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Abstract

Recent language models have been improved
by the addition of external memory. Nearest
neighbor language models retrieve similar con-
texts to assist in word prediction. The addi-
tion of locality levels allows a model to learn
how to weight neighbors based on their rela-
tive location to the current text in source docu-
ments, and have been shown to further improve
model performance. Nearest neighbor models
have been explored for controllable generation
but have not examined the use of locality lev-
els. We present a novel approach for this pur-
pose and evaluate it using automatic and human
evaluation on politeness, formality, supportive-
ness, and toxicity textual data. We find that our
model is successfully able to control style and
provides a better fluency-style trade-off than
previous work.

1 Introduction

Controllable language generation is the study of
developing models to generate language with pre-
defined characteristics, including stylistic (e.g. po-
liteness, formality), demographic (e.g. gender,
age), or content-related (e.g. keywords, entities) at-
tributes (Prabhumoye et al., 2020). In recent years,
chatbots have quickly gained widespread use in
industries including marketing, support systems,
education, healthcare, cultural heritage, and enter-
tainment (Adamopoulou and Moussiades, 2020).
Chatbots generate language to prepare a human-
like or natural response for the user based on the
intent and context information provided by the user,
environment, and other factors (Singh et al., 2016).
For a chatbot in a support system, controllable gen-
eration could be leveraged to respond more politely.
In an educational context, the chatbot could give
more entertaining factual answers to enhance the
learning experience.

Recently, memory-augmented language mod-
els have been shown to substantially improve

performance by memorizing rare language pat-
terns (Khandelwal et al., 2020; Trotta et al., 2022).
The use of a datastore allows the model to scale to
larger text collections without additional training
by adding new data to the datastore. We present a
model that combines the advantages of transformer
language models, locality types, and memorization
to enable the controlled generation of language
in particular styles. The model makes use of a
k-nearest neighbor architecture to retrieve similar
contexts from memory and uses specifically trained
locality weights to reweight neighbors according
to the desired style. In contrast to previous local-
ity work, our locality levels are based on the style,
data source, and similarity between styles, rather
than the location of text within a document (Xu
et al., 2022). We compare our model to previ-
ous work, showing that it outperforms previous
memory-augmented language models on style con-
trol, while providing a favorable trade-off between
style control and fluency.

2 Related Work

Language Models with Memorization
Traditional neural network language models have
achieved state-of-the-art performance in the field of
language modeling, but they are unable to change
in response to recent events. As a result, they are
unable to adapt to changing environments (Dodge
et al., 2016). The addition of an external memory
to these networks is a method for resolving this
issue. These models are able to store data in their
external memory and adjust to a changing patterns
(Grave et al., 2017).

Neural Turing Machines are neural networks
connected to resources in external memory that
they can access through attention. The combined
system is comparable to a Turing machine but is
differentiable and can be trained by gradient de-
scent. Work from Graves et al. (2014) showed the
model’s ability to learn algorithms like copying,
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sorting, and associative recall. Memory-based re-
current neural networks similarly have been shown
to implement continuously differentiable versions
of well-known data structures including stacks and
queues, outperforming deep RNNs on sequence-
to-sequence transduction tasks (Grefenstette et al.,
2015), and can solve difficult pattern recognition
tasks with an expandable memory (Joulin and
Mikolov, 2015).

End-to-end memory networks are neural net-
works that have a recurrent attention model applied
to a potentially huge external memory. Since the
model is trained end-to-end, it needs much less
supervision during training and is therefore more
widely applicable in realistic settings. On the Text8
and Penn Treebank (Marcus et al., 1993) datasets,
the model showed similar performance to RNNs
and LSTMs (Sukhbaatar et al., 2015).

Extending language models with a continuous
cache to adjust their prediction to the recent his-
tory showed improvement over previous memory-
augmented networks (Grave et al., 2017). The
model is a more condensed version, which accesses
past hidden activations through a dot product with
the current hidden activation and stores them as
memory. This system is effective in handling enor-
mous memory sizes.

Khandelwal et al. (2020) introduced k-nearest
neighbor language models (kNN-LMs), outper-
forming previous memory approaches. The model
encodes context vectors and stores them as keys in
a dictionary with a corresponding next word. Dur-
ing decoding, the model finds nearest neighbors to
the current context, retrieves their values from the
dictionary, and interpolates the distribution given
by the nearest neighbors with the distribution given
by the base language model.

