
Verifica-UD: a Verifier for Universal Dependencies
Annotation for Portuguese

Lucelene Lopes1, Magali Sanches Duran1, Thiago Alexandre Salgueiro Pardo1

1Núcleo Interinstitucional de Linguı́stica Computacional (NILC)
Instituto de Ciências Matemáticas e de Computação, Universidade of São Paulo

{lucelene,magali.duran}@gmail.com,

taspardo@icmc.usp.br

Abstract. This paper presents Verifica-UD, a web-based tool to detect problems
in Portuguese sentences annotated using Universal Dependencies (UD) stan-
dards in the form of a CoNLL-U file. The tool performs three levels of sentence
verification: structural (to assess CoNLL-U compliance), morphosyntactic (to
assess the part of speech tagging), and syntactic (to assess the parsing infor-
mation). Verifica-UD also provides detailed help on Portuguese UD annotation
directives. The benefits of this tool for reviewing annotated corpora are illus-
trated with an experiment.

1. Introduction

The use of Universal Dependencies (UD) [de Marneffe et al. 2021, Nivre et al. 2020] as
coding format for annotated corpora brings several advantages in terms of standardization
among languages and clarity of concepts for users regardless of language.

CoNLL-U is the standard file format for the annotation of dependency tree-
banks in UD. Because of that it has been a format of interest for several annotators,
and consequently also tool developers. This is the case of web-based visualization
tools as Arborator-Grew [Guibon et al. 2020], but also some editors and searchers as
UDeasy [Villa 2022] and UDConcord [Miranda and Pardo 2022].

Despite being a compact and relatively simple format, CoNLL-U may be some-
what confusing to be directly handled by human annotators, and often mistakes produced
while editing a CoNLL-U file are hard to be spotted using a pure (non-rich) text edi-
tor. Some editors provide visualization tools with color tagging of CoNLL-U files, as the
VSCode-conllu extension [Grobol 2021], but even such help is not enough when dealing
with a large file. Besides the issues of data encoding, UD annotation may be a challenging
task, as corpus annotation has shown in recent developments in the area. More than the
directives of the original UD project, languages may need additional guidelines to deal
with their specific linguistic phenomena.

The UD project offers a validation tool that has general restrictions and language
dependent particularities. It is important to highlight that the language particularities
included in the UD validation tool tends to include only definitions made based on the
available corpora among the UD datasets, and not necessarily following general integrated
language directives.



Given this panorama, we propose in this paper a web-based tool to verify CoNLL-
U files following the general directives for annotation of Portuguese in UD stated
in [Duran 2021, Duran 2022, Lopes et al. 2023a]. This tool, called Verifica-UD, performs
the verification of the CoNLL-U file in three levels: structural, Part of Speech (PoS) tag-
ging, and parsing. In fact, the rules applied in our tool reflect the more recent directives
considered in the recent discussions of Portuguese annotation in UD and recent resources.

Next section describes the three levels of verification performed by Verifica-UD.
The third section briefly presents the online tool usage. The fourth section presents a
case study illustrating the potential of the tool to aid in human annotation. Finally, the
conclusion section highlights the paper contributions and suggests future work.

2. Verification
This section describes the three levels of verification performed by Verifica-UD:

• Structural verification: analysis of the compliance with the CoNLL-U standards,
plus the correct format of the dependency tree (e.g., a single root, connection of
all nodes);

• Morphosyntactic verification: analysis of the fields lemma, PoS tag, and morpho-
logical features with respect to a lexical resource and general tagging rules;

• Dependency relations verification: analysis of the fields head and dependency re-
lation (DEPREL) with respect to valid connections between head and dependents,
as well as the corresponding tagging information of these tokens.

