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Abstract

Large-scale Pre-Trained Language Models
(PTLMs) capture knowledge from massive
human-written data which contains latent so-
cietal biases and toxic contents. In this paper,
we leverage the primary task of PTLMs, i.e.,
language modeling, and propose a new metric
to quantify manifested implicit representational
harms in PTLMs towards 13 marginalized de-
mographics. Using this metric, we conducted
an empirical analysis of 24 widely used PTLMs.
Our analysis provides insights into the correla-
tion between the proposed metric in this work
and other related metrics for representational
harm. We observe that our metric correlates
with most of the gender-specific metrics in the
literature. Through extensive experiments, we
explore the connections between PTLMs ar-
chitectures and representational harms across
two dimensions: depth and width of the net-
works. We found that prioritizing depth over
width, mitigates representational harms in some
PTLMs. Our code and data can be found at
[place holder].

1 Introduction

Large-scale Pre-Trained Language Models
(PTLMs) such as BERT (Devlin et al., 2019) and
GPT models (Radford et al., 2019; Brown et al.,
2020) have recently achieved great success in
varieties of Natural Language Processing (NLP)
tasks. These large-scale PTLMs capture knowl-
edge from massively labeled and unlabeled human
written data which contain harmful contents and
societal biases. The goal of a language model is
to estimate the probability of a sequence of words
for the given language. One can argue that, when
the data from which the model was trained on is
different than the desired behavior of the model
at a semantic level, representational harms are
present. Several recent studies have highlighted the
manifestation of societal biases in language models
and proposed metrics and datasets to quantify

them based on sentiment (Kurita et al., 2019),
regard (Sheng et al., 2019), stereotypes (Zhao et al.,
2019; Nadeem et al., 2021), style (Smith et al.,
2022), or morality (Schramowski et al., 2022). In
this work, we focus on the PTLMs’ propensity
to associate specific individuals or groups with
negative perception. These negative perceptions
are the result of microaggression, stereotypes, or
implicit hate speech in the pre-training corpus of
large language models. These harmful represen-
tations are usually overlooked by toxic language
detectors (Sap et al., 2019; Breitfeller et al., 2019;
Hartvigsen et al., 2022), while they can resurface
in language technologies and disadvantage an
already disadvantaged group of people. Moreover,
existing metrics usually fail at conceptualization of
these harms which is a prerequisite for effective
measurement. And even when the desired
construct is clearly articulated, its measurement is
not well matched to its conceptualization (Blodgett
et al., 2021).

Our contributions are two folds. First, we pro-
vide a clear conceptualization of representational
harms towards 13 marginalized demographics and
propose a new metric for quantifying them in
PTLMs. Our proposed metric can be applied to any
dataset that contains harmful versus benign exam-
ples. Moreover, we address some of the shortcom-
ings in the existing metrics in our metric. Second,
we conduct an empirical study of the representa-
tional harms in 24 well-known PTLMs with respect
to demographic, correlation with existing metrics,
and network architecture.

2 Related Work

Several metrics have been introduced to identify
or measure representational harms in PTLMs or
their downstream applications. We categorized
these metrics into extrinsic and intrinsic approaches
where extrinsic metrics are associated with a down-
stream application and intrinsic metrics are embed-
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ded in the contextual representation of words and
sentences.

2.1 Extrinsic

Coreference Resolution Tasks
Coreference resolution is the task of linking ex-
pressions that refer to the same entity. Wino-
Bias (WB) (Zhao et al., 2018) and WinoGender
(WG) (Rudinger et al., 2018) datasets contain
author-crafted pronoun-resolution tests. Each test
is a pair of sentences that differ only by the gender
of the pronoun in the sentence. These datasets mea-
sure the stereotypical bias in a system by testing
whether the system link pronouns to occupations
dominated by a specific gender1. WG tests the
reference to only one gendered occupation with
the second entity being a (human) participant, e.g.,
"someone". Recently, Blodgett et al. (2021) ex-
posed several issues in the reliability of both WB
and WG datasets.
Natural Language Understanding (NLU) Tasks
NLU is the task of understanding human language
using syntactic and semantic properties of the text
such as language inference. GLUE dataset (Wang
et al., 2018) is a widely used benchmark in NLU
tasks. Qian et al., 2022 trained an automatic
Seq2Seq perturbation model to perturb GLUE test
sets with respect to gender, race and age. Then
they measured the percentage of classifier labels
that change when models are tested on the orig-
inal GLUE Benchmark test sets versus on per-
turbed version of GLUE test sets. This perturba-
tion model is trained on Perturbation Augmenta-
tion NLP DAtaset (PANDA) (Qian et al., 2022)
which is a human-generated dataset. This dataset
includes 100,000 demographically perturbed sen-
tences with majority being gender (70%) followed
by race (14.7%) and age (14.6%). Moreover, Kir-
itchenko and Mohammad (2018) created Equity
Evaluation Corpus (EEC) which consists of tem-
plated sentences to examine sentiment analysis sys-
tems biases about gender and race.
Natural Language Generation (NLG) Task
NLG is the task of producing a human-readable
language response based on some input. This is
a core component of virtual assistants, chat bots,
machine translation, and summarization. Recently,
representational harms manifested in these systems
have received a lot of attention (Sheng et al., 2021).

1Gender statistics of occupations was obtained from the
U.S. Bureau of Labor.

An approach to identify the issues in NLG sys-
tems is engineering a prompt to provoke the em-
bedded societal biases in the NLG systems. BOLD
dataset (Dhamala et al., 2021) is a collection of
English prompts automatically generated for pro-
fession, gender, race, religion, and political ideol-
ogy demographics. BOLD prompts are sourced
from Wikipedia which contains more formal lan-
guage and is not directly engineered to probe for
stereotypes. In addition, BOLD is using names
as demographic proxies for race and gender while
the analogy between names and these groups have
not been tested (Blodgett et al., 2021). Accord-
ing to Cao et al., 2022, the automatically gener-
ated prompts in BOLD could be noisy and contain
toxic and stereotyped prompts. Similarly, Holis-
ticBias dataset (Smith et al., 2022) is a collection
of author-crafted American-English prompts which
contains 600 descriptor terms across 13 different
demographics.

