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Abstract

Creating high-quality annotated data for task-
oriented dialog (TOD) is known to be no-
toriously difficult, and the challenges are
amplified when the goal is to create equi-
table, culturally adapted, and large-scale TOD
datasets for multiple languages. Therefore,
the current datasets are still very scarce and
suffer from limitations such as translation-
based non-native dialogs with translation arte-
facts, small scale, or lack of cultural adaptation,
among others. In this work, we first take
stock of the current landscape of multilingual
TOD datasets, offering a systematic overview
of their properties and limitations. Aiming
to reduce all the detected limitations, we
then introduce MULTI3WOZ, a novel mul-
tilingual, multi-domain, multi-parallel TOD
dataset. It is large-scale and offers culturally
adapted dialogs in 4 languages to enable
training and evaluation of multilingual and
cross-lingual TOD systems. We describe a
complex bottom–up data collection process
that yielded the final dataset, and offer the
first sets of baseline scores across different
TOD-related tasks for future reference, also
highlighting its challenging nature.

1 Introduction and Motivation

Task-oriented dialog (TOD), where a human user
engages in a conversation with a system agent
with the aim of completing a concrete task, is one
of the central objectives, hallmarks, and applica-
tions of machine intelligence (Gupta et al., 2006;
Tür et al., 2010; Young, 2010, inter alia). TOD
technology has been proven useful across a wide
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†Equal senior contribution.

spectrum of application sectors such as hospitality
industry (Henderson et al., 2014, 2019), health-
care (Laranjo et al., 2018), online shopping (Yan
et al., 2017), banking (Altinok, 2018), and travel
(Raux et al., 2005; El Asri et al., 2017), among
others.

Wider developments in TOD have been ham-
pered by the two conflicting requirements: 1)
large-scale in-domain datasets are crucially re-
quired in order to unlock the potential of deep
learning-based TOD components and systems to
handle complex dialog patterns (Budzianowski
et al., 2018; Lin et al., 2021b); at the same
time, 2) data collection for TOD is known to
be notoriously difficult as it is extremely time-
consuming, expensive, and requires expert and do-
main knowledge (Shah et al., 2018; Larson and
Leach, 2022). Put simply, the creation of TOD
datasets for new domains and languages incurs
significantly higher time and budget costs than
for most other NLP tasks (Casanueva et al.,
2022). Consequently, the progress in TOD until
recently has been limited only to a small num-
ber of high-resource languages such as English
and Chinese (Razumovskaia et al., 2022).

Recent work has recognized the need to ex-
pand the reach of multilingual TOD technology
to more languages via collecting multilingual
TOD data (Razumovskaia et al., 2022). Yet, as
discussed in more detail later in §2, all the cur-
rently available multilingual TOD datasets suffer
from one or several serious limitations: (i) the
predominant reliance on translation-based data
creation that introduces issues with ‘translation-
ese’ and artificial performance inflation (Xu
et al., 2020; Zuo et al., 2021); (ii) lack of cultural
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Table 1: Summary of multilingual TOD datasets that support multiple languages and TOD tasks (includ-
ing E2E learning), with more details concerning each dimension of comparison available in §2. For
clarity, we do not show (i) monolingual TOD datasets constructed for languages other than English, we
refer the reader to the survey of Razumovskaia et al. (2022) for a comprehensive overview; as well as
(ii) the body of multilingual TOD datasets that focus solely on NLU for TOD (see §2). # Langs refers
to the total number of languages in each dataset, including English. # Train and # Test refer to the
average number of human-created or human-curated dialogs per each language in the respective portions
of each dataset. Multi-P refers to multi-parallelism of dialogs in the dataset. (∗) GlobalWOZ releases
training data created automatically by an English-target NMT system, without any human curation
nor post-processing, and manually curates only a portion of 500 dialogs from the target language test
sets (see §2 for more details).

adaptation also results in artificial dialogs that are
not localized nor adapted to real-world data and
to cultural specificities of each target language
and culture; (iii) small scale and lack of suffi-
cient training data prevents truly equitable mul-
tilingual development and in-depth comparative
cross-language analyses (Ding et al., 2022; Hung
et al., 2022); (iv) lack of coherent and multi-
parallel dialogs in all the represented languages,
which are typically not created and corrected
by native speakers, hinders meaningful cross-
language comparisons and analyses (Ding et al.,
2022); (v) some datasets focus on a single com-
ponent of a full TOD system, typically Natural
Language Understanding (NLU), which prevents
training and evaluation of other crucial tasks
such as Dialog State Tracking (DST), or Natural
Language Generation (NLG) in multilingual and
transfer setups.

In this work, we address all the aforemen-
tioned limitations of current multilingual TOD
datasets and present a large-scale data collec-
tion process that resulted in a novel large-scale
multilingual dataset for TOD: MULTI3WOZ. The
departure point of our data collection is the es-
tablished multi-domain English MultiWOZ data-
set (Budzianowski et al., 2018), that is, its cleaned
version 2.3 in particular (Han et al., 2021).
MULTI3WOZ is then created via adapting a recent
bottom–up outline-based approach of Majewska
et al. (2023) which bypasses (the issues of) the
translation-based design and discerns between

language-agnostic abstract dialog schemata (i.e.,
outlines) and adapted, language-specific surface
realizations of the underlying schemata (i.e., the
actual user and system utterances). We validate
the usefulness and feasibility of the outline-based
approach to multilingual TOD data creation for
the first time on a large scale, and prove its fea-
sibility for such large-scale endeavors: the da-
taset contains a total of 494,116 dialog turns
created manually by human subjects.

