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Abstract

When applying multimodal machine learn-
ing in downstream inference, both joint and
coordinated multimodal representations rely
on the complete presence of modalities as
in training. However, modal-incomplete data,
where certain modalities are missing, greatly
reduces performance in Multimodal Sentiment
Analysis (MSA) due to varying input forms
and semantic information deficiencies. This
limits the applicability of the predominant
MSA methods in the real world, where the
completeness of multimodal data is uncertain
and variable. The generation-based methods
attempt to generate the missing modality,
yet they require complex hierarchical archi-
tecture with huge computational costs and
struggle with the representation gaps across
different modalities. Diversely, we propose a
novel representation learning approach named
MissModal, devoting to increasing robust-
ness to missing modality in a classification
approach. Specifically, we adopt constraints
with geometric contrastive loss, distribution
distance loss, and sentiment semantic loss to
align the representations of modal-missing and
modal-complete data, without impacting the
sentiment inference for the complete modal-
ities. Furthermore, we do not demand any
changes in the multimodal fusion stage, high-
lighting the generality of our method in other
multimodal learning systems. Extensive exper-
iments demonstrate that the proposed method
achieves superior performance with minimal
computational costs in various missing modal-
ities scenarios (flexibility), including severely
missing modality (efficiency) on two public
MSA datasets.

1 Introduction

With the proliferation of the Internet and the surge
of user-generated videos, Multimodal Sentiment
Analysis (MSA) has become an important and
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challenging research task that focuses on predict-
ing sentiment with multiple modalities including
text, audio, and vision (Morency et al., 2011; Poria
et al., 2020). The previous models (Zadeh et al.,
2017; Tsai et al., 2019a; Wang et al., 2019; Han
et al., 2021) aim at learning a mapping function
to fuse the information of different modalities and
obtain distinguishable multimodal representations
for sentiment inference. As shown in Figure 1,
these MSA methods input utterances with mul-
tiple modalities to train the mapping function of
multimodal representation in the supervised of
ground truth labels, and apply the learned MSA
models in the downstream testing to predict the
sentiment of other utterances.

However, both training and testing pipelines in
these MSA methods require complete-modal data,
indicating the sensitivity to missing modalities for
the mapping function. Missing any modality in
testing causes differences in the distribution of
input data from training, leading to performance
drops of the mapping function. Due to the un-
certainty and various modality settings in the real
world, the demand for the integrity of modalities
limits the application of the previous strategies of
multimodal representation learning.

To deal with the issues of missing modalities,
generation-based research emerges which focuses
on leveraging the remained modalities to generate
the missing modalities (Tsai et al., 2019b; Pham
et al., 2019; Tang et al., 2021). These generative
models have complex hierarchical architecture,
which requires redundant training parameters and
high computational costs in training. Besides, their
generative performance is still challenged by the
huge modality gap among different modalities,
further limiting their application in the real world.

Different from the generative methods, we pro-
pose a novel multimodal representation learning
approach named MissModal, devoted to increas-
ing the model’s robustness to missing modality
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Figure 1: Illustration of missing modality in testing
when applying the trained multimodal represen-
tation model in downstream application, where
T,A, V denotes textual, acoustic, and visual modality,
respectively.

in a classification way. Specifically, we utilize
dependent modality-specific networks to learn
representations for each modality. Then accord-
ing to complete modalities—(text, audio, vision)
and missing modalities (text), (audio), (vision),
(text, audio), (text, vision), (audio, vision)—
we adopt multimodal fusion networks with a
consistent structure to learn the corresponding
complete-modal and missing-modal representa-
tions. To transfer the semantic knowledge of com-
plete modalities, we construct three constraints to
align missing-modal and complete-modal repre-
sentations, including geometric contrastive loss to
utilize constrative learning at the level of samples,
distribution distance loss to adjust the distribution
of representations, and sentiment semantic loss to
introduce supervise of sentiment labels.

Aiming at improving the downstream perfor-
mance of MSA models in the real world, we
retain the completeness of modalities in training,
and then freeze the trained model for valida-
tion and testing with different missing rates for
diverse modalities to evaluate the flexibility (ran-
domly missing various modalities) and efficiency
(severely missing modalities) of the proposed
approach.

The contributions are summarized as follows:

1) We propose a novel multimodal represen-
tation learning approach named MissModal,
devoted to increasing the robustness of MSA

models to the issues of missing modalities in
downstream applications.

2) Without generative methods, we construct
three constraints to align the representations
of missing and complete modalities, consist-
ing of geometric contrastive loss, distribution
distance loss, and sentiment semantic loss.

3) Extensive experiments on two publicly avail-
able MSA datasets with various settings
of missing rates and missing modalities
demonstrates the superiority of the proposed
approach in both flexibility and efficiency.

2 Related Work

2.1 Multimodal Representation Learning

Diverse modalities such as natural language, mo-
tion videos, and vocal signals contain specific
and complementary information on a common
concept (Baltrušaitis et al., 2019). Multimodal
representation learning focuses on exploring the
intra- and inter-modal dynamics and learning
distinguishable representations for various down-
stream tasks (Bugliarello et al., 2021). Recently,
contrastive learning-based multimodal pre-trained
models, e.g., CLIP (Radford et al., 2021), WenLan
(Huo et al., 2021), and UNIMO (Li et al., 2021),
leverage contrastive learning to train transferrable
mappings to bridge large-scale image-text pairs.
The successful downstream application of these
pre-trained models demonstrates the effectiveness
of contrastive learning in aligning representations
of different modalities.

