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Abstract

Metric Differential Privacy enables text-to-text
privatization by adding calibrated noise to the
vector of a word derived from an embedding
space and projecting this noisy vector back to
a discrete vocabulary using a nearest neighbor
search. Since words are substituted without
context, this mechanism is expected to fall short
at finding substitutes for words with ambiguous
meanings, such as ’bank’. To account for these
ambiguous words, we leverage a sense embed-
ding and incorporate a sense disambiguation
step prior to noise injection. We encompass
our modification to the privatization mecha-
nism with an estimation of privacy and utility.
For word sense disambiguation on the Words in
Context dataset, we demonstrate a substantial
increase in classification accuracy by 6.05%.

1 Introduction

A tension exists between the need to leverage tex-
tual data to develop language models and privacy
concerns regarding the information conveyed by
that data. This is of particular importance because
personal information can be recovered from lan-
guage models (Song and Shmatikov, 2019; Carlini
et al., 2020; Pan et al., 2020).

Metric Differential Privacy provides a protection
against the disclosure of private information. It has
recently been tailored to textual analysis in the form
of a text-to-text privatization mechanism (Feyisetan
et al., 2020). Building on continuous-valued word
embeddings, it relies on the assumption that words
close in embedding space serve similar semantic
and syntactic roles. This property of embeddings is
exploited to replace all words in a text with substi-
tute words given a probability that can be controlled
by a noise parameter. A nearest neighbor search
is employed to return a substitute word from all
words in the embedding space.

A notable deficiency of word embeddings is that
they assign a single representation to each word.

Depending on its context, an ambiguous word can
refer to multiple, potentially unrelated, meanings.
Word embeddings are unable to reflect this dynamic
nature of words, leading to potentially inappropri-
ate substitutions when used for text-to-text privati-
zation. Clues signaled by inappropriate substitute
words may direct a classifier into the opposite direc-
tion during downstream tasks. Contextualised word
embeddings are an attempt at addressing this lim-
itation by computing dynamic representations for
words which can adapt based on context. However,
this dynamic behavior makes it virtually impossible
to return a substitute word as the nearest neighbor
search requires all vectors to be pre-computed and
located in the same embedding space.

Sense embeddings represent a middle course be-
tween lexical embeddings and contextualized em-
beddings. By decoupling the static representations
of words into multiple representations that capture
the meaning of words (covering one representation
for each meaning of a word), sense representations
enable context-aware text-to-text privatization.

We make the following contributions:

• We replace the word embedding in Feyise-
tan et al. (2020) with a sense embedding con-
structed according to Pelevina et al. (2017).
To utilize the decoupled senses of words, we
further incorporate a word-sense disambigua-
tion prior to the privatization step that discrim-
inates a sense given a sense inventory and a
context window.

• We investigate the privacy and utility of substi-
tutions compared to the baseline privatization
mechanism without context awareness. Con-
gested by additional representations for each
sense of a word, we find that the plausible
deniability (acting as our proxy for privacy) is
shaped almost identical but allows for smaller
noise injection. To demonstrate the utility, we
obtain substitutions of identical words paired
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in either the same or different contexts. At
equivalent levels of privacy, the similarity of
substitutions for which their original words be-
long to the same context show a significantly
higher similarity than those of substitutions
for which their original words belong to differ-
ent contexts. Using a set of benchmark tasks
from GLUE (Wang et al., 2019), we demon-
strate that this difference is an important sig-
nal for downstream classification.

2 Preliminaries

2.1 Differential Privacy

Metric Differential Privacy (Chatzikokolakis et al.,
2013) is a generalization of differential privacy that
originated in the context of location-based privacy,
where locations close to a user are assigned with a
high probability, while distant locations are given
negligible probability. Using word embeddings
as a corollary to geo-location coordinates, metric
differential privacy has been adopted from loca-
tion analysis to textual analysis by Feyisetan et al.
(2020). This avoids the curse of dimensionality
arising from randomized response (Warner, 1965).