Recently, Xu et al. (2022) introduced structural
locality levels to kNN-LMs. The idea is to
reweight nearest neighbors by their similarity to
other text as determined by the location of the text
in the structure of the document. They showed
that their model outperformed Khandelwal et al.
(2020) on Wikipedia text and Java code. The
locality levels for code included the project and
directory that the code was in, while for Wikipedia
it included four levels; (1) different category and
section, (2) same section - different category, (3)
different section - same category, and (4) same
category and section. Each of these levels is
assigned a weight, learned by a linear model on

a sample of the data. They found that learned
weights are lower for more similar levels and that
the final predictions are more likely to be nearest
neighbors from the same locality.

Controllable Text Generation
Controllable characteristics of text include stylistic
ones like formality, sentiment, and politeness.
They may also be the demographic characteristics
of the author, such as age and gender, or keywords
and entities as content (Prabhumoye et al., 2020).

Ziegler et al. (2019) showed that language mod-
els can control use of sentiment and physically
descriptive language when learning from human
feedback via reinforcement learning. Dathathri
et al. (2020) introduced a model where attribute
classifiers are used to guide generation. The gradi-
ents of these classifiers are used to push the latent
space representation to control for the topical style,
sentiment, and toxicity. Zellers et al. (2019) created
a generator and detector of fake news that controls
generated text by conditioning on the authors, date,
headline, and/or domain.

Other work examines control at decoding time.
Liu et al. (2021) used a combination of LMs fine-
tuned on desirable or undesirable properties. The
distribution of next word probabilities from the
desired properties are added to the base LM, while
the undesirable distribution is subtracted. Similarly,
Yang and Klein (2021) used classifiers to determine
if possible generation steps will result in text with
a given stylistic attribute.

Trotta et al. (2022) used a kNN language model
which was modified to encode style attributes, al-
tering the encoding space such that retrieved neigh-
bors are more often posts of a particular style. They
experimented with politeness, toxicity, and formal-
ity, finding that their architecture provides better
style control and fluency for some styles over oth-
ers, and that specialized datastores for each style
outperformed datastores with multiple styles.

3 Datasets

The data collected for the experiments were ob-
tained from four different style categories; support-
ive, formal/informal, polite/impolite and toxic data.
In subsequent experiments, we use all combined
style datasets excluding neutral data except for ex-
periments on single style models. All data is in
English.
Supportive Hada et al. (2021) published the Rud-
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dit corpus, containing 6k Reddit comments and a
continuous value representing the offensiveness or
supportiveness of each in the range of -1 to 1. We
took the top 25% of the dataset as the supportive
data, representing 1.1k comments.
Formal / Informal Rao and Tetreault (2018) in-
troduced the GYAFC corpus containing ≈ 135k
informal and ≈ 144k formal sentences for style
transfer. The documents cover the topics Entertain-
ment and Music and Family and Relationships.
Polite / Impolite The politeness corpus comes from
Danescu-Niculescu-Mizil et al. (2013) and contains
4k posts from Wikipedia Talk pages. Each com-
ment has a label for polite, impolite, or neutral,
with 1k of each polite and impolite.
Toxic We use two datasets for toxicity. The
Wikipedia Detox corpus (Nithum Thain et al.,
2016) contains 116k comments that were labeled
for toxicity from Wikipedia talk pages, with 14k
labeled as toxic. The second dataset comes from
the Civil Comments Platform (Jigsaw, 2019) and
contains 160k toxic comments. The dataset con-
tains toxicity subcategories that were not used in
this work.

4 Models

Our work builds off of the kNN language models
used in previous work. In a standard language
model, we want to predict the next word wt given
a context w1, ..., wt−1. The language model learns
the probability p(wt|w1, ..., wt−1).

A kNN language model requires a datastore,
D, which is constructed with the encodings of
context sequences and their corresponding target
word. The encodings are given by a function,
f , which in our work is computed with a trans-
former language model. The keys, K, and values,
V of the datastore are then defined as (K,V ) =
{(f(w1, ..., wt−1), wt)} for all context and target
word pairs in D.