Guided by the need to tackle the present limi-
tations, MULTI3WOZ is the first multilingual TOD
dataset with the following crucial properties; see
also Table 1 for an overview. First, MULTI3WOZ
is large-scale with the equal number of training
(7,440 dialogs per language), development (860),
and test dialogs (860) offered in 4 different lan-
guages: English, Arabic, French, and Turkish.
It is more versatile than all prior multilingual
TOD datasets as it allows for training and eval-
uation in monolingual, multilingual, and cross-
lingual setups, and in zero-shot, few-shot, and
‘many’-shot cross-lingual and cross-domain transfer
scenarios. Second, MULTI3WOZ offers multi-
parallel dialogs, conveying comparable informa-
tion over exactly the same conversational flows
across all four languages. This property allows
for cross-language studies and comparative analy-
ses. Third, MULTI3WOZ enables both (monolingual
and multilingual) training and evaluation over
different constituent TOD tasks such as NLU (in-
tent detection and slot filling), DST, NLG, as
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well as full-fledged end-to-end (E2E) learning.
Fourth, MULTI3WOZ is localized and culturally
adapted to the actual existing entities from the
cultures in which the target languages are spo-
ken. Finally, created in a bottom-up fashion by
native speakers of the target languages, hence
linguistically adapted to the target language, it
offers natural and native dialogs in all target lan-
guages, avoiding ‘translationese’ and preventing
over-inflation of transfer performance (Majewska
et al., 2023).

Furthermore, to guide future research, we set
reference scores across different TOD tasks in all
the languages of MULTI3WOZ, running a repre-
sentative set of standard baselines in each rele-
vant TOD task. The results clearly indicate the
challenging nature of the dataset; we also out-
line the differences in performance across differ-
ent languages.

2 MULTI3WOZ versus Limitations of
Current Multilingual TOD Datasets

We now delve deeper into the main benefits of
MULTI3WOZ, characterizing how its key proper-
ties make it a unique TOD resource. The summary
and statistics of the most relevant prior work are
provided in Table 1. Building upon this table,
we discuss those datasets along with other related
work in what follows, focusing on the five de-
sirable properties of MULTI3WOZ and how these
counteract the detected main limitations of other
datasets.

P1. Supporting Multiple Languages and TOD
Tasks. There has been a surge of interest in the
creation of multilingual TOD datasets, aiming to
mitigate the language resource gap in multilingual
NLP (Ponti et al., 2019; Joshi et al., 2020b). De-
spite the effort, the gap is still much more pro-
nounced for dialog tasks and data than for some
other NLP tasks such as NLI (Conneau et al.,
2018; Ebrahimi et al., 2022) or NER (Adelani
et al., 2021), also due to its increased time de-
mands and cost of annotation.1 Further, the ma-

1For instance, the creation of the validation and test
sets of the XCOPA dataset requires a total time ranging
from 12 to 20 hours per language (Ponti et al., 2020). In
contrast, the creation of the validation and testing sets for
each individual language in MULTI3WOZ requires over 300
hours of effort. Even when considering the annotation cost
per sentence (utterance), which amounts to approximately

jority of multilingual TOD datasets focused only
on two standard NLU tasks (i.e., intent detection
and slot labeling), again due to the high cost and
specific challenges posed by collecting full dia-
log data (Budzianowski et al., 2018). The first
wave of such NLU datasets were built upon the
single-domain English ATIS dataset (Hemphill
et al., 1990), extending it to 10 languages via hu-
man translation (Upadhyay et al., 2018; Xu et al.,
2020; Dao et al., 2021). More recent NLU data-
sets cover multiple domains and wider linguis-
tic typology and geography (Schuster et al., 2019;
FitzGerald et al., 2022; Moghe et al., 2023;
Majewska et al., 2023). However, current NLU
datasets (i) still support only the two NLU tasks,
and (ii) provide utterances ‘in isolation’ (i.e., out
of the context of the full dialog which facili-
tates their multilingual construction). Further, (iii)
some datasets do not provide any training data
and are useful only for evaluation of (zero-shot)
cross-lingual transfer; (iv) all the datasets except
that of Majewska et al. (2023) and the concur-
rent work of Goel et al. (2023) were constructed
via translation from the source English datasets.

Monolingual ‘end-to-end’ TOD datasets, which
support NLU as well as other TOD tasks (i.e.,
modeling and evaluation of the full TOD pipe-
line), have been created only for particular high-
resource languages. MultiWOZ (Budzianowski
et al., 2018) and Taskmaster (Byrne et al., 2019)
are two large-scale multi-domain English datasets
spanning 7 and 6 domains, respectively, contain-
ing both single-domain and multi-domain dialogs.
Inspired by MultiWOZ, monolingual RisaWOZ
(Quan et al., 2020) and CrossWOZ (Zhu et al.,
2020) datasets have been created for Chinese.
Crucially, multilingual multi-domain TOD data-
sets that support full TOD modeling are still scarce,
see Table 1, and they all come with some core
limitations, as discussed next.

P2. Avoiding Translation-Based Design. The
majority of datasets have been obtained via man-
ual or semi-automatic translation (e.g., via post-
editing MT output [PEMT]) of an English source
dataset (Zuo et al., 2021; Ding et al., 2022; Hung
et al., 2022). The translation-based approach is
cost-efficient and can natively yield data which

$0.17 per utterance, the cost is notably higher than the per
sentence annotation cost for NER ($0.06 as reported by
Bontcheva et al. [2017]) and NLI ($0.01015 per instance as
reported by Marelli et al. [2014]).

1398



is comparable across languages, but results in (i)
undesired ‘translationese’ effects (Artetxe et al.,
2020), (ii) lacks dialog naturalness (Ding et al.,
2022), and (iii) typically leads to overinflated and
thus misleading performance of TOD systems.
For instance, Majewska et al. (2023) empirically
validate that cross-lingual transfer performance
substantially increases when exactly the same
dialogs are obtained via automatic or manual
translation rather than via a bottom-up approach
relying on native speakers of the target languages.

Unlike prior work (i.e., all datasets from Table 1
except BiToD), the honed outline-based construc-
tion of MULTI3WOZ (see §3 later) avoids all the
negative implications of translation, while main-
taining cost efficiency (and thus enabling its large
scale), supporting cultural adaptation, and en-
abling coherence and multi-parallelism.

