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Abstract

We present our system that participated in the
shared task on the grammatical error correction
of Ukrainian. We have implemented two ap-
proaches that make use of large pre-trained lan-
guage models and synthetic data, that have been
used for error correction of English as well as
low-resource languages. The first approach is
based on finetuning a large multilingual lan-
guage model (mT5) in two stages: first, on
synthetic data, and then on gold data. The sec-
ond approach trains a (smaller) seq2seq Trans-
former model pre-trained on synthetic data and
finetuned on gold data. Our mT5-based model
scored first in “GEC only” track, and a very
close second in the “GEC+Fluency” track. Our
two key innovations are (1) finetuning in stages,
first on synthetic, and then on gold data; and
(2) a high-quality corruption method based on
round-trip machine translation to complement
existing noisification approaches.1

1 Introduction

This paper describes our submission in the shared
task on the Grammatical Error Correction (GEC)
of Ukrainian (Syvokon and Romanyshyn, 2023)
that was organized as part of the Workshop on
Ukrainian Natural Language Processing (UNLP
2023), in conjunction with EACL 2023.

Ukrainian is an Indo-European language from
the East-Slavic language family, and is most closely
related to Russian and Belarusian. In the context of
GEC, Ukrainian is a low-resource language and is
under-explored. A dataset of Ukrainian native and
non-native texts annotated for errors was recently
released (Syvokon and Nahorna, 2021), however,
to the best of our knowledge, no systems have been
benchmarked on this dataset.

We have developed two approaches. The first ap-
proach is based on the method proposed in earlier

1Code is available at
https://github.com/knarfamlap/low-resource-gec-uk

work (Rothe et al., 2021) that finetunes a multilin-
gual mT5 model on gold GEC data.2 Because mT5
is pre-trained with an objective that is not appro-
priate for GEC, we propose a 2-stage finetuning
strategy, where we finetune first on native data with
synthetic noise, and then further finetune on the
gold GEC data. We show that this two-stage ap-
proach is beneficial and provides a large boost com-
pared to an mtT5 model finetuned on gold data only.
Our model scored first in the “GEC only” track and
a very close second in the “GEC+Fluency” track
(0.08 point difference from the top submission).

Our second system is a smaller seq2seq Trans-
former model pre-trained on synthetic data and
finetuned on gold data. We propose a novel
method of generating synthetic errors using back-
translation. Unlike previous approaches, we do not
use full-sentence translations but only extract back-
translation pairs that are then used for introducing
errors in native data.

We present related work on GEC in Section 2.
Section 3 describes our approach. Section 4 briefly
describes the Ukrainian GEC dataset. Section 5
presents our experimental results on the validation
and test data, as well as additional evaluation by
error type. Section 6 concludes.

2 Background

Most effort in GEC research concentrated on cor-
recting errors made by English as second language
writers. More recently, there has been interest in
developing approaches and resources in GEC for
other languages, including Arabic (Mohit et al.,
2014), German (Naplava and Straka, 2019), Rus-
sian (Rozovskaya and Roth, 2014), Chinese, and
Spanish (Rothe et al., 2021). Earlier approaches
to GEC include rule-based methods and machine
learning classifiers for correcting a specific type
of mistake (e.g. article or preposition) (Tetreault

2We used the smaller (base and large) models only in our
experiments, due to the sizes of mT5 models.
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et al., 2010; Foster, 2010; Rozovskaya and Roth,
2013; Dahlmeier and Ng, 2012). For an overview
of approaches and methods in GEC, we refer the
reader to Bryant et al. (2022).

Current approaches to GEC can be bro-
ken down into two categories: sequence-to-
sequence (seq2seq) generation (Jianshu et al.,
2017; Chollampatt and Ng, 2018; Grundkiewicz
and Junczys-Dowmunt, 2019), and sequence-to-
editing (seq2edits) (Omelianchuk et al., 2020;
Awasthi et al., 2019; Li and Shi, 2021). Both
approaches achieve state-of-the-art performance
on English GEC. In the seq2edits framework,
the task is viewed as a sequence labeling prob-
lem (Omelianchuk et al., 2020) that tags text spans
with appropriate error tags, leaving the rest of the
text unchanged.