2.1. Structural Verification

The structural verification starts with tests of compliance with the CoNLL-U format, fol-
lowed by verification of the dependency tree integrity. As such, the structural verification
rules are independent of the language, which is not the case of the morphosyntatic and
dependency relation rules that are tied to the Portuguese standards. The CoNLL-U format
defines that each sentence requires two initial pieces of information:

• the sentence identifier, as # sent id = <string>
• the textual sentence content, as # text = <string>

After that, all tokens must be placed in individual lines containing one numbered
token per line, each with ten fields separated by tab characters. Contracted words should
be split into individual tokens. In the CoNLL-U format, the contracted words must have
an individual line to hold it preceding the lines of the split tokens. The ten fields of each
token indicate, respectively: ID - the token number identifier; FORM - the token form;
LEMMA - the token lemmatized form; POS - PoS tag; XPOS - language specific PoS
tag (ignored by Verifica-UD); FEAT - the morphological features; HEAD - the identifier
of the token head of the dependency relation; DEPREL - the dependency relation tag;
DEPS - enhanced dependency graph (ignored by Verifica-UD); MISC - miscellaneous
information. Figure 1 shows an example of a correct sentence1 with both the CoNLL-U
annotation and the corresponding dependency tree.

1“Se fizer algo errado, vai para o inferno” (If you do something wrong, you’ll go to hell). This sentence
may have another interpretation in Portuguese: “Se fizer errado algo” (If you do it wrong); in this case,
“errado” (wrong) would be annotated as ADV advmod because it would be modifying the predicate itself
and not the object.



Figure 1. CoNLL-U example of a sentence and corresponding dependency tree.

The structural verification detects 16 different error kinds. The full list of struc-
tural errors detected is available at a previous publication [Lopes et al. 2023b]. Figure 2
illustrates three error examples. The first one is a common error where the token #7 has
no morphological features. This token is denoted without the sixth field with the empty
indicator (“ ”) missing. Another error in this figure is in the last token that is incorrectly
numbered with #11, instead of the expected #10. The third error in Figure 2 is the depen-
dency tree malformation, since it has two root tokens (#2 and #6).

Figure 2. Examples of structural problems, with (a) the sixth field missing error
for token #7, (b) last token incorrectly numbered, and (c) malformed dependency
tree with two root tokens (#2 and #6).

2.2. Morphosyntactic Verification
Morphosyntactic verification applies to tokens individually. Each token must have consis-
tent information for the fields FORM, LEMMA, POS, and FEAT. In PoS tag annotation
for Portuguese, we follow the directives defined at [Duran 2021], that establishes that,
from the 17 original PoS tags, only 16 are employed (the PART tag is not used). The PoS



tags ADP, AUX, CCONJ, DET, PRON, and SCONJ are closed classes and, as such, they
have, in principle, all possible forms known. The PoS tags ADV and NUM have a defined
closed subset, as all primitive adverbs (in Portuguese, adverbs not ending with “-mente”
- similar to English “-ly”) that form a closed subclass, and all numbers written in their
extensive form (not with digits). Among the other (open) classes, NOUN, ADJ, VERB,
and INTJ, plus the open subset of ADV, have an extensive representation and, together
with the closed classes and closed subsets of NUM and ADV, are included in a lexical
resource called PortiLexicon-UD [Lopes et al. 2022].

In this way, the morphosyntactic verification is done for each token tagged in the
CoNLL-U with tags ADP, ADV (primitive adverbs subset), AUX, CCONJ, DET, NUM
(written subset), PRON, and SCONJ, verifying its form against the lexical resource. If
present in the lexical resource with the lemma and morphological annotated option, the
token is considered correct. Otherwise, general annotation rules are verified, for example,
a token tagged as PRON or DET must have a PronType feature. If the general annotation
rules are valid, a warning is issued stating that the token belongs to a closed class, but it is
not present in the lexical resource. However, if the general annotation rules are violated,
the token is considered incorrect and an error is issued.