P3. Dataset Scale and Large-Scale Training.
MULTI3WOZ offers a substantially larger num-
ber of dialogs for training than any previous
multilingual ‘full TOD’ dataset, and it treats the
four supported languages in an equitable way:
i.e., it provides the same set of manually (bottom-
up) constructed dialogs for training, develop-
ment, and testing in each language. Previous work
(Multi2WOZ, AllWOZ, GlobalWOZ) targeted the
creation of test data only, for evaluating cross-
lingual transfer scenarios. These datasets come
(i) without providing any training data at all
(Multi2WOZ), or (ii) with a very small set of
post edited MT-obtained dialogs (AllWOZ),2 or
(iii) with automatically created MT-based train-
ing data only (GlobalWOZ). The only exception
is BiToD (Lin et al., 2021b), but it spans only
two, highest-resourced languages, a smaller num-
ber of domains, and has approximately three
times fewer training data than MULTI3WOZ. For
instance, MULTI3WOZ contains almost 124,000
turns per each represented language (∼98,000/
12,500/12,500), with a total of 494,116 turns; for
comparison, the total number of turns in BiToD
is 115,638, while it is 143,048 in the original
English-only MultiWOZ.

P4. (Improved) Cultural Adaptation. A large
number of datasets for multilingual NLP ignores
the fact that the data should also be adapted to

2The tiny size of AllWOZ is even more problematic at the
level of single domains, e.g., it contains only 13 dialogs for
the Taxi domain, hindering any generalizable evaluations.

Figure 1: An example of dialog turns from cultur-
ally adapted GlobalWOZ versus MULTI3WOZ, with
culturally specific entities highlighted and English
translations provided below each text box. In gen-
eral, due to its design, a proportion of GlobalWOZ
dialogs exhibit inconsistent similar code-switched
and script-switched utterances (e.g., also with phone
and reference numbers); GlobalWOZ comes with
other design-triggered dialog-level inconsistencies, not
shown for brevity.

the target cultures and concepts (Ponti et al., 2020;
Hershcovich et al., 2022). Besides (i) propagating
the source language bias towards possible con-
versational concepts (e.g., the US-tied concept
of tailgating or conversations about baseball)
(Ponti et al., 2020), the lack of the so-called
cultural adaptation also (ii) creates peculiar or
more unlikely conversational contexts (e.g., a user
speaking to a Turkish TOD system about restau-
rants in Cambridge) (Ding et al., 2022), or (iii)
even ignores specificities of a particular culture
(e.g., postcodes are not used in Arabic-speaking
countries). The only two datasets that try to in-
corporate the notion of cultural adaptation into
their design are BiToD and GlobalWOZ (see
Table 1). However, BiToD’s adaptation is based
on a very specific bilingual region of the world
(Hong Kong), while GlobalWOZ’s automatic cul-
tural adaptation approach results in a large num-
ber of incoherent dialogs and annotation errors,
e.g., see Figure 1. We thus adopt a new and im-
proved cultural adaptation approach that ensures
high-quality, coherent and multi-parallel dialogs
across languages while respecting the underlying
cultural traits, see §3 later.

P5. Dialog Coherence and ‘Multi-Parallelism’.
Finally, due to their design properties and over-
simplifying assumptions, some datasets break
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Figure 2: Overview of the full data collection pipeline for MULTI3WOZ. It is derived from the MultiWOZ
dataset v2.3, with two phases: (i) cultural adaptation and (ii) outline-based generation. Cultural adaptation →
spans two subtasks localization and value substitution, and it adapts dialogs and contextualizes them to the actual
existing entities from the cultures in which the target languages are spoken. Outline-based generation ⇒ is a
bottom-up dialog collection method to collect language-specific and linguistically adapted surface forms from
the target language native speakers based on language-agnostic abstract dialog schemata. In both datasets, each
utterance is annotated with task-specific meaning representations. In the above figure, a rectangle denotes
an utterance and stacked rectangles denote its corresponding dialog act. Further, each dialog is condi-
tioned on a culture-adapted ontology database as an extra-linguistic context, and it must be coherent with
the database content.

coherence and multi-parallelism of dialogs. Global-
WOZ, while performing a form of cultural
adaptation, (i) creates erroneous slot value an-
notations that are inconsistent with the dialog
ontology and database in the particular language,
and (ii) even induces inconsistent annotations
within an individual dialog. Another problem with
GlobalWOZ is that the authors select a subset of
500 test set dialogs for human PEMT work based
on a simple heuristic: they opt for dialogs for
which the sum of corpus-level frequencies of their
constitutive 4-grams, normalized by dialog length,
is the largest. This selection, not motivated in the
original paper and performed independently for
each language, entails that different portions of
the original English MultiWOZ are included into
the final language-specific test sets. This design
choice, besides (i) artificially decreasing linguis-
tic diversity of dialogs chosen for the test set in
each language,3 also (ii) breaks the desired multi-
parallel nature of the test set. As a consequence,
GlobalWOZ overestimates downstream TOD per-
formance for target languages, and cannot be used
for any direct comparison of TOD task perfor-
mance across different languages since test sets

3The selection heuristic favors dialogs that contain the
same most frequent 4-grams globally.

per language contain different dialogs, as also
pointed out by Hung et al. (2022).

MULTI3WOZ is the only dataset which performs
cultural adaptation and avoids confouding fac-
tors such as GlobalWOZ’s selection heuristics,
while maintaining the desired properties of dialog
coherence and multi-parallelism.

3 MULTI3WOZ

MULTI3WOZ comprises linguistically and cultur-
ally adapted task-oriented dialogs in four lan-
guages: Arabic (ARA; Afro-Asiatic), English (ENG;
Indo-European), French (FRA; Indo-European),
and Turkish (TUR; Turkic). A total of 27,480
(3×9,160) dialogs is collected for ARA, FRA, TUR,
while the datas et also includes a subset of
9,160 normalized and corrected MultiWOZ v2.3
dialogs.4

In what follows, we describe its creation, as
depicted in Figure 2. Our approach involves
three key steps: (i) normalizing annotations from
the original MultiWOZ v2.3 with canonical val-
ues; (ii) cultural adaptation by contextualizing

4We select 9,160 out of MultiWOZ’s full set of 10,438
dialogs by filtering out erroneous dialogs identified during
the normalization and cultural adaptation process; problem-
atic dialogs were also recorded by our annotators during the
dialog generation and quality control phases (see later in §3).
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dialogs to entities from the relevant cultures;
and (iii) collecting linguistically adapted dialogs
from target language native speakers using a
bottom–up outlined-based method.

