
ReCOGS: How Incidental Details of a Logical Form Overshadow
an Evaluation of Semantic Interpretation

Zhengxuan Wu Christopher D. Manning Christopher Potts
Stanford University, USA

{wuzhengx, manning, cgpotts}@stanford.edu

Abstract
Compositional generalization benchmarks for
semantic parsing seek to assess whether mod-
els can accurately compute meanings for novel
sentences, but operationalize this in terms of
logical form (LF) prediction. This raises the
concern that semantically irrelevant details of
the chosen LFs could shape model perfor-
mance. We argue that this concern is realized
for the COGS benchmark (Kim and Linzen,
2020). COGS poses generalization splits that
appear impossible for present-day models,
which could be taken as an indictment of those
models. However, we show that the negative
results trace to incidental features of COGS
LFs. Converting these LFs to semantically
equivalent ones and factoring out capabilities
unrelated to semantic interpretation, we find
that even baseline models get traction. A recent
variable-free translation of COGS LFs sug-
gests similar conclusions, but we observe this
format is not semantically equivalent; it is inca-
pable of accurately representing some COGS
meanings. These findings inform our proposal
for ReCOGS, a modified version of COGS that
comes closer to assessing the target semantic
capabilities while remaining very challenging.
Overall, our results reaffirm the importance
of compositional generalization and careful
benchmark task design.

1 Introduction

Compositional generalization benchmarks have
emerged as powerful tools for diagnosing whether
models have learned to systematically interpret
natural language (Lake and Baroni, 2018; Kim
and Linzen, 2020; Keysers et al., 2020; Ruis et al.,
2020; Wu et al., 2021). The core task is to map
sentences to logical forms (LFs), and the goal is to
make accurate predictions for held-out examples
that include novel grammatical combinations of
elements. These tasks are guided by the assump-
tion that natural languages are governed by the
principle of compositionality: The meanings of
complex phrases are determined by the meanings
of their parts and the way those parts combine

syntactically, and so the meanings of novel com-
binations of familiar elements are fully determined
as well (Montague and Thomason, 1974; Partee,
1984; Janssen and Partee, 1997).

The COGS (COmpositional Generalization
Challenge based on Semantic Interpretation)
benchmark of Kim and Linzen (2020) is among
the most widely used compositional generaliza-
tion benchmarks at present, and it is noteworthy
for containing assessment splits that almost no
present-day models get traction on (Table 1). The
phenomena are remarkably simple. For instance,
in the COGS Object-to-Subject modification split
(Table 2), models are trained on modified nouns
like the cake on the plate only in grammatical ob-
ject positions and asked to make predictions about
such phrases when they are grammatical subjects.
The average score for this split in prior work is
roughly 0. Similar patterns obtain for splits requir-
ing generalization to deeper clausal embedding.
This looks like strong evidence that present-day
models cannot handle basic matters of semantic
interpretation.

We argue that this conclusion is hasty. The core
issue is one of semantic representation. The goal
of COGS is to assess whether models can compute
meanings compositionally, but this is operational-
ized as the task of predicting LFs in a specific
format. There will in general be innumerable LF
formats that express the desired meanings, and we
have no reason to privilege any particular one.

In this paper, we focus on three incidental de-
tails of syntactic form that profoundly impact
model performance and thus challenge the va-
lidity of COGS. First, we find that when we
make trivial, meaning-preserving modifications to
the LFs by removing redundant symbols, we see
substantial improvements in model performance
(Section 4.2).

We also identify subtler issues related to vari-
able binding. In COGS, all variables are bound.1

1That is, the values that each variable can take on are
specified by a variable-binding operator such as a quantifier.

1719

Transactions of the Association for Computational Linguistics, vol. 11, pp. 1719–1733, 2023. https://doi.org/10.1162/tacl a 00623
Action Editor: Benjamin Van Durme. Submission batch: 4/2023; Revision batch: 7/2023; Published 12/2023.

c© 2023 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:wuzhengx@stanford.edu
mailto:manning@stanford.edu
mailto:cgpotts@stanford.edu
https://doi.org/10.1162/tacl_a_00623

STRUCT LEX Overall
Model Obj PP → Subj PP CP Recursion PP Recursion %

BART (Lewis et al., 2020) 0 0 12 91 79†

BART+syn (Lewis et al., 2020) 0 5 8 80 80†

T5 (Raffel et al., 2020) 0 0 9 97 83†

Kim and Linzen 2020 0 0 0 73 63
Ontanon et al. 2022 0 0 0 53 48
Akyurek and Andreas 2021 0 0 1 96 82
Conklin et al. 2021 0 0 0 88 75
Csordás et al. 2021 0 0 0 95 81

Zheng and Lapata 2022 0 25 35 99 88‡

Table 1: Results on the COGS benchmark for different generalization splits, including recent seq2seq
models specialized for COGS. †Models use pretrained weights, and their results are copied from Yao
and Koller (2022). ‡Model uses pretrained weights and is hyperparameter tuned using data sampled
from the generalization splits. Our focus is on the factors behind the strikingly bad performance of all
models, but especially the models that are not pretrained, on the structural generalization splits.

They appear unbound in the LFs but they are inter-
preted as existentially closed, as in many theories
of dynamic semantics (Kamp, 1981; Heim, 1982,
1983). As bound variables, they can be freely
renamed with no change to the interpretation as
long as the renaming is consistent; truck(x) and
truck(y) are semantically identical in COGS
because both variables are implicitly bound with
existentials. However, COGS currently requires
models to predict the exact identity of variables.
This goes well beyond capturing semantics. For
neural models that rely on token embeddings,
this poses an artificial challenge for test LFs that
happen to contain novel variable names or fa-
miliar variable names that happen to appear in
new contexts. This affects COGS splits involving
novel clausal embedding depths (Section 4.3) and
novel modification patterns (Section 4.4). Again,
meaning-preserving adjustments to the COGS
LFs address these issues and allow even baseline
models to succeed.

At the same time, we emphasize that COGS
does already contain instances of variable bind-
ing relationships that are challenging for all
present-day models. A recent proposal by Qiu
et al. (2022) to map all COGS LFs to variable-free
forms is not meaning preserving precisely be-
cause it cannot handle these binding relationships
properly (Section 3). Thus, the high scores models
have obtained for this COGS variant are partly
illusory.