As a task branch of multimodal machine learn-
ing, Multimodal Sentiment Analysis (MSA) aims
at integrating the semantic information contained
in different modalities, including textual, acoustic,
and visual modalities, to predict the sentiment in-
tensity of an utterance (Poria et al., 2020). Previous
MSA methods mostly concentrate on designing ef-
fective multimodal fusion methods to explore the
commonalities among different modalities (Zadeh
et al., 2017; Rahman et al., 2020; Han et al., 2021)
and learn informative multimodal representations.
However, the training pipeline of explicit fusion
strategies requires the presence of all modalities.
Missing any modality in the downstream raises
the differences of input condition between training
and testing, causing wrong inference of sentiment
in applications.
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Figure 2: The overall architecture of the proposed MissModal. The missing-modal representations Fmiss and
complete-modal representations FM are aligned with the guidance of the proposed losses Lgeo, Ldis, and Lsem at
both feature space and prediction level.

2.2 Missing Modality Issues

The aforementioned multimodal pre-trained mod-
els heavily depend on the completeness of
modalities, making them fail to handle the issues
of modality-incomplete data. As Ma et al. (2022)
indicate, multimodal transformers (Hendreicks
et al., 2021) are sensitive to missing modal-
ities and the modality fusion strategies are
dataset-dependent which significantly affects the
robustness. Therefore, to address missing modal-
ity issues, generation-based methods (Ma et al.,
2021; Vasco et al., 2022) are proposed to learn
a prior distribution on modality-shared represen-
tation and infer the missing modalities in the
modality-shared latent space, which are also em-
ployed in the MSA task (Tsai et al., 2019b; Pham
et al., 2019; Tang et al., 2021). Nevertheless, these
generation-based methods require large computa-
tional costs and the generative performance is
limited by the huge modality gaps. Meanwhile,
they mostly demand complex hierarchical model
architecture which lack generality and efficiency
in the downstream application. Differently from
them, we are devoted to utilizing the classification
approach instead of generation to reach the per-
formance upper bound in the scenarios of missing
modalities.

Recently, Hazarika et al. (2022) proposed ro-
bust training by utilizing missing and noisy
textual input as data augmentation to train the
state-of-the-art MSA models. However, the appli-
cation of robust training is limited by the settings
of single modality and fixed missing rates. Di-

versely, according to the missing rates and the
diversity of missing modalities, we evaluate the
performance by flexibility (randomly missing var-
ious modalities) and efficiency (severely missing
modalities in testing) to show the improvement of
robustness to missing modalities for the proposed
approach.

3 Method

3.1 Task Definition

The input of MSA task is utterances which can
be denoted as triplet (T,A, V ), including tex-
tual modality T ∈ R

�T×dT , acoustic modality
A ∈ R

�A×dA , and visual modality V ∈ R
�V ×dV ,

where �U denotes the sequence length of cor-
responding modality and du denotes the feature
dimension forU ∈ {T,A, V }. The goal is learning
to map the multimodal data (T,A, V ) into mul-
timodal representations F = f(T,A, V ), where
F ∈ R

NM×dM can be utilized to infer the final
sentiment scores ŷ ∈ R. Specifically for bet-
ter generalization performance in the downstream
applications, the multimodal representation map-
ping f learned by the training data needs to handle
the testing scenario as well, regardless of the
completeness of modalities.

3.2 Model Architecture

To increase the robustness to missing modalities
in testing, we propose a novel multimodal rep-
resentation learning approach named MissModal,
whose architecture is shown in Figure 2.
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To obtain the modality-specific representations,
we firstly adopt the pre-trained BERT (Devlin
et al., 2019) to encode the input text embedding
T and learn the textual representation, where the
output embedding of the last Transformer layer is
represented as:

Ft = BERT (T ; θT ) ∈ R
�T×dT (1)

Meanwhile, for the acoustic and visual modal-
ities, we utilize two bidirectional LSTMs
(Hochreiter and Schmidhuber, 1997) to capture
the temporal characteristics and two 3-layer
unimodal Transformers (Vaswani et al., 2017)
to further encode the global self-attention
information. For U ∈ {A, V }, the audio and
vision encoders are formulated as:

hU = bLSTM(U ; θU ) ∈ R
�U×dU

FU = Transformer(hU ; θU ) ∈ R
�U×dU

(2)

Specially, we take the [CLS] token of FT

and the embedding from the last time step of
FA and FV , meaning that for U ∈ {T,A, V },
the modality-specific representations FU satisfies
FU ∈ R

dU .
To capture the modality-shared dynamics,

we utilize multimodal fusion networks to learn
the latent interactions among different modal-
ities. Specifically, devoted to better handling
various cases of missing modality, we con-
catenate the modality-specific representations
in seven ways to simulate seven input cir-
cumstances, including the settings of complete
modalities, denoted as (T,A, V ) and the re-
maining modalities after missing, denoted as
{(T ), (A), (V ), (T,A), (T, V ), (A, V )}. To high-
light the effectiveness of MissModal, without
losing generality, we adopt several simple MLP s
with Tanh activation layers as the fusion net-
works to extract the inter-modal information after
concatenation, represented as:

FM = MLP ([T ;A;V ]) ∈ R
dM

Fmiss = MLP ([modalityi; ...]) ∈ R
dM

(3)

where [; ] denotes the concatenation of the modali-
ties, FM denotes the multimodal representation
with complete modalities and Fmiss denotes
the representations with the inputs of remaining
modalityi, 1 ≤ i < 3.

