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Abstract

A patient portal allows discharged patients to
access their personalized discharge instruc-
tions in electronic health records (EHRs).
However, many patients have difficulty un-
derstanding or memorizing their discharge
instructions (Zhao et al., 2017). In this paper,
we present PaniniQA, a patient-centric inter-
active question answering system designed to
help patients understand their discharge in-
structions. PaniniQA first identifies important
clinical content from patients’ discharge in-
structions and then formulates patient-specific
educational questions. In addition, PaniniQA
is also equipped with answer verification func-
tionality to provide timely feedback to correct
patients’ misunderstandings. Our comprehen-
sive automatic & human evaluation results
demonstrate our PaniniQA is capable of im-
proving patients’ mastery of their medical in-
structions through effective interactions.1

1 Introduction

Limited patient understanding of their medical
conditions can lead to poor self-care at home.
Upon hospital discharge, physicians often provide
discharge instructions to aid in patients’ recovery
and disease self-management (Federman et al.,
2018). However, some patients may have diffi-
culty understanding and memorizing instructions
due to low health literacy, limited memory, or

∗Indicates equal contribution.
1Our data and code are released at https://github

.com/pengshancai/PaniniQA.

an absence of supervision. For example, re-
search shows that patients only retain a minimal
amount of information from discharge instruc-
tions, with an immediate forgetting rate of up to
80% (Kessels, 2003; Richard et al., 2017). Further,
when instructions are misinterpreted by patients,
there is often a lack of corrective intervention.
Limitations in a patient’s understanding of their
medical conditions hinder their prospects of re-
covery. It is imperative to investigate new methods
of patient education to enhance health outcomes.

In this study, we explore a novel method in-
spired by Dialogic Reading (Whitehurst, 2002)
to educate patients through interactive question-
answering. Dialogic Reading actively involves
patients in the learning process by following the
P.E.E.R. sequence: Prompt, Evaluate, Expand, and
Repeat, which enables patients to engage in a
meaningful dialogue, further strengthening their
understanding and retention of the material. As
illustrated in Figure 1, our dialog agent asks
questions about key aspects of discharge instruc-
tions and encourages patients to read and under-
stand the instructions to provide accurate answers
thoroughly.

Crafting questions that effectively meet educa-
tional objectives is challenging (Boyd-Graber and
Börschinger, 2020; Dugan et al., 2022). A suitable
question should be based on the patient’s discharge
instruction and aim to improve their understanding
of health conditions, such as ‘‘What was the prob-
able cause of your chest pain?’’. Conversely, the
question ‘‘How does cardiac catheterization help
treat a heart attack?’’ illustrated in Figure 1, may
exceed the education scope, as it is unanswerable
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Figure 1: An illustration of PaniniQA, our interactive
question-answering system for patient education. It
generates questions from discharge instructions, help-
ing patients understand their health conditions through
interactive question answering. An answer verification
module confirms correct responses or expands feed-
backs on partially correct ones. The final turn shows a
GPT-generated question. Its answer is absent from the
discharge instruction and it is deemed inappropriate for
patient education.

or requires knowledge beyond the provided dis-
charge instruction. Such questions are considered
unsuitable for patient education.

We introduce new question-generation meth-
ods that draw on the advancements of large
language models (LLMs) (Brown et al., 2020;
Ouyang et al., 2022; OpenAI, 2023). Utilizing
OpenAI’s GPT-3.5 model, we generate informa-
tive questions from discharge instructions. Fur-
ther, we combine LLMs with medical event and
relation extraction to constrain the model, pro-
ducing questions that target salient medical events
identified in the discharge instructions. We cre-
ate a new dataset with expert-annotated medical
events and relations for discharge instructions from
the MIMIC-III (Johnson et al., 2016a) database.
While earlier efforts have annotated events that
physicians would discuss during patient handoff
(Pampari et al., 2018; Lehman et al., 2022), our
focus is on identifying pairs of medical events
with correlational or causal relationships. By pos-

ing questions about one event, we guide patients
toward the other as potential answers.

Our system further incorporates an answer
verification module to provide instant patient feed-
back. When patients give correct answers, the
bot confirms them, reinforcing their understand-
ing. If answers are incorrect or partially correct,
the bot clarifies misunderstandings and provides
additional information. Extensive automatic and
human evaluations demonstrate the efficacy of
our question-generation methods and show that
PaniniQA holds great promise for promoting pa-
tient education. To summarize, our research con-
tributions are as follows.

� We explore a new way of educating patients
regarding their health conditions through in-
teractive question-answering. Our approach
aligns with the P.E.E.R. dialogic reading
theory that promotes patients’ active par-
ticipation in comprehending medical events.

� We compare questions generated using
OpenAI’s GPT-3.5 model, our enhanced
method with medical event extraction, and
human-written questions tailored for patient
education. We meticulously evaluated all
questions, answers, and patients’ educational
outcomes.