For tokens tagged in the CoNLL-U with tags ADJ, ADV (except primitive ones),
INTJ, NOUN, and VERB, the token form is verified against the lexical resource. If present
in the lexical resource, the annotation must be one of the options, otherwise a warning is
issued. However, if absent in the lexical resource, the general annotation rules are verified
and, if the rules are violated, an error is issued, otherwise, a warning is issued.

For tokens tagged in the CoNLL-U with tags PROPN, PUNCT, X, SYM, and
NUM (with digits in the FORM field), general annotation rules are verified, and, if the
annotation is not one of the expected possibilities, an error is issued.

In Figure 3, three example situations are indicated. An error is indicated for the
lemma in token #1 because it mismatches the lexical entry for the SCONJ “se”, since
lemmas of common words must not be capitalized. Another error is found in token #3
that is a known PRON, but it is missing the morphological feature PronType=Ind, since
all PRON tokens require the PronType feature. Token #9, the NOUN “capetódromo”, is
absent in the lexical resource, but, since NOUN is an open class, a warning is issued.

Figure 3. Examples of morphosyntactic problems, with (a) the wrong lemma for
token #1 (it should be “se”), (b) the PronType=Ind is missing from FEATS of to-
ken #3, (c) token #9 “capetódromo” is absent as NOUN in the lexical resource
(warning).



In total, the morphosyntactic verification may issue 29 possible errors and 14 pos-
sible warnings. The list of rules is available at a previous publication [Lopes et al. 2023b].

2.3. Dependency Relation Verification

Dependency relation verification applies to token relations, therefore, to token sequences
belonging to the same branch of the dependency tree, and it concerns primarily the fields
HEAD and DEPREL, but also their eventual relations with the fields FORM, LEMMA,
POS, and FEAT. In CoNLL-U encoding, each DEPREL tag represents a dependency re-
lation associating a dependent token, where the tag is, to a head token to which the token
ID is in the field HEAD. For example, in Figure 42, token #2 “gente” is the dependent of
the dependency relation nsubj that has the token #3 “educa” as the head of the relation.

Figure 4. CoNLL-U example of a sentence and corresponding dependency tree.

Because of this token relation aspect, the dependency relation rules are of different
nature than the previous ones, often establishing restrictions to which kind of PoS tags can
be dependent, or head of specific relations, or even establishing the need for some specific
morphological feature to some dependency relations. Also at this dependency relation
level, some situations are not necessarily errors, but they are unusual, and, as such, may
provoke the indication of warnings. For example, the CoNLL-U representation in Figure 5
has three situations indicated. The first token provokes an error as Token #1 “a” has PoS
tag PRON, but it is the dependent of a det relation, and one of the dependency relation
rules states that all dependents of det relation need to be DET. Token #4 also indicates
an error, as a token head of dependency relation aux:pass needs to be a VERB holding
the morphological features VerbForm=Part and Voice=Pass. Finally, the last token (#6)
provokes a warning as there is a dependency rule stating that final punctuation is usually
dependent of a relation punct with the head being the sentence’s root.

The dependency relation rules define 61 errors and 8 warnings. The full list of
dependency rules is available at a previous publication [Lopes et al. 2023b].

2“A gente educa sendo educado” (We educate being educated or We educate being polite). Depending
on the interpretation, “educado” may be a VERB in passive voice or an ADJ, and the AUX “sendo” (being)
may be aux:pass ou cop, respectively.



Figure 5. Examples of syntactic problems, with (a) a relation det involving token
#1 that has PoS tag PRON, (b) the token #4 is dependent of relation aux:pass that
requires as head a token VERB with features VerbForm=Part and Voice=Pass,
(c) token #6, the final punctuation, should have relation punct with the root.