Note that the structure of multimodal fusion net-
works is optional and can be flexibly substituted

by state-of-the-art multimodal fusion methods, il-
lustrating the backward compatibility of the pro-
posed approach.

3.3 Constraints when Missing Modalities
As shown in Figure 1, to improve the robust-
ness of the model to the missing modalities,
we propose three losses as constraints to align
the missing-modal representations Fmiss with the
complete-modal ones FM in the following.

3.3.1 Geometric Contrastive Loss
Poklukar et al. (2022) indicate that there are
huge gaps between the modality-specific repre-
sentations and complete representations leading to
severe misalignment in the distribution space. In-
spired by but different from Chen et al. (2020) and
Poklukar et al. (2022), we introduce contrastive
learning among the multimodal representations
with complete modalities and the ones with differ-
ent cases of missing modalities to geometrically
align the representations from the same utterance
samples in the supervision of sentiment labels.

Given a mini-batch of multimodal representa-
tions B = {F i

M , F i
miss}Bi=1, we define positive

pairs as (F i
M , F i

miss) while the negative ones as
(F i

M , F j
M ), (F i

miss, F
j
miss) and (F i

M , F j
miss) ac-

cording to the ith and jth samples from the
mini-batch B. Then we compute the sum of
similarities among the negative pairs as:

sp,q(i, j) = exp(F i
p · F j

q /γ), p, q ∈ {M,miss}

Np,q(i) =
B∑

i �=j

sp,p(i, j) +
B∑

j=1

sp,q(i, j)

(4)
where γ is a temperature hyperparameter reg-
ulating the probability distribution over distinct
instances (Hinton et al., 2015). Similarly, the sim-
ilarity of the positive pairs is denoted as sp,q(i, i),
relating the missing-modal representations with
the corresponding complete-modal ones.

By traversing all samples in the mini-batch, the
geometric contrastive loss Lgeo is represented as:

Lgeo = − 1

B

B∑

i=1

log
sp,q(i, i)

Np,q(i)
(5)

The contrastive learning encourages multi-
modal fusion networks to transfer complete-modal
information to the missing-modal representations,
making them more distinguishable when handling
the missing modalities issues in applications.
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3.3.2 Distribution Distance Loss

To further enhance the similarity of F i
miss and

the corresponding F i
M , we add L2 distance con-

straints to reduce the distribution distance among
the missing-modal and complete-modal represen-
tations from the same sample. The distribution
distance loss Ldis is represented as:

Ldis =
1

B

B∑

i=1

‖F i
M − F i

miss‖22 (6)

Both geometric contrastive loss Lgeo and distri-
bution distance loss Ldis increase the model’s
robustness in the feature space when missing
modalities.

3.3.3 Sentiment Semantic Loss

Due to various semantic information contained in
diverse modalities, missing modalities may result
in different sentiments of the same utterance. For
the consistency in the inference of sentiment polar-
ity, we introduce the sentiment semantic lossLsem

to utilize the ground truth labels y to supervise the
sentiment prediction of the missing-modal repre-
sentations in the label space, which is denoted
as:

Lsem =
1

B

B∑

i=1

|yi − ŷimiss| (7)

3.3.4 Optimization Objective

In the MSA task, after obtaining the sentiment
prediction ŷiM with complete modalities, we apply
Mean Absolute Error (MAE) loss to conduct the
regre ssion of sentiment labels. Along with the
ground truth labels y, the task loss is formulated
as:

Ltask =
1

B

B∑

i=1

|yi − ŷiM | (8)

Lastly, we calculate the weighted sum of all
training losses to obtain the final optimization
objective, which is represented as:

Ltotal = Ltask + Lsem + αLgeo + βLdis (9)

where α and β denote the hyperparameters con-
trolling the impact of the training losses for
the missing-modal representations in the feature
space.

4 Experiment Setting

4.1 Datasets and Metrics

The experiments are conducted on two benchmark
datasets in MSA research: CMU-MOSI (Zadeh
et al., 2016) contains 2,199 monologue utterances
sliced from 93 YouTube movie opinion videos
spanning 89 reviewers. We utilize 1,284 utterances
for training, 229 utterances for validation, and
686 utterances for testing. CMU-MOSEI (Zadeh
et al., 2018b) expands the multimodal data into 20k
video clips from 3,228 videos in 250 diverse topics
collected by 1,000 distinct YouTube speakers.
We utilize 16,326 utterances for training, 1,871
utterances for validation, and 4,659 utterances for
testing. Both of the datasets are annotated for the
sentiment on a Likert scale ranging from −3 to +3,
where the polarity indicates positive/negative and
the absolute value denotes the relative strength of
expressed sentiment.