� Through comprehensive human evaluations,
we demonstrate that PaniniQA holds promise
for patient education. Future work includes
controlling the difficulty of questions, pri-
oritizing questions given patients’ health
literacy, and enabling interactive learning of
medical concepts.

2 Related Work

There is a growing need to improve patients’ un-
derstanding regarding their hospital experiences
(Federman et al., 2018; Weerahandi et al., 2018;
Kwon et al., 2022). Lack of understanding can
result in non-adherence to discharge instructions
and readmission to the hospital due to poor self-
care at home. Previous research has attempted
to generate hospital course summaries for pa-
tients using lay language (Di Eugenio et al., 2014;
Acharya et al., 2018; Adams et al., 2021; Cai et al.,
2022a; Hartman and Campion, 2022; Adams et al.,
2022). This paper goes a step further by utilizing
interactive question answering to communicate
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essential medical events from discharge instruc-
tions to patients, thus enhancing their understand-
ing and retention of the material.

Our proposed method differs from existing
clinical question-answering studies in several as-
pects. Most clinical QAs are designed to satisfy
individuals’ information needs, with questions
modeled after those that can be asked by physi-
cians (Pampari et al., 2018; Jin et al., 2019;
Raghavan et al., 2021; Lehman et al., 2022).
These systems focus on improving the accuracy
of their answers (Soni and Roberts, 2020; Rawat
et al., 2020; Yue et al., 2020a,b). In contrast,
our goal is to educate patients and prompt them
with questions that will enhance patients’ under-
standing of their doctors’ visits. A successful QA
system should be comprehensive and exhaustive,
asking all relevant questions and prioritizing them
based on the patient’s medical history and health
literacy.

Successful patient education requires effective
questioning (Pylman and Ward, 2020). Particu-
larly, question generation has been studied using
template-based (Heilman and Smith, 2010; Chali
and Hasan, 2015; Fabbri et al., 2020) and neu-
ral seq2seq models (Du and Cardie, 2017; Duan
et al., 2017; Kim et al., 2018; Sultan et al., 2020;
Shwartz et al., 2020). Instruction-tuned LLMs
have demonstrated exceptional abilities in con-
versing with humans (Brown et al., 2020; Sanh
et al., 2021; Ouyang et al., 2022; Chowdhery et al.,
2022; Longpre et al., 2023). However, most re-
search has been conducted using CommonCrawl,
Wikipedia, and other generic texts. Considering
the factuality issues of neural language models
(Maynez et al., 2020; Pagnoni et al., 2021), ques-
tion generation in the medical domain remains
challenging.

Learning through conversation can improve
education outcomes (Golinkoff et al., 2019; Zhang
et al., 2020; Cai et al., 2022b; Yao et al., 2022a,a;
Xu et al., 2022). Dialogic Reading (Whitehurst,
2002; Mol et al., 2008; Lever and Sénéchal, 2011)
has demonstrated that engaging children in a
guided conversation with parents while reading
storybooks can significantly enhance their learn-
ing outcomes. While engaging physicians in high-
quality conversations may not always be feasible,
the use of question answering facilitated by a
chatbot could be a valuable means of helping pa-
tients acquire a deeper understanding of their
health conditions.

3 Question Answering in the GPT Era

LLMs such as ChatGPT have led to significant
advancements in generative AI (Brown et al.,
2020; Sanh et al., 2021; Chowdhery et al., 2022;
Longpre et al., 2023; OpenAI, 2023; Wang et al.,
2023a). Fine-tuning neural models on specific
tasks often yields superior results. Furthermore,
LLMs acquire emergent abilities through instruc-
tion tuning and reinforcement learning using hu-
man feedback (Ouyang et al., 2022). This allows
them to generalize to new tasks effectively. Com-
mon human–LLM interactions include (a) zero-
shot prompting, where users provide a prompt for
the LLM to complete, and (b) in-context learn-
ing, where users give task examples and ask the
LLM to solve a new case, potentially involving
a multi-step reasoning process (Wei et al., 2022).
In this study, we focus on zero-shot prompting
to assess the LLM’s ability to comprehend dis-
charge instructions.