Preliminaries and Notation. In TOD, the do-
mains of a dataset (e.g., MultiWOZ) and the
systems built upon it are typically defined by an
ontology, which provides a structured represen-
tation of an underlying database. The ontology
specifies slots that encompass all entity attributes
and their corresponding values (Budzianowski
et al., 2018). MULTI3WOZ is designed to be fully
compatible with the original English MultiWOZ’s
ontology and data format, but now with culturally
adapted database entries (see Figure 2).

MULTI3WOZ D contains four multi-parallel sets
of dialogs, namely DARA, DENG, DFRA, and DTUR,
along with their corresponding cultural-specific
databases denoted as EARA, EENG, EFRA, and ETUR.5

Each database entry, E ∈ E, contains a set of
slot-value pairs, such that E = {(s1, v1), (s2, v2),
· · · , (sn, vn)}.6 Each dialog in the dataset is
represented as a list of natural language ut-
terances, with alternating turns between the user
and system initiated by the user. Each turn is
annotated with its corresponding sentence-level
meaning representation. Namely, for D ∈ D,
D = [(u1, a1), · · · , (uj ,aj)], where u is a sur-
face form (user or system) utterance; a is a di-
alog act representation; j is the length of the
dialog D.

A dialog act a is then defined as a set of tuples
a = {(d1, i1, s1, v1), · · · , (dk, ik, sk, vk)}, where
each tuple consists of domain d, intent i, slot s,
and slot value v.

Slot-Value Normalization. In the English Mul-
tiWOZ dataset, slot values are annotated as text
spans within the corresponding utterances. This
annotation scheme allows for more flexible and
natural language expressions of the canonical
value vtruth described in the ontology and database
(e.g., 13:00), resulting in various surface forms

5In order to simplify our notation, we represent a backend
database as a set of data entries, where each entry corre-
sponds to a real-world entity within the target culture.

6We denote each attribute of an entity as a slot and con-
sider the domain of an entity as an inherent attribute. For
example, {(domain, police), (name, parkside police station),
(address, Parkside, Cambridge), (phone, 01223358966),
(postcode, cb11jg)} is a database entry in EENG.

v(1), · · · , v(l) (e.g., 1 pm, 1:00 pm, one). How-
ever, this flexibility can create a discrepancy
between the expected canonical value required
by the backend API and the predicted value by
the model.7

Moreover, the absence of a 1-to-1 mapping be-
tween the canonical value in the database and
the annotations in MultiWOZ, coupled with erro-
neous or misspelled entries, hinders the consistent
and systematic adaptation of culture-dependent
entities to the target language. To address this,
we manually created a normalization dictionary
and assigned canonical values to all slot values
across the English MultiWOZ dataset. For ex-
ample, we created a normalization dictionary for
the restaurant-name slot, mapping 544 distinct
surface forms to 110 canonical names. These ca-
nonical names correspond exactly to the entities
in the English restaurants domain’s database, en-
abling a one-to-one mapping between the entities
described in dialogs and those in the database.
Besides facilitating cultural adaptation through
the creation of surface form agnostic outlines,
we believe that this time-consuming yet crucial
normalization process will also enable consis-
tent evaluations of models built on MULTI3WOZ.
Henceforth, any mention of a slot value v assumes
that it is in its canonical form.8

Cultural Adaptation. While English Multi-
WOZ contains only dialogs describing entities
in the Cambridge (UK) area, MULTI3WOZ ex-
pands the scope to three additional languages
targeting three cities where the target languages
are considered native: Dubai for Arabic, Paris
for French, and Ankara for Turkish.9 To ensure

7The query sent to the backend API is formulated using
a formal language that lacks the flexibility of natural lan-
guage. This issue can significantly affect the performance
of extractive models, such as extractive DST models (Heck
et al., 2020; Zhou et al., 2023).

8The introduction of slot values in canonical forms of-
fers supplementary information to the original MultiWOZ
annotation. The original format can be automatically de-
rived, enabling backward compatibility with previous models.

9We fully acknowledge that here we use the term ‘culture’
(imprecisely) as a proxy for the limited set of properties,
customs, and entities to be expected or common at the
target location. We also acknowledge that language-culture
mappings are typically many-to-many, with the possibility
of multiple languages being native to the same culture,
and one language spreading over more than one culture
or subculture (Hershcovich et al., 2022). Our (simplified)
choice is primarily driven by pragmatic considerations and
feasibility requirements.
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that our dataset respects and reflects the cultural
traits pertaining to each target city and language,
we propose a systematic approach for cultural
adaptation, which ensures dialog coherence and
multi-parallelism across all languages, and in-
cludes the following steps: 1. slot-value locali-
zation/redistribution with cultural awareness, 2.
controlled entity replacement with one-to-one
entity mappings, 3. slot-value randomization to
avoid verbatim memorization.

We perform slot-value redistribution to adjust
the original slot and value to align with the tar-
get ‘culture’. These modifications are based on
the feedback from native speakers of the target
language with expertise in the corresponding cul-
tural context. To better fit the target culture, we
remove ENG-specific slots and values that are ir-
relevant to the culture. For example, we obliterate
the postcode slot in the Arabic dataset DARA due
to its limited relevance in the associated culture.10

The main objective of our proposed cultural
adaptation method is to perform controlled entity
replacement using a 1-to-1 entity mapping. As a
prerequisite, we first construct a localized database
(e.g., EARA for Arabic) for each target language.
This database aims to reflect real-world entities
and properties, and has been constructed by hu-
man participants in our project, native speakers
of the target languages, who referred to a variety
of public knowledge sources on the Internet, in-
cluding the Google Places API and TripAdvisor
API.11

In order to construct such a 1-to-1 mapping, an
English entity EENG and a target entity (e.g., EARA)
can be mapped to each other only if all categori-
cal slot values attributed to each entity are iden-
tical.12 Namely, the following condition holds:

10We also consider religious factors: e.g., to respect lo-
cal culture, we replace the ‘gastropub’ restaurant type with
the value ‘Arab’, or ‘nightclub’ with ‘waterpark’ for the
attractions slot. Moreover, we address the issue of unbal-
anced entity distribution in the original MultiWOZ, which
is heavily skewed towards Cambridge (UK) and contains a
disproportionate number of mentions of ‘colleges’ and ‘guest
houses’. To mitigate this bias, we swap certain types of enti-
ties; e.g., we exchange the very specific term ‘college’ with
‘architecture’ and ‘guest house’ with ‘hotel’ to offer a better
localization of the entity distribution for the target location.