Because the seq2edits approach requires hu-
man input, as it depends on constructing language-
specific edit operations, we adopt the seq2seq
framework. Seq2seq approaches have demon-
strated strong empirical results in GEC (Chollam-
patt and Ng, 2018; Yuan and Briscoe, 2016; Grund-
kiewicz et al., 2019; Grundkiewicz and Junczys-
Dowmunt, 2019; and R. Grundkiewicz and S.
Guha and K. Heafield, 2018; Kiyono et al., 2019a;
Zhao et al., 2019; Jianshu et al., 2017; Yuan and
Briscoe, 2016; Katsumata and Komachi, 2019; Xie
et al., 2018). Due to lack of gold training data,
it is common to first pre-train a model on native
data where the source side has been corrupted with
artificial noise. The pre-trained model is typically
further finetuned on the available gold data.

Pre-trained language models (PLMs) Recently,
finetuning PLMs has become a standard paradigm
for many NLP tasks. In GEC, PLMs have
been mainly used in English where models have
been finetuned on large amounts of hand-labeled
data (Kaneko et al., 2020; Malmi et al., 2019;
Omelianchuk et al., 2020). Katsumata and Ko-
machi (2020) apply PLMs in a multilingual setting,
by finetuning BART (Lewis et al., 2020). However,
even when using a large number of hand-labeled
examples, they achieve results that are way below
state-of-the-art.

In this work we adopt the approach of Rothe et al.
(2021) and make use of mT5 (Xue et al., 2021), a
multilingual variant of T5 (Raffel et al., 2020), a
pre-trained text-to-text Transformer. mT5 has been
pre-trained on mC4 corpus, a subset of Common
Crawl, covering 101 languages and composed of
about 50 billion documents (Xue et al., 2021).

Rothe et al. (2021) finetune mT5 on GEC gold
data for Russian, German, and Czech languages,
although SOTA results are only achieved, when
they re-train mT5 with a different objective and use
an extremely large model xxl with 13B parameters.
We use the original mT5 models of smaller sizes
and show that it is possible to achieve competitive
results by pre-training first on synthetic data.

3 The Models

We have implemented two approaches that draw
on methods that showed competitive performance
in multilingual low-resource settings. Our first
(larger) model makes use of mT5 but is finetuned in
two stages – on synthetic data (we refer to this stage
as pre-training on synthetic data), and then finetun-
ing on gold data. Our second (smaller) model is
a seq2seq Transformer model pre-trained on syn-
thetic data (from scratch) and finetuned on gold
data. As our baseline for the second model, we use
a model pre-trained on synthetic data generated us-
ing standard spell-based transformations. We show
that adding synthetic noise from back-translations
results in a 3-point improvement over the baseline.
Because both approaches make use of synthetic
data, we describe the data generation methods be-
low.

Generating synthetic data Standard data cor-
ruption methods typically use a variety of
heuristics: random character and token trans-
formations (Schmaltz et al., 2016; Lichtarge
et al., 2019a), confusion sets generated from
a spellchecker (Grundkiewicz and Junczys-
Dowmunt, 2019; Naplava and Straka, 2019), or
a morphological analyzer (Choe et al., 2019), or
round-trip translation (Lichtarge et al., 2019a).

We have experimented with two baseline data
generation techniques for low-resource settings: (1)
spell-based transformations and (2) part-of-speech
(POS)-based transformations. Both of the methods
rely on the idea of using confusion sets that specify
for each target word occurring in a native corpus
a list of highly confusable words. These lists are
used to generate synthetic errors.

Spell-based transformations This approach
showed state-of-the-art performance in En-
glish (Bryant et al., 2019; Grundkiewicz and
Junczys-Dowmunt, 2019; Grundkiewicz et al.,
2019), and other languages (Naplava and Straka,
2019; Flachs et al., 2021). Spell-based confusions
include highly confusable words based on edit
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distance obtained from a dictionary available in
a spellchecker. Because Aspell is an open-source
spellchecker, it is common to use Aspell to
generate spell-based confusion sets. We use Aspell
with the Ukrainian dictionary in this work to create
spell-based confusions. More detail about the
method can be found in Naplava and Straka (2019).
We follow Naplava and Straka (2019) for the
parameter values for token replacement, deletions,
and insertions.