LLMs possess vast world knowledge, and
their performance on knowledge-intensive tasks
correlates with training data and model size
(Bommasani et al., 2022). However, it remains
unclear whether LLMs have enough domain
knowledge to facilitate patient education. For ex-
ample, GPT-3, with its 175 billion parameters,
is trained on general data sources such as Com-
mon Crawl, WebText2, Books, and Wikipedia
(Brown et al., 2020). Yet, the model still generates
factually inconsistent errors within their output.
Our study presents an initial evaluation of GPT
models’ potential in interactive patient education.
Following the P.E.E.R. framework of dialogic
reading, we employ GPT models to perform the
following tasks:

Question Generation. We use OpenAI’s
GPT-3.5 model (text-davinci-003) to gen-
erate informative questions from a discharge
instruction. The questions aim at helping patients
understand crucial medical events. Our prompt
is ‘‘Generate N questions to help the patient
understand crucial medical events in the above
discharge instruction.’’ Similar to a teacher
designing exam questions, we anticipate the GPT
model to produce a set of questions all at once
rather than incrementally. The questions must
collectively cover the salient events identified
in the discharge instruction while minimizing
redundancy.
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Answer Verification. Useful feedback is essen-
tial for improving patient comprehension of the
material. To perform this task, we prompt the
GPT model with ‘‘As a physician, your goal in
the conversation is to help your patient better
understand the discharge instructions before they
leave the hospital.’’ Utilizing OpenAI’s API, we
also provide the original discharge instruction,
interaction history, and current question-answer
pair as key-value pairs for the model. We then
instruct the model to ‘‘verify if the patient’s an-
swer is correct, incorrect, or partially correct,
and generate a suitable response to improve
the patient’s comprehension of this question.’’
We empirically compared two GPT models,
text-davinci-003 and gpt-3.5-turbo
(ChatGPT), and selected ChatGPT for answer
verification as it is optimized for chat and gener-
ally produces higher quality responses.

4 Extracting Salient Medical Events

In this section, we present our question-answering
system that emphasizes identifying salient med-
ical events and their relations. We generate tar-
geted questions using them and apply the same
answer verification module described previously.

A typical discharge instruction includes Visit
Recap, which recaps a patient’s clinical visit, in-
cluding symptoms, diagnoses, treatments, and test
results. Patients are expected to understand the
relationships among these medical events, such
as how the treatment ERCP relates to cholangitis
as illustrated in Table 2 (top). Detailed Instruc-
tions include medication and aftercare instructions
(bottom). They may be easy to understand but
contain trivial details that patients may over-
look, potentially hindering their self-care at home.
We propose automatically extracting key medi-
cal events and relations from them (§4.1). Given
their unique characteristics, we apply two distinct
information extraction and question generation
strategies for Visit Recap and Detailed Instructions
to produce targeted questions (§4.2).

4.1 Event and Relation Identification

Key event and relation identification are con-
ducted on Visit Recap. Event identification is
framed as a sequence labeling task, where we as-
sign a label to each token of the discharge note,
representing its event type. We define 11 event

types in this study, detailed in Table 3, includ-
ing symptoms, diseases, complications, tests, test
goals/results/implications, procedures, medicines,
treatment goals, and results. We fine-tune pre-
trained sequence labeling models on our dataset,
optimizing the cross-entropy loss of gold stan-
dard labels.

Relation identification is framed as a sequence
classification task. We focus on binary relations
consisting of two medical events. We evaluate
all pairwise combinations of identified medical
events as candidates, provided their event types
align with the six event relations defined in
Table 1. Special tokens are inserted before and
after each identified event to indicate both its po-
sition and event type.2 The sequence, enhanced
with special tokens, is fed into a sequence classi-
fication model to predict a binary label, where 1
indicates a relation between the two events, and
0 otherwise. We fine-tune pre-trained sequence
classification models on our dataset (§5) by op-
timizing the cross-entropy loss for gold-standard
labels.

We perform key event identification on De-
tailed Instructions using a different tool, as they
contain medication and aftercare specifics that
patients might overlook. We use an existing
high-performing medical NER system to extract
medical entities.3 This model was pre-trained on
the MACCROBAT dataset (Caufield et al., 2019)
and can identify 84 biomedical entities within
clinical narratives. We limit the model to identify
7 entity types: Medicine Dosage, Medicine Fre-
quency, Medicine Duration, Medication Name,
Sign & Symptom, Diagnostic Procedure, Upcom-
ing Appointment. Relation identification is not
performed on detailed instructions.

4.2 Question Generation

Visit Recap. We generate a question from each
identified binary relation. Different relation types
are mapped to specific questions using templates

2E.g., the sentence ‘‘You were admitted for diverticuli-
tis and treated with antibiotics’’ was modified as ‘‘You
were admitted for <dsyn> diverticulitis </dsyn> and treated
with <medi> antibiotics </medi>, where the special tokens
<dsyn> and </dsyn>’’ indicates the start and end position
of this event, and dsyn reflects the event belongs to the cate-
gory Disease.

3https://pypi.org/project/Bio-Epidemiology
-NER/.
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Table 1: Expert-written question templates are used to generate a question from each binary relation.
This method enables us to create targeted questions about salient medical events. By posing questions
about one event, we guide patients towards the other as potential answers. The placeholders are to be
replaced with medical events detected from discharge instructions.

Table 2: Question generation (QG) from a medical
event (bottom) or a binary relation of events (top).

provided by physicians according to their domain
knowledge (see Table 1). Using a template-based
approach allows us to create questions targeting
salient medical events. By asking questions about
one event, we guide patients towards the other as
potential answers.