We follow the formulation of Xu et al. (2021) for
metric differential privacy in the context of textual
analysis. Equipped with a discrete vocabulary set
W , an embedding function ϕ : W → R, where
R represents a high-dimensional embedding space,
and a distance function d : R × R → [0,∞) sat-
isfying the axioms of a metric (i.e., identity of in-
discernibles, symmetry, and triangle inequality),
metric differential privacy is defined in terms of
the distinguishability level between pairs of words.
Formally, a randomized mechanism M : W → W
satisfies metric differential privacy with respect to
the distance metric d(·) if for any w,w

′
, ŵ ∈ W

the distributions of M(w) and M(w
′
) are bounded

by Equation 1 for any privacy budget ε > 0:

P[M(w) = ŵ]

P[M(w′) = ŵ]
≤ eεd{ϕ(w),ϕ(w

′
)}. (1)

This probabilistic guarantee ensures that the log-
likelihood ratio of observing any word ŵ given two
words w and w′ is bounded by εd{ϕ(w), ϕ(w′)},
providing plausible deniability (Bindschaedler
et al., 2017) with respect to all w ∈ W . We re-
fer to Feyisetan et al. (2020) for a complete proof
of privacy. For the mechanism M to provide plau-
sible deniability, additive noise is in practice sam-
pled from a multivariate distribution such as the

multivariate Laplace distribution (Feyisetan et al.,
2020) or truncated Gumbel distribution (Xu et al.,
2020a).

We recall that differential privacy requires ad-
jacent datasets that differ in at most one record.
Since the distance d(·) captures the notion of close-
ness between datasets, metric differential privacy
instantiates differential privacy when Hamming dis-
tance is used, i.e., if ∀x, x′ : d{ϕ(w), ϕ(w′

)} = 1.
Depending on the distance function d(·), metric
differential privacy is therefore generally less re-
strictive than differential privacy. Intuitively, words
that are distant in metric space are easier to distin-
guish compared words that are in close proximity.
Scaling the indistinguishability by a distance d(·)
avoids the curse of dimensionality that arises from
a large vocabulary W and allows the mechanism
M to produce similar substitutions ŵ for similar
w and w

′
. However, this scaling complicates the

interpretation of the privacy budget ε, as it changes
depending on the metric employed.

Related Work. The multivariate mechanism for
text-to-text privatization by Feyisetan et al. (2020)
has been extended in orthogonal directions to fur-
ther improve the utility (Feyisetan et al., 2019; Car-
valho et al., 2021) and privacy (Xu et al., 2020b).

Drawing inspiration from Feyisetan et al. (2019),
we complement on the line of inquiry dedicated
to the enhancement of the utility. By leveraging
the curvature of the space at different locations
in the Hyperbolic space of Poincaré embeddings
(Nickel and Kiela, 2017), their mechanism pre-
serves the hierarchical structure of words during
substitution. We persist in the Euclidean space and
instead replace the word embedding with a sense
embedding to account for the ambiguity of words
during substitution. Our results demonstrate that
this modification leads to improved performance
on downstream tasks while being compatible with
prevalent embedding mechanisms.

2.2 Word Embeddings

Since metric differential privacy for text-to-text pri-
vatization operates on word embeddings, the merits
of privatization are limited by the capabilities of
these word embeddings. Starting from sparse vec-
tors suffering from curse of dimensionality, which
makes computation and storage infeasible, most
research on word embeddings is dedicated to learn-
ing dense vectors from corpus-level co-occurrence
statistics (Mikolov et al., 2013). To learn these
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dense vectors, two mirrored approaches have been
proposed: continuous bag-of- words and skip-gram.
Continuous bag-of- words is trained to predict a
word from a fixed window size of context words,
whereas skip-gram specifies the probability of ob-
serving the context words conditioned on a word
within a window. This results in a real-valued
vector representation of words that capture inter-
pretable analogical relations between words.

A limitation of these embedding mechanisms is
that they conflate all meanings of a word into a sin-
gle representation, and the most frequent meaning
of a word dominates this representation. By con-
flating all meanings, word embeddings are unable
to discriminate ambiguous words. This inability to
distinct between ambiguous words is inherited to
word substitutions obtained from privatization.

2.3 Sense Embeddings

To address the meaning conflation deficiency of
word embeddings, one can represent meanings of
words in the form of sense embeddings. Learn-
ing sense embeddings has been an active area of
research until the emergence of contextual embed-
dings. We briefly recall some methods to sense
representation. Exploiting an unlabeled corpus of
text, methods to resolve the meaning conflation de-
ficiency can be divided into three main branches:
(1) a staged induction of word senses followed by
learning of sense representations, (2) a joint in-
duction of word senses together with learning of
sense representations, and (3) retrofitting an exist-
ing word embedding by de-conflating word repre-
sentations into sense representations.