For the evaluation metrics, we report
seven-class classification accuracy (Acc7) for
sentiment classification in [−3, +3], as well
as binary classification accuracy (Acc2) and
weighted F1-score (F1) in two measurement set-
tings as non-negative&negative (non-exclude 0)
(Zadeh et al., 2017) / positive&negative (exclude
0) (Tsai et al., 2019a). Moreover, we calculate
mean absolute error (MAE) and Pearson corre-
lation (Corr) for the regression difference and
correlation between the prediction labels and
ground truth.

4.2 Baselines

The MSA baselines are broadly categorized as:

• Simply early and late fusion models: EF-
LSTM (Williams et al., 2018b), LF-DNN
(Williams et al., 2018a);

• Tensor-based fusion models: TFN (Zadeh
et al., 2017), LMF (Liu et al., 2018);

• Graph-based fusion model: Graph-MFN
(Zadeh et al., 2018b);

• Generative and translation-based model:
MFM (Tsai et al., 2019b), MCTN (Pham
et al., 2019), CTFN (Tang et al., 2021);

• Explicitly intra- and inter-modal dynam-
ics manipulation models: MFN (Zadeh
et al., 2018a), MISA (Hazarika et al., 2020);
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Models
CMU-MOSI CMU-MOSEI

Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑ Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑
EF-LSTM 34.5 77.8/79.0 77.7/78.9 0.952 0.651 49.3 80.1/80.3 80.3/81.0 0.603 0.682
LF-DNN 33.6 78.0/79.3 77.9/79.3 0.978 0.658 52.1 78.6/82.3 79.0/82.2 0.561 0.723
TFN 33.7 78.3/80.2 78.2/80.1 0.925 0.662 52.2 81.0/82.6 81.1/82.3 0.570 0.716
LMF 32.7 77.5/80.1 77.3/80.0 0.931 0.670 52.0 81.3/83.7 81.6/83.8 0.568 0.727
MFN 34.2 77.9/80.0 77.8/80.0 0.951 0.665 51.1 81.8/84.0 81.9/83.9 0.575 0.720
Graph-MFN 34.4 77.9/80.2 77.8/80.1 0.939 0.656 51.9 81.9/84.0 82.1/83.8 0.569 0.725
MFM 33.3 77.7/80.0 77.7/80.1 0.948 0.664 50.8 80.3/83.4 80.7/83.4 0.580 0.722
MCTN 33.7 78.7/80.0 78.8/80.1 0.960 0.686 52.0 80.4/83.7 80.9/83.7 0.570 0.728
CTFN 29.9 78.9/80.4 78.7/80.3 0.964 0.683 50.0 80.6/83.2 81.0/83.0 0.582 0.720
MulT 35.0 79.0/80.5 79.0/80.5 0.918 0.685 52.1 81.3/84.0 81.6/83.9 0.564 0.732
MISA 43.5 81.8/83.5 81.7/83.5 0.752 0.784 52.2 81.6/84.3 82.0/84.3 0.550 0.758
MAG-BERT 45.1 82.4/84.6 82.2/84.6 0.730 0.789 52.8 81.9/85.1 82.3/85.1 0.558 0.761
Self-MM 45.8 82.7/84.9 82.6/84.8 0.731 0.785 53.0 82.6/85.2 82.8/85.2 0.540 0.763
MMIM 45.0 83.0/85.1 82.9/85.0 0.738 0.781 53.1 81.9/85.1 82.3/85.0 0.547 0.752

MISAτ 41.3 80.6/82.4 80.6/82.4 0.795 0.764 52.6 81.3/84.8 81.7/84.7 0.545 0.761
MAG-BERTτ 46.0 82.5/84.4 82.4/84.4 0.734 0.790 53.5 81.8/84.8 82.1/84.7 0.542 0.758
Self-MMτ 46.1 82.4/84.2 82.4/84.1 0.727 0.791 53.7 79.6/84.0 80.2/84.0 0.535 0.763
MMIMτ 44.6 83.1/84.3 83.1/84.4 0.753 0.771 53.2 80.4/84.0 80.9/83.9 0.547 0.755

MissModal 47.2 84.1/86.1 84.0/86.0 0.698 0.801 53.9 83.4/85.9 83.6/85.8 0.533 0.769

Table 1: Performance comparison between MissModal and baselines with complete modalities on the
testing sets of MOSI and MOSEI. τ denotes that the baselines are reproduced under robust training
(Hazarika et al., 2022).

• Transformer-based fusion models: MulT
(Tsai et al., 2019a), MAG-BERT (Rahman
et al., 2020);

• Label-guidance: Self-MM (Yu et al., 2021);

• Mutual information maximization model:
MMIM (Han et al., 2021).

We reproduce the baselines with hyperparame-
ter grid searches for the best results. Additionally,
we run the state-of-the-art models under robust
training with 15% masking and 15% noisy lan-
guage data following Hazarika et al. (2022) in the
circumstances of complete modalities and missing
textual modality for a fair comparison.

4.3 Implementation Details

Following the settings of baselines, we adopt the
pre-trained BERT-base-uncased model to encode
textual input and obtain raw textual features with
768-dimensional hidden states for each token.
Besides, we utilize the CMU-Multimodal SDK to
pre-process audio and vision data which applies

COVAREP (Degottex et al., 2014) and Facet1 to
extract raw acoustic and visual features.