During inference, the model must retrieve sim-
ilar contexts to the current context. The current
context sequence is encoded with f and used to
query the datastore to retrieve the nearest neighbors
using a distance function, which is the L2 distance
in our experiments. These distances are converted
into a distribution by passing the distances to a
softmax and aggregating across duplicate target
words. Finally, the model interpolates the near-
est neighbor distribution with the base language
model distribution with hyperparameter λ, result-

ing in the final distribution p(wt|w1, ..., wt−1) =
λpkNN + (1− λ)pLM .

Xu et al. (2022) introduced locality levels on
top of this model, intuiting that additional informa-
tion about the documents that the text came from
could be used to weight nearest neighbors differ-
ently. The information they use for this can be
thought of as a kind of depth in structured docu-
ments. For example, text from the same article
and section on Wikipedia should probably be more
similar than text from different articles or even dif-
ferent sections. We also use locality levels, but do
not associate these levels with depth but rather with
specific and general styles, and with the source of
the text (e.g. Wikipedia versus Yahoo answers).

The kNN distribution can be de-
fined formally as pkNN (wt|ct) ∝∑

(ki,vi)∈N 1wt=viexp(−d(ki, f(ct))) for key-
value pairs (k, v) in the set of nearest neighbors, N ,
distance function, d, and context ct = w1, ..., wt−1.
The addition of locality levels is a parameterization
of the distance function, which reweights the
distances based on the similarity of localities
between the neighbor contexts and current
context. This changes the exponentiated func-
tion and distribution to pkNN (wt|ct; θn) ∝∑

(ki,vi)∈N 1wt=viexp(−g(ki, f(ct); θn)) for the
function g(ki, ct; θn) = gn(d(ki, f(ct)); θn) for
key and context sharing locality level n. We use
a linear function for g, as in previous work, with
a bias term of zero. The function can be learned
with an annotated sample of the training data and
is optimized to minimize the log-likelihood of the
target token.

Trotta et al. (2022) experimented with using
kNN language models for controllable generation
and included two baselines. The first is single style
models, which are trained on only one style each.
This is less efficient as it requires training a sep-
arate model for each style. The other baseline is
a single style datastore approach. In this method,
there are separate datastores for each style rather
than having all styles mixed into one datastore. In-
tuitively, the model may benefit from having more
similar neighbors in the datastore from which to in-
terpolate, but these similar contexts may not share
the desired style to a satisfactory degree. Using a
separate datastore for each style and restricting re-
trieval to the desired datastore is effectively forcing
the weights of g to zero for contexts that do not
share the same style locality level.
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5 Experimental Setup

We first built a language model from the style
dataset and compared it to a fine-tuned language
model first trained on WikiText103. All models
from previous work were reimplemented and fine-
tuned on our style dataset. We compare to single
style models, which are models fine-tuned on only
the subset of data for that particular style, which
means one model is fine-tuned for each style subset.
Additionally, we compare to the specific datastore
setting from Trotta et al. (2022). This means that in-
stead of encoding all contexts in a single datastore
we instead store them separately, so that retrieval
is forced to return only neighbors in that style. We
describe our training of the style locality generation
model and our comparison using human evaluation.

Experiments used an NVIDIA A100 GPU. The
datastores for our experiments took between 8GB
and 20GB disk space. Aside from the datastore
sizes, we use the same parameters as Khandelwal
et al. (2020). We built our models off of the FairSeq
library (Ott et al., 2019). We used their wiki103
LM architecture.1 The model has a hidden size of
1024, 16 layers, and 8 attention heads.

5.1 Language Modeling

We trained the wiki103 language model from
Fairseq on the style data for 200 epochs with early
stopping and achieved a perplexity of 134. We then
first trained the model on WikiText-103 (Merity
et al., 2017) before fine-tuning on the style data,
resulting in a perplexity of 62. When doing so,
around 20% of tokens in the style dataset were not
in the vocab. We adjusted the vocab to include new
tokens from the style datasets and to prevent the
vocab from greatly expanding we changed the min
count from 1 to 5, resulting in a vocabulary of 208k
tokens, 60k fewer than the original. The perplex-
ity of the model increases slightly to 68, as it now
has more known tokens to predict (1.5% unknown).
Next, we implemented the k-nearest neighbors ap-
proach of Khandelwal et al. (2020) using the same
fine-tuned language model. This resulted in a per-
plexity six points lower, at 62, as shown in the first
row of Table 1. This model served as the basis of
the style locality models discussed in the following
section.