We close with a proposal for a revised ver-
sion of COGS, ReCOGS, that incorporates the

Figure 1: Converting COGS LFs (Kim and Linzen,
2020) into semantically equivalent LFs greatly im-
pacts model performance: removing redundant tokens
increases performance on the lexical (LEX) tasks,
while length augmentation and meaning-preserving
syntactic transformations help on the harder structural
(STRUCT) tasks. ReCOGS incorporates these lessons
while also decoupling variable names from linear po-
sition. The result is a more purely semantic task that
remains extremely challenging for present-day models.

above insights (Section 5). ReCOGS is easier
than COGS in some respects and harder in oth-
ers. Through ablation studies in Section 5, we
show that the original linear variable binding of
COGS actually make some aspects of COGS arti-
ficially easier, and can prevent us from accurately

1720

Case Split Example

Subj → Obj Proper Train Lina gave the bottle to John .
(LF) *bottle(x 3); give.agent(x 1,Lina) AND give.theme(x 1,x 3) AND

give.recipient(x 1,John)

Gen. A cat rolled Lina .
(LF) cat(x 1) AND roll.agent (x 2,x 1) AND roll.theme(x 2,Lina)

Prim → Subj Proper Train Paula
(LF) Paula

Gen. Paula painted a cake .
(LF) paint.agent(x 1,Paula) AND paint.theme(x 1,x 3) AND cake(x 3)

Prim → Obj Proper Train Paula
(LF) Paula

Gen. James rolled Paula .
(LF) agent(x 1,James) AND roll.theme(x 1,Paula)

Obj PP → Subj PP Train Emma ate the cake on the table .
(LF) *cake(x 3); *table(x 6); eat.agent(x 1,Emma) AND eat.theme

(x 1,x 3) AND cake.nmod.on(x 3,x 6)

Gen. The cake on the table burned .
(LF) *cake(x 1); *table(x 4); cake.nmod.on(x 1,x 4) AND burn.theme

(x 5,x 1)

CP Recursion Train Noah knew that Emma said that the cat painted .
(LF) *cat(x 7); know.agent(x 1,Noah) AND know.ccomp(x 1,Emma) AND

say.agent(x 4,Emma) AND say.ccomp(x 4,x 7) AND paint.agent
(x 8,x 7)

Gen. Noah knew that Emma said that John saw that the cat painted .
(LF) *cat(x 10); know.agent(x 1,Noah) AND know.ccomp(x 1,Emma) AND

say.agent(x 4,Emma) AND say.ccomp(x 4,x 7) AND see.agent
(x 7,John) AND see.ccomp(x 7,x 10) AND paint.agent(x 11,x 10)

PP Recursion Train John saw the ball in the bottle in the box .
(LF) *ball(x 3); *bottle(x 6); *box(x 9); see.agent(x 1,John)

AND see.theme(x 1,x 3) AND ball.nmod.in(x 3,x 6) AND bottle
.nmod.in(x 6,x 9)

Gen. John saw the ball in the bottle in the box on the floor .
(LF) *ball(x 3); *bottle(x 6); *box(x 9); *floor(x 12); see.agent

(x 1,John) AND see.theme(x 1,x 3) AND ball.nmod.in(x 3,x 6) AND
bottle.nmod.in(x 6,x 9) AND box.nmod.on(x 9,x 12)

Table 2: Representative COGS generalization (Gen.) splits with logical forms (LFs). Due to space
constraints, we use simplified versions of examples included in the dataset. LFs are detokenized for
readability; tokenized examples can be found in Table 3.

accessing compositional generalization of mod-
els. As we noted above, any particular choice of
LFs will be somewhat arbitrary relative to our
goals, but we feel that ReCOGS comes closer to
assessing whether our models possess the compo-
sitional generalization capabilities that Kim and
Linzen (2020) identified as essential, and our find-
ings suggest that present-day models continue to
struggle in these areas.2

2We release ReCOGS and our associated experiment code
at https://github.com/frankaging/ReCOGS.

2 Background: COGS Benchmark

COGS consists of input–output pairs mapping
English sentences to LFs. The dataset is gener-
ated using a rule-based approach, which allows
COGS to maintain systematic gaps between train-
ing and different evaluation splits. COGS LFs
are based on a Neo-Davidsonian view of ver-
bal arguments (Parsons, 1990), in which verbs
introduce event arguments and participants are
linked to those events via thematic role predi-
cates. As discussed in the original paper (Kim
and Linzen, 2020), the LFs are created by

1721

https://github.com/frankaging/ReCOGS

post-processing the simplified ones defined in
Reddy et al. (2017). The LFs are purely con-
junctive (conjunction is denoted by ; and AND),
and conjuncts are sorted by their variable names,
which are determined by the position of the head
phrase in the sentence (see Table 2 for examples).
Event predicates for nominals are not included.
Definite and indefinite phrases are formally dis-
tinguished. All COGS variables are bound; the
definiteness operator * binds variables locally to
its conjunct, and all other variables are interpreted
as bound by implicit widest-scope existential
quantifiers.

By convention, the subscripts on variables in
COGS correspond to the 0-indexed position of the
corresponding word in the input sentence. Thus,
the LF for A cat rolled Lina includes a conjunct
cat(x 1), which indicates cat is the first word in
the sentence, whereas the LF for Lina rolled a cat
includes a conjunct cat(x 3), which indicates
cat is the third word in the sentence.

The COGS evaluation metric is percent exact
string identity of logical forms. COGS pro-
vides a single training split as well as standard
in-distribution (IID) validation splits. In addition,
the dataset includes generalization splits designed
around types of examples that were not seen in
training but seem to be natural extrapolations of
examples seen in training under assumptions of
compositionality, as exemplified in Table 2. The
generalization splits cover five scenarios:

1. Interpreting novel pairings of primitives and
grammatical roles (e.g., Subj → Obj Proper).

2. Verb argument structure alternation (e.g.,
Active → Passive).

3. Sensitivity to verb class (e.g., Agent NP →
Unaccusative subject).

4. Interpreting novel combinations of modified
phrases and grammatical roles (e.g., Object
PP → Subject PP).

5. Generalizing phrase nesting to unseen depths
(e.g., CP Recursion).

The first three fall under lexical generalization,
and the final two require structural generalization.

It is noteworthy that, for the splits in group 1,
there is only a single training example for the
primitive with a single input and output token
(e.g., ‘‘Paula’’ → Paula). This leads to higher
variance across these related splits; we suspect

that model performance for these cases is affected
by when this single example is seen by the model
during training.

3 Related Work

Approaches to COGS Researchers have
adopted a variety of approaches to solving
COGS, including grammar-based rules (Herzig
and Berant, 2021), lexicons or lexicon-style
alignments incorporated into seq2seq models
(Akyurek and Andreas, 2021; Zheng and Lapata,
2021), modified Transformer models for better-
structured representations (Oren et al., 2020;
Zheng and Lapata, 2022; Bergen et al., 2021;
Csordás et al., 2021), meta-learning (Conklin
et al., 2021), tree-like neural parsers (Weißenhorn
et al., 2022), a grammar-enhanced seq2seq
learner (Wang et al., 2022), and various data
augmentation techniques (Qiu et al., 2022).