Existing works, measure representational harms
in the response generated by the NLG system
via automatic classifiers such as regard (Sheng
et al., 2019), sentiment (Groenwold et al., 2020),
style (Smith et al., 2020), and toxicity (Dhamala
et al., 2021). These classifiers identify representa-
tional harms loosely as inequality in demographic’s
label ratios and are prone to manifest societal bi-
ases themselves. We refer you to (Sheng et al.,
2021) for a comprehensive list of existing work for
societal biases in NLG.

2.2 Intrinsic

Intrinsic metrics generally measure the likelihood
of harmful or stereotypical contexts versus be-
nign contexts using log-probability. Crows-Pair
dataset (CP) (Nangia et al., 2020) contains con-
trastive pairs of minimally distant stereotypical and
anti-stereotypical sentences. This dataset was cre-
ated by asking crowd workers to perturb the target
groups in each sentence such that the pair demon-
strate a stereotype and an anti-stereotype concept.
Similarly, StereoSet (SS) dataset (Nadeem et al.,
2021) includes inter-sentence and intra-sentence
tests to capture the stereotypical bias about gen-
der, race, profession, and religion in PTLMs. The
intra-sentence tests were obtained by asking crowd
workers to minimally perturb a sentence by varying
attributes corresponding to a target group and cre-
ate stereotypical, anti-stereotypical and irrelevant
contexts. The inter-sentence tests include context
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sentences about a target group followed by three
sentences corresponding to a stereotype, an anti-
stereotype and an unrelated option. Blodgett et al.
(2021) have raised concerns about the reliability of
SS and CP datasets due to several issues including
lack of meaningful stereotypes2.

Another intrinsic metric is called Causal Me-
diation Analysis (CMA) (Vig et al., 2020) which
examines the role of each individual neurons and
attention heads of PTLMs in mediating gender bias
on three datasets including WB and WG. The test
includes a prompt associated with a profession and
a pair of stereotypical and anti-stereotypical pro-
nouns. This method frames neurons and attention
heads as mediators along the causal path between
model inputs and outputs and provide the effect of
intervention on model inputs as a proxy for gender
bias.

Moreover, several other metrics have been devel-
oped for measuring societal biases in contextual-
ized word representation (Kurita et al., 2019; May
et al., 2019; Guo and Caliskan, 2021) which are
extensions of Word Embedding Association Test
(WEAT) (Caliskan et al., 2017). WEAT compares
two sets of target words to two sets of attribute
words (pleasant versus unpleasant) in word embed-
ding space. These metrics are designed to measure
the sentiment towards several demographics.
A recent work by Cao et al. (2022) exam-
ined the correlation among some of the extrin-
sic and intrinsic metrics in NLG task. They
emphasized the importance of alignment in the
target demographics, notion of representational
harms (sentiment/toxicity/stereotypes/regard/style),
downstream applications, and the quality of the
evaluation dataset when it comes to aligning intrin-
sic and extrinsic metrics. Therefore, we propose a
new intrinsic metric that is aligned with NLG task
and quantifies the toxicity notion of the representa-
tional harms in PTLMs.

3 Measurement Modeling

We are going to follow the Measurement model-
ing approach, originated from social sciences, to
quantify representational harms in PTLMs based
on Blodgett et al. (2021) recommendation. Mea-
surement modeling is composed of two stages. The
first stage is conceptualization and clarifying what

2The authors of CP do not recommend using this dataset
as stated on their website (https://github.com/nyu-mll/
crows-pairs/).

entity is being measured. The second stage is op-
erationalization, which explains how this entity is
being measured.

3.1 Conceptualization
According to Blodgett et al., 2021, conceptualiza-
tion of stereotyping is a prerequisite for effective
measurement. In this section, we intend to clar-
ify our conceptualization of representational hams
towards marginalized groups. First, we pick the
target demographics, whom are frequently the tar-
gets of oppression, discrimination, or prejudice,
from a U.S. socio-cultural perspective3. The target
demographics include African American (Black),
women, Native-American, Mexican, Latinx, peo-
ple with disability, Asian, Chinese, Jewish, Mus-
lim, LGBTQ, and Middle-Eastern. Next, we define
representational harms as systematic association
of marginalized groups with negative perception
and stereotypes in PTLMs. In the next section, we
explain how we quantify this behavior in PTLMs.

3.2 Operationalization
We operationalize the representational harms to-
wards a marginalized demographic by measur-
ing the language modeling likelihood of implic-
itly harmful statements versus benign statements.
Previous work have leveraged power dynamics
between two groups to quantify representational
harms (Zhao et al., 2018; Rudinger et al., 2018;
Zhao et al., 2019; Vig et al., 2020; Nadeem et al.,
2021; Nangia et al., 2020). However, Seyranian
et al. (2008) raises doubts about whether social
psychology can ever reach a consensual definition
of majority and minority groups. Therefore, sim-
ilar to Schramowski et al. (2022), we do not use
power dynamics to compare minority groups with
a perceived majority group in this work. In the fol-
lowing sections, we explain the metric and dataset,
we use for quantifying representational harms.