1https://github.com/facebookresearch/fairseq/
blob/main/fairseq/config/model/transformer_lm

kNN with Locality Features Perplexity

None (Khandelwal et al., 2020) 62.20
Style Only 61.89
Category Only 62.07
Source Only 61.86
Style & Category 61.91
Source & Category 66.76
Style & Source 61.73

Table 1: Fine-tuned transformer models with kNN com-
ponent and structural locality features. Bold indicates
the highest performing model.

5.2 Training the Adaptive Weights

In order to integrate the stylistic information into
the model, the distance function for determining
the nearest neighbors is modified using learned
weights. The locality weights are created with fea-
tures representing the style, source, and category
of the data. The style feature represents the text
style (e.g. polite or impolite), and has nine possi-
ble values including neutral. The source represents
the dataset that the data came from and includes
five values, one for each dataset. The category
feature represents the style type and includes two
values; positve, negative (e.g. polite and support-
ive are positive, impolite and toxic are negative).
The categories were derived from an analysis of
the similarity of subsets of our data provided in
Appendix B. A subset of 100k samples from the
training data is used to learn the adaptive weights,
i.e. the linear model for reweighting nearest neigh-
bors based on these features. The linear model
takes each neighbor’s context encoding, distance,
and locality features as input and returns a modified
distance. The locality is encoded with a one-hot
vector representing the locality combination. For
example, for source and style there are four locality
combinations, e.g. same source and different style,
and only two possibilities when only one locality
level is used.

The results in Table 1 show that the best per-
forming model uses the style and source localities
together. Note that the perplexities here are higher
than those reported in Khandelwal et al. (2020),
which is due to the different data used for test-
ing. The stylistic data from social media is sig-
nificantly different from the Wikipedia data that
was used in previous work. Overall, this is a small
improvement over the kNN model from previous
work which uses no locality information. How-
ever, we performed a human evaluation, as per-
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Style Control Fluency
Style Model Equal Style Locality Model Equal Style Locality Combined

Khandelwal et al. (2020) 24% 31% 45% 40% 38% 21% +2%
Single Style Model 27% 35% 37% 24% 34% 42% +14%
Single Style Datastore 29% 48% 23% 16% 49% 36% +7%
Trotta et al. (2022) 39% 28% 33% 8% 13% 79% +33%

Table 2: Human evaluation for style control (left) and fluency (right) showing the percent of times our style locality
model was chosen over the model on the left, n=50 questions per style. Combined column indicates the absolute
percentage of times style locality model was chosen over the comparison model for both fluency and style control.

plexity is known to correlate poorly with human
judgements (Kuribayashi et al., 2021; Meister and
Cotterell, 2021).

5.3 Human Evaluation

Human surveys were conducted via Limesur-
vey.org to compare the performance of our models.
For each comparison, a total of 300 questions were
asked, evenly distributed across each six styles.
Each question contained the beginning of a sen-
tence randomly selected from the dataset. Sen-
tences were split in half and both our style locality
model and the comparison model were used to com-
plete the sentence, similar to the evaluation from
Gehman et al. (2020).

Surveys were conducted to compare the style
locality model to Khandelwal et al. (2020), single
style models, mixed and single style datastores, and
to Trotta et al. (2022). We used our best locality
model for this comparison; trained with data source
and style localities. Participants were shown the
beginning of sentences and asked which of two con-
tinuations was more fluent and which more closely
matched the desired style. The results in Table 2
show how often each model was preferred. We
see that the single style datastore and Trotta et al.
(2022) show better style control, though they per-
form poorly on fluency. In fact, although Trotta
et al. (2022)’s model shows strong style control, it
greatly suffers in fluency such that it may not be
usable for many applications. There is always a
trade-off between the two, but our combined col-
umn shows the absolute percentage of times that
our style locality model was preferred. Our model
outperforms all previous work, though the closest
comparison is to the kNN model of Khandelwal
et al. (2020). We see strong style control from our
model here, but at the cost of fluency. We find
that the single style models perform worse than our
model in both fluency and style and contrary to
previous work, single style datastores did not show

a clear advantage, with similar style control and
much worse fluency.