We conduct the experiments on a single GTX
1080Ti GPU with CUDA 10.2. For the hyperpa-
rameters, following Gkoumas et al. (2021), we
perform fifty-times random grid search to find
the best hyperparameters setting including α and
β in {0.3, 0.5, 0.7}, and τ in {0.5, 0.7, 0.9}. The
batch sizes for MOSI and MOSEI are set as 32.
For optimization, we adopt AdamW (Loshchilov
and Hutter, 2019) as the optimizer with the learn-
ing rate 5e-5 for the parameters of BERT on both
datasets, and 5e-4 on MOSI and 1e-3 on MOSEI
for the other parameters.

For both complete and missing modalities set-
tings, we run experiments five times and report
the average performance as the final results. In the
experiments with missing modalities, we remain
the completeness of modalities of the training sets
of both datasets to fine-tune the model, and then
freeze the model for the validation and testing sets
with different missing rates for diverse modalities

1iMotions 2017, https://imotions.com/.
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Models
CMU-MOSI CMU-MOSEI

Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑ Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑
Missing 30% textual modality

MISAτ 31.8 72.7/73.8 72.2/73.5 1.003 0.620 48.3 77.2/76.6 76.3/75.1 0.653 0.616
MAG-BERTτ 36.3 70.6/71.0 70.0/70.5 0.994 0.624 47.8 75.3/77.2 75.5/76.6 0.650 0.623
Self-MMτ 35.8 74.1/76.1 73.0/75.3 0.929 0.669 49.1 77.2/77.6 76.8/76.5 0.627 0.634
MMIMτ 34.9 73.3/74.4 73.0/74.2 0.968 0.627 49.0 76.9/77.0 77.0/76.4 0.640 0.628
MissModal 38.7 74.2/76.3 73.2/75.5 0.907 0.664 49.1 77.9/78.1 77.4/77.0 0.634 0.635

Missing 50% textual modality
MISAτ 27.3 66.4/67.1 64.7/65.6 1.134 0.525 46.5 75.0/73.2 73.3/70.4 0.696 0.535
MAG-BERTτ 29.5 65.6/66.3 63.7/64.5 1.128 0.526 46.1 74.6/73.6 73.4/71.0 0.700 0.533
Self-MMτ 31.8 67.7/69.3 66.8/67.8 1.053 0.567 47.2 74.2/72.5 72.7/70.2 0.691 0.539
MMIMτ 28.8 66.7/67.2 64.4/65.1 1.142 0.530 46.7 75.0/72.7 73.0/70.9 0.697 0.529
MissModal 32.3 67.8/69.6 65.4/67.4 1.039 0.580 47.3 75.1/73.6 73.5/71.1 0.692 0.539

Missing 70% textual modality
MISAτ 22.9 61.3/61.7 59.1/59.6 1.248 0.389 44.2 72.8/69.1 69.1/62.2 0.763 0.410
MAG-BERTτ 22.6 62.1/64.0 55.8/57.9 1.253 0.409 43.8 73.0/68.5 68.4/62.6 0.768 0.392
Self-MMτ 25.5 61.4/62.9 57.7/59.4 1.194 0.442 43.5 72.3/67.1 68.5/62.1 0.755 0.404
MMIMτ 23.4 60.4/60.9 55.2/55.9 1.283 0.403 43.9 72.1/68.6 69.0/63.5 0.756 0.405
MissModal 27.1 64.4/66.7 59.1/61.8 1.164 0.450 44.6 73.9/69.3 69.4/63.6 0.755 0.407

Missing 90% textual modality
MISAτ 19.8 56.9/56.7 46.4/47.1 1.329 0.267 42.2 64.4/60.6 56.3/51.0 0.830 0.265
MAG-BERTτ 18.5 55.3/54.8 45.5/46.4 1.416 0.216 42.2 71.6/63.4 62.8/53.9 0.820 0.247
Self-MMτ 18.3 53.6/53.5 44.3/44.4 1.374 0.254 40.7 71.0/62.8 62.8/52.2 0.822 0.250
MMIMτ 18.7 54.3/54.5 44.2/44.6 1.392 0.246 41.8 69.3/64.1 62.7/53.6 0.818 0.239
MissModal 21.3 57.9/60.1 48.3/50.9 1.316 0.271 42.4 71.9/64.8 62.9/54.0 0.813 0.232

Table 2: Performance comparison between MissModal and baselines with missing textual modality in
30%, 50%, 70% and 90% missing rates. τ denotes the baselines are reproduced under robust training
(Hazarika et al., 2022).

to evaluate both flexibility and efficiency of the
proposed approach.

5 Experiment Results

5.1 Experiments with Complete Modalities

As shown in Table 1, we compare the perfor-
mance of MissModal with the state-of-the-art
MSA methods with complete modalities in train-
ing and testing. The outstanding results on
all metrics demonstrate the effectiveness of
the proposed architecture of modality-specific
and cross-modal representation learning on both
MOSI and MOSEI.