3. Verifica-UD Online Tool
Verifica-UD implements the three level rules for errors and warnings as defined in the
previous section through a webservice tool3. This tool was developed with Python, imple-
menting the server using REST API [Richardson and Ruby 2007], while the web interface
was implemented using a HTML/CSS/PHP technology. The basic tool operation consists
in uploading a CoNLL-U file (.conllu) that is automatically verified. Once uploaded, the
CoNLL-U file is analyzed and a list of errors and warnings grouped by sentences sorted in
alphabetical order is displayed as depicted in Figure 6. After performing the verification
and displaying the errors and warnings, the tool offers the possibility of exporting a report
that lists the sentences, the tokens, and the errors or warnings that were found.

Another feature of the interface is a set of help pages that allows the user to
learn more about CoNLL-U annotation for Portuguese according to the directives in
[Duran 2021, Duran 2022, Lopes et al. 2023a]. At the help interface, it is also possible to
see the full list of errors and warnings currently detected by Verifica-UD grouped by the
structural, morphosyntatic, and dependency relation level, as shown in Figures 7 and 8.

4. Evaluation of the Tool
To exemplify the benefits brought by the use of Verifica-UD, we conducted an experi-
ment over a small corpus of 300 sentences (5,818 tokens) automatically annotated us-
ing UDPipe 2.0 parser [Straka 2018]. This set of automatically annotated sentences was
previously submitted to a human revision that limit the corrections to the fields POS,
HEAD, and DEPREL (ignoring LEMMA and FEAT fields of the automatically annotated
CoNLL-U). We analyzed the initial corpus and the corpus revised through Verifica-UD to
estimate the potential benefits of our tool to improve the human revision.

The human reviewer edited 173 out of the 300 sentences (58%), making amend-
ments to the automatic annotation. We applied Verifica-UD over the original corpus,
ignoring all rules that inspected the fields LEMMA and FEAT, as those fields were not
contemplated by the human revision. This resulted in Verifica-UD indicating problems
for 87 sentences over the 300 sentences (29%). The intersection of the human edited
sentence set with Verifica-UD results was of 72 sentences. Observing these 72 edited
sentences, we applied Verifica-UD to the human edited version and it turned out that 22

3Verifica-UD may be found at the POeTiSA project website (https://sites.google.com/
icmc.usp.br/poetisa), but also at the links http://verificaud.icmc.usp.br:24080/
verificaud/ and http://verificaud.icmc.usp.br/.



Figure 6. Verifica-UD Interface displaying detected errors and warnings.

of those sentences still presented problems according to our rules. We also noticed that
101 sentences were edited by the reviewer without indication of problems by Verifica-
UD when applied to the original corpus. In 10 of these 101 edited sentences, the human
edition corrected the HEAD error but forgot to adjust the DEPREL, thus generating new
errors and warnings by our tool.

The direct benefits of Verifica-UD can be illustrated in 47 out of the 300 sentences:

• the 15 sentences with problems identified by Verifica-UD, but unnoticed by the
reviewer;

• the 22 sentences where the reviewer edited, but problems remained, revealing that
the problem detected by the tool was not the same as the one corrected by the
human annotator; plus

• the 10 edited sentences that resulted in new verification issues.



Figure 7. Verifica-UD Interface displaying help topics for tagging level.

Pushing the analysis a little further, we applied Verifica-UD with the full set of
rules (including LEMMA and FEAT related ones) over the corpus version edited by the
reviewer, and we discovered 81 additional sentences with potential problems. Therefore,
in practical terms, using Verifica-UD, the human reviewer can be more productive in
correcting these remaining 128 (47+81) sentences with problems pointed out by our tool.

5. Final Remarks
In this paper, we presented Verifica-UD, a web-based tool to verify possible problems in
UD-annotated sentences (in CoNLL-U format) according UD guidelines for Portuguese.
The tool has the potential to boost the production of annotated corpora in Portuguese, as
well as to promote enhancement of the UD annotation in the Brazilian NLP community.

Verifica-UD was developed within the POeTiSA project (https://sites.
google.com/icmc.usp.br/poetisa) and, according to our experiment, it



Figure 8. Verifica-UD Interface displaying help topics for parsing level.

presents a good performance in terms of problem detection. Additionally, the availability
of detailed help pages facilitates the human correction of the issues.