COGS Artifacts A number of recent papers in-
vestigate artifacts in compositional generalization
benchmarks such as SCAN (Patel et al., 2022)
and ReaSCAN (Sikarwar et al., 2022). Csordás
et al. (2021) focus on COGS. They examine
potential pitfalls that might lead us to underesti-
mate a model’s ability to generalize. By carefully
exploring the effects of relative positional embed-
dings and training time, they are able to increase
overall model performance from 35% to 81% on
the generalization splits. Our work complements
these findings by focusing on issues of semantic
representation.

A Flawed Variable-Free COGS Representation
Qiu et al. (2022) propose a variable-free version
of COGS and show that models score much better
on the format (which is used by Drozdov et al.
(2023) in experiments with GPT-3). However,
the representations of Qiu et al. do not preserve
the meaning of COGS examples. COGS embeds
variable-binding challenges that the variable-free
forms artificially side-step. For instance, their
formalism represents A zebra needs to walk as
need(agent=zebra,xcomp=walk(agent=zebra))

which means ‘a zebra needs a zebra to walk’,
with two unlinked occurrences of the indefinite
a zebra. Consider a model where zebra a needs
zebra b to walk, for a �= b, and no zebra a is
such that a needs a to walk. The above LF
is true in this model but our original sentence
is not (McCawley, 1968). In addition, these

1722

variable-free forms would be unable to represent
quantifier-binding relationships like Every zebra
ate its meal as well as simple reflexives like A
zebra saw itself. Since variable binding arguably
reflects one of the deepest challenges of natural
language interpretation, we argue that these
phenomena should not be marginalized.3

4 Experiments

We report on experiments studying semantic rep-
resentations for COGS. For any modifications we
apply to the dataset, we ensure there is no data
leakage, as such leakage trivializes the generaliza-
tion tests (as evidenced by the consistently very
high results for COGS IID test splits in prior
work).

4.1 Methods

Architectures Following the original COGS
paper (Kim and Linzen, 2020), we train en-
coder–decoder models with two model archi-
tectures: LSTMs (Hochreiter and Schmidhuber,
1997) and Transformers (Vaswani et al., 2017).
We adopt similar configurations to the original pa-
per. For the LSTMs, we use a 2-layer LSTM as the
encoder with global attention and a dot-product
scoring function, and a 2-layer LSTM as the
decoder with a hidden dimension size of 512.
For the Transformers, we use two 2-layer Trans-
former blocks with 4 attention heads and learnable
absolute positional embeddings4 with a hidden
dimension size of 300.

The LSTM architecture has approximately 9M
parameters whereas the Transformer architecture
has approximately 4M parameters.

Training Details We use cross-entropy loss and
a fixed number of training epochs (200 for LSTMs
and 300 for Transformers), as previous work sug-
gests that early stopping hurts model performance
(Csordás et al., 2021). We set the batch size to 128
for the Transformers and 512 for the LSTMs. We
train with a fixed learning rate of 8×10−4 for the
LSTMs, and 1×10−4 for the Transformers.

3The results of Curry et al. (1958) ensure that there is
some variable-free representation scheme that can capture
these phenomena. It may be worthwhile to develop and
explore such representations as alternative LFs for COGS.

4We found that using relative embeddings or initializ-
ing embeddings with periodic functions did not improve
performance, corroborating findings of Zheng and Lapata
(2022).

We use a single NVIDIA GeForce RTX 3090
24GB GPU to train our models. For LSTMs, the
training time ranges from 0.5 hours to 5 hours. For
Transformers, it ranges from 0.3 hours to 3 hours.
We run each experiment with 20 distinct random
seeds. Additional training details can be found in
our code repository.

No Pretraining We train all of our models from
scratch, without any pretraining, to ensure that we
are not introducing outside information that could
be relevant to the COGS generalization tasks (q.v.
Kim et al., 2022).

4.2 Experiment 1: Removing Redundant
Tokens from LFs

Our first experiments involve only very trivial
modifications to COGS LFs: We remove some
redundant tokens from the LFs, with no other
modifications to the examples, and we study
the effects this has on the lexical generalization
splits in COGS. (These modifications alone do
not significantly improve results on the structural
generalization splits.)

LF Modifications Table 3 summarizes our re-
dundant token removal strategies. The first row
gives a COGS example. Each noun or verb is
associated with a variable representing its token
position in the input sentence. Concretely, these
variables are given as three whitespace-separated
elements: x N, where N is a numeral. The
initial x, the underscore, and the spaces do not
contribute to variable identity in any way. Thus,
we can remove these prefixes without changing
the semantics of the LFs. The second row of
Table 3 depicts removal of the underscore, and
the third row depicts removal of the entire pre-
fix. Additionally, we experiment with different
token removal schemes by removing redundant
punctuation in the set {,()}.

Results Table 4 illustrates model performance
on the three most demanding lexical generalization
splits when models are trained and assessed with
these minor variants of COGS LFs. Our primary
finding is that model performance is highly sensi-
tive to redundant token removal. By removing the
prefix x , the Transformer achieves nearly 30%
better performance on average for the Primitive→
Object Proper Noun split, and the LSTM’s perfor-
mance improves 27% for the Primitive → Subject

1723

Variant (Token Removal Set) Logical Form

COGS * boy (x 3) ; hold . agent (x 1, Liam)
AND hold . theme (x 1, x 3) AND boy . nmod
. beside (x 3, x 6) AND table (x 6)

Token Removal ({x }) * boy (3) ; hold . agent (1, Liam) AND hold .
theme (1, 3) AND boy . nmod . beside (3, 6)
AND table (6)

Token Removal ({x ()}) * boy 3; hold . agent 1, Liam AND hold . theme 1,
3 AND boy . nmod . beside 3, 6 AND table 6

Token Removal ({x () ,}) * boy 3; hold . agent 1 Liam AND hold . theme 1 3
AND boy . nmod . beside 3 6 AND table 6

Table 3: Removing redundant tokens from the LF for the sentence Liam held the boy beside a table.

LEX
Model (Token Removal Set) Subj → Obj Proper Prim → Obj Proper Prim → Subj Proper Overall

LSTM 5.3[1.4, 9.3] 21.9[10.9, 32.9] 69.0[51.6, 86.3] 32.1[28.2, 36.0]

+ Tokens Removal ({x }) 5.1[0.2, 10.0] 18.1[8.7, 27.4] 76.5[60.9, 92.0] 34.9[31.5, 38.2]

+ Tokens Removal ({x ()}) 7.2[1.6, 12.9] 24.6[14.5, 34.8] 88.1[78.2, 98.1] 39.6[36.7, 42.5]

+ Tokens Removal ({x () ,}) 5.5[1.2, 9.8] 14.7[5.8, 23.6] 65.4[45.6, 85.3] 36.5[32.8, 40.2]

Transformer 74.4[71.9, 76.9] 62.4[60.1, 64.6] 97.6[96.4, 98.8] 81.3[80.7, 81.9]

+ Tokens Removal ({x }) 91.9[90.0, 93.9] 81.1[74.5, 87.7] 99.2[98.6, 99.7] 83.6[82.9, 84.3]

+ Tokens Removal ({x ()}) 86.0[83.2, 88.9] 71.2[61.3, 81.1] 97.8[95.5, 100.2] 82.8[82.1, 83.4]

+ Tokens Removal ({x () ,}) 88.3[84.4, 92.2] 73.4[65.8, 81.0] 99.0[98.7, 99.4] 83.4[82.8, 84.0]

Table 4: Results on the COGS lexical generalization splits for different token removal scheme. We
report means (over 20 evaluations) with bootstrapped 95% confidence intervals.