The sense distinctions required to discriminate
the meaning of a word are extracted from text cor-
pora by clustering words according to their contexts
given a window size. This paradigm is related to
word-sense induction. It comes with algorithmic
complexity and interpretability problems. Instead
of a word-sense induction by clustering, an alter-
native approach is to derive word senses from pre-
defined sense inventories. This paradigm is related
to word-sense disambiguation in which ambiguous
words must be assigned a sense from the sense in-
ventory. Exploiting knowledge from pre-defined
sense inventories for the initialization of senses
allows learning representations that are linked to
interpretable sense definitions. Two shortcomings
are apparent to learning sense representations us-
ing word-sense disambiguation. It is assumed that

the sense distinctions intended by the text matches
those defined in the sense inventory. Unable to
handle words that are not defined in the sense in-
ventory, relying on pre-defined senses hinges on
the coverage of the sense inventory.

Staged training of sense embeddings. The train-
ing of sense embeddings initially employed a
staged approach (Reisinger and Mooney, 2010;
Huang et al., 2012; Vu and Parker, 2016). Reisinger
and Mooney (2010) constructed sense vectors by
clustering sparse vectors corresponding to occur-
rences of words into a predetermined number of
clusters. Clustering is performed by a paramet-
ric method that permits controlling the semantic
breadth using a per-cluster concentration. Assum-
ing a fixed fixing number of senses for all words,
the centroids of the clusters are used as sense vec-
tors and word occurrences are relabeled according
to the cluster they belong to. This idea has been
extended to dense vectors (Huang et al., 2012).

Instead of inducing senses by clusters, a straight-
forward method is to disambiguate text corpora
as defined by a sense inventory and apply an em-
bedding method on the resulting sense-annotated
text (Iacobacci et al., 2015; Flekova and Gurevych,
2016; Ruas et al., 2019). Iacobacci et al. (2015), for
instance, use an off-the-shelf disambiguation pro-
cess to obtain a sense-annotated corpus and directly
learn sense representations.

Joint training of sense embeddings. A staged
approach to learning sense representations suffers
from the limitation that clustering and learning
does not take advantage from their inherent simi-
larities. To avoid the issues brought by a two-step
clustering, the idea of clustering context vectors
has been adapted into the training of word embed-
dings (Tian et al., 2014; Pina and Johansson, 2014;
Neelakantan et al., 2014; Liu et al., 2015b,a; Bar-
tunov et al., 2016; Lee and Chen, 2017; Nguyen
et al., 2017). Performing clustering and embed-
ding learning jointly, the intended sense for each
word is dynamically selected as the closest sense
to the context and weights are updated only for
that sense. Assuming a fixed number of senses per
word, Tian et al. (2014) introduced an expectation
maximization integrated with skip-gram that learns
multiple senses weighted by their prior probability.
Since words can have a highly dynamic number
of senses that range from monosemous words to
polysemous words with dozens of associated mean-
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ings, this assumption presents a severe limitation.
Pina and Johansson (2014) address the varying pol-
ysemy problem of sense representation by setting
the number of senses of a word as defined by a
sense inventory. Deriving the number of senses
for each word from a sense inventory, it does not
need to create or maintain clusters to discriminate
between senses. A better solution would involve
dynamic induction of senses from the text corpus.
Neelakantan et al. (2014) applies a non-parametric
clustering procedure for estimating the granular-
ity of senses for each word. Similar to Tian et al.
(2014), it represents the context of a word as the
centroid of the vectors of its words but allocates
a new sense vector each time the similarity of a
context to existing senses is below a certain thresh-
old. By using latent topic modeling to assign topics
to each word in a corpus (Liu et al., 2015b,a) and
a mixture of weights that reflect different associ-
ation degrees of each word to multiple senses in
the context (Nguyen et al., 2017), words can be
discriminated into more general topics.