Detailed Instructions. We generate a question
for each identified medical entity by creating a
fill-in-the-blank question, which is then converted
into a natural language question using the GPT
model. An example is shown in Table 2. Although
cloze-style questions can serve educational pur-
poses, we want to prevent patients from using
string matching to find answers. Instead, natu-
ral language questions require patients to have a
deeper understanding of the discharge note, thus
fulfilling our education objective. When selecting
medical entities as triggers, we prioritize four cat-
egories: Medicine Dosage, Medicine Frequency,
Medicine Duration, and Upcoming Appointment,
as they are informative and better guide patient
comprehension. To convert a cloze-style question
into a natural question, we provide this prompt
to the GPT model: [Fill-in-the-Blank Sentence]

Generate a simple question targeting the blank in
the above sentence.

5 Data Annotation

We seek to annotate discharge instructions from
the MIMIC-III database (v1.4) (Johnson et al.,
2016a) with key medical events that are important
for patients to understand. MIMIC-III is a publicly
available repository of de-identified health records
of over 40,000 patients collected from the Beth Is-
rael Deaconess Medical Center in Massachusetts.
Our aim is to identify text snippets in discharge
instructions that correspond to significant med-
ical events, including symptoms, diseases, test
results, and treatments. We annotate not only in-
dividual events but also their relationships. They
are organized into a hierarchy as outlined in the
schema shown in Table 3. Consistent with Lehman
et al.’s (2022) approach, we utilize events and
their relationships as triggers that prompt the
generation of questions.

We recruited five medical experts to create a siz-
able dataset. They are MD students at UMass Chan
Medical School and have a high level of language
proficiency. Each expert is given 150 discharge
notes to annotate. It is possible to skip some notes
due to low text quality. Annotators were also given
detailed instructions and examples. We developed
a web-based interface to facilitate the annotation
process, which has been iteratively improved to
meet the needs of this study. Due to budget con-
straints, we assign one annotator to each discharge
note. In total, we completed 458 discharge notes
with medical event annotations.

Our annotation consists of two phases. In the
first phase, an expert selects text snippets from the
discharge instruction corresponding to medical
events that the patient needs to understand. Each
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Table 3: A hierarchy of salient medical events.
We consider both medical events (E) and their
binary relationships (R).

Figure 2: Word cloud demonstrating the most fre-
quent medical terminologies and their frequency in
our annotations. The sizes of the terminologies refer
to their frequency in our dataset. These terminologies
are identified from annotated medical events using
SciSpacy.

snippet is assigned a coarse event category, such
as a medical issue, laboratory test, treatment.
The expert further refines it by assigning a fine-
grained event type, resulting in a schema with 11
event types (Table 3). In the second phase, the
expert identifies relationships between medical
events using a set of 6 pre-defined relationships,
such as ‘‘[Symptom] . . . caused by [Disease].’’
We show a distribution of medical events in
Figure 2.

A key distinction between our work and earlier
dataset curation efforts (Pampari et al., 2018; Yue
et al., 2020b; Lehman et al., 2022) is that the ear-

lier efforts aim to annotate questions that physi-
cians would ask during patient hand-off, which
may be informal and unanswerable based on the
discharge instruction. In contrast, our focus is on
annotating salient medical events that are essen-
tial to patient’s understanding of their medical
conditions.

We split our annotated data into train / vali-
dation / test splits, which contain 338 / 60 / 60
discharge instructions, respectively. For relation
identification, we use the event pairs from the
human-annotated relations as positive relations
and all other medical event pairs of compliant
types (e.g., the event pair types in Table 3) as
negative relations. We collect all negative event
pairs4 as negative cases. Overall, our medical re-
lation dataset contains 2530 / 399 / 332 instances
in the train / validation / test set, respectively;
28.7% instances are positive relations.

6 Evaluating Information Extraction

To improve LLMs’ ability to generate educa-
tionally effective questions for patient education,
we designed an Information Extraction (IE)
module (medical event/relation identification) to
guide question generation. We report automatic
evaluation results for different IE methods in this
section.

6.1 IE Evaluation Settings

We fine-tune four pre-trained language models on
our annotated dataset for key medical event and
relation identification in Section 5. These models
are obtained from HuggingFace: (1) BERT-large
(Devlin et al., 2019); (2) BioBERT (Lee et al.,
2020); (3) PubmedBERT (Gu et al., 2020); (4)
ClinicalRoBERTa (Lewis et al., 2020); All four
pre-trained models have the same scale of pa-
rameters (345 million). The later three language
models were pre-trained on different bio-medical
or clinical corpora, thus are better transferable to
our patient education task due to the model’s level
of medical knowledge (Sung et al., 2021; Yao
et al., 2022b,c). The models are trained on a sin-
gle RTX 6000 GPU with 24G memory. The av-
erage training time for the relation identification

4That is, no relationship exist between the event pair,
in addition, the types of the two events are restricted by
Table 1.