3.2.1 Dataset
We use a human annotated subset of ToxiGen
dataset (Hartvigsen et al., 2022) which contains
implicitly harmful and benign sentences towards
13 marginalized demographics in English. These
sentences were generated by GPT-3 and a about
10,000 sentences were annotated by crowd workers
(3 annotators per sentence) from a balanced de-
mographic. Annotators were asked to provide the

3https://www.hsph.harvard.edu/magazine/
magazine_article/discrimination-in-america/
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Figure 1: Distribution of implicitly harmful and benign
sentences towards 13 demographics in our evaluation
dataset.

toxicity level of the sentence on a 1-5 scale with 1
being clearly benign and 5 indicating very harmful
text. The annotators were also asked whether the
sentence is lewd, human-like language, refers to a
demographic. Based on their annotation, the harm-
ful sentences in ToxiGen dataset are not overtly
offensive and the percentage of lewd sentences in
this dataset is only 4%. The non-harmful sentences
in the dataset are not necessarily contrasting or
subverting the stereotypes. These statements are
simply neutral or desirable regards toward specific
minorities. In order to reduce noise in the Tox-
iGen human annotated set, we only selected the
sentences in which all annotators agree on the tar-
get demographic group. After this post-processing
step, our evaluation set reduced to 6541 sentences.
Figure 1 depicts the distribution of implicitly harm-
ful and benign sentences towards 13 marginalized
demographics in our evaluation dataset.

Moreover, Hartvigsen et al. (2022) claim that on
average, 90.5% of machine-generated examples in
the evaluation dataset were thought to be human-
written by most annotators. This indicates that the
sentences are mostly human-like statements. We
note that the demographic groups in the evaluation
dataset are situated in the U.S. context. However,
the dataset is generated by GPT-3 which is trained
on English language around the globe. Therefore,
we believe this dataset can be used to evaluate En-
glish PTLMs.

3.2.2 Metric

We leverage language modeling objective which
is the pre-training task in large-scale PTLMs. A

language model is a probability distribution over
tokens and perplexity is a measurement of how
well this probability distribution predicts a sample.
Given a tokenized sentence W = [w1, w2, ..., wT ],
we can define perplexity as

P (W ) = exp(
−1

|W |
T∑

i=1

log(pθ(wi|w1, ..., wi−1)))

Please note that perplexity is not well-defined
in auto-encoder models which are bi-directional.
Therefore, we leverage pseudo-perplexity proposed
by Salazar et al. (2020) in place of perplexity for
auto-encoder PTLMs.

We first compute the perplexity of each state-
ment in dataset and divide it by its toxicity score.
Using toxicity score helps with emphasizing the
potential harmfulness of statements. We refer to
these values as scaled perplexity. Ideally, a fair
PTLM should have very high scaled perplexity for
harmful sentences and low scaled perplexity for
benign sentences.

Next, we use Mann-Whitney U-test (Mann
and Whitney, 1947) to quantify the propensity of
PTLMs for generating either benign or implicitly
harmful sentences. Mann-Whitney U-test is a non-
parametric test of a null-hypothesis that for ran-
domly selected values X and Y from two popu-
lations, the probability of X > Y is equal to the
probability of Y > X . Mann-Whitney U-test does
not assume any specific distribution such as normal
distribution of samples for calculating test statistics
and p-values. Moreover, this test can be applied on
very small samples.

Let X1, X2, ..., Xn be the perplexities for harm-
ful statements and Y1, Y2, ..., Ym be the perplexi-
ties for benign statements. The Mann-Whitney U
statistics is defined as

U =
n∑

i=1

m∑

j=1

F (
Xi

ti
,
Yj
tj
) (1)

where ti and tj refer to the toxicity score of Xi

and Yj , respectively. F (X,Y ) is a pair-wise rank-
ing function that compares every benign statement
with every harmful statement and assign a ranking
score to this pair:

F (X,Y ) =





1 if X > Y
1/2 if X = Y
0 if X < Y

(2)
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Using Equation 1, we can define safety score S,
which is basically the effect size of U-statistics:

S =
U

nm
(3)

In a healthy PTLM, safety score should be equal to
1, in which, all the harmful sentences have higher
scaled perplexity than benign sentences. Moreover,
when S = 0, all the benign sentences are less
likely to be produced by a PTLM than the harmful
sentences.

4 Results and Discussion

4.1 Experiment Setup

We calculated safety scores (Equation 3) for 13
marginalized demographics using 24 widely used
PTLMs4. In the next section, we dive deeper into
validity of safety score on the evaluation dataset.

4.2 Language Modeling

For the safety score to be meaningful, the state-
ments in the evaluation dataset must be reason-
ably likely to be generated by each PTLM. We use
log-perplexity to evaluate the likelihood of both
benign and harmful sentences. The higher the log-
perplexity, the lower is the chance of those state-
ments to be generated by that model. We measure
the log perplexity of each sentence in the evaluation
dataset and report the mean and standard deviation
of these values in benign and harmful sets for each
PTLM (Table 1). We observe that most models are
in a reasonable range. For example, GPT-2-xl (Rad-
ford et al., 2019) has an average log-perplexity of
2.9 on a well-known language modeling bench-
mark, named WikiText (Merity et al., 2016)). This
is comparable with the log-perplexity scores on our
evaluation dataset and hence we can conclude that
the PTLMS are likely to generate the statements in
both categories. Note that the auto-encoder models
such as BERT usually have lower log-perplexity
scores due to their bi-directional architecture.

4.3 Representational Harms Towards
Marginalized Demographics

In this section, we analyze the representational
harms towards marginalized demographics. Fig-
ure 2 illustrates the box plot for safety scores of
PTLMS grouped by demographics. This figure

4We used PTLMs in Hugging Face library
(https://huggingface.co)

Table 1: Log-Perplexity (mean, standard deviation)
averaged over variants of PTLMs

PTLM Benign log-Perplexity Harmful log-Perplexity

BERT-uncased 1.97± 1.33 2.22± 1.34
BERT-cased 1.98± 1.16 2.17± 1.23
RoBERTa 3.15± 1.64 3.60± 1.86
ELECTRA-generator 2.12± 1.34 2.31± 1.34
ALBERT 2.78± 1.77 3.16± 1.95
GPT-2 3.45± 1.09 3.67± 1.10
XLNet 3.77± 1.13 3.95± 1.15

Figure 2: Distribution of safety scores of 24 PTLMs for
each demographics.

shows that PTLMs in general are less likely to em-
bed harmful contents for Asian, African American,
Chinese and Jewish compare to other demograph-
ics. However, the safety scores for all these groups
are below 0.5, which is far worse than an ideal
system.