Proper Noun split after removing the prefix x
and parenthesis tokens.

Our findings show that model performance can
vary substantially across different semantically
equivalent LFs. In addition, while model perfor-
mance is stable in the Overall evaluation, some of
the splits show a high degree of sensitivity to the
random seed. Nonetheless, even in these splits, the
performance increases that stem from redundant
token removal are consistently large enough to be
robust to this variance.

We hypothesize that the improvements that
come from removing these redundant tokens de-
rive from simple considerations of how sequence
models operate. As shown in Figure 2, the bigram
, x appears 44,846 times, whereas the bigram ,
Emma appears 4,279 times (Emma is the most fre-
quent proper noun in the training split). Thus, the
conditional bigram probability P (x | ,) is signif-
icantly larger than P (Emma | ,). Removing the
prefix balances the dataset in this respect because
we then mostly care about P (N | ,) for different
values of N. This helps the decoder to generate less
skewed label distributions. This corroborates the
findings of Yao and Koller (2022), who show that

Figure 2: The frequencies of bigrams in the training
data starting with , become more balanced after re-
moving two incidental tokens {x }.

the decoder is heavily biased towards generating
seen n-grams.

4.3 Experiment 2: Separating Structural and
Length Generalization

The splits that focus on recursive phrase em-
bedding are among the hardest problems in
COGS. When training, models see multiply em-
bedded examples like [John knows that [Noah
knows that . . .]CP]CP containing nestings of depth

1724

Figure 3: Sequence length distributions for the COGS training split and the generalization splits. The generalization
split has inputs and logical forms with lengths completely unseen in the training set.

0–2. At test time, they see examples involving
strictly greater depth (3–12). COGS includes two
constructions that allow nesting: sentential com-
plements (nested CPs) and nominal PP modifiers
(nested PPs).

The nature of these COGS splits creates a
strict relationship between recursion depth and
sequence length: deeper recursion leads to longer
sequences. Figure 3 summarizes the situation
when it comes to input sentences and output log-
ical forms. As expected, we see non-overlapping
long-tail distributions over longer sequences.

This is perfectly well-posed as a generaliza-
tion task simultaneously assessing models on
both longer lengths and deeper recursion. How-
ever, COGS binds these two tasks together in a
way that takes us outside of the goal of assess-
ing semantic generalization. Recall that COGS
variables are named according to their linear po-
sition. This virtually guarantees that there will be
variables whose numerical components are en-
countered only at test time. For instance, if 47
is the largest variable index seen at train time,
then 48 and above will be encountered only in
testing. For models that rely on embeddings, these
new variables will have random representations
at test time. In other words, COGS is under-
specified in a way that prevents models from
learning novel positional embeddings or embed-
dings for novel positional indices. However, there
is nothing privileged about this particular variable
naming scheme; as we discussed earlier, bound
variables can be freely renamed as long as this
does not change any binding relationships.

Relatedly, for models like Transformers with
token positional embeddings, some of the position
representations will be encountered only at test

time. It is fair to say that this is a limitation of
these models that COGS is exposing, but it also
further reinforces the concern that length gener-
alization may be totally overshadowing the chal-
lenge of generalizing to novel recursion depths.

LF Modifications To overcome the challenge
of length generalization, we augment the training
data by concatenating existing examples together,
reindexing the output LFs with higher positional
indexes, and gluing them together as conjunctive
terms. In doing this, we do not add any seman-
tically new claims to the COGS training set, and
we do not create any new recursive structures.
We simply ensure that the relevant token and
position indices are not random at test time. Sim-
ilar concatenation experiments have been shown
effective in understanding model artifacts for
language model acceptability tasks (Sinha et al.,
2023).

Results Figure 4 presents our results. We grad-
ually introduce k augmented examples into our
training set, where k ∈ {256, 512, 1024, 2048,
3072}. Our results indicate that the previously
seen catastrophic failure of structural generaliza-
tion over nested clauses is largely due to the fact
that models are not trained with longer sequences.
When the sequence length issue is addressed, the
models appear to be very capable at handling
novel recursion depths. Indeed, our models now
far surpass published state-of-the-art results on
these tasks.

We further note that the failures are not due
to our setup of relative positional embeddings,
as fine-tuning a T5-base model with fixed
window-based relative positional embeddings re-
mains 0.0% on both splits, as shown in Table 1.

1725

Figure 4: Adding k items with concatenated train-
ing examples to give exposure to long sequences
greatly improves structural generalization on COGS
for both LSTM-based and transformer-based models.
(Transformer-based) SoTA performance is taken from
Zheng and Lapata (2021). The plots show means (of
20 runs) with 95% confidence interval.

4.4 Experiment 3: Variable Name Binding
Prevents Generalization

The hardest COGS split based on published num-
bers seems to be the structural generalization
task that involves interpreting novel combinations
of modified phrases and grammatical role—e.g.,
interpreting subject noun phrases with PP modi-
fiers when the train set includes only object noun
phrases with such modifiers (Noah ate the cake
on the plate. → The cake on the plate burned).
To the best of our knowledge, all prior seq2seq
models have completely failed to get traction
here (Table 1). Our goal in this section is to un-
derstand more deeply why this split has proven
recalcitrant.

To start, we observe that this split is arguably
different conceptually from the others. The train
set contains only object-modifying PPs. It is quite
reasonable for a learner to infer from this situ-
ation that PPs are allowed only in this position.
Natural languages manifest a wide range of sub-
ject/object asymmetries, and learners presumably
induce these at least in part from an absence of
certain kinds of inputs in their experience. Thus,
there is a case to be made that this split is not
strictly speaking fair in the sense of Geiger et al.
(2019): we have a generalization target in mind
as analysts, but this target is not uniquely defined
by the available data in a way that would in-

variably lead even an ideal learner to the desired
conclusion.