1523



Pretrained Model P(%) R(%) F1(%)
M

ed
ic

al
E

ve
nt

s Bert 31.38 44.58 36.83
BioBert 40.43 51.63 45.35
PubmedBERT 42.70 50.12 46.11
ClinicalRoBERTa 44.28 54.03 48.67

E
ve

nt
R

el
at

io
ns Bert 57.48 75.31 65.21

BioBert 73.41 80.37 76.73
PubmedBERT 72.56 75.31 73.91
ClinicalRoBERTa 74.28 82.27 78.07

Table 4: Results of fine-tuning four pretrained
models on IE task: medical event extraction (Top)
and event-relation identification (Bottom).

Table 5: Automatic evaluation results of medical
event identification per category with Clinical-
RoBERTa model.

model is around 20 minutes.5 For evaluation met-
rics, we report the model’s Micro-average pre-
cision, recall, and F-1 score.

6.2 IE Evaluation Results

The performance of four evaluated models is
in Table 4. The results suggest that the mod-
els pre-trained with biomedical or clinical corpus
show better performance than the naive BERT
model. For both tasks, ClinicalRoberta achieves
the best performance, so we report only this
model’s performance in following category-wise
performance analysis.

We further report more fine-grained results
of the medical event extraction per category in
Table 5, and the Symptom, Disease, Test, Proce-
dure, and Medicine categories generally achieve
better performance, as we suspect it is due to a
more abundant training data. Table 6 shows the

5Due to data sparsity, when training both the medical
event and relation identification models, we first explore
the optimal hyper-parameter set using the validation set.
We then combine the validation set into the train set to
train our models.

Table 6: Event-Relation detection per category
with ClinicalRoBERTa model.

fine-grained performance of event-relation iden-
tification per category. The F-1 scores of most
relations are around 80%, implying fair perfor-
mance. The relation Test goal achieves 100% in
precision because our test set contains eight Test
goal instances.

To explore the generalization ability of the
model, we compare the model’s performance on
seen and unseen medical events during training.
Specifically, seen events are events that appear
in the training set, while unseen events are not.
We observed that 15.21% of the test instances
are unseen medical events. For the medical-event
extraction task, the F1 score of seen events is
49.36%, and the F1 score of unseen events is
44.82%. For the event-relation identification task,
if both event in the event pair are seen events, the
model achieves 78.72% in F1 score, otherwise
the performance drop to 74.50%. This indicates
the model only shows slight drop in performance
when encountering unseen medical events during
training.

7 Evaluating Patient Education

In order to comprehensively evaluate patient
education outcome, We conducted human evalu-
ations from both the patient’s and the physician’s
perspectives, as well as a GPT-4 powered au-
tomatic evaluation. These evaluations focus on
two main aspects: (1) The generated question’s
quality of different models (GPT, GPT+IE, and
human ground-truth); (2) The preference of dif-
ferent designs of the interaction experience (None
of support, Raising Questions only, and Raising
Questions and Verifying Answers).

7.1 Human Evaluation Settings

The goal of physician evaluation is to have
human domain experts evaluate whether these
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Figure 3: System UI of our human evaluation study: the left panel shows a discharge note (Condition None), and
the right panel provides the question-answering interactions to the user via a chatbot. The bot can either present
only questions (Condition Q in green boxes) or plus answer feedbacks (Condition QA in orange boxes).

machine-generated questions are comparable to
the human-crafted questions or not. To do so,
we recruited 3 medical practitioners6 and their
tasks are to read the discharge instructions, and
provide qualitative feedback on if these machine-
generated questions are educationally effective to
the patients; if not, how should they be improved.

The goal of patient evaluation is to have
the general public users interact with and pro-
vide ratings on the different combinations of
the question-generation models and the interac-
tion designs. We also designed a post-experiment
evaluation task (i.e., Cloze Test) to quantitatively
measure their understanding outcome. We recruit
30 human evaluators to participate in our patient
education experiment. All the evaluators have
bachelor’s degrees but do not have any medical
education background. We present a screenshot of
our patient evaluation user interface in Figure 3.

In our study, we have the following three op-
tions for the user interaction experience design:

1. Condition None: The evaluator only sees
the discharge instruction, no question-answer
interaction. This is today’s baseline.

2. Condition Q: The evaluator reads the dis-
charge instruction, and interact with the
chatbot, which can only ask questions but
do not to provide feedback to users’ answers.

3. Condition QA: The evaluator reads the dis-
charge instruction, and interact with the

6Two licensed physicians and one medical student with
hospital internship experience.

chatbot, which can ask questions and provide
answer feedback to the user.