Retrofitting of word embeddings. Instead of
training a word and sense embedding jointly, re-
search exists on refining a word embedding to
match semantic constraints (Faruqui et al., 2014;
Jauhar et al., 2015; Johansson and Pina, 2015;
Rothe and Schütze, 2015; Collier and Pilehvar,
2016). Given a word embedding, Faruqui et al.
(2014) propose retrofitting as a post-processing step
in which words that are connected by a relation-
ship derived from a semantic network are moved
closer together in the embedding space. Jauhar
et al. (2015) tailored retrofitting towards learning
representations for the senses listed in a sense in-
ventory. Using a random walk, Collier and Pilehvar
(2016) extracted a set of sense biasing words from
an external sense inventory. To de-conflate a word,
they add a set of sense embeddings to the same
space and push words in the space to the region
occupied by its corresponding sense biasing words.

Most retrofitting approaches rely on signals from
sense inventories. To transform word embeddings
to sense embeddings without external resources,
Pelevina et al. (2017) construct a graph by connect-
ing each word to a set of related words. Using ego-
network clustering of words, senses are induced as
a weighted average of words in each cluster.

2.4 Contextual Embeddings

Although much research has been directed to sense
embeddings, the field shifted towards learning con-
textual embeddings (Peters et al., 2018; Devlin
et al., 2019). Rather than pre-computing a static
representation for each word, contextualized em-
beddings dynamically change the representation of
a word depending on the context. Harnessing sense
signals during the training objective of contextual
embeddings has been shown to promote the disam-
biguation of word meanings (Peters et al., 2019;
Huang et al., 2019; Levine et al., 2020; Scarlini
et al., 2020). However, the dynamic representa-
tions produced by contextual embeddings disquali-
fies contextual embeddings for privatization as the
nearest neighbor search requires that the represen-
tations are aligned in a shared embedding space.

3 Methodology

Aiming at context-aware privatization of ambigu-
ous words in texts, we adopt the privatization mech-
anism of Feyisetan et al. (2020) and replace the
word embedding with a sense embedding. The
sense embedding is constructed by building and
clustering a graph of nearest neighbors based on
vector similarities (Pelevina et al., 2017).

Using a context window of size 3 and mini-
mum word frequency of 5, we construct a 300-
dimensional word embedding on a dump of
Wikipedia. We align our vocabulary with words
contained in GloVe. Our word embedding contains
95, 670 words with words vectors. For each word
in the word embedding, we retrieve its 200 near-
est neighbors according to the cosine similarity of
their word vectors. Once calculated the similarities,
we build a graph of word similarities. Assuming
that words referring to the same sense tend to be
tightly connected, while having fewer connections
to words referring to different senses, word senses
can be represented by a cluster of words.

A sense inventory is induced from ego-network
clustering. The clustering yielded 248, 218 word
senses. Each word sense is indexed by a sense iden-
tifier. Performing graph clustering of ego-networks
is non-parametric. It makes no assumptions about
the number of word senses. However, the number
and definition of the resulting word senses are not
linked to a lexical inventory. Since a word sense
is assumed as a composition of words in a cluster,
sense vectors are calculated as a weighted pooling
of word vectors representing cluster items.
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Figure 1: Pairwise Euclidean distances within word
senses as a function of the number of distinct senses.
The dashed line corresponds to the averaged pairwise
distance of word forms in the embedding space.

In Figure 1, we depict the averaged pairwise
distances of words as a function of the number
of senses. On average, the distance within word
senses is considerably lower than the average dis-
tance between words in the embedding space (de-
picted by a dotted line at 1.0550). Since the priva-
tization step is applied directly to the structure of
the embedding space, the distance between senses
originating from the same word must be taken into
account when assessing utility and privacy.

To utilize the sense representations, we incorpo-
rate a disambiguation step prior to the privatiza-
tion. Given a word and its context words, we map
the word to a set of its sense vectors according to
the sense inventory. The disambiguation strategy
is based on similarity between sense and context
words: argmax c·si/∥c∥·∥si∥, where c is the mean
of the word vectors from the context words. In
line with the context size during sense induction,
context words for the sense disambiguation are se-
lected within a window of 5. This step is repeated
for each word prior to the privatization step.