That said, we feel it is reasonable to explore
whether models can learn the sort of theory that
would naturally allow them to make correct pre-
dictions about these particular novel inputs, even
if their training experiences run counter to that.
However, COGS erects another obstacle to this
goal by numbering variables using a word’s posi-
tion index in the sentence. At train time, the model
sees only PP modifiers like the one in the first row
of Table 3. This associates PP modifiers with a
particular range of tokens (variable numerals). As
before, this indexing scheme is not a semantic
matter, but rather a superficial matter of represen-
tation. However, it can also be seen as very direct
supervision about the limited distribution of these
modifiers: They can associate only with relatively
high variable indices.

Additionally, for models with learned positional
indices, all modifier phrase tokens are associated
with a particular set of relatively high positional in-
dex values. These models thus further reinforce the
distributional inference that such phrases cannot
appear in subjects.

Both of the above concerns are supported by
error analyses on vanilla models trained on the
original COGS LFs. For instance, to correctly
generate the LF for subject-modifying PPs, the
model has to predict the LF term for a PP modifier
as the first conjunctive clause after the semicolon
(e.g, cake .nmod .on). However, 0% of the
model’s predictions follow this pattern, as this
never happens during training. Likewise, since no
subject-modifying PPs are seen in training, the
variables mentioned in PP clauses are never asso-
ciated with the subject. The effect of these patterns
on model behavior is clear: the first variable of any
generated modified phrase clause always refers to
a token position seen during training.

To isolate these effects from the structural gen-
eralization, we propose three data modification
strategies. None of these strategies change the set
of meanings expressed by COGS. Rather, they
make adjustments to the syntax that, according to
the COGS indexing rules, automatically expand
the range of variables and positional indices asso-
ciated with modifier phrases. Examples for each
strategy are given in Table 5.

Preposing One strategy to disentangle the ef-
fects of variable names and positional indices is

1726

Variant Sentence Logical Form (LF)

Preposing
+ Filler Words

The box in the tent Emma was
um um lended .

*box(x 1); *tent(x 4); box.nmod.in(x 1,x 4)
AND lend.theme(x 7,x 1) AND lend
.recipient(x 7,Emma)

Participial Verb
Phrase (Subj)

A leaf painting the spaceship
froze .

*spaceship(x 4); leaf(x 1) AND leaf.acl
.paint(x 1,x 4) AND freeze.theme(x 5,x 1)

Table 5: Modifications of COGS input and output sequences that we use to diagnose artifacts in the
original semantic representation. LFs are detokenized for readability; cf. Table 3 for tokenized examples.

to move the modified phrases to the front of the
sentence via preposing (topicalization). This has
no effect on argument structure or the meaning of
the corresponding LF. It simply ensures that the
model sees concurrences of positional indices that
would otherwise have only appeared in the testing
set. In our experiments, we prepose the object in
5% of training examples containing at least one
prepositional phrase.

Preposing brings a new challenge for pars-
ing, since the model needs to learn how to
parse preposed PP modifiers for object NPs as
well as the regular ones. Despite this new chal-
lenge, preposing dramatically improves model
performance.

Filler Words To further alleviate the problem
with unseen occurrences of positional indices, we
experiment with adding filler words (‘‘um’’) into
the input sentence. This shifts around the variable
names and positional indices in the LF (see the
corresponding example in Table 3). We sprinkle
1–3 filler words at random in 5% of training
examples with one or more prepositional phrase.
Filler words can be seen as mapping to the constant
conjunct with meaning True, and thus they do
not affect the overall meaning of the LF.

Participial Verb Phrases We augment the
training set by providing examples for participial
verb (PV) phrases for both objects and subjects.
The original vocabulary of COGS does not have
any participial verbs, so we added participial forms
for all verbs.5 To create full phrases, we randomly
select a participial verb and a noun. Then, we
randomly assign an article for the noun selected.
For two participial verb phrases in a row, we re-

5We did this using ChatGPT, prompted with ‘‘Convert
the following verbs into participial verbs’’ followed by a
list of verbs that exist in COGS and then hand-checked
the results.

peat this process twice. The vocabulary files of
the models are updated to include the new tokens
required for parsing these PV phrases.

As shown in the corresponding row in Table 5,
the model now needs to learn this new type of
noun modifier acl with participial verbs. We
argue that testing with PP modifiers within subject
NPs becomes more reasonable in this new setting,
as we completely isolate the potential artifacts due
to the positional indices. We add PV phrases to
15% of training examples with maximally two
PV phrases in a row. We include an easy version
without adding the novel acl token and replace
it with the existing nmod token in the LF.

Results As shown in Table 6, both the LSTM
and the Transformer model start to show progress
on this structural generalization split. Surprisingly,
the LSTM model becomes much more effec-
tive in parsing subject NPs after including PV
phrases, which contrasts with previous findings
that the Transformer model is always better than
the LSTM model at structural generalization on
average. Our modifications isolate the effect of
variable name bindings from structural general-
ization. The results suggest that the stagnation of
model performance on this split is mostly due to
the particular variable naming convention of the
current semantic representation. We later show (in
Section 5) that models overfit to the variable bind-
ing of COGS, which could make COGS artificially
easier, and prevent us from accurately accessing
compositional generalization of models.

5 ReCOGS: A Revised Version of COGS

We now propose a revision to COGS called
ReCOGS. We assemble the insights provided by
the above experiments and use them to inform a
benchmark that comes closer to assessing models
purely on their ability to handle semantic gener-
alizations. Table 7 provides an example. We first

1727

STRUCT
Model Obj PP → Subj PP CP Recursion PP Recursion Overall

LSTM 0.0[0.0, 0.0] 0.2[0.1, 0.3] 4.1[2.9, 5.3] 32.1[28.2, 36.0]

+ Preposing 8.1[6.6, 9.5] 0.3[0.1, 0.4] 3.4[2.1, 4.6] 32.7[28.6, 36.7]

+ Preposing + Filler Words 8.7[7.1, 10.2] 0.8[0.6, 1.0] 0.1[0.0, 0.2] 33.9[29.1, 38.6]

+ Participial Verb Phrase 54.9[38.0, 71.8] 3.3[2.8, 3.8] 5.8[4.7, 7.0] 43.3[41.4, 45.2]

+ Participial Verb Phrase (easy) 88.7[86.2, 91.3] 4.9[4.3, 5.4] 5.6[4.6, 6.7] 44.5[42.4, 46.5]

Transformer 0.0[0.0, 0.0] 0.4[0.2, 0.6] 8.4[8.2, 8.6] 81.3[80.7, 81.9]

+ Preposing 18.6[16.2, 21.1] 0.5[0.4, 0.6] 8.6[8.3, 8.9] 81.6[81.0, 82.2]

+ Preposing + Filler Words 20.5[19.1, 22.0] 1.3[1.0, 1.6] 9.1[8.3, 9.8] 82.6[82.2, 83.1]

+ Participial Verb Phrase 24.7[11.8, 37.6] 4.2[3.7, 4.7] 10.2[9.7, 10.7] 83.6[82.8, 84.3]

+ Participial Verb Phrase (easy) 82.7[80.9, 84.4] 3.8[3.4, 4.2] 9.9[9.3, 10.5] 85.9[85.2, 86.6]

Table 6: Results on the COGS structural generalization splits for different meaning preserving data
augmentation methods designed to ensure that the full range of needed variable indices are seen during
training. We report means (over 20 runs) with bootstrapped 95% confidence intervals. Training on these
data augmentations greatly improves compositional generalization.