The questions asked by the chatbots can come
from following three sources:

1. Human: Expert-written questions based on
discharge instructions. We ask an MD stu-
dent to read each discharge instruction and
write down all questions she would ask a
patient about this discharge instruction for
patient-education purposes.

2. GPT: We utilize GPT-3 model to generate
a series of questions (at least four) directly
from the discharge instruction. Specifically,
we use the following prompt: [Discharge In-
struction] Generate at least four questions to
help the patient understand crucial medical
events in the above discharge instruction.7

3. GPT+IE: Our question generation model
enhances by the information extraction tech-
nique described in Section 4.

The average number of questions from approach
Human / GPT / GPT+IE are 7.5 / 6.17 / 6.1. When
combining the variety of interaction designs and

7We have tried a collection of prompts for the similar
purpose, and do not observe significant differences in the
quality of generated questions. We used the chosen prompt
as it is naive to understand and leads to more succinct
questions. Specifically, we instruct GPT-3 to generate at
least four questions to benchmark against the least number
of questions from the human annotator.
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question-generation methods, there are five differ-
ent conditions: (1) None; (2) Q (Human); (3) QA
(GPT); (4) QA (GPT+IE); (5) QA (Human). We
perform a within-subject experiment setup, where
each of the 30 human evaluators should experi-
ence all five conditions using different discharge
instructions. In total, we have 150 data points (30
per each condition). The order of the five condi-
tions are shuffled so that each condition appears
six times at each of the five orders.

7.2 Patient Evaluation Measurements
We use two measurements to evaluate patient’s
educational outcome and preference.

1) CLOZE TEST: We recruited an MD student
to identify 5–7 important medical events that she
thinks the patient should be aware of, and replace
them with blanks. We use these cloze tests as
a post-study evaluation to ask each participant
to try their best to fill in the blanks using their
memory. The more blanks they fill in correctly,
the better the patient’s education outcome is. We
report the participant’s accuracy rate as the pri-
mary evaluation outcome.

2) PREFERENCE RANKING: We ask evaluators to
rank their experience using the following four
questionnaire items (Evaluators are allowed to
rank two conditions as tied):

• Coverage: Does the conversation cover the
cloze test in the evaluation?

• Appropriateness: Are the questions properly
raised, and appropriate for patient education?

• Education Outcome: How do you think the
learning experience improves your under-
standing of discharge instructions?

• Overall: How do you like the general learning
experience considering the above aspects?

We report the Mean Reciprocal Rank (MRR)
(Radev et al., 2002) of each model’s final rank-
ing. Generally, a higher MRR value implies the
evaluators have more preference over an approach.

7.3 GPT-4’s Automatic Evaluation Settings
Following recent practice of applying LLMs in
evaluating dialogue tasks (Liu et al., 2023), we
utilize GPT-4 as the evaluation model to auto-
matically measure the quality of AI generated
questions and feedback. Similar to patient eval-
uation in Section 7.2, we evaluate the quality

You are a physician who wants to evaluate how helpful an AI model
is for educating patients. The model asks the patient questions, then
verifies the patient’s answers, in order to help patients memorize
their discharge instructions.
Four evaluation aspects for AI model’s question quality includes:
Coverage: Does the conversation cover the cloze test in
the evaluation?
Question Appropriateness: Are the answers to the questions
contained in the discharge instruction?
Education Outcome: Do you think the chatbot helps patients
understand their discharge instructions?
Overall: How do you like the general experience with the chatbot
considering the above aspects?
Two evaluation aspects of the AI model’s feedback includes:
Correctness: Are the responses from the AI model factually correct?
Education Potential: Do the AI model’s responses provide helpful
information for educating patients?
5-point Likert scale:
1: very low rating
2: low rating
3: neutral or medium rating
4: higher rating
5: very highly rating
The patient’s discharge instructions: [The Patient’s Discharge
Instruction] The conversation between the patient and the AI model:
[The Conversation History]
Give the 5-point Likert scale of the AI model’s question quality
(four aspects) and answer feedback (two aspects) one by one.
Return the scores as dictionary objects, adhering to the following
structure: ‘‘Coverage’’: . . . , ‘‘Question Appropriateness’’: ....
Please provide your response solely in the dictionary format without
including any additional text.

Table 7: Prompt presented to GPT-4 for evaluat-
ing the quality of generated questions and answer
verification feedback. GPT-4 is expected to out-
put a score on each perspective directly.

of generated questions from the four perspective
(i.e., Coverage, Question Appropriateness, Edu-
cation Outcome and Overall). Additionally, we
also evaluate the quality of AI models’ feedback
from two perspectives, i.e., Correctness and Ed-
ucation Potential. Our prompt to the evaluation
model is shown in Table 7. We collect the eval-
uation model’s responses and report the average
score of each perspective.