11However, we note that, for database completeness, a
portion of the entity information has been synthetically gen-
erated due to missing information on the Web, e.g., when a
restaurant does not provide a phone number on its website.

12A categorical slot is defined by the ontology such that
the possible values for this slot are a closed set. For example,

∀(sENG, vENG) ∈ EENG, ∃(sARA, vARA) ∈ EARA : vENG =
vARA if is categorical(sENG). This strategy
guarantees a consistent distribution of entities
with respect to each categorical property as Multi-
WOZ. It further facilitates the coherent and
multi-parallel creation of dialogs, particularly
when the user requests a certain property of a
desired entity along the progress of dialogs (e.g.,
‘an expensive restaurant’). This stands in contrast
to the random sampling cultural adaptation solu-
tion of GlobalWOZ, which results in frequently
mismatched entities being returned in response
to the user request, and often results in dialog
incoherence.

The original MultiWOZ contains a substantial
number of randomized slot values, such as time,
reference, and taxi-phone. To prevent verbatim
memorization and undesired data artefacts, we
perform slot-value randomization independently
in each target dialog subset in MULTI3WOZ. For
time-related slot values in MULTI3WOZ, we ap-
ply the randomization by adding a 1-hour random
offset drawn from a uniform distribution [−1, 1] to
the original value, as also illustrated in Figure 2.
We ensure that all time relevant slots (e.g., leav-
ing time and arriving time) in a dialog are equiv-
alently shifted by the same randomized offset.
For reference numbers, we employ the 1-to-1
randomly generated reference mapping. Regard-
ing taxi-phone values, we first adhere to the tar-
get culture’s specific phone pattern followed by
a 1-to-1 randomly generated phone mapping.
In general, this procedure mitigates the risk of
exploiting annotation artifacts and consequent
overfitting when conducting cross-lingual transfer
learning experiments.

Outline-Based Dialog Generation. By adopt-
ing the outline-based dialog generation process we
simultaneously enable cultural adaptation while
eliminating the impact of syntactic and lexi-
cal grounding in the source language (i.e., the
so-called ‘‘translation artifacts’’), while keeping
the annotation protocol feasible (Majewska et al.,
2023). The outline-based method can be decom-
posed into two steps: outline creation (i.e., cre-
ating dialog schemata) and dialog writing (i.e.,

the slot ‘price range’ can only have the values of ‘cheap’,
‘moderate’, and ‘expensive’. In contrast, the value for a hotel
name is an open set and not categorical, as it can be any
string.
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creating the actual surface realizations, utterances,
from the dialog schemata).

Following Majewska et al. (2023), outline cre-
ation involves creating minimal but comprehen-
sive instructions for the so-called dialog creators
(termed DCs henceforth) to generate dialogs that
fully convey specific intents and slots while
avoiding the imposition of predefined syntactic
structures or linguistic expressions. As depicted in
Figure 2, we convert a culturally adapted (termed
CA-ed henceforth) dialog act (e.g., using ARA

as an example language, aARA) into a human-
interpretable outline based on a set of manually
defined templates, where different sets of tem-
plates are used for the user and system utterances.
Given a tuple (d, i, s, vARA) ∈ aARA, we transform
a domain-intent pair d-i into a natural lan-
guage instruction, e.g., Restaurant-Inform
⇒ ‘‘Express your intent to search for a restau-
rant with the following properties:’’. In addition,
the slot s is mapped to a predefined natural lan-
guage description, and it is presented along with
the CA-ed slot value vARA (e.g., booking time =
18:45). As illustrated in Figure 2, in cases where
there are multiple tuples with the same pair d-i,
we group them together and present within a
‘‘card’’. We note that a target language utterance
(e.g., uARA) can be constructed based on multiple
cards, with each card corresponding to a unique
domain-intent pair d-i.13 Additionally, each card
may contain multiple slot-value pairs, where each
slot value is shown as a CA-ed value (e.g., vARA).
To take full advantage of our outline-based frame-
work, we have developed a Web-based annotation
toolkit along with detailed annotation guidelines;
the latter is made publicly available.

Dialog writing is then carried out by bilingual
speakers as DCs. They are (i) native in the tar-
get language and (ii) fluent in English: following
the results from our pilots, we opted for keeping
the English templates as it facilitated the quality
control of templates and cards while it did not
have any detrimental effect on the quality of fi-
nally generated target language dialogs. The DCs
were instructed to write natural-sounding ex-
changes in their native language between a hypo-
thetical user and an assistant, based on the outlines
derived from the CA-ed dialog act (e.g., aARA) and
a set of user goals that the hypothetical user

13Restaurant-Inform is the domain-intent pair for the
utterance There will be 5 of us and 19:45 would be great.

wants to achieve (e.g., You are looking for a place
to stay.). For each utterance u from the source
ENG dataset, the tasks of the DCs were then as
follows: 1) writing a native dialog utterance from
the card(s) that covers all the slot values from the
cards; 2) annotating character-level span indices
for each slot value vARA; 3) indicating with a bi-
nary flag for each domain-intent pair d-i whether
this dialog act retains coherence of the full dialog,
this way also signaling and capturing errors still
present in the English MultiWOZ v2.3 dataset.

Duration, Cost, Dialog Creators, Quality Con-
trol. The logistically and technically complex
data collection process spanned 14 months, start-
ing in January 2022. The full cost of data collection
was ∼$64,500, equally distributed across the
three target languages. The recruited DCs are
(i) professional translators and (ii) college stu-
dents, recruited via the ProZ platform (www.proz
.com) or from universities worldwide. A to-
tal of 133 native Arabic speakers, 112 native
French speakers, and 75 native Turkish speakers
contributed to the dataset.