4.4 Correlation between Representational
Harms Metrics

In this section, we compare our safety score with
other metrics on the intersection of their marginal-
ized groups and the notion of bias. Since measuring
gender stereotype has been well studied (Sheng
et al., 2019; Zhao et al., 2018; Rudinger et al.,
2018; Vig et al., 2020; Nadeem et al., 2021), we
picked Women demographic for our comparison.
The only metric metric that share a similar notion
of representational harms with our safety score is
Regard (Sheng et al., 2019). Regard is a BERT clas-
sifier trained on human-annotated examples to mea-
sure regard towards a certain demographic based
on their gender (woman, man), sexual orientation
(gay, straight), or race (black, white). We also use
two intrinsic metrics for measuring stereotyping;
CMA (Vig et al., 2020) and SS (Nadeem et al.,
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Table 2: PCC between representational harms metrics
in auto-encoder models for Women demographic.

CMA-WG CMA-WB SS

CMA-WB 0.88
SS 0.32 0.38
Ours (ToxiGen) -0.55 -0.53 -0.91

2021). CMA measures gender stereotyping with
respect to occupation. We used the total effects re-
ported in (Vig et al., 2020) for some of the PTLMs
and measured the SS scores and Regard scores5

for auto-encoder and auto-regressive PTLMs, re-
spectively. We calculated the Pearson Correlation
Coefficient (PCC) between these metrics in both
auto-encoder and auto-regressive models. Table 2
and 3 demonstrate the correlation between these
metrics.

Our metric is negatively correlated with CMA
and SS metrics in auto-encoder models. These dis-
parities could be due the fact that SS and CMA
study the notion of gender stereotyping while our
metric measures the toxicity notion of representa-
tional harms towards Women.

As shown in Table 3, our metric is positively
correlated with CMA and Regard metrics. The no-
tion of representational harms in Regard is close
to implicit hate. However, Regard is an automatic
classifier which is prone to manifesting represen-
tational harms in its model. In addition to Regard
classifier, we utilized HateBERT(ElSherief et al.,
2021) and RoBERTa-ToxiGen (Hartvigsen et al.,
2022) classifiers. These classifiers are trained to
detect implicit hate in a sentence. We report the cor-
relation between several metrics in Table 3. We ob-
serve either negative or weak correlation between
our metric and toxic language detection models.
This indicates that existing toxic language detec-
tors are not yet able to capture the implicit toxicity
in our evaluation set.

Moreover, in auto-regressive models, perplexity
is well-defined, hence our safety score is correlated
with CMA metrics. This indicates that our safety
score is correlated with gender stereotyping met-
rics if the perplexities are accurate. Overall, the
negative and weakly positive correlations between
our metric and existing metrics, indicates that these
metrics are most likely overlooking the implicit
hate in PTLMs, suggesting that our metric is com-
plementary to the existing suit of representational

5We refer to the percentage of positive and neutral predic-
tions from Regard classifier as Regard score.

Figure 3: Average safety score for different families of
models versus number of parameters in the model.

harms metrics.

4.5 Safety Scores on Implicit Hate Speech
Dataset

Safety score can be applied to any dataset with
a balanced set of benign and toxic sentences tar-
geting minority groups. To further analyze this
hypothesis, we selected a subset of Implicit Hate
dataset (ElSherief et al., 2021). The examples in
Implicit Hate subset are either implicit hate or neu-
tral and we down sampled the neutral examples
to have equal number of harmful and benign ex-
amples. Moreover, Implicit Hate does not have
any information about the target demographic of
the hate for each sentence and the level of toxicity.
Harmful examples in ToxiGen have a toxicity score
of 4 or 5 and the benign examples have a toxicity
of 1, 2, or 3. Therefore, for the sake of compa-
rability, we assign a toxicity score of 1 to benign
examples and 2.25 to harmful examples which are
the linear mapping of average toxicity scores in
each category. The correlation between the safety
scores measured based on ToxiGen and Implicit
Hate is 0.68 which demonstrates the almost linear
correlation between these metrics.

4.6 Effect of Depth and Width of the Network
on Safety Score

In this section, we study the effect of network archi-
tecture and size on safety score. Figure 3 shows the
relation between model size (number of parame-
ters) and average safety score across demographics
for different families of PTLMs. We observe that
average safety score decreases as the model size
grows in the majority of PTLMs families. Vig et al.,
2020 made a similar observation using CMA for
gender stereotyping. Moreover, uncased version of
BERT models are safer than their cased variant and
RoBERTa (Liu et al., 2019) and ALBERT (Lan
et al., 2020) have the highest safety score. The
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Table 3: PCC between representational harms related metrics in auto-regressive models for Women demographic.

RoBERTa-ToxiGen HateBert Regard CMA-WG CMA-WB

HateBert 0.46 1.00
Regard 0.07 -0.47 1.00
CMA-WG 0.30 0.69 -0.76 1.00
CMA-WB 0.24 0.55 -0.75 0.95 1.00
Safety Score (ToxiGen) 0.14 -0.35 0.11 0.20 0.15

Table 4: PCC between safety score and network archi-
tecture in PTLMs.

#Heads #Layers Hidden Dim

GPT2 -0.54 -0.55 -0.54
ALBERT -0.61 0.09 -0.83
ELECTRA -0.63 -0.63 -0.98

pre-training corpus for RoBERTa contains stories,
and news which could be the reason for being safer
compare to other PTLMs. In addition, ALBERT
has a very deep architecture in which all the lay-
ers share parameters. To better understand the ef-
fect of network architecture, we selected families
of PTLMs with three or more variants. For each
family of PTLMs, we studied the correlation be-
tween their average safety sores and their number
of layers, number of attention heads and hidden
dimension. Table 4 contains the PCC for GPT-2,
ALBERT, and ELECTRA (Clark et al., 2020). In
auto-encoder models, average safety scores have
higher negative correlation with the width of the
network compare to its depth (#layers). This in-
dicates that wider auto-encoder models are bet-
ter at manifesting harmful representations. GPT-2
has roughly similar negative correlation with both
depth and width of the network, indicating that
width and depth of the network are affecting the
average safety score equally. However, one expla-
nation could be the weight sharing between layers
in ALBERT and between the generator and dis-
criminator in ELECTRA. For example in ALBERT
this strategy reduces the depth complexity. Overall,
we hypothesize that by increasing the number of
parameters in a PTLM, we increase its capacity to
memorize the implicit toxicity in the pre-training
corpus. In the next section, we further study the ef-
fect of network architecture on safety score through
knowledge distillation.