Future work includes the addition of new verification rules. It is also our plan to
extend the tool with new edition and visualization functions.

Acknowledgments

This work was carried out at the Center for Artificial Intelligence of the University of
São Paulo (C4AI - http://c4ai.inova.usp.br/), with support by the São Paulo
Research Foundation (FAPESP grant #2019/07665-4) and by the IBM Corporation. The
project was also supported by the Ministry of Science, Technology and Innovation, with
resources of Law N. 8.248, of October 23, 1991, within the scope of PPI-SOFTEX, coor-
dinated by Softex and published as Residence in TIC 13, DOU 01245.010222/2022-44.



References
de Marneffe, M.-C., Manning, C. D., Nivre, J., and Zeman, D. (2021). Universal Depen-

dencies. Computational Linguistics, 47(2):255–308.

Duran, M. S. (2021). Manual de anotação de PoS tags: Orientações para anotação de
etiquetas morfossintáticas em lı́ngua portuguesa, seguindo as diretrizes da abordagem
universal dependencies (UD). Technical Report 434, ICMC-USP.

Duran, M. S. (2022). Manual de anotação de relações de dependência: Orientações para
anotação de relações de dependência em lı́ngua portuguesa, seguindo as diretrizes da
abordagem universal dependencies (UD). Technical Report 440, ICMC-USP.

Grobol, L. (2021). VSCode language support for CoNLL-U. https://github.
com/LoicGrobol/vscode-conllu/blob/master/README.md. Ac-
cessed: 2023-06-26.

Guibon, G., Courtin, M., Gerdes, K., and Guillaume, B. (2020). When collaborative tree-
bank curation meets graph grammars. In Proceedings of The 12th Language Resources
and Evaluation Conference (LREC), pages 5293–5302, Marseille, France. European
Language Resources Association.

Lopes, L., Duran, M., Fernandes, P., and Pardo, T. (2022). PortiLexicon-UD: a Por-
tuguese lexical resource according to Universal Dependencies model. In Proceed-
ings of the Thirteenth Language Resources and Evaluation Conference (LREC), pages
6635–6643, Marseille, France. European Language Resources Association.

Lopes, L., Duran, M. S., and Pardo, T. A. S. (2023a). Atribuição de lemas e atributos mor-
fológicos seguindo as decisões adotadas na anotação do córpus Porttinari-base dentro
das diretrizes da Universal Dependencies (UD). Technical Report -, ICMC-USP. To
appear.

Lopes, L., Duran, M. S., and Pardo, T. A. S. (2023b). Verifica-UD - uma ferramenta online
para verificação de textos em português anotados no formato CoNLL-U segundo o
padrão Universal Dependencies. Technical Report -, ICMC-USP. To appear.

Miranda, L. G. M. and Pardo, T. A. S. (2022). UDConcord: a concordancer for univer-
sal dependencies treebanks. In Proceedings of the Universal Dependencies Brazilian
Festival (UDFest-BR), pages 1–10. Association for Computational Linguistics.

Nivre, J., de Marneffe, M.-C., Ginter, F., Hajič, J., Manning, C. D., Pyysalo, S., Schus-
ter, S., Tyers, F., and Zeman, D. (2020). Universal Dependencies v2: An evergrowing
multilingual treebank collection. In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 4034–4043, Marseille, France. European Language Re-
sources Association.

Richardson, L. and Ruby, S. (2007). RESTful Web Services. O’Reilly, Beijing.

Straka, M. (2018). UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal
Dependencies, pages 197–207.

Villa, L. B. (2022). Udeasy: a tool for querying treebanks in conll-u format. In Proc.
of the Workshop on Challenges in the Management of Large Corpora (CMLC), pages
16–19, Marseille, France. European Language Resources Association.