We applied a number of quality control mech-
anisms throughout the data collection process.
First, to ensure that the DCs have fully understood
the instructions and all (sub)tasks, they were re-
quired to complete a qualification round before
creating any actually deployed data. Second, our
annotation platform features a real-time automatic
check for all submissions, providing feedback and
highlighting issues for the collected dialogs. Fi-
nally, we also ran two rounds of post-collection
dialog editing: We invited a carefully selected
small group of dialog creators, who had consis-
tently produced exceptional high-quality dialogs,
to review and, if necessary, edit all the dialogs
in the validation and test sets of all three target
languages.

Ethical and Responsible Data Creation and
Use. Following the principles from Rogers et al.
(2021), the project has placed a high priority on
ethical and responsible data creation and use. It
underwent the full Ethics Approval process at
University of Cambridge, and we describe other
ethics-related aspects here.
Terms of Use: MULTI3WOZ is released under the
same MIT License as the original MultiWOZ.
Privacy: To comply with the EU General Data
Protection Regulation (GDPR), we have acted as
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Figure 3: An example set of parallel dialogs in four languages: English, Arabic, French, and Turkish, extracted
from the MULTI3WOZ dataset. The dialogs illustrate different aspects of cultural adaptation, including slot-value
redistribution, slot-value randomization, and controlled entity replacement, which are highlighted with distinct
colors. Due to space limitations, we only show a set of single-domain short dialogs. However, it is important
to note that the MULTI3WOZ dataset contains multi-domain dialogs with diverse dialog patterns and linguistic
constructions. The dialog ID for this specific example is SSNG0101.

a data controller and collected the minimum of
personal data required for this project. All par-
ticipants provided informed consent by signing a
Participant Consent Form before any data col-
lection occurred. To adhere to the principle of
data minimization, we collected only the partici-
pants’ email addresses as individually identifiable
information for the sole purpose of processing
payments. Our dataset consists solely of hypo-
thetical dialogs in which the domains and content
have been restricted and predefined, minimiz-
ing the risk of personal data being present in
MULTI3WOZ.
Compensation: The DCs were compensated based
on the number of dialogs they contributed to the
dataset, with a payment rate of approximately
$12/h. As stated in our consent form, they were
able to withdraw from the study at any time.

Data Structure and Statistics. Figure 3 pres-
ents an example of multi-parallel dialogs from
MULTI3WOZ. All dialogs in MULTI3WOZ consist
of parallel surface form utterances in multiple
languages and retain the same annotations as the
original MultiWOZ. Precisely, each dialog D is
annotated with a CA-ed user goal, as well as for
each utterance u in the dialog: a CA-ed dialog act,
a CA-ed dialog state. In addition, MULTI3WOZ
offers (i) annotations for character-level textual
spans for all the slot values in the dialog act to
steer span extraction-based solutions to slot la-
beling (Joshi et al., 2020a), and (ii) a binary co-
herence indicator. The dataset is released in three

Figure 4: Utterance length in MULTI3WOZ.

standard formats: (i) json files following the
structure of MultiWOZ (Budzianowski et al.,
2018); (ii) a format compatible with the Hugging-
face repository (Wolf et al., 2020; Lhoest et al.,
2021); (iii) ConvLab-3-compatible format (Zhu
et al., 2022).

MULTI3WOZ’s language-independent features,
e.g., the frequency of dialog acts and average
dialog length, closely resemble those of the orig-
inal MultiWOZ; we thus focus on the statistics
pertaining to language and cultural adaptation.
Figure 4 presents the distribution of the number
of tokens per turn, with white spaces as the token
delimiter. Note that each language exhibits vari-
ance in its morphosyntactic properties (e.g., Turk-
ish is an agglutinative language), which naturally
impacts the expected utterance length. Further,
we find that 13.3% of the slot values in the di-
alog acts are normalized with canonical values,
while 38.7% of the dialog acts’ slot values are
provided with CA-ed values. The type-to-token
ratio (TTR) varies across languages, with English
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having a lower TTR value (0.010) compared
to Arabic (0.032), French (0.023), and Turkish
(0.035). In comparison to the GlobalWOZ data-
set, which is an MT-based dataset without CA,
our dataset (MULTI3WOZ) achieves an increased
TTR for Arabic (↑ 0.013), French (↑ 0.006),
and Turkish (↑ 0.014).14 This outcome highlights
that MULTI3WOZ’s bottom-up design sparked
higher semantic variability and naturalness in the
target languages (Majewska et al., 2023). We
further highlight the higher semantic diversity
of utterances in MULTI3WOZ in comparison to
PEMT-based methods such as the one used by
Multi2WOZ. We select a subset of 1,586 Arabic
dialogs of flows shared between the two datasets
and calculate the average pairwise cosine sim-
ilarity between utterances in each data subset
and their corresponding utterances in the En-
glish MultiWOZ, relying on LaBSE (Feng et al.,
2022) as a state-of-the-art multilingual sentence
encoder. The scores of 0.54 (MULTI3WOZ) and
0.91 (Multi2WOZ) suggest the higher semantic
variability created through the outline-based ap-
proach with cultural adaptation.

4 MULTI3WOZ as a TOD Benchmark

MULTI3WOZ establishes a multilingual and cross-
lingual benchmark for TOD systems and their
sub-modules. We now present a first ‘benchmark-
ing study’ on the dataset, evaluating representative
models for NLU, DST, NLG, and E2E tasks in
TOD, merely scratching the surface of possible
experimental work now enabled by MULTI3WOZ.

Natural Language Understanding. NLU is
typically decomposed into two established tasks:
intent detection (ID) and slot labeling (SL). ID
can be cast as a multi-class classification task that
identifies the presence of a domain-intent pair d-i
(e.g., Restaurant-Inform) from the user’s
utterance, where the set of intents is predefined
in the ontology. SL is a sequence tagging task
that identifies the presence of a value v and its
corresponding slot s within the utterance.

14For this comparison, we utilize the ‘‘F&E’’ proportion
of the GlobalWOZ dataset. In this dataset, English utterances
are translated into the target language using Google Trans-
late, while preserving the slot values associated with English
entities. The calculation of the TTR is limited to the dialogs
that are included in both the GlobalWOZ dataset and our
dataset.