4.7 Safety Score in Distilled Models

The large size of PTLMs presents challenges for
fine-tuning and online serving in applications due

Table 5: Safety scores for Distilled-BERT models and
teacher model (BERT-large-uncased (L=24, H=1024)).
L refers to the number of layers and H refers to hidden
dimension. Number of attention are equal to H/64.

L=2 L=4 L=6 L=8 L=10 L=12 L=24

H=128 0.307 0.317 0.320 0.316 0.320 0.322
H=256 0.308 0.311 0.312 0.313 0.311 0.309
H=512 0.305 0.304 0.304 0.298 0.298 0.299
H=768 0.301 0.293 0.293 0.286 0.285 0.283
H=1024 0.303

Table 6: Safety scores for Distilled-GPT-2 models and
teacher model (GPT-2 (L=12, H=768)). L refers to the
number of layers and H refers to hidden dimension.
Number of attention are equal to H/64.

L=2 L=4 L=6 L=8 L=10 L=12

H=128 0.267 0.278 0.302 0.296 0.306 0.309
H=256 0.286 0.280 0.361 0.351 0.375 0.343
H=512 0.302 0.293 0.303 0.332 0.316 0.328
H=768 0.326 0.313 0.355 0.320 0.309 0.289

to latency and capacity constraints. Therefore, sev-
eral approaches have been proposed to compress
these language models (teacher) into smaller mod-
els (student) which produce similar performance
to large models. Many of these approaches are
fundamentally based on the concept of Knowledge
Distillation (KD) proposed by Hinton et al. (2015).
We study the effect of KD in both auto-encoder and
auto-regressive models using BERT and GPT-2 as
teachers. We leverage the 24 Distilled-BERT mod-
els provided by Turc et al. (2019). These student
models were pre-trained with language modeling
objective and distilled from BERT-large-uncased
(teacher). We measured the average safety score
for Distilled-BERT models. Based on table 5 and
Turc et al., 2019’ results, we should prioritize depth
over width in auto-encoder models for both better
downstream NLU task performance and increasing
safety.

Similarly, we pre-trained 23 student models
with language modeling objective on OpenWeb-
Text (Gokaslan et al., 2019) corpus for 1 epoch.
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Table 7: PCC between safety score and network archi-
tecture in distilled PTLMs.

#Heads #Layers Hidden Dim

Distilled-BERT -0.92 -0.10 -0.92
Distilled-GPT2 -0.38 0.35 -0.38

Then we used KD to distill these students from
GPT-2 (teacher) using cross-entropy loss over the
soft target probabilities of GPT-2. We measure the
perplexity of student models on language model-
ing benchmarks including WikiText-2, WikiText-
103 (Merity et al., 2016), Lambada (Paperno
et al., 2016), and the Penn Treebank (Marcus et al.,
1993) (Appendix A.6, Table 15). Table 6 contains
the safety scores for student and teacher (L=12,
H=768) models. We observe that, reducing hidden-
dimension has higher negative impact on language
modeling objective and positive impact on safety
score. Distilled-GPT-2 models with reasonable lan-
guage modeling performance have better safety
score than their teacher. However, in Distilled-
BERT models the safety score does not improve
significantly, compared to teacher. We selected
distilled models with reasonable downstream task
performance (NLU, language modeling) and calcu-
lated the PCC between average safety scores and
the depth and width of networks (Table 7). The
PCC are aligned with our previous observation on
the effect of depth and width of networks on safety
score.

5 Conclusion

This work presented an empirical study of repre-
sentational harms in PTLMs using a new metric
which is based on language modeling objective and
implicit toxicity. Our experiments highlighted that
PTLMs have higher tendencies to manifest repre-
sentational harms towards some marginalized de-
mographics than others. Some of these groups have
not been well studied in representational harm liter-
ature such as Middle Eastern, Hispanic, and people
with disability. The correlation study between re-
lated representational harm metrics confirms that
our metric is quantifying a different notion of repre-
sentational harms compare to the existing metrics
which is toxicity. We also observed that, this no-
tion of representational harms is overlooked by
the existing toxic language detection models. We
conducted an ablation study to understand the ef-
fect of PTLMs size and architecture on our safety

score. Our findings are; first, we should priori-
tize depth over width in auto-encoder models for
both better downstream NLU task performance and
reducing representational harms. Second, in auto-
regressive models, there exist a trade-off between
the language modeling downstream tasks and rep-
resentational harms. Having more depth does not
hurt the safety score. However, the wider is the net-
work, the more capable it is in manifesting implicit
hate.

Finally, our work is a complementary step to the
existing effort in expanding the notion of represen-
tational harms metrics. Our work can be extended
in multiple ways. First, safety score can be used as
an objective function to reduce implicit hate. Sec-
ond, our evaluation dataset can be extended to have
more examples for intersections of marginalized
demographics such as Middle Eastern women.

Ethics Statement

In this work, we leverage a synthetic dataset that
is generated using GPT-3 and verified by human
annotator. We understand that the annotators’ bias
can manifest in the annotations even though the
crowd-workers were selected from different demo-
graphics. Moreover, the dataset used in this work
do not cover the intersection of marginalized demo-
graphics such as Black women and is in English.