6 Conclusion

We constructed a k-nearest neighbors language
model that is able to leverage locality levels based
on the style, data source, and similarity between
styles, effectively reweighting nearest neighbors
with additional available information. We dis-
cussed how our model is trained using polite, im-
polite, formal, informal, supportive, and toxic data.
Reimplementing models from previous work, we
found that using style and data source gave an im-
proved perplexity and was able to outperform the
single style models and Khandelwal et al. (2020)
on style control. In contrast to previous work, we
found that the single style datastores were only
slightly better for style-control but came with a
large drop in fluency, making them less favored
overall. Our model showed better fluency than
all models except for Khandelwal et al. (2020),
though our model provides a better style-fluency
trade-off than previous work. Our work provides
initial steps toward style controllable nearest neigh-
bors language models. Future work may explore
the style-fluency trade-off in more detail and the
impact on downstream applications, such as with
conversational agents.

Limitations

Our method required the use of a high-end GPU to
carry out our experiments. We largely used hyper-
parameters chosen in the previous work we built
off of due to the high compute required for this task.
While our model shows a favorable style-fluency
trade-off, it is possible that tuning some of the pa-
rameters from Trotta et al. (2022) would lead to a
more favorable trade-off. Our work fine-tunes on
a relatively small set of style data which resulted
in perplexities higher than results for many recent
large language models. It is possible that with ad-
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ditional data and training time that the perplexities
would be much lower, making the difference be-
tween models indistinguishable by automatic met-
rics.

Ethics Statement

The development of controllable generation mod-
els, such as the one presented in this paper, has
enabled the generation of text in various styles.
However, it is crucial to exercise caution when
using these models, as they have the potential to
perpetuate harmful biases and reinforce societal
power imbalances (Bender et al., 2021). While the
use of supportive or polite language is generally
harmless, the irresponsible use of toxic or impolite
language can cause harm. It is essential to con-
sider the potential risks and consequences of using
language models and ensure their responsible and
ethical use. The work presented in this paper is
intended for scientific purposes only and we recom-
mend against the use of language models trained on
harmful language data in downstream applications.
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A Data Samples

Content Warning: This paper includes examples in
the appendix of language that may be offensive and
upsetting.

This section contains examples of each style for
the datasets we used in our experiments. See Ta-
ble 3 for samples from each dataset and style.

B Categories Derived from SBERT
Analysis

As a preliminary analysis, we measured the similar-
ity between our datasets and their styles. We used
SBERT (Reimers and Gurevych, 2019) to calculate
the sentence embedding of each instance in our
dataset that belongs to the formal, informal, polite,
impolite, offensive, supportive, and toxic styles.
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Comment Style

So so awesome. Really want to see more. Supportive

Mad dog will surely put the liberals in mental hospitals. Boorah Toxic

The In-Laws movie isn’t a holiday movie, but it’s okay. Formal

of corse i be wachin it evry day, my fav charachter is Inuasha Informal

Ok, that’s no problem. Can you recommend any other users who would be able to train
me?

Polite

I asked you a question. Be educated and please respond: What does <url> has to do with
<url>?

Impolite

Table 3: Samples from the Ruddit (supportive, offensive), Wikipedia Detox and Civil Comments (toxic), GYAFC
(formal, informal), and Stanford Politeness (polite, impolite) datasets showing sample comments and posts.

38 94 25 75 43

38 33 84 54 54

94 33 2 75 39
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Figure 1: Heatmap of similarities between data of each
style in our dataset using averaged SBERT embeddings
(scores are between 0 and 1, decimals omitted for ease
of viewing).

We calculated the average SBERT embedding for
each style and measured the similarity between
these style embeddings. The results are shown in
Figure 1 for similarities between 0 and 1. We see
some similarity between styles that come from the
same datasets, e.g. informal and formal texts are
very similar, as this is a parallel corpus. Aside from
these similarities, we noticed similarities between
styles that may generally have the same positive
or negative connotation, e.g. toxic, informal, and
offensive text are highly similar. This inspired the
positive and negative categories for locality levels,
with positive including formal, polite, and support-
ive text, and negative including informal, impolite,
offensive, and toxic text.
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