The privatization step follows a multi-step pro-
tocol: We retrieve the sense vector for each dis-
ambiguated word. This sense vector is perturbed
with noise sampled from a multivariate distribution
and its noisy representation is then projected back
to the discrete vocabulary space of the sense em-
bedding. As noisy representations are unlikely to
exactly represent words in the embedding space,
a nearest neighbor approximation is returned. To
obtain a private text of word forms, we truncate the
sense identifier from the word senses. The result
is a privatized text that can be post-processed by
word embeddings agnostic to the sense embedding.

To demonstrate the effectiveness of leveraging
sense embedding in combination with a disam-
biguation step prior to the privatization, we pri-
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Figure 2: Example substitutions associated with a geo-
graphical and financial context. A seamless transition in
Figure 2(a) compared to distinct regions in Figure 2(b).

vatized the ambiguous word ’bank’ for a total of
500 queries and recorded its substitutions. In half
of the queries, the ambiguous word is contained in
a text belonging to a geographical context, and in
the other half, the ambiguous word is contained in
a text belonging to a financial context. The texts are

’to walk by a river bank at sunset’ and to deposit
money at a bank to earn interest’. We reduced
the dimensionality of the substitute vectors into a
two-dimensional space for visualization in Figure
2. We highlight words of the obtained substitutions.
We observe that the substitution words returned by
lexical privatization stem from both geographical
and financial contexts. While substitutions blend
between senses during lexical privatization, we dis-
cover distinct boundaries between substitute words
belonging to contrasting contexts if the words are
disambiguated before privatization.

4 Experiments

4.1 Privacy Analysis

The privacy guarantees in metric differential pri-
vacy depend on the deployed metric and the geo-
metric properties of the embedding space. Since
retrofitting changes the geometric properties by
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populating the geometric space of the embedding
with word senses that refer to the same word form,
we need to recalibrate the plausible deniability
(Bindschaedler et al., 2017). We record the follow-
ing statistics as proxies for the plausible deniability.
We note that these proxy statistics have been used
in previous studies to characterize the plausible
deniability of multivariate mechanisms (Feyisetan
et al., 2019, 2020; Xu et al., 2020b, 2021).

• Nw = P{M(w) = w} measures the probabil-
ity that a word is not substituted by the mech-
anism. This is approximated by counting the
number of occurrences in which a word w is
substituted by the same word after running the
mechanism for 100 times.

• Sw = |P{M(w) = w‘}| measures the effec-
tive support in terms of the number of distinct
substitutions produced for a word from the
mechanism. This is approximated by the car-
dinality of the set of words w‘ after running
the mechanism for 100 times.

Since the noise in the multivariate Laplace mech-
anism is scaled by 1/ϵ, we can make a connection
between the proxy statistics and the privacy bud-
get ϵ. A smaller ϵ corresponds to more stringent
privacy guarantees by adding more noise to the
word embedding. More noise leads to fewer unper-
turbed words (lower Nw) and more diverse outputs
for each word (higher Sw). By contrast, a higher ϵ
leads to less substitutions (higher Nw) and a narrow
set of distinct words (lower Sw). From a distribu-
tional perspective, it follows that Nw (Sw) should
be positively (negatively) skewed to afford reason-
able privacy guarantees.

In Figures 3 and 4, we present the averaged
values of Nw and Sw over 100 independent
queries from the corpus of WikiText (Merity
et al., 2016) for a discrete set of privacy bud-
gets ε = {1, 5, 10, 15, 25, 50, 100, 250, 500,∞}.
While lower values of ε are desirable in terms of
privacy, plausible deniability is assured unless Nw

(Sw) exceeds (falls below) 0.5. The plots thus serve
as a visual guidance for comparing (and selecting)
the privacy budget ε. The curve of the privacy
proxies as function of the privacy budget is shaped
identical for word and sense embeddings, except
that using a sense embedding stretches the allocat-
able privacy budget by an order of magnitude. We
attribute this shape to the congestion of the embed-

1 5 10 15 20 25 50 75100 250 500 750
Privacy Budget 

0.0

0.2

0.4

0.6

0.8

1.0

|
(w

)=
w

| (
in

 %
)

(a) Lexical Nw

1 5 10 15 20 25 50 75100 250 500 750
Privacy Budget 

0.0

0.2

0.4

0.6

0.8

1.0

|
(w

)=
w

| (
in

 %
)

(b) Contextual Nw

Figure 3: Nw refers to the number of substitute words
that are identical to a queried sensitive word. The shift
in the curve suggests that higher privacy budgets are
legitimate before there is a risk that words will not be
replaced by substitutions.

ding space with substitution candidates, even at low
levels of noise.