Representational harms in language are context-
dependent, ever-changing, and human-centric.
Therefore, our metric may fail at capturing the
full complexity of these issues in language mod-
els. Therefore, we should approach this problem
from a multi-disciplinary point of view and lever-
age several fields such as social sciences as well as
human in the process of measuring and reducing
representational harms.

Finally, representational harms are task depen-
dent and need to be measured in relation with the
downstream tasks. In this work we proposed safety
score based on the language modeling task that
may not transfer to NLU tasks.
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A Appendix

A.1 Safety Scores
The safety scores are reported in Table 8.

A.2 Language Modeling
We measure the log perplexity of each sentence
in the evaluation dataset and report the mean and
standard deviation of these values for both benign
and harmful sets in Table 9.

A.3 Safety Scores on Implicit Hate Speech
Dataset

We selected a subset of ImplicitHate dataset. The
examples in ImplicitHate subset are either implicit-
hate or neutral and we down-sampled the neutral
examples to have equal number of harmful and be-
nign examples. Moreover, ImplicitHate does not
have any information about the target demographic
of the hate for each sentence and the level of toxic-
ity. Harmful examples in ToxiGen have a toxicity
score of 4 or 5 and the benign examples have a
toxicity of 1, 2, or 3. Therefore, for the sake of
comparability, we assign a toxicity score of 1 to be-
nign examples and 2.25 to harmful examples which
are the linear mapping of average toxicity scores in
each category. Table10 contains the safety scores
for 24 PTLMs using ImplicitHate dataset. The cor-
relation between the safety scores measured based
on ToxiGen and ImplicitHate is 0.68 which demon-
strates the almost linear correlation between these
metrics.

A.4 Regard Scores

We refer to Regard score as the percentage of
neutral and positive predictions by Regard clas-
sifier. The distribution of Regard scores over all
24 PTLMs in each marginalized demographic is
shown in Figure 4. Table 11 contains the Regard

Figure 4: Distribution of Regard scores over 24 PTLMs
for each minority group.

scores for all PTLMs and marginalized demograph-
ics.

Table 12 contains our safety scores based on
Regard classifier predictions for all PTLMs and
marginalized demographics.

A.5 Pre-Trained Language Models
Parameters

Number of layers, attention heads and hidden di-
mension for each PTLMs alongside their average
safety score are provided in Table 13.

A.6 GPT-2 Pre-Training and Distillation

We used OpenWebText corpus to pre-train 23
miniature GPT-2 models using GPT-2 pre-training
hyper-parameters and vocabulary. All students
share hyper-parameters and only differ in their ar-
chitecture. The average training loss for language
modeling after 1 epoch is 10. Then we used KD to
distill these models from GPT-2. Each student was
distilled for 1 epoch over OpenWebText.

Finally, we fine-tuned these models on 4 lan-
guage modeling benchmarks using only 500 exam-
ples to evaluate their few-shot performance. Ta-
ble 14 presents the network size and perplexity
scores on benchmark test sets after fine-tuning.
Note that the last line is the original GPT-2 model
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Table 8: Safety scores

PTLMs Asian Black Chinese Jewish Latino LGBTQ Mentally
disable Mexican Middle

Eastern Muslim Native
American

Physically
disabled Women

BERT-large-uncased 0.3904 0.3180 0.3853 0.3917 0.2482 0.3153 0.2604 0.2698 0.3005 0.3073 0.2543 0.2537 0.2437
BERT-base-uncased 0.3955 0.3321 0.3880 0.3940 0.2540 0.3148 0.2490 0.2733 0.2912 0.3025 0.2477 0.2449 0.2428
DistilBERT-base-uncased 0.4066 0.3243 0.4022 0.4064 0.2722 0.2724 0.2003 0.2826 0.2947 0.2896 0.2650 0.2182 0.2476
mobileBERT 0.3717 0.3197 0.3846 0.4054 0.2464 0.2863 0.1991 0.2662 0.2806 0.3009 0.2416 0.2181 0.2481

BERT-large-cased 0.3861 0.2949 0.3630 0.3404 0.2267 0.2969 0.2242 0.2452 0.2075 0.2517 0.1730 0.2176 0.2065
BERT-base-cased 0.3919 0.3161 0.3671 0.3559 0.2401 0.3115 0.2270 0.2568 0.2080 0.2721 0.1765 0.2249 0.2142
DistilBERT-base-cased 0.4033 0.3104 0.3957 0.3478 0.2720 0.2714 0.1978 0.2988 0.2573 0.2120 0.2382 0.2075 0.2466

RoBERTa-large 0.4381 0.3859 0.4364 0.4247 0.2540 0.2946 0.2639 0.2656 0.3109 0.2819 0.2545 0.2621 0.2615
RoBERTa-base 0.4892 0.4472 0.4932 0.4921 0.3202 0.3430 0.3032 0.3522 0.3598 0.3534 0.3051 0.3111 0.3044
DistilRoBERTa 0.4971 0.4881 0.4895 0.4429 0.3639 0.3903 0.3643 0.3673 0.4196 0.4129 0.3558 0.3721 0.3569

ELECTRA-large-generator 0.3665 0.2935 0.3789 0.3664 0.2492 0.2960 0.2303 0.2773 0.2578 0.2833 0.2283 0.2337 0.2241
ELECTRA-base-generator 0.3703 0.3097 0.3763 0.3828 0.2543 0.2970 0.2190 0.2840 0.2703 0.2911 0.2335 0.2266 0.2280
ELECTRA-small-generator 0.3907 0.3329 0.4178 0.3824 0.2711 0.3379 0.2445 0.3065 0.2853 0.3093 0.2536 0.2479 0.2539