POS-based transformations Confusion sets in
this method are generated based on part-of-speech
(POS) tag of the target word to be replaced: given
a word and its POS tag (Choe et al., 2019),
the target word is replaced with its inflectional
variant that corresponds to the same base form
(e.g. “walks” would be replaced with “walking”,
“walked” or “walk”). Flachs et al. (2021) use Uni-
morph morphological analyzer and tagger (Mc-
Carthy et al., 2020). Although POS-based trans-
formations showed promising results for Russian,
our initial experiments using pymorphy (Korobov,
2015) did not yield competitive results, and we do
not report these experiments.

Back-translation (BT) The motivation for using
BT is to generate more diverse errors that cannot be
generated using the baseline spell-based transfor-
mations. We hypothesize that many fluency errors,
such as choosing an incorrect word, will manifest
themselves in the machine translation output as
back-translated words that are semantically close
to the target. The input to BT are sentences from a
native Ukrainian corpus. The sentences are trans-
lated into another language (pivot), and then back
into Ukrainian. We use English as the pivot: A
sentence is translated into English, where top n
translation hypotheses are generated. For each hy-
pothesis, top m back-translations into Ukrainian
are generated. For each unique word in Ukrainian,
the back-translated words that are aligned to it are
treated as potential synthetic errors.

Crucially, in contrast to other approaches that
employ back-translation (Lichtarge et al., 2019b),
we do not make use of the entire resulting back-
translated sentences, but only generate targeted con-
fusion sets of relevant errors that are used to corrupt
the data. Further, we generate multiple hypotheses
in each direction. We use the BT approach in con-
junction with the spell-based transformations (see
Section 5). We use the neural machine translation
systems of Tiedemann and Thottingal (2020) to

Percentage (%)
Error Train Valid (R1) Valid (R2)
Punctuation 36.9 32.8 29.8
Spelling 19.5 21.8 17.8
F/PoorFlow 8.9 12.1 16.0
F/Style 8.5 8.7 9.1
G/Case 6.2 6.5 3.7
F/Calque 6.4 4.1 4.9
G/Structure 2.3 2.2 3.8
F/Repetition 1.2 2.2 1.9
F/Collocation 1.2 1.6 1.2
F/Other 0.7 - 0.3
G/Prep 1.3 1.5 2.5
G/Number 0.9 1.0 1.3
G/Conjunction 1.1 1.0 0.7
G/Gender 1.3 0.9 0.7
G/VerbVoice 0.7 0.7 1.0
G/VerbAForm 0.2 0.7 0.1
G/Tense 0.4 0.6 1.4
Other 1.0 0.4 3.3
G/Other 0.6 0.4 -
G/PartVoice 0.3 0.3 0.1
G/Particle 0.2 0.2 0.2
G/Comparison 0.4 0.2 0.1
G/Participle - 0.1 0.1
G/Aspect 0.2 0.1 0.3
Total 35,431 1,922 2,731

Table 1: Learner error distributions by category (on the
training and validation data). G stands for grammar,
and F stands for fluency. The validation data has two
references per sentence (R1 and R2).

translation from Ukrainian into English and back.

4 The Ukrainian GEC Data

The data used in the shared task comes from UA-
GEC, a corpus of social media texts written by
native speakers and learners of Ukranian (Syvokon
and Nahorna, 2021). The shared task organizers
have provided training and validation data. The
training data is annotated with 1 reference, and
the validation set is annotated with 2 references
for each sentence. The gold corrections are pro-
vided in the standard M2 format (Ng et al., 2014),
and the edits are labeled with the corresponding
error tags. There are 24 error categories, broadly
classified with a prefix into Grammar (G) and Flu-
ency (F) corrections (with the exception of spelling
and punctuation errors that do not have a prefix).
The shared task includes 2 tracks: “GEC+Fluency”,
where the systems are evaluated with respect to all
errors, and the “GEC only” track where the fluency
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edits are removed. Table 1 shows the distribution
of errors in the training and validation data. As
can be observed, punctuation and spelling errors
constitute the majority of edits (over 50%), and
grammar errors are less frequent. This may be be-
cause the Ukrainian corpus contains a lot of data
from native speakers, as opposed to language learn-
ers (Syvokon and Nahorna, 2021).