Moreover, most previous MSA models demand
the presence of fully modalities, which cannot
be directly employed when missing modalities in
the input data. To address this issue, we adopt

robust training (Hazarika et al., 2022) strategy
for the state-of-the-art MSA models. However,
regardless of the circumstances of missing modal-
ities, we observe that robust training decreases the
performance on most metrics when testing with
complete modalities due to the introduction of
masking or noisy input.

Differently, the superior experiment results of
MissModal are achieved under the constraints
with the representation of missing modalities,
which indicates that the introduction of the missing
modality mechanism does not impact the testing
performance with complete modalities.

5.2 Experiments when Missing Modalities

To show the benefits from the proposed constraints
addressing missing modality issues, we remove
modalities by replacing the modality input to zero
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Figure 3: Performance improvement of MissModal in 10%–90% missing rates of textual modality on MOSI.

Figure 4: Performance improvement of MissModal in 10%–90% missing rates of textual modality on MOSEI.

vector in both validation and testing sets. Notably,
unlike Hazarika et al. (2022) training and testing
on language as the specific missing modality, we
evaluate MissModal in various scenarios of miss-
ing textual modality, missing acoustic or visual
modality, and missing random modalities.

5.2.1 Missing Textual Modality
The textual modality is viewed as the dominant
modality in MSA task (Hazarika et al., 2020;
Wu et al., 2021; Lin and Hu, 2023) due to the

large-scale pre-trained language model and the
nature of abundant semantic information instru-
mental in sentiment understanding. We firstly
compare MissModal with the state-of-the-art
methods under robust training (Hazarika et al.,
2022) with missing textual modalities in various
missing rates. As shown in Table 2, Miss-
Modal achieves superior performance than the
state-of-the-art methods under robust training on
most metrics, especially in the circumstances of
severely missing modalities. We assume that the
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Setting Modality Missing Rate Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑

w/o MissModal
Acoustic

50% 45.9 82.4/84.3 82.3/84.3 0.728 0.782
90% 45.6 81.8/83.5 81.8/83.6 0.724 0.791

Visual
50% 45.0 82.1/83.4 82.1/83.5 0.731 0.779
90% 44.5 81.5/83.1 81.5/83.2 0.737 0.781

MissModal
Acoustic

50% 46.7 83.2/85.1 83.2/85.1 0.718 0.800
90% 46.1 82.8/84.6 82.8/84.6 0.709 0.794

Visual
50% 47.4 83.2/84.6 83.2/84.6 0.714 0.787
90% 45.8 82.8/84.4 82.7/84.4 0.723 0.785

Table 3: Performance improvement of MissModal in 50% and 90% missing rates of acoustic and visual
modality on the testing set of MOSI dataset.

Setting Modality Missing Rate Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑

w/o MissModal
Acoustic

50% 53.1 80.2/84.8 80.8/84.8 0.539 0.765
90% 52.9 79.1/84.0 79.9/84.1 0.541 0.764

Visual
50% 53.2 80.2/84.8 80.9/84.9 0.539 0.765
90% 52.7 78.3/83.9 79.2/84.1 0.550 0.761

MissModal
Acoustic

50% 53.7 81.9/85.2 82.4/85.1 0.540 0.768
90% 53.2 81.6/84.9 82.1/84.9 0.540 0.766

Visual
50% 53.2 82.4/86.1 82.9/86.0 0.536 0.768
90% 53.1 81.9/85.6 82.4/85.6 0.539 0.767

Table 4: Performance improvement of MissModal in 50% and 90% missing rates of acoustic and visual
modality on the testing set of MOSEI dataset.

fixed settings of missing and noisy rates (15%)
of robust training limit its applications on higher
missing rates of textual modality. On the contrary,
MissModal concentrates on improving the ro-
bustness of missing-modal representations, whose
performance does not depend on the fixed setting
of missing rates.

To further show the effectiveness of MissModal
in flexibility and efficiency, we run the model with
and without MissModal in different missing rates
of textual modality on the testing sets of MOSI
and MOSEI datasets as shown in Figures 3 and 4.
We observe that missing textual modalities from
10%–90% rates brings more significant drops of
average performance to the model without Miss-
Modal than the one with MissModal. Besides,
the variance of performance without MissModal
on all metrics grows rapidly as the increasing
of missing rates, which does not happen in the
experiment results of the model with MissModal.
Moreover, missing textual modality leads to polar-
ization of the predicted sentiment, which is due to

the less attention of acoustic and visual modalities
to the fine-grained sentiment. Therefore, Miss-
Modal helps the model learn more distinguishable
missing-modal representations, greatly improving
the accuracy of sentiment inference, especially in
the case of severely missing modality.

5.2.2 Missing Acoustic or Visual Modality

As the inferior modalities in MSA, acoustic and vi-
sual modalities play auxiliary and complementary
roles in the prediction of sentiment, leading to less
impact on the performance when removing these
two modalities at 50% and 90% missing rates on
MOSI and MOSEI, as shown in Tables 3–4. Nev-
ertheless, missing each of them bring sub-optimal
solution for the MSA model. With missing any
modality in any missing rates, the performance
of the model with MissModal surpasses the one
without MissModal on all metrics, demonstrating
the superiority of the proposed approach.
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Figure 5: Performance improvement of MissModal in 10%–100% missing rates of random modalities on MOSI.

Figure 6: Performance improvement of MissModal in 10%–100% missing rates of random modalities on MOSEI.