7.4 Synthesized Dataset for Evaluation

Directly presenting real health records to LLMs
or participants can lead to data privacy viola-
tion.8 Thus, we created 30 synthesized discharge
instructions for our human evaluation study. We
randomly sampled 30 hospital course notes (a
part of EHR data) from the MIMIC-III data-
base, and converted them into synthetic discharge
instructions following a neural abstractive sum-
marization method proposed by Cai et al. (2022a).

8https://physionet.org/content/mimiciii
/view-dua/1.4/.
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Table 8: Examples of the synthetic discharge
instructions and generated questions.

Our physician collaborators reviewed these syn-
thesized discharge instructions to ensure content
validity and anonymity.

We then apply the various ways (human, GPT,
GPT+IE) to created question-answer pairs for
these anonymized synthesized data. We demon-
strate some sampled discharge instructions and
corresponding generated questions in Table 8.

7.5 Physician Evaluation Results

We interview three physician participants with
the following questions: (1) Do you think the
questions are effective for patients to understand
the important info in the discharge instruction? If
not, what questions would you ask? (2) How do
you like the questions generated from GPT and
GPT+IE?

Physician participants all believe that GPT-
generated questions tend to target content that
patients do not need to be aware of (e.g., ask-
ing why heart attack could cause chest pain is a
medical-domain-specific knowledge not suitable
for patient’s education). Sometimes the answers
to the GPT-generated questions do not even ex-
ist in the discharge instruction. Take example 1
in Table 8, the question asks what the patient
should expect in their follow-up visits, but this
information is not mentioned in the discharge in-

struction. These qualitative findings may explain
why GPT-generated questions’ are rated by pa-
tient participants as having a low accuracy score
in the Cloze Test metric, as well as being ranked
lower in Coverage, Appropriateness, and Educa-
tion Outcome in Section 7.6.

Worth noting, in some cases where the answers
are not in the discharge instructions, physician
participants actually believe those questions could
be useful for patient education. In example 2 in
Table 8, although the discharge instruction does
not contain information on how to maintain the
stent, physicians still think it is a question they
would ask their patients, as it would motivate
patients to have better self-managed recovery
activities.

For questions generated by GPT+IE, most
questions were perceived by the physicians as ap-
propriate (e.g., example 3). However, the GPT-IE
may still generate improper questions due to er-
rors in the medical event-relation identification.
As shown in example 4, the information extrac-
tion model identifies the symptom ‘‘swelling in
your throat’’ as a disease, which leads to im-
proper questions.

Physician participants also suggested that some
GPT-IE-generated questions lack language flu-
ency. As shown in example 5, the generated ques-
tion seems redundant and can be better rephrased
as ‘‘How long do you need to take Prednisone?’’

7.6 Patient Evaluation Results

We summarize the patient evaluation results in
Figure 4. From the (a) Cloze Test chart, we ob-
serve that having a chatbot interact with patient
participants (regardless of only with Q or with
both QA) can indeed improve their performance
over the baseline condition None, which suggests
our proposed interactive question-answering de-
sign is a promising for patient education. In terms
of whether having an answer feedback is help-
ful or not, the 92.7% accuracy of QA (Human)
significantly outperforms the 80.6% accuracy
performance of Q(Human), this implies the im-
portance of validating patients’ answers and
presenting feedback, thus we decided to always
including an answer feedback when conduct-
ing further comparison analysis regarding the
GPT v.s. GPT+IE question generation algo-
rithms. The result shows that QA (GPT+IE) 88.3%
achieves higher accuracy than QA (GPT) 74.1%.
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Figure 4: Patient evaluation results, including Cloze Test accuracy and evaluator rankings’ MRR scores across
four categories (higher is better). The methods are represented with color-coding: None-blue, Q (Human)-orange,
QA (GPT)-yellow, QA (GPT+IE)-beige, QA (Human)-green.

This demonstrates the improvement by apply-
ing enhancements to LLMs for patient education
purposes.

The result related to Evaluator Ranking shows
(plots (b, c, d, e) in Figure 4): (1) Considering the
Overall ranking of three sets of questions using
QA interactive approach, Human quesions per-
forms better than AI generated questions. This
suggests machine-generated questions are still not
comparable to human ones. (2) Comparing the
three interactive approaches, we observe QA (Hu-
man) >> Q(Human) > None, which is in line with
the findings of Cloze Test. (3) In terms of Appro-
priateness, and Education outcome, GPT achieves
the lowest ranking. According to our observation,
many GPT-generated questions ask the evaluators
about content not existing in the discharge instruc-
tion. As a result, evaluators think the questions are
inappropriate and do not help patient education.
(4) QA(GPT+IE) has higher ranking in Cover-
age than QA(GPT). This result is consistent with
other recent discussions that incorporate the copy-
ing mechanism into LM or LLM by modifying
the model structure, loss function, or prompting
(Wang et al., 2023b; Chang et al., 2023; Eremeev
et al., 2023). QA(Human) has higher ranking in
Coverage than Q(Human), despite they use the
same questions. This suggests much benefit is
provided to patients through the answer feedback
interaction.