5 Experiments and Results

Below, we present experimental results for the two
models that we implemented. Our submissions for
both tracks are the same, except that the models are
finetuned on the gold data for each respective track.
We first present a set of experiments on the data in
the “GEC+fluency” track. We report results of the
submitted systems for both tracks in Section 5.3.

Corrupting monolingual Ukrainian data Both
models use synthetic data. We corrupt sentences
from the Ukrainian partition of CC-100 (Wenzek
et al., 2020), which contains high-quality data
from Common Crawl. We tokenize the data us-
ing Stanza (Qi et al., 2020), the same tokenizer that
is used to tokenize the gold data. We use spell-
based transformations (see Section 3) to corrupt
the monolingual data (but see also 5.2).

Evaluation We report the scores measured by
ERRANT scorer (Felice and Briscoe, 2015), and
report performance on correction.

5.1 mT5-Based Models

First, we evaluate mT5-based models. We have
experimented with 2 models: base and large. Al-
though xl and xxl models showed much stronger
performance (Rothe et al., 2021), these models
were too large (3.7B and 13B parameters, respec-
tively). mT5 base and mT5 large have 580M and
1.3B parameters, respectively. We first finetune
both models on the gold training data and evaluate
on the validation set (see Table 2).
Pre-training on synthetic data Because mT5 has
been pre-trained with span-prediction objective that
is not optimal for GEC, Rothe et al. (2021) re-train
the model, by splitting the paragraphs into indi-
vidual sentences and corrupting the sentences with
a set of operations that drop, insert, or swap to-
kens and characters. Their resulting gT5 model
significantly outperforms the finetuned mT5 mod-
els. Since gT5 is not publicly available, we make
use of the mT5 models, however, to account for the
fact that mT5 may not be optimal for GEC, we in-

P R F0.5

mT5 base 63.64 33.29 53.83
mT5 large 65.26 39.74 57.83

Table 2: mT5 models finetuned on gold training data.
Results on valid (“GEC+Fluency”). Best result is in
bold.

Model P R F0.5

mT5 base 63.64 33.29 53.83
mT5 large 65.26 39.74 57.83
mT5 base + 2M synth. 72.05 39.69 61.94
mT5 large + 2M synth. 73.95 41.84 64.11
mT5 large + 10M synth. 72.08 47.87 65.45

Table 3: mT5 pre-trained on synthetic data, and
finetuned on gold training data. Results on valid
(“GEC+Fluency”). Best result is in bold.

troduce an additional pre-training step and pre-train
mT5 on synthetic data with spell-based corruptions
(see Section 3). We finetune mT5, using the origi-
nal hyper-parameters in Xue et al. (2021). When
finetuning, we utilize a max context length of 128
tokens, a batch size of 32, and a global seed of 42
for all experiments related to mT5.

Results are shown in Table 3. Pre-training on
synthetic data boosts the performance significantly,
but almost 7 points. Increasing the size of the syn-
thetic data used for pre-training further boosts the
performance by 1 F-score point.

5.2 Transformer seq2seq Models Trained on
Synthetic Data

The model We use the Transformer sequence-
to-sequence model (Vaswani et al., 2017) imple-
mented in the Fairseq toolkit (Ott et al., 2019). We
use the “Transformer (big)” settings and the pa-
rameters specified in (Kiyono et al., 2019b) for
Pretrain setting. The models are pre-trained on
synthetic data until convergence using 3 seeds (1,2,
and 3) and then further finetuned on gold training
data. The gold training data is also used as the
validation set. We ensemble the best checkpoints
from each run during inference.

Pre-training with spell-based synthetic errors
Table 5 shows experimental results on the valida-
tion set. The top two rows show models pre-trained
on 15M synthetic sentences (single model results
and an ensemble of 3 best checkpoints).