For our utility experiments, we set the privacy
budget for each mechanism so that .90 quantile
of words is plausible deniable. To calculate the
.90 quantile, we interpolated the scores for Nw

(Sw) and selected the privacy budget ε so that Nw

(Sw) does not exceed (fall below) 0.5. A plausible
deniability for only a quantile of words was also
assumed in a prior study by Xu et al. (2020b).

4.2 Utility Analysis

To analyze the utility of privatization with con-
text awareness, we use the standard datasets for
evaluating word similarity. The datasets include
WordSim-353 (Agirre et al., 2009), SimLex-999
(Hill et al., 2015), and SWCS (Huang et al., 2012).
Common to all these datasets is that similar-
ity ratings are given to pairs of words. While
WordSim-353 and SimLex-999 provide pairs of
words in isolation, SWCS provides a context for each
word that triggers a specific meaning, making it
very suitable for the evaluation of context-aware
privatization. All experiments are conducted while
ensuring plausible deniability for .90-quantile of
words.

We query each pair of words (wi, wj) for 25
times by each privacy mechanism and record their
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Figure 4: Sw refers to the number of substitute words
that are unique from a queried sensitive word. The shift
in the curve suggests that higher privacy budgets are
legitimate before the effective support of substitution
candidates violates plausible deniability.

(wi, wj) Words Senses

WordSim-353 0.5849 0.1353 0.1478
SimLex-999 0.2978 0.0696 0.0841
SCWS 0.5183 0.1911 0.2358

Table 1: Datasets for measuring the similarity between
words. Similarity measured after substitution. Scores
denote the correlation compared to annotations.

similarity after privatization. We use the cosine
distance as our similarity measure. The results cap-
ture ŵi·ŵj/∥ŵi∥·∥ŵj∥. Once queried, we correlate
the measured similarity against the similarity anno-
tations. We present the results in Table 1. Without
a context provided to discriminate a word, the pri-
vatisation using sense embeddings generalizes to
privatisation using word embeddings. This can be
seen by the almost identical correlation coefficients
for WordSim-353 and SimLex-999. The correla-
tion of the sense embedding surpassing those for
the word embedding on SWCS indicates that the
information provided by the disambiguation step
helps in finding more appropriate substitutions.

We further benchmark our mechanism in com-
bination with a BERT model for downstream clas-
sification. We employ the words in context (Pile-
hvar and Camacho-Collados, 2019) dataset. It is
composed of 5, 428 text-pairs for training and 638
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Figure 5: Cosine similarity of word pairs after substitu-
tion. The vertical line represents the average similarity.

text-pairs for validation. Framed as a binary clas-
sification task, the goal of words in context is to
identify if the occurrences of a word for which two
contexts are provided correspond to the same in-
tended meaning. Each of context is designed to
trigger a specific meaning. Note that the dataset is
balanced, hence, a context-insensitive embedding
would perform similarly to a random baseline.

Without privacy guarantees, BERT peaks at an
accuracy score of 0.6887. The training using the
privatized data mimics the training without priva-
tization. After privatizing the training data using
word embeddings, BERT scores 0.6006. Leveraging
sense embeddings, we boost the accuracy to 0.6423.
This narrows the gap in accuracy by 6.05%. All
scores are calculated as an average over three inde-
pendent trials for each privatization mechanism.

To provide an explanation for the substantial im-
provement, we queried each record in the words
in context dataset for 25 times and recorded the
cosine similarity between the word pairs after sub-
stitution. Since we are only interested in the in-
stances a substitution occurs, we removed cases in
which the similarity between substitutions is one.
We expect that the similarity between ŵi and ŵj

obtained from the privatization step is higher when
wi and wj belong to the same context and lower
when different contexts are intended. Whether the
words are from an identical context or different
contexts is directly derived from annotations. For a
transparent comparison, we measure the similarity
using GloVe representations of their corresponding
substitutions. We present the results in Figure 5,
separated by word and sense embedding.