Variant Logical Form (LF)

COGS zebra(x 1) AND need.agent(x 2,x 1) AND need.xcomp(x 2,x 4) AND
walk.agent(x 4,x 1)

ReCOGS zebra(47); need(13) AND agent(13,47) AND xcomp(13,48) AND walk(48)
AND agent(48,47)

Table 7: Semantic representations for A zebra needed to walk. in COGS and ReCOGS. LFs are
detokenized for readability; tokenized examples can be found in Table 3.

implement the following changes, supported by
our experiments, to create ReCOGS:

1. We remove redundant prefix tokens includ-
ing x and (motivated by Section 4.2).

2. We replace each token position index with
a random integer available in the model
vocabulary file, maintaining consistent coref-
erence. For instance, every appearance of x 3
may be replaced with x 46, which makes
the indices irrelevant to their token positions
in the sentence. For each original COGS
example, we create 5 different versions by
randomly sampling 5 distinct sets of indices.
We provide a ReCOGS variant, ReCOGSPOS,
without this change to show its effect.

3. We augment the current training split with
longer examples by concatenating existing
training examples. In total, we add in 15,360
(3,072 for each set of indices) new examples.
We make sure only unique examples are kept
(motivated by Section 4.3).

4. We prepose the object for 5% of the training
examples containing an object with at least

Train Dev Test Gen

COGS 24,155 3,000 3,000 21,000
ReCOGS 135,547 3,000 3,000 21,000

Table 8: Dataset statistics.

one prepositional phrase, and we randomly
add filler words (‘‘um’’) into these examples
(motivated by Section 4.4).

Additionally, we make the following changes that
are not experimentally supported but help make
ReCOGS LFs more consistent and expressive:

1. We treat proper nouns as predicates, which
prevents collisions when multiple distinct
entities share the same name (e.g., Mia(4)
and Mia(5) can refer to different people).
This also leads to a more uniform semantic
treatment of noun phrases in general.

2. We prepose proper nouns and nouns with
indefinite articles in the LF, parallel to def-
inites. This makes LFs more consistent.

1728

Figure 5: Model performance over different testing splits in COGS, ReCOGSPOS (original variable name bindings
are kept), and ReCOGS. We report means (of 20 runs) with bootstrapped 95% confidence intervals.

3. We separate situations and semantic roles,
and rely on variable binding to link them (e.g.,
reformat agent.eat(6,7) as eat(6)
AND agent(6,7)). The resulting LFs
more closely resemble the Neo-Davidsonian
view of verbal arguments (Parsons, 1990).

Table 8 provides basic dataset statistics for COGS
and ReCOGS.

We emphasize that ReCOGS continues to use
variables in its representations. As we noted in
Section 3, the variable-free proposal of Qiu et al.
(2022) does not always preserve the meanings of
the original COGS representations. COGS embeds
variable-binding challenges that this variable-free
form artificially side-steps, something that we feel
is inappropriate when variable binding arguably
reflects one of the deepest challenges of natural
language interpretation.

As a metric for ReCOGS, we propose Semantic
Exact Match (SEM). For SEM, we exhaustively
check whether there is a semantically consis-
tent conversion of the variables in the predicted
LFs into those of the actual LF. For COGS,
this amounts to checking whether there is bijec-
tive map between variables in the predicted and
actual LFs, where corresponding variables par-
ticipate in exactly the same predications.6 For
instance, the predicted LF table(46) AND
sturdy(46) can be converted to table(1)
AND sturdy(1) via the mapping [46 �→ 1],

6SEM also resembles SMATCH score (Cai and Knight,
2013) used for abstract meaning representation (AMR) pars-
ing (Banarescu et al., 2013).

but the LFtable(46) AND sturdy(7) can-
not be converted in this way because 46 and 7
would have to both map to 1. The reverse con-
version is also blocked because 1 would have to
map to both 46 and 7. In addition, we treat con-
junctions in the LF as an order-free set, and exact
match is evaluated as set equality after variable
conversion. For the COGS language, these steps
amount to checking for semantic equivalence.7

We evaluate ReCOGS with the same two
model architecture setups as in previous sections.
Figure 5 reports initial results. Overall, we find
that ReCOGS is a more challenging compositional
generalization benchmark than COGS, but models
are able to get traction on all splits, suggesting we
have avoided the worrisome pattern of 0s seen in
Table 1.

While both our models still achieve near 100%
performance on the IID testing split, they strug-
gle on the structural and lexical generalization
tests. However, they now show signs of life. For
instance, the Object PP → Subject PP split of
ReCOGS is now tractable while remaining chal-
lenging. This shows how the meaning-preserving
modifications of ‘‘um’’ insertion and preposing
can remove artifacts that were preventing models
from learning before. In addition, our results show
that LSTMs perform better than Transformers on
the same split (13.4% vs. 4.5% on average). Fu-
ture work may investigate the reason why LSTMs
seem to generalize better in this scenario.

7Some straightforward modifications to the SEM check-
ing procedure would be needed if COGS included tautologies,
contradictions, or equality statements between variables.

1729

We also see the effects of breaking the relation-
ship between variable names and linear position.
Without this non-semantic pattern to rely on, mod-
els show degraded performance. To verify this, we
revert ReCOGS back to the original variable name
bindings of COGS where the order of LFs mirrors
the word order in the input sequence, and generate
a new variant, ReCOGSPOS. As shown in Figure 5,
performance of both models increases signifi-
cantly on ReCOGSPOS. Consequently, we believe
that ReCOGS poses additional challenges in terms
of long-term coindexing over entities, challenges
that were partly obscured by the variable naming
scheme chosen for COGS.

6 Discussion and Conclusion

With compositional generalization benchmarks,
we hope to gain reliable information about whether
models have learned to construct the meanings of
natural language sentences. However, meanings
are highly abstract entities that we do not know
how to specify directly, so we are compelled to
conduct these assessments using LFs, which are
syntactic objects that we presume can themselves
be mapped to meanings in the relevant sense. The
central difficulty here is that there is no single
privileged class of LFs to use for this purpose,
and different LFs are likely to pose substantially
different learning problems and thus may lead
to very different conclusions about our guiding
question.

