2). Table 9 reports
the scores. The forced aligner tool (FA) achieves
similar results compared to the CTC-based seg-
mentation algorithm (CTC), with a slightly worse
SubER (+0.1) on average on the three test sets.
Moreover, it is important to highlight that our
method does not require an external model. These
findings support our choice and align with pre-
vious research by Kürzinger et al. (2020), which
highlighted the competitiveness of the CTC-based
segmentation approach compared to widely used
forced aligners (in their case, Gentle28).

28https://github.com/lowerquality/gentle.

Method en-de en-es Avg.
MC ECSC EPI MC ECSC EPI

CTC 59.9 59.9 80.3 46.8 52.7 72.3 62.0
FA 59.7 60.3 80.7 46.7 52.7 72.2 62.1

Table 9: SubER scores (↓) on MuST-Cinema
test set (MC), EC Short Clips (ECSC), and Eu-
roParl Interviews (EPI) when the CTC-based
audio segmentation (CTC) or the forced aligner
(FA) method is used to extract the source-side
timestamps.

Noise en-de en-es Avg.
Removed ECSC EPI ECSC EPI

1. Yes 59.9 80.3 66.3 72.3 52.7
2. Only Segm. 61.4 82.0 68.4 73.9 56.4
3. No 63.1 81.7 69.5 75.3 58.1

Table 10: SubER scores (↓) on EC Short Clips
(ECSC) and EuroParl Interviews (EPI) with
background noise removal for: both the audio
segmentation with SHAS and the prediction of
the direct ST system (1.); only the audio seg-
mentation, but the noisy audio is fed as input to
the direct ST model (2.); no noise removal (3.).

B Effect of Background Noise

The presence of background noise in the test sets
complicates both the audio segmentation (per-
formed with SHAS) and the generation with the
direct ST model. For this reason, for the sake of
a fair comparison with production tools, we used
Veed to remove the background noise from EC
Short Clips and EuroParl Interviews, as mentioned
in §6.3. Table 10 shows the impact of background
noise on the resulting subtitling quality. By com-
paring 1. and 3., we notice that the presence of
background noise causes an overall relative error
increase of ∼5% on average over the two test sets
and two language pairs. The degradation is caused
both by the lower quality of the audio segmenta-
tion of SHAS and by worse outputs produced by
the direct ST system, as the absence of noise dur-
ing segmentation (2.) improves by an average of
1.7 SubER the results obtained without noise re-
moval (3.). Creating models robust to background
noise, though, is a task per se (Seltzer et al., 2013;
Li et al., 2014; Mitra et al., 2017) and goes beyond
the scope of this work.
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