5.2.3 Randomly Missing Modalities

To demonstrate wider applications of MissModal
in addressing the issues of missing modalities, we
remove the modalities in the strategy of random
distribution sampling and run MissModal with in-
puts of the remaining modalities as the settings of
{(T ), (A), (V ), (T,A), (T, V ), (A, V )}. This ex-
periment setting is consistent with the scene when
adopting MSA model in the real world where the
presence of modalities is unknown.

As shown in Figures 5 and 6, the modalities are
randomly removed in various missing rates rang-
ing from 10%–100% on the testing sets of MOSI
and MOSEI datasets, where 100% missing rate
means that each testing utterance is incomplete
and misses modalities randomly. The model with
MissModal has a higher average performance and
lower variance than the one without MissModal,
indicating MissModal remains the upper bound of
sentiment prediction performance in the scenarios
of missing modalities.
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Lsem Lgeo Ldis Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑

Supervised

� � � 47.0 76.0/73.9 74.0/71.2 0.693 0.541
� � 46.6 75.3/73.1 73.7/69.8 0.701 0.523
� � 46.5 74.8/72.0 73.5/69.2 0.714 0.513
� 44.4 73.9/72.1 72.3/70.7 0.721 0.503

Unsupervised
� � 34.4 71.8/65.4 67.3/60.0 1.100 0.137
� 33.0 66.7/61.9 64.1/58.0 1.048 0.149

� 33.7 71.7/64.6 65.9/57.8 1.126 0.148

Table 5: Ablation study of the proposed losses in MissModal with 100% missing rate of random
modalities on the testing set of MOSEI dataset, which is divided into supervised and unsupervised
circumstances for the learning of missing-modal representations according to the existence of Lsem.

Furthermore, it is observed that MissModal has
greater improvement in performance and stability
on MOSEI than on MOSI, no matter in the settings
of missing textual modality or random modalities.
We assume that on MOSI, the model tends to
overfit the data due to the small scale of the
dataset, while on MOSEI, the larger data scale
helps reveal more significant improvement on
the generalization performance of the proposed
approach.

In general, MissModal reaches more stable and
superior performance in the experiments both on
flexibility as the randomness of missing modalities
and on efficiency, as severely missing modalities
at even 100% randomly missing rate.

6 Further Analysis

6.1 Ablation Study

We conduct an ablation study on the proposed
losses Lsem, Lgeo, and Ldis of MissModal with
100%missing rate of random modalities, as shown
in Table 5. Apparently, each loss contributes to
the training and encourages the model to reach op-
timal performance. Besides, with the supervision
of the ground truth labels in Lsem, MissModal
achieves greatly higher performance than the one
trained without Lsem. Nevertheless, only Lsem

guiding the learning at the level of prediction
is far not enough for the representations when
missing modalities. By fine-tuning at the feature
level with Lgeo and Ldis, the model learns more
robust miss-modal representations. Intriguingly,
both Lgeo and Ldis can enhance the performance
of miss-modal representations even in the unsu-
pervised circumstance without the assistance of

Modality Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑
only T 52.8 80.9/84.7 81.4/84.6 0.545 0.761
only A 41.4 71.0/62.9 59.0/48.5 0.839 0.038
only V 41.4 70.2/62.3 59.3/49.2 0.840 0.018

Complete 53.9 83.4/85.9 83.6/85.8 0.533 0.769

Table 6: Ablation study of various modalities
in MissModal on the testing set of MOSEI
dataset. T,A, V denote textual, acoustic, and
visual modality.

Lsem, which reveals new sight for the field of
unsupervised MSA.

Additionally, we evaluate the performance of
MissModal with only one specific modality when
totally missing information from other modalities.
As shown in Table 6, the experiment illustrates
that textual modality is the dominant modality
while acoustic and visual modalities serve as
the inferior modalities in MSA task, concluding
consistent with the former results and previous
research (Gkoumas et al., 2021). However, only
textual modality may trap the model into the sub-
jective and biased emotion problems (Zadeh et al.,
2017; Wang et al., 2019), degrading the perfor-
mance compared with the multimodal case. Thus,
the introduction of acoustic and visual modali-
ties is necessary to further boost the accuracy
of sentiment inference for the MSA task. Each
modality of the utterance provides unique and
complementary properties, which are extracted as
modality-specific and -shared features for the fi-
nal sentiment prediction. The demand for various
modalities indicates the necessity of improving
the robustness of MSA models when missing
modalities.
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Figure 7: Visualization of (a)(b) multimodal representation with missing and complete modalities in the embedding
space on the training set of MOSEI and (c) multimodal representation with complete modalities over different
sentiment classes in the embedding space on the testing set of MOSEI.

Table 7: Examples from the testing set of CMU-MOSEI dataset. The missing modalities input is
highlighted with red and the ground truth sentiment labels are between strongly negative
(−3) and strongly positive (+3). For each example, we show the Ground Truth and output predictions
of models with and without MissModal.