We explored these issues in the context of
COGS, a prominent compositional generalization
benchmark. COGS includes sub-tasks that even
our best present-day models cannot get any trac-
tion on. Our central finding is that there are two
major factors contributing to this abysmal per-
formance: redundant symbols in COGS LFs and
the requirement imposed by COGS that mod-
els predict the exact numerical values of bound
variables. These details cannot be justified seman-
tically, and they play a large role in shaping
model performance. We showed that simple,
meaning-preserving modifications to COGS fully
address these problems and allow models to suc-
ceed. In turn, we propose ReCOGS, a modified
version of COGS that incorporates these insights.
Our models are able to get some traction on all the
sub-tasks within ReCOGS, but it remains a very
challenging benchmark.

One of our reviewers raised an important ques-
tion relating to ReCOGS and benchmarking efforts
that might follow from it: Could this encourage
an unproductive sort of ‘‘LF hacking’’ in which
people continually reformat the data in an effort
to incrementally boost performance? This is cer-
tainly a risk. However, for now, we venture that
such experimentation can be productive. If the
modified LFs are truth-conditionally identical to
the originals, we can be confident that the gen-
eralization splits are not being compromised by
this LF hacking. Thus, consistent improvements
in performance may lead to lasting insights about
effective meaning representation for our models,
and persistent failures are likely to point to deep
limitations. Overall, then, some LF hacking could
help us get incrementally closer to truly evaluating
the capacity of models to compute meaning.

Our results also raise important questions about
compositional generalization itself. It is in the
nature of compositional generalization tasks that
models will be assessed on examples that are
meaningfully different from those they have
seen in training. When is this fair, and when
does it implicitly contradict the train set itself?
Our discussion focused on the distribution of
PP modifiers across different grammatical po-
sitions. COGS models are trained on examples
that might suggest these are limited to object
noun phrases. This may seem implausible for PP
modifiers, but many natural languages do dis-
play subject/object asymmetries with regard to
phenomena like case marking, definiteness, and
pronominalization. In our experiments, we indi-
rectly instructed our model about our intended
generalization via meaning preserving modifica-
tions to the training data, but ultimately these
issues may call for deeper changes to how we
pose compositional generalization tasks.

Acknowledgments

We would like to thank Benjamin Van Durme
and anonymous reviewers for their helpful sug-
gestions. We are also grateful to Najoung Kim,
Bingzhi Li, Tal Linzen, Yuekun Yao, and Linlu
Qiu for very helpful discussion.

References

Ekin Akyurek and Jacob Andreas. 2021. Lexi-
con learning for few shot sequence modeling.

1730

In Association for Computational Linguis-
tics (ACL).https://doi.org/10.18653
/v1/2021.acl-long.382

Laura Banarescu, Claire Bonial, Shu Cai,
Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn,
Martha Palmer, and Nathan Schneider. 2013.
Abstract Meaning Representation for sem-
banking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with
Discourse.

Leon Bergen, Timothy O’Donnell, and Dzmitry
Bahdanau. 2021. Systematic generalization
with edge transformers. In Advances in Neural
Information Processing Systems (NeurIPS).

Shu Cai and Kevin Knight. 2013. Smatch: An eval-
uation metric for semantic feature structures.
In Association for Computational Linguistics
(ACL).

Henry Conklin, Bailin Wang, Kenny Smith,
and Ivan Titov. 2021. Meta-learning to
compositionally generalize. In Association for
Computational Linguistics (ACL). https://
doi.org/10.18653/v1/2021.acl-long
.258

Róbert Csordás, Kazuki Irie, and Juergen
Schmidhuber. 2021. The devil is in the
detail: Simple tricks improve systematic gen-
eralization of transformers. In Empirical
Methods in Natural Language Processing
(EMNLP). https://doi.org/10.18653
/v1/2021.emnlp-main.49

Haskell Brooks Curry, Robert Feys, William
Craig, J. Roger Hindley, and Jonathan P.
Seldin. 1958. Combinatory Logic. North-
Holland Amsterdam.

Andrew Drozdov, Nathanael Schärli, Ekin
Akyürek, Nathan Scales, Xinying Song,
Xinyun Chen, Olivier Bousquet, and Denny
Zhou. 2023. Compositional semantic parsing
with large language models. In International
Conference on Learning Representations (ICLR).
https://doi.org/10.48550/arXiv
.2209.15003

Atticus Geiger, Ignacio Cases, Lauri Karttunen,
and Christopher Potts. 2019. Posing fair gener-
alization tasks for natural language inference. In
Empirical Methods in Natural Language Pro-
cessing (EMNLP). https://doi.org/10
.18653/v1/D19-1456

Irene Heim. 1982. The Semantics of Definite
and Indefinite Noun Phrases. Ph.D. thesis,
University of Massachusetts.

Irene Heim. 1983. File change semantics and
the familiarity theory of definiteness. In Mean-
ing, Use, and Interpretation of Language.
De Gruyter. https://doi.org/10.1515
/9783110852820.164

Jonathan Herzig and Jonathan Berant. 2021.
Span-based semantic parsing for compositional
generalization. In Association for Computa-
tional Linguistics (ACL). https://doi.org
/10.18653/v1/2021.acl-long.74

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computa-
tion. https://doi.org/10.1162/neco
.1997.9.8.1735

Theo M. Janssen and Barbara H. Partee.
1997. Compositionality. In Handbook of Logic
and Language. Elsevier. https://doi.org
/10.1016/B978-044481714-3/50011
-4

Hans Kamp. 1981. A theory of truth and se-
mantic representation. In Formal Methods in
the Study of Language. Mathematical Centre,
Amsterdam.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao
Wang, Marc van Zee, and Olivier Bousquet.
2020. Measuring compositional generalization:
A comprehensive method on realistic data. In
International Conference on Learning Repre-
sentations (ICLR). https://doi.org/10
.48550/arXiv.1912.09713

Najoung Kim and Tal Linzen. 2020. COGS: A
compositional generalization challenge based
on semantic interpretation. In Empirical
Methods in Natural Language Processing
(EMNLP). https://doi.org/10.18653
/v1/2020.emnlp-main.731

Najoung Kim, Tal Linzen, and Paul Smolensky.
2022. Uncontrolled lexical exposure leads
to overestimation of compositional general-
ization in pretrained models. arXiv preprint
arXiv:2212.10769. https://doi.org/10
.48550/arXiv.2212.10769

1731

https://doi.org/10.18653/v1/2021.acl-long.382
https://doi.org/10.18653/v1/2021.acl-long.382
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.48550/arXiv.2209.15003
https://doi.org/10.48550/arXiv.2209.15003
https://doi.org/10.18653/v1/D19-1456
https://doi.org/10.18653/v1/D19-1456
https://doi.org/10.1515/9783110852820.164
https://doi.org/10.1515/9783110852820.164
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/B978-044481714-3/50011-4
https://doi.org/10.1016/B978-044481714-3/50011-4
https://doi.org/10.1016/B978-044481714-3/50011-4
https://doi.org/10.48550/arXiv.1912.09713
https://doi.org/10.48550/arXiv.1912.09713
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.48550/arXiv.2212.10769
https://doi.org/10.48550/arXiv.2212.10769

Brenden Lake and Marco Baroni. 2018. Gen-
eralization without systematicity: On the
compositional skills of sequence-to-sequence
recurrent networks. In International Conference
on Machine Learning (ICML).