7.7 GTP-4’s Automatic Evaluation Results
In terms of question quality (as shown in
Figure 5), we observe GPT-4’s evaluation scores
generally follow the same pattern of patient evalu-
ation results, where questions from Q(Enhanced)
are deemed better than Q(Direct). In addition, we
observe the scores of all approaches are close
or higher than 4, this implies GPT-4 judges the
generated questions are of good quality in four

Figure 5: GPT-4’s evaluation scores for question
quality.

perspectives. In terms of answer verification, as
all interactive conditions all share the same ver-
ification method, we only present the average
Correctness and Education Potential score. Spe-
cifically, GPT-4 gives 4.14 on Correctness and
4.01 on Education Potential. Both scores are
above four, indicating GPT-4 judges feedback
from our AI agents’ feedback as high quality.

7.8 Heuristic Evaluation of
Conversation Log

We further conducted a heuristic evaluation to
explore the deficiency of AI-generated responses
and potential improvements. Specifically, we asked
an MD student to evaluate the conversation log
data of all patient participants.9 Overall, we col-
lect 192 responses from 30 conversations be-
tween the participants mimicking patients and the
AI model.

9The conversation logs are re-used from the patient
evaluation described in section 7.6.
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Table 9: Examples of chatbot’s answer feedback.

We ask our MD-background human evaluator
to grade each of the AI model’s answer feed-
back, and we apply the same evaluation metric,
i.e., correctness and education potential as in-
troduced in Section 7.3. We apply binary coding,
i.e., evaluator judge response as positive or neg-
ative. The positive rate for Correctness is 86.4%,
and the positive rate for Education Potential is
74.1%. This suggests that most responses are fac-
tually correct and provide helpful information to
patients.

Table 9 shows some examples of the answer
feedback from the chatbot, and we have following
design suggestions for future research to improve
the quality of the answer feedback: (1) Most re-
sponses are helpful for patients in reviewing their
discharge instructions (example 1). But, some re-
sponses are factually incorrect and may confuse
patients. The AI model may state that the patient’s
answer is incorrect or partially correct (exam-
ple 3), while the patient’s response is actually
completely correct. (2) While the responses are
generally helpful, they still have a deficiency in
providing sufficient and attentive responses in ed-
ucating patients like a human physician. As shown

in example 4, a physician will provide more in-
formation about the distinctions between the two
medications, including the specific diseases for
which they are prescribed.

8 Limitations and Ethical Considerations

This study offers valuable insights, but with a
few limitations we would like to note.

Biases. Large language models trained on vast
amounts of text data can pick up biases present in
data. For example, they may prefer certain ques-
tions related to aspirin or even associate certain
health conditions with specific groups of peo-
ple. They may also perpetuate misinformation and
provide incorrect information. In addition, people
who participated in our evaluation have differ-
ent levels of language proficiency and medical
background. These biases may be mitigated by en-
hancing model alignment with each individual’s
background and health literacy level.

Broader Impacts. We have performed a pre-
liminary study to educate patients on discharge
instructions using interactive question answering.
Although we evaluated our system using the
MIMIC III dataset, which represents an intensive
care unit setting, the system should be generaliz-
able to other settings, including perioperative care
(from preparation before the surgery to recovery
after the surgery), cancer treatment, and chronic
condition management. Our system may help
patients receive customized information that is
tailored to their individual needs and preferences.

Social Influence. Our system has two pillars.
First, it is grounded in discharge notes, where we
identify important medical events and their re-
lationships that patients should know. Second, it
serves an education purpose. For that, we explore
the P.E.E.R. sequence to prompt the patient, eval-
uate, extend and ask them to repeat the answer to
reinforce their understanding. Additionally, social
influence strategies such as small talk, empa-
thy, persuasion can be explored in the future to
shape, reinforce, or change a patient’s behavior
and promote engagement.

Privacy Implications. LLMs can present pri-
vacy concerns in patient education when health
records are used, potentially violating the HIPPA
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regulations. However, in this study, we handle
data usage with great care. We conduct all ex-
periments on open-sourced real patient data and
present an approach to synthetic patient discharge
notes. Each synthetic discharge note used in this
study has been reviewed by physicians to ensure
their validity. We strictly limit our API usage to
synthetic data.

9 Conclusion

In this study, we present PaniniQA, a patient-
centric interactive question answering system de-
signed to help patients understand and memorize
their discharge instructions. PaniniQA generates
educational questions from discharge instructions
after identifying salient medical events and event
relations. LLMs with prompting is promising for
question-answer generation, but sometimes hal-
lucinating. Extensive evaluations highlight the
importance of providing answer feedback.
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