The representations of substitutions obtained by
a word embedding convey no clues about the in-
tended contexts the word belongs to. This can be
argued by an average similarity that is almost iden-
tical at values of 0.1860 and 0.2035. Compared to
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Classification Textual Similarity Textual Entailment Avg.
Level of
Privacy

CoLA SST2 QQP MRPC STSB MNLI QNLI RTE
-

(MCC) (ACC) (ACC) (ACC) (SCC) (ACC) (ACC) (ACC)

BERT - 0.5792 0.9243 0.8879 0.8329 0.8854 0.8229 0.8912 0.6927 0.8146

Words p=0.9 0.0000 0.7614 0.6883 0.6059 0.5619 0.5270 0.6145 0.5342 0.5367
p=0.5 0.0416 0.8518 0.7858 0.6123 0.5907 0.7001 0.7893 0.5880 0.6200

Senses p = 0.9 0.0000 0.8669 0.7715 0.5910 0.6197 0.6750 0.7446 0.5834 0.6065
p = 0.5 0.0655 0.8862 0.8215 0.6322 0.6442 0.7417 0.8180 0.6070 0.6520

Table 2: Results on a subset of GLUE (Wang et al., 2019). We report Matthews correlation for the CoLA dataset,
Spearman correlation for the STSB dataset, and the accuracy score for all remaining datasets. The level of privacy
increases with the quantile of words that are provable plausible deniable. p = .90 denotes an (almost) worst-case
scenario. p = .50 denotes an average-case scenario. Bold font indicates the best result from three independent trials.

the similarity of lexical representations, the average
similarity of substitutions within the same context
is 0.3118 and 0.2272 for words that originate from
different contexts. This distinguishability signals
whether words are paired in identical or different
contexts, which indicates an awareness of the con-
text during privatization.

We expect the awareness of the meaning of
words to carry over to downstream tasks. To thor-
oughly evaluate whether context-awareness during
privatization translates into better performance on
downstream tasks, we conduct experiments on a set
of classification tasks in the text domain. We use
the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019). GLUE is a
collection of diverse language understanding tasks.
The benchmark involves classification of ordinary
text and text pairs for similarity and entailment.
Apart from CoLA (Warstadt et al., 2019), which re-
quires high level of syntactic reasoning, all other
tasks are based on semantic reasoning.

We summarize the results on a subset of GLUE
obtained by fine-tuning a pre-trained BERT (De-
vlin et al., 2019) in Table 2. We report the scores
once for word embeddings and once for sense em-
beddings. Using sense embeddings as opposed
to word embedding, the average performance in-
creases from 0.5367 to 0.6065. This result con-
firms our expectation that context awareness during
privatization translates into better performances on
downstream tasks.

5 Conclusion

We redesigned the multivariate mechanism of met-
ric differential privacy in the text domain to account
for word meaning during privatization. We accom-
plished this by replacing the word embedding with

a sense embedding and incorporating a sense dis-
ambiguation step prior to the noise injection.

Despite the congestion of the embedding space
with senses that stem from the same word form, we
experimentally demonstrated that our modification
follows the privacy formalization of Feyisetan et al.
(2020). Once we recalibrated the privacy budget
to ensure plausible deniability, we measured the
capability of our mechanism to capture the word
meaning. By calculating the similarity of pairs
of words in a context that triggers the meaning of
each word, we observe that the similarity score
for substitutions is consistently higher when both
words appear in the same context, and lower when
both words appear in different contexts.

With the confirmation that our mechanism cap-
tures word meaning, we were interested in whether
the benefits of contextual substitutions translates
into superior performance in downstream classifi-
cation tasks. The results on a set of benchmark
datasets demonstrated a substantial boost in gener-
alization performance for tasks that rely on seman-
tic reasoning rather than syntactic reasoning.

Limitations. Our modification utilizes sense em-
beddings. Since the senses were not mapped to an
external inventory, the senses cannot be interpreted.
Apart from the lack of interpretability, sense em-
beddings are superseded by contextual embeddings
derived from transformer models with sense aware-
ness (Huang et al., 2019; Levine et al., 2020; Scar-
lini et al., 2020). While sense embeddings and
contextual embeddings are not mutually exclusive,
it is necessary to alternate between them for the
purpose of privatization and optimization.
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