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. In Asso-
ciation for Computational Linguistics (ACL).
https://doi.org/10.18653/v1/2020
.acl-main.703

James D. McCawley. 1968. Lexical insertion in a
transformational grammar without deep struc-
ture. In Papers from the Fourth Meeting of the
Chicago Linguistic Society.

Richard Montague and Richmond H. Thomason.
1974. Formal philosophy: Selected papers of
Richard Montague. Erkenntnis.

Santiago Ontanon, Joshua Ainslie, Zachary
Fisher, and Vaclav Cvicek. 2022. Mak-
ing transformers solve compositional tasks.
In Association for Computational Linguis-
tics (ACL).https://doi.org/10.18653
/v1/2022.acl-long.251

Inbar Oren, Jonathan Herzig, Nitish Gupta,
Matt Gardner, and Jonathan Berant. 2020.
Improving compositional generalization in se-
mantic parsing. In Findings of Empirical
Methods in Natural Language Processing
(EMNLP). https://doi.org/10.18653
/v1/2020.findings-emnlp.225

Terence Parsons. 1990. Events in the semantics of
english: A study in subatomic semantics. MIT
Press.

Barbara H. Partee. 1984. Compositionality. In Va-
rieties of Formal Semantics. Wiley-Blackwell.

Arkil Patel, Satwik Bhattamishra, Phil Blunsom,
and Navin Goyal. 2022. Revisiting the com-
positional generalization abilities of neural
sequence models. In Association for Compu-
tational Linguistics (ACL). https://doi
.org/10.18653/v1/2022.acl-short
.46

Linlu Qiu, Peter Shaw, Panupong Pasupat, Pawel
Nowak, Tal Linzen, Fei Sha, and Kristina

Toutanova. 2022. Improving compositional
generalization with latent structure and data
augmentation. In North American Chapter
of the Association for Computational Lin-
guistics: Human Language Technologies
(NAACL-HLT). https://doi.org/10
.18653/v1/2022.naacl-main.323

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu.
2020. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal
of Machine Learning Research (JMLR).

Siva Reddy, Oscar Täckström, Slav Petrov,
Mark Steedman, and Mirella Lapata. 2017.
Universal semantic parsing. In Empirical
Methods in Natural Language Processing
(EMNLP). https://doi.org/10.18653
/v1/D17-1009

Laura Ruis, Jacob Andreas, Marco Baroni,
Diane Bouchacourt, and Brenden M. Lake.
2020. A benchmark for systematic general-
ization in grounded language understanding.
Advances in Neural Information Processing
Systems (NeurIPS).

Ankur Sikarwar, Arkil Patel, and Navin
Goyal. 2022. When can transformers ground
and compose: Insights from compositional
generalization benchmarks. In Empirical
Methods in Natural Language Processing
(EMNLP). https://doi.org/10.18653
/v1/2022.emnlp-main.41

Koustuv Sinha, Jon Gauthier, Aaron Mueller,
Kanishka Misra, Keren Fuentes, Roger Levy,
and Adina Williams. 2023. Language model
acceptability judgements are not always robust
to context. In Association for Computational
Linguistics (ACL). https://doi.org/10
.18653/v1/2023.acl-long.333

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in Neural
Information Processing Systems (NeurIPS).

Bailin Wang, Ivan Titov, Jacob Andreas, and
Yoon Kim. 2022. Hierarchical phrase-based
sequence-to-sequence learning. In Empirical
Methods in Natural Language Processing
(EMNLP). https://doi.org/10.18653
/v1/2022.emnlp-main.563

1732

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2022.acl-short.46
https://doi.org/10.18653/v1/2022.acl-short.46
https://doi.org/10.18653/v1/2022.acl-short.46
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/D17-1009
https://doi.org/10.18653/v1/D17-1009
https://doi.org/10.18653/v1/2022.emnlp-main.41
https://doi.org/10.18653/v1/2022.emnlp-main.41
https://doi.org/10.18653/v1/2023.acl-long.333
https://doi.org/10.18653/v1/2023.acl-long.333
https://doi.org/10.18653/v1/2022.emnlp-main.563
https://doi.org/10.18653/v1/2022.emnlp-main.563

Pia Weißenhorn, Lucia Donatelli, and Alexander
Koller. 2022. Compositional generalization with
a broad-coverage semantic parser. In Proceed-
ings of the 11th Joint Conference on Lexical
and Computational Semantics. https://doi
.org/10.18653/v1/2022.starsem-1.4

Zhengxuan Wu, Elisa Kreiss, Desmond Ong, and
Christopher Potts. 2021. ReaSCAN: Compo-
sitional reasoning in language grounding. In
Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks
Track.

Yuekun Yao and Alexander Koller. 2022. Struc-
tural generalizationishardfor sequence-to-sequence
models. In Empirical Methods in Natural Lan-

guage Processing (EMNLP). https://doi
.org/10.18653/v1/2022.emnlp-main
.337

Hao Zheng and Mirella Lapata. 2021. Compo-
sitional generalization via semantic tagging.
In Findings of Empirical Methods in Natu-
ral Language Processing (EMNLP). https://
doi.org/10.18653/v1/2021.findings
-emnlp.88

Hao Zheng and Mirella Lapata. 2022. Dis-
entangled sequence to sequence learning
for compositional generalization. In Associ-
ation for Computational Linguistics (ACL).
https://doi.org/10.18653/v1/2022
.acl-long.293

1733

https://doi.org/10.18653/v1/2022.starsem-1.4
https://doi.org/10.18653/v1/2022.starsem-1.4
https://doi.org/10.18653/v1/2022.emnlp-main.337
https://doi.org/10.18653/v1/2022.emnlp-main.337
https://doi.org/10.18653/v1/2022.emnlp-main.337
https://doi.org/10.18653/v1/2021.findings-emnlp.88
https://doi.org/10.18653/v1/2021.findings-emnlp.88
https://doi.org/10.18653/v1/2021.findings-emnlp.88
https://doi.org/10.18653/v1/2022.acl-long.293
https://doi.org/10.18653/v1/2022.acl-long.293

	Introduction
	Background: COGS Benchmark
	Related Work
	Experiments
	Methods
	Experiment 1: Removing Redundant Tokens from LFs
	Experiment 2: Separating Structural and Length Generalization
	Experiment 3: Variable Name Binding Prevents Generalization

	ReCOGS: A Revised Version of COGS
	Discussion and Conclusion