ALBERT-xxlarge-v2 0.4464 0.4095 0.4482 0.4843 0.2918 0.3383 0.2682 0.3142 0.3429 0.3212 0.3224 0.3023 0.2789
ALBERT-xlarge-v2 0.4285 0.4047 0.4271 0.4718 0.2918 0.3742 0.2624 0.3132 0.3384 0.3291 0.3697 0.2752 0.2936
ALBERT-large-v2 0.4749 0.4458 0.4659 0.4897 0.3260 0.4143 0.3364 0.3521 0.3847 0.3632 0.3875 0.3348 0.3240
ALBERT-base-v2 0.4729 0.4364 0.4768 0.4945 0.3426 0.3909 0.3052 0.3790 0.3707 0.3619 0.3509 0.3255 0.3166

GPT-2-xl 0.3637 0.3662 0.3534 0.4018 0.2072 0.2718 0.2456 0.2139 0.2386 0.3110 0.2373 0.2315 0.2219
GPT-2-large 0.3650 0.3640 0.3670 0.4028 0.2111 0.2796 0.2434 0.2210 0.2400 0.3117 0.2394 0.2337 0.2274
GPT-2-medium 0.3636 0.3527 0.3629 0.3972 0.2139 0.2759 0.2368 0.2212 0.2321 0.3041 0.2331 0.2196 0.2265
GPT-2 0.3695 0.3666 0.3731 0.4066 0.2283 0.2702 0.2276 0.2352 0.2605 0.3232 0.2451 0.2246 0.2323
DistilGPT-2 0.3853 0.3816 0.3838 0.4187 0.2433 0.2819 0.2396 0.2582 0.2879 0.3431 0.2599 0.2412 0.2273

XLNet-large-cased 0.3847 0.3283 0.3790 0.3770 0.2677 0.2875 0.2264 0.2772 0.2385 0.3012 0.2353 0.2089 0.2314
XLNet-base-cased 0.3841 0.3340 0.3814 0.3912 0.2814 0.2971 0.2163 0.2927 0.2446 0.2969 0.2311 0.2121 0.2345

Table 9: Average log-Perplexity (mean, standard devia-
tion) of PTLMs for both harmful and benign statements
in the evaluation dataset. We report the log-pseudo-
perplexity for auto-encoder models.

PTLM Benign log-Perplexity Harmful log-Perplexity

BERT-large-uncased 2.0158± 1.5877 2.2151± 1.5385
BERT-base-uncased 2.0776± 1.4823 2.2967± 1.4228
DistilBERT-base-uncased 2.0754± 1.1138 2.3748± 1.1750
MobileBERT 1.7225± 1.1248 1.9788± 1.2310
BERT-large-cased 1.8979± 1.2306 2.0388± 1.2898
BERT-base-cased 2.0948± 1.2364 2.2505± 1.3051
DistilBERT-base-cased 1.9537± 1.0279 2.2177± 1.0915
RoBERTa-large 2.0927± 1.3298 2.3794± 1.5283
RoBERTa-base 2.7157± 1.6320 3.1820± 1.9523
DistilRoBERTa 4.6522± 1.9575 5.2377± 2.0968
ELECTRA-large-generator 1.9633± 1.3035 2.1303± 1.2854
ELECTRA-base-generator 2.0536± 1.2623 2.2443± 1.2574
ELECTRA-small-generator 2.3353± 1.4410 2.5409± 1.4682
ALBERT-xxlarge-v2 2.2701± 1.6467 2.6235± 1.7682
ALBERT-xlarge-v2 2.3134± 1.6531 2.6689± 1.8835
ALBERT-large-v2 3.0989± 2.0097 3.5508± 2.2536
ALBERT-base-v2 3.4252± 1.7665 3.7931± 1.8818
GPT-2-xl 3.1126± 1.0515 3.3317± 1.0535
GPT-2-large 3.2045± 1.0526 3.4239± 1.0696
GPT-2-medium 3.3130± 1.0597 3.5195± 1.0801
GPT-2 3.6077± 1.0894 3.8240± 1.1169
DistilGPT-2 4.0314± 1.1802 4.2621± 1.1879
XLNet-large-cased 3.6312± 1.1147 3.8088± 1.1430
XLNet-base-cased 3.9110± 1.1367 4.0888± 1.1536

(teacher). The few-shot performance averaged over
all benchmarks are provided in Table 15.

Table 10: Safety scores based on ImplicitHate

PTLMs Safety Score

BERT-large-uncased 0.332300992
BERT-base-uncased 0.335931145
DistilBERT-base-uncased 0.336185856
mobileBERT 0.335289526
BERT-large-cased 0.300331164
BERT-base-cased 0.308677306
DistilBERT-base-cased 0.329417992
RoBERTa-large 0.353298215
RoBERTa-base 0.376362527
DistilRoBERTa 0.390526523
ELECTRA-large-generator 0.332349693
ELECTRA-base-generator 0.332561139
ELECTRA-small-generator 0.334555207
ALBERT-xxlarge-v2 0.35294267
ALBERT-xlarge-v2 0.358772426
ALBERT-large-v2 0.352241738
ALBERT-base-v2 0.339738782
GPT-2-xl 0.2539317
GPT-2-large 0.255463608
GPT-2-medium 0.255785509
GPT-2 0.259990915
DistilGPT-2 0.26304632
XLNet-large-cased 0.269394327
XLNet-base-cased 0.271851141
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Table 11: Regard positive and neutral predictions out of 1000 statements generated by each PTLM.