6.2 Representation Visualization

As shown in Figure 7(a)–7(b), we utilize the
t-SNE algorithm (Van der Maaten and Hinton,
2008) to provide visualization in the embedding
space for the learning processes of missing and
complete representations. Before training, signifi-
cant modality gaps exist among the missing-modal
and complete-modal representations. Through the
guidance of three proposed constraints, Miss-
Modal successfully aligns the distributions of the
representations with missing acoustic or visual
modalities and the ones with complete modalities,
leading to superior results in the experiments with

missing acoustic and visual modalities in Tables 3
and 4. Nevertheless, we observe that the absence
of semantic information makes it challenging to
optimize and align the multimodal representa-
tions lacking the textual modality, highlighting the
dominant role of textual modality as indicated by
the results in Table 6. Despite the remaining gaps
in the embedding space, the distribution shape of
representations without textual modality is similar
to others in Figure 7(b), illustrating the effective-
ness of MissModal even in the circumstance of
missing the dominant modality.

Furthermore, we visualize the representations
over different sentiment classes with complete
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modalities in the downstream testing in Figure 7(c)
to demonstrate the superiority of MissModal in the
downstream inference. The learned multimodal
representations are divided into distinguishable
clusters according to positive, neutral, and nega-
tive sentiment. Besides, the representations inside
the same sentiment class are compact and become
more and more compact with the increasing sen-
timent intensity. This reveals the relation between
multimodal representations and sentiment labels,
implicitly indicating the productive collaboration
among Lgeo, Ldis in the feature space, and Lsem

at the level of prediction.

6.3 Qualitative Analysis

To further validate the contribution of the pro-
posed approach, we present some examples where
MissModal achieves superior performance com-
pared with the model without MissModal when
missing modalities in the multimodal input data
in Table 7. The examples show various circum-
stances of missing modalities to demonstrate the
effectiveness of the three proposed constraints.

Examples 1 to 3 contain multimodal input
with missing only one modality, where the
missing modality provides additional informa-
tion to the final sentiment prediction. Without
these complementary information, the model
without MissModal tends to over-amplificate
or over-reduce the magnitude of emotion con-
tained in the utterances. Diversely, MissModal
aligns the missing-modal representations with the
complete-modal ones in the training, which im-
plicitly transfer the knowledge of the missing
modality to the remaining ones in the guidance of
sentiment labels. Thus, the sentiment prediction of
MissModal is closer to the annotated ground truth
label in these cases, leading to higher performance
on Acc7, MAE, and Corr as shown in Figure 6.

Examples 4 and 5 show cases without both
acoustic and vision modalities, illustrating that
these two inferior modalities present auxiliary
roles in sentiment inference. Especially in Exam-
ple 5, the text in the utterance can be potrayed
as mostly neutral, which results in a prediction
score close to 0 for the model without MissModal.
While due to the latent information conveyed
by the active tone and focused facial expression,
MissModal deflects the polarity of sentiment to
a bit positive, similar as the given ground truth
label.

Model Increased Parameters

MFM 5,996,541
MCTN 3,910,658
CTFN 2,852,801
MISAτ 1,435,105
MAG-BERTτ 1,352,449
Self-MMτ 165,668
MMIMτ 338,889
MissModal 340,039

Table 8: Comparison of model complexity of
MissModal and the MSA baselines. To highlight
the demands for parameters, the reported num-
ber of parameters are the increased number of
extra parameters after removing the pre-trained
language model BERT.

6.4 Model Complexity

As shown in Table 8, we compare the model
complexity of various models by reporting the
increased number of parameters on CMU-MOSEI.

Firstly, the generative models such as MFM,
MCTN, and CTFN require massive parameters
as mentioned above, strengthening the motiva-
tion of adopting classification-based methods in
computationally limited scenarios. Differently, by
simplifying the multimodal fusion networks to
significantly reduce the computation complexity,
MissModal requires parameters less than or com-
parable with the state-of-the-art baselines. The
extra increased parameters for MissModal are
brought mostly by multiple fusion networks for
various circumstances of missing modalities.

Besides, the proposed constraints in MissModal
demand no extra training parameters when ad-
dressing the issues of missing modalities. In
general, MissModal achieves better trade-off be-
tween model complexity and performance with
both complete and missing modalities.

7 Limitations

The limitations of the proposed approach are listed
in the following for future research. First, the
model parameters of MissModal depend on the
complexity of multimodal fusion networks and
the number of modalities, which may bring prob-
lems with increasing model complexity in the
downstream application of the proposed approach.
Then, the improvement of MissModal seems rele-
vant to the scale of datasets, where small datasets
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may limit the robustness of MissModal. We be-
lieve that increasing the scale of datasets can show
more effectiveness of the proposed approach in
the issues of missing modalities. Lasty, although
MissModal aims at handling missing modalities
in the stage of inference, the demand for complete
modalities in training raises difficulty in collecting
multimodal data. Getting rid of the completeness
of modalities in training is another interesting
research area for us to explore in the future.

8 Conclusion

In this paper, we present a novel classification-
based approach named MissModal to enhance
the robustness to missing modalities in the
downstream application by constructing three
constraints, including geometric contrastive loss,
distribution distance loss, and sentiment seman-
tic loss to align the representations of missing
and complete modalities. Extensive experiments
on various settings of missing modalities and
missing rates demonstrate the superiority of Miss-
Modal in both flexibility and efficiency on two
public datasets. The analysis of representation vi-
sualization and model complexity further indicates
the huge potential and generality of MissModal in
other multimodal systems.
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