Back-translation based errors Our next experi-
ment evaluates the contribution of back-translation
based errors. The errors are introduced on top of
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GEC+Fluency GEC only
Model Number of params. P R F0.5 P R F0.5

mT5 large 1.3B 73.21 53.22 68.09 76.81 61.39 73.14
seq2seq 275M 69.91 53.78 65.96 72.32 63.13 70.27

Table 4: Results on the test data of the submitted systems for both tracks.

Model P R F0.5

Spell (15M, single) 62.0 46.8 58.2
Spell (15M, ens.) 65.6 47.4 60.9
Spell+BT (15M, single) 65.1 48.5 60.9
Spell+BT (15M, ens.) 68.3 49.0 63.3
Spell+BT (35M, single) 63.8 50.0 60.4
Spell+BT (35M, ens.) 67.8 50.5 63.4

Table 5: Seq2seq models pre-trained on synthetic data
and finetuned on the gold training data. Results on the
“GEC+Fluency” validation set (average over 3 random
seeds for single models). BT stands for back-translation.
Best result is in bold.

the spell-based confusions, with an error rate of
10%. We note that because these errors do not
target every word, on average 5% of additional
words are being corrupted in this stage. The second
segment of Table 5 illustrates that adding back-
translation errors improves the results by 3 points.

Effect of the synthetic data size Finally, we train
models on more synthetic data (35M examples).
We do not observe an improvement compared to
using 15M examples (bottom segment of Table 5).

5.3 Submitted Systems
For the mT5-based model, we submitted an mT5
large pre-trained on 10M synthetic examples, and
further finetuned on the gold data. The seq2seq
model is pre-trained on 35M synthetic examples
(Spell+BT) and finetuned on gold training data. We
use 3 random seeds and the inference is an ensem-
ble over the best checkpoints for the 3 runs. For
each track, we finetune on the gold data for the
corresponding track. Results are shown in Table 4.
Note that the mT5 model is finetuned on the gold
training and validation data in the “GEC+Fluency”
track, and is finetuned on the gold training data in
the “GEC only” track. Seq2seq models are fine-
tuned on the gold training data for both tracks.

5.4 Evaluation by Error Type
Evaluating performance by individual error type
is extremely useful, as it allows us to understand
what type of mistakes each model is good at correct-
ing, and which errors are more difficult. However,

Recall
Error mT5 large Seq2seq
Calque 23.1 22.5
Case 23.3 15.0
Flow 8.0 10.6
Punc. 65.4 67.5
Spelling 48.6 51.2
Structure 13.5 11.7
Style 10.6 13.4

Table 6: Recall performance per error type for the most
frequent error types on the validation set for the two
submitted systems.

evaluating by error type requires classifying the
edits made by the automated systems. In other
languages, automatic tools for classifying edits
have been built (Bryant et al., 2017; Belkebir and
Habash, 2021; Rozovskaya, 2022). However, we
can compute the recall of each model, by using
gold error tags available in the M2 files. We report
recall for the submitted systems (on the validation
data) for the most frequent error types. Results
are shown in Table 6. Note that because we can-
not evaluate the precision of correcting these er-
ror types, these results cannot be used to directly
compare performance on different errors. Never-
theless, this evaluation suggests that currently both
systems mainly correct punctuation and spelling
errors, whereas fluency errors, such as flow, and
style prove to be the most challenging.

6 Conclusion

We have presented our submission that participated
in the shared task on the Grammatical Error Cor-
rection of Ukrainian. Our submission includes two
systems. The first system pre-trains mT5 on syn-
thetic data and finetunes on the gold GEC data.
We have shown that introducing this two-stage ap-
proach is crucial to achieving strong results when
using mT5. We have also proposed a novel syn-
thetic data generation method that extracts confu-
sion pairs from multiple back-translation hypothe-
ses that are aligned with the original sentence.
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Limitations

The results shown in this work may not necessarily
reflect performance on other languages with similar
amounts of resources or even Ukrainian language
error correction performed on a different domain.
The methods described in this work require use
of GPU resources that may not be available to all
researchers.
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