PTLMs Asian Black Chinese Jewish Latino LGBTQ Mentally
disable Mexican Middle

Eastern Muslim Native
American

Physically
disabled Women Men

GPT-2-xl 0.649 0.550 0.730 0.618 0.636 0.618 0.387 0.637 0.686 0.585 0.712 0.512 0.710 0.642
GPT-2-large 0.645 0.506 0.686 0.624 0.624 0.567 0.399 0.594 0.675 0.502 0.713 0.503 0.686 0.640
GPT-2-medium 0.672 0.532 0.691 0.612 0.648 0.612 0.363 0.649 0.702 0.527 0.688 0.525 0.683 0.632
GPT-2 0.654 0.495 0.639 0.499 0.629 0.610 0.374 0.569 0.644 0.537 0.702 0.462 0.665 0.604
DistilGPT-2 0.658 0.495 0.716 0.561 0.693 0.651 0.429 0.636 0.701 0.586 0.785 0.540 0.626 0.612
XLNet-large-cased 0.810 0.563 0.835 0.783 0.710 0.611 0.500 0.757 0.791 0.712 0.801 0.591 0.771 0.735
XLNet-base-cased 0.718 0.505 0.719 0.564 0.655 0.605 0.442 0.684 0.773 0.617 0.718 0.507 0.713 0.702

Table 12: Safety scores based on Regard classifier scores. We mapped Regard labels to the range of 1-4 where 1
refers to positive regards and 4 refers to negative regards and used them as toxicity score in Equation1

PTLMs Asian Black Chinese Jewish Latino LGBTQ Mentally
disable Mexican Middle

Eastern Muslim Native
American

Physically
disabled Women Men

GPT-2-xl 0.2694 0.3893 0.2622 0.2471 0.3397 0.1970 0.3070 0.2839 0.2649 0.2279 0.2814 0.2987 0.3493 0.3353
GPT-2-large 0.2771 0.3679 0.2509 0.2509 0.3058 0.1993 0.2267 0.2825 0.2998 0.2511 0.2531 0.2437 0.3416 0.3728
GPT-2-medium 0.2853 0.3834 0.2775 0.3091 0.3380 0.2168 0.2424 0.2957 0.2549 0.3016 0.2625 0.3003 0.3451 0.3478
GPT-2 0.2881 0.3621 0.2334 0.2407 0.3106 0.1769 0.2371 0.2470 0.2715 0.2170 0.2173 0.2966 0.3087 0.3285
DistilGPT-2 0.2507 0.2994 0.2253 0.2265 0.2938 0.1779 0.2104 0.2443 0.2607 0.2050 0.2328 0.2489 0.2578 0.2991
XLNet-large-cased 0.2309 0.2783 0.2233 0.1997 0.2826 0.2165 0.2191 0.2583 0.1976 0.2018 0.2266 0.2124 0.4290 0.4450
XLNet-base-cased 0.1444 0.1900 0.1190 0.1463 0.1420 0.1418 0.1476 0.1464 0.1269 0.1221 0.1295 0.1609 0.3441 0.3566

Table 13: Number of layers, attention heads and hidden dimension in PTLMS.

Model # Attention Heads # Layers Hidden Dim Average safety score

BERT-large-uncased 16 24 1024 0.303
BERT-base-uncased 12 12 768 0.302
BERT-large-cased 16 24 1024 0.264
BERT-base-cased 12 12 768 0.274
RoBERTA-Large 16 24 1024 0.318
RoBERTA-Base 12 12 768 0.375
Electra-large-Generator 16 24 1024 0.283
Electra-base-Generator 12 12 768 0.288
Electra-small-Generator 12 12 256 0.310
Albert-xxlarge-v2 64 12 4096 0.351
Albert-xlarge-v2 16 24 2048 0.352
Albert-large-v2 16 24 1024 0.392
Albert-base-v2 12 12 768 0.386
GPT2-xl 25 48 1600 0.282
GPT2-large 20 36 1280 0.285
GPT2-medium 16 24 1024 0.280
GPT2-small 12 12 768 0.289
XLNet-large 16 24 1024 0.288
XLNet-base 12 12 768 0.292
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Table 14: Few-shot learning perplexity of GPT-2 models on 4 language modeling benchmarks test sets.

#Attention Heads #Layers Hidden Dim #Parameters (million) WikiText2 WikiText103 LAMBDA PTB

2.00 2.00 128.00 6.96 98.12 202.96878 265.38 153.35
4.00 2.00 256.00 14.71 66.03 131.50 216.40 100.13
8.00 2.00 512.00 32.56 42.46 73.30 174.30 62.02
12.00 2.00 768.00 53.56 32.30 52.17 117.23 45.15
2.00 4.00 128.00 7.36 88.53 180.28 259.79 146.83
4.00 4.00 256.00 16.29 48.68 86.34 160.85 74.81
8.00 4.00 512.00 38.87 32.48 53.09 113.74 47.49
12.00 4.00 768.00 67.74 26.25 40.82 92.34 36.31
2.00 6.00 128.00 7.75 71.74 135.60 212.09 117.54
4.00 6.00 256.00 17.87 40.98 69.68 142.71 63.13
8.00 6.00 512.00 45.17 28.30 44.80 91.22 39.84
12.00 6.00 768.00 81.91 23.85 36.32 82.06 32.26
2.00 8.00 128.00 8.15 65.90 116.47 188.44 107.24
4.00 8.00 256.00 19.45 38.30 63.97 131.82 58.17
8.00 8.00 512.00 51.48 26.30 41.01 90.80 36.51
12.00 8.00 768.00 96.09 22.64 34.08 78.05 30.04
2.00 10.00 128.00 8.55 63.57 113.63 191.38 104.57
4.00 10.00 256.00 21.03 36.16 59.78 130.51 53.98
8.00 10.00 512.00 57.78 25.14 38.96 87.68 34.22
12.00 10.00 768.00 110.26 22.08 32.87 74.78 29.01
2.00 12.00 128.00 8.94 60.88 107.03 186.09 102.09
4.00 12.00 256.00 22.61 34.76 56.85 114.84 51.21
8.00 12.00 512.00 64.09 24.46 37.39 81.45 33.00
12.00 12.00 768.00 117.00 15.75 21.86 44.79 22.85

Table 15: Few-shot language modeling perplexities aver-
aged over 4 benchmark test sets for distilled-GPT-2 mod-
els where the teacher model is GPT-2 (L=12, H=768.

L=2 L=4 L=6 L=8 L=10 L=12

H=128 172.28 168.86 134.24 119.51 118.28 114.02
H=256 128.52 92.67 79.13 73.07 75.48 64.41
H=512 88.02 61.70 51.04 48.66 46.50 44.07
H=768 61.71 48.93 43.62 41.20 39.69 26.31
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