We evaluate ID and SL methods backed by
XLM-Rbase (Conneau et al., 2020). Precisely, at
each dialog turn t, the model encodes the con-
catenation of the previous two utterances (ut−2

and ut−1) along with the current utterance (ut) to
provide embedding vectors at both the sequence
and token levels. To implement the intent detec-
tor, for each domain-intent pair d-i defined by
the ontology, the representation of the ‘‘<s>’’
token is subsequently projected down to two log-
its and passed through a Sigmoid layer to form
a Bernoulli distribution indicating if d-i appears
in the ut. Performance is evaluated by measuring
its accuracy in identifying the exact presence of
all domain-intent pairs in a dialog act, as well as
its F1 score. For SL, we adopt the widely used
BIO labeling scheme to annotate each token in
the user’s utterance.15,16

In Table 2, we observe that the fully super-
vised ID model achieves similarly high accuracy
across all languages, and we also observe a large
cross-lingual transfer gap (Hu et al., 2020) for
both tasks. Further, there is a substantial de-
crease in performance for Arabic SL. Note that in
MULTI3WOZ the slot-value spans are annotated at
the character level, and we only consider a span to
be correctly identified if there is an exact match.
At the same time, Rust et al. (2021) observed that
the sub-optimal performance of the tokenizers
for the multilingual models may yield degraded
downstream performance. To investigate the lim-
itations of tokenization, we then aligned the slot
boundaries with the token boundaries. Specifi-
cally, we defined the slot span as the minimal
token span that covered the entire slot in the ut-
terance. With this approach, the identical model
achieved F1 of 78.44 (↑30.00) for Arabic SL,
confirming that the suboptimal XLM-R’s token-
ization was the primary contributor to the original
performance degradation in Arabic.

Dialog State Tracking. For DST, we follow the
standard MultiWOZ preprocessing and evaluation

15Specifically, each token is labeled with either B-d-i-s
(e.g., B-Restaurant-Inform-Food), denoting the beginning of
a slot-value pair with the corresponding slot name, I-d-i-s
indicating it is inside the slot-value, or O indicating that the
token is not associated with any slot-value pair.

16We conducted all NLU experiments on a single RTX
24 GiB GPU with a batch size of 64 and a learning rate of
2e − 5. We trained each model for 10 epochs and selected
the model with the best F1 score on the validation set as the
final model.
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Table 2: Fully supervised and zero-shot cross-lingual transfer from English (DENG as the source) for
ID, SL, and DST tasks on MULTI3WOZ. AVG. shows the mean average of the evaluation scores across
all four languages. The reported scores are averaged over 3 random runs.

setups (Wu et al., 2019), excluding the ‘hospital’
and ‘police’ domains due to the absence of test
dialogs in these domains. We report the Joint Goal
Accuracy (JGA), Turn Accuracy, and Joint F1.

We adapt T5DST (Lin et al., 2021a) as a
strong baseline that reformulates the DST as a
QA task with slot descriptions. The DST model is
back-boned with mT5small (Xue et al., 2021) (as
very similar scores were obtained with mT5base).
Regarding the model and training details, read-
ers are referred to the original work (Lin et al.,
2021a).17

Fully supervised DST scores provide a strong
benchmark with the multilingual T5DST model
over all languages in MULTI3WOZ. We observe
the highest performance in English (59.9% JGA),
followed by Turkish, French, and Arabic, indi-
cating the levels of difficulty of DST for each
language. Table 2 presents the zero-shot cross-
lingual transfer-from-English results, revealing
poor transferability of the DST models across
languages (all below 4% JGA). This indicates
the limitations of current multilingual models
in zero-shot setups and the challenge of trans-
fer learning for culturally adapted dialogs in
MULTI3WOZ.

Natural Language Generation. We approach
the NLG task as a sequence-to-sequence prob-

17The experiments were run on a single RTX 24 GiB GPU;
batch size of 4, a learning rate of 1e− 4; 5 epochs.

lem, again supported by mT5small. Specifically,
at each dialog turn t, the model takes the input
of its dialog context, and generates a system re-
sponse ut. Traditionally, NLG in TOD systems
is defined as the task of converting a dialog act
into a natural language utterance (Williams and
Young, 2007). In our study, we evaluate NLG per-
formance in both a traditional setup, where the
goal is to realize the surface form of the dialog
act, and an end-to-end LM setup, where we model
response generation as a transduction problem
from the dialog history to a natural response.
Third, we consider the setup where both the dia-
log history and the ‘oracle’ dialog act are avail-
able, serving as a performance upper bound. For
the surface realization setup, we convert the
dialog act at into a flattened string format
(e.g., [inform][restaurant]([price range][expensive],
[area][center]) to serve as the input. For the
language modeling setup, the model generates a
response ut solely based on the preceding dialog
history ut−2 and ut−1. In this setup, the generation
model does not have any knowledge about the
system’s ontology and database. In the language
modeling with oracle setup, the model takes the
concatenation of the two preceding utterances
ut−2 and ut−1, as well as at as input.

Following MultiWOZ, we evaluate with the
corpus BLEU score (Papineni et al., 2002); we
evaluate lexicalized utterances without perform-
ing delexicalization. We also report ROUGE-L
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Language
Surface Realization Language Modeling Language Modeling with Oracle

BLEU ROUGE METEOR BLEU ROUGE METEOR BLEU ROUGE METEOR

ENG 20.67 47.76 44.16 8.66 27.95 25.18 21.20 48.52 44.31
ARA 9.57 14.04 21.92 7.22 20.77 18.11 17.56 15.99 35.22
FRA 9.96 35.31 29.17 6.19 24.47 19.78 13.61 40.69 34.87
TUR 13.59 39.29 33.99 9.87 30.07 26.84 24.23 53.76 48.49
AVG. 13.45 34.10 32.31 7.98 21.14 22.48 19.15 39.74 40.72

Table 3: Fully supervised NLG performance for mT5small. AVG. shows the mean average of the
evaluation scores across all four languages. The reported scores are averaged over 3 random runs.

(Lin, 2004) and METEOR (Banerjee and Lavie,
2005).18

The results are summarized in Table 3. We
observe that the performance of English is sig-
nificantly higher than other languages in the first
setup. This disparity can be attributed to the fact
that dialog acts are considered a formal language
for the system to process internally and, except
for culturally adapted values, they are provided
in English. Therefore, it is more challenging for
a model to learn how to generate natural lan-
guage utterances in other languages. Furthermore,
by incorporating the dialog history and the oracle
dialog act, the performance of all three languages
improved significantly, indicating that modeling
the dialog history contributes to more coherent
responses. Lastly, in the absence of database in-
formation, the performance for all languages is
considerably low. This highlights the challenge
of modeling TOD, and underlines the necessity of
incorporating databases into the TOD models in
future work.

End-to-End Modeling. Finally, E2E modeling
performance serves as an even more comprehen-
sive, challenging and arguably more important
indicator for assessing the progress of TOD re-
search, garnering intensified research attention
(Hosseini-Asl et al., 2020; Lin et al., 2020; Peng
et al., 2021; Su et al., 2022; Wu et al., 2023,
inter alia). Developing an E2E system offers sev-
eral advantages over focusing on individual sub-
components like NLU modules or dialog state
trackers. The E2E approach achieves increased
applicability, enabling the development of practi-
cal real-world applications. Moreover, it reduces

18All NLG experiments were run on a single A100 80 GiB
GPU; batch size of 32, a learning rate of 1e− 3; 10 epochs.

vulnerability to error propagation across sub-
components and offers a simpler system design
compared to the traditional pipelined approaches.

To the best of our knowledge, no previous pub-
licly available implementation of a multilingual
E2E TOD system exists that would be compatible
with the MultiWOZ dataset and its derivatives.
Other available multilingual TOD benchmarks ei-
ther lack E2E results (Hung et al., 2022; Ding
et al., 2022), or do not release their implementa-
tion (Zuo et al., 2021). The only exception is
BiToD (Lin et al., 2021b); however, the BiToD
dataset and the associated system use a different
annotation schema, which is incompatible with
MultiWOZ. Therefore, we present the first pub-
licly available implementation of a multilingual
E2E system compatible with the MultiWOZ-
related datasets. We release this implementation
as a baseline for further research and experimenta-
tion on MULTI3WOZ.

Our system is composed of three key compo-
nents: a Dialog State Tracking (DST) model, a
Database (DB) Interface component, and a Re-
sponse Generation (RG) model. First, the DST
model is a sequence-to-sequence model, which
takes the concatenated lexicalized form of all the
historical utterances as input and generates a lin-
earized dialog state (e.g., hotel price range =
cheap; type = hotel). Then, the DB Interface
transforms the predicted dialog state into an SQL
query. This query is executed, resulting in a list
of entities that satisfy the specified constraints,
which are then returned to the system. Finally, the
RG model, also implemented as a seq2seq model,
takes as input the concatenation of historical ut-
terances, predicted dialog state, and a database
summary that indicates the number of entities re-
turned for each active domain (e.g., restaurant
more than five). It generates a delexicalized re-
sponse, which can be further lexicalized using
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Language End-to-End Modeling

Inform Success BLEU

ENG 67.9 39.0 15.7
ARA 66.8 36.7 14.0
FRA 47.9 22.2 12.0
TUR 45.9 21.2 16.7
AVG. 57.1 29.8 14.6

Table 4: Fully supervised E2E performance for
mT5large. AVG. shows the mean average of the
evaluation scores across all four languages. The
reported scores are averaged over 3 random runs.

the values in the predicted dialog state and the
returned entities from the database.

In our implementation, we utilize two separate
mT5large models as the backbone for the DST
model and the RG model. As discussed later,
we opt for the large model because it demon-
strates a substantial performance advantage over
its smaller counterpart. The data preprocessing,
including the linearization of dialog state anno-
tations for training, and the evaluation protocol
are based on the established implementation of
the SOLOIST system (Peng et al., 2021). To en-
sure up-to-date functionality, our implementation
is based on the most recent version 4.30 of the
HuggingFace transformers repository. Our sys-
tem is designed to prioritize simplicity and effi-
ciency, with the primary goal of minimizing the
complexity and effort required for training, eval-
uation, and future development. We report the
standard evaluation metrics for the E2E task, in-
cluding the Inform Rate, Success Rate, and the
delexicalized corpus BLEU score.19

Table 4 presents the results of the fully super-
vised E2E experiments. As anticipated, we ob-
serve noticeable performance disparities across
languages, particularly in comparison to English.
Furthermore, we find that the size of the pre-
trained language model significantly impacts
system performance. Specifically, the mT5large

model exhibits a substantial (mean average) per-
formance improvement of 16.4 Inform Rate, 17.2
Success Rate, and 4.6 BLEU points, compared
to mT5small.

19All E2E experiments were run on a single A100 80 GiB
GPU; batch size of 4, learning rate of 5e− 5; 5 epochs.

5 Conclusion

We have introduced a large-scale, culturally
adapted, multilingual, and multi-parallel training
and evaluation framework for TOD, which cov-
ers ∼495,000 dialog turns over 4 languages. The
dataset was motivated by the limitations of cur-
rent TOD datasets in multilingual setups, which
we systematically analyzed as one contribution of
this work. Owing to its unique set of properties
and scale, beyond initial analyses and experiments
conducted in this work, we hope that MULTI3WOZ
will inspire a wide array of further develop-
ments in modeling, analysis, and interpretability
of multilingual and cross-lingual multi-domain
TOD.

For instance, future work could replicate the
data collection process to expand the dataset
to even more languages (including low-resource
ones). Further, one could analyze the performance
disparities observed in Tables 2–4 within each
language-specific TOD system, as well as explore
methods to mitigate such disparities, e.g., through
the utilization of cross-lingual transfer techniques.
Future work could also explore evaluation met-
rics beyond the ones explored in this work, e.g.,
it would be interesting to explore the correla-
tion between the increase in evaluation scores in
multilingual TOD systems and the resulting per-
formance gain in terms of factors such as utility,
user experience, and user satisfaction. Addition-
ally, it would be important to investigate how TOD
systems should, ideally, be constructed and eval-
uated across different languages to ensure their
inclusiveness and robustness in diverse linguistic
contexts.

Code and Data. We release the dataset and code
at github.com/cambridgeltl/multi3woz.
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Majewska, Qianchu Liu, Ivan Vulić, and Anna
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