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Abstract

This study addresses the challenges of learning
unsupervised word representations for the mor-
phologically rich and low-resource Ukrainian
language. Traditional models that perform de-
cently on English do not generalize well for
such languages due to a lack of sufficient data
and the complexity of their grammatical struc-
tures. To overcome these challenges, we uti-
lized a high-quality, large dataset of different
genres for learning Ukrainian word vector rep-
resentations. We found the best hyperparame-
ters to train fastText language models on this
dataset and performed intrinsic and extrinsic
evaluations of the generated word embeddings
using the established methods and metrics. The
results of this study indicate that the trained
vectors exhibit superior performance on intrin-
sic tests in comparison to existing embeddings
for Ukrainian. Our best model gives 62% Ac-
curacy on the word analogy task. Extrinsic
evaluations were performed on two sequence
labeling tasks: NER and POS tagging (83%
spaCy NER F-score, 83% spaCy POS Accu-
racy, 92% Flair POS Accuracy).

1 Introduction

Word embeddings (Almeida and Xexéo, 2019) are
fixed-length vector representations of words that
have a variety of applications in natural language
processing (NLP) tasks, including semantic text
similarity (Nguyen et al., 2019), word sense dis-
ambiguation (Ruas et al., 2019), text classification
(Mandelbaum and Shalev, 2016), question answer-
ing (Shen et al., 2017). Word embedding tech-
niques rely on the distributional hypothesis – the
assumption that the meaning of a word is captured
by the contexts in which it appears (Harris, 1954).

Even though unsupervised word embeddings can
be learned directly from raw texts, gathering a sig-
nificant amount of data for their training remains
an immense challenge for low-resource languages

*These authors contributed equally to this work.

such as Ukrainian. Moreover, Ukrainian is a mor-
phologically rich language; its nouns decline for
7 cases, three genders, and two numbers. Adjec-
tives agree with nouns in case, gender, and number.
Verbs conjugate for four tenses, two voices, and
two numbers. Ukrainian verbs come in aspect pairs:
perfective and imperfective. Not surprisingly, tra-
ditional models that give excellent results for En-
glish may not be able to generalize well for highly
inflected languages, such as Ukrainian, without
special tuning.

To address these challenges, we worked with
a high-quality, large dataset of different genres
for learning vector representations of words in the
Ukrainian language. We identified the best hy-
perparameters to train fastText language models
on this dataset and performed the intrinsic and ex-
trinsic evaluations of the generated word embed-
dings using firmly established methods and metrics.
Furthermore, the obtained vectors were compared
with the ones previously published by the Face-
book team1 (Grave et al., 2018) and those trained
using the default hyperparameters. Our optimized
models outperformed the baseline models by 7.1%
in Accuracy on the word analogy task, and showed
a 6.4% improvement compared to the Ukrainian
word embeddings published by Grave et al. (2018).

The novel contributions of this work are:

• Conducted the first study of effects of vari-
ous hyperparameters for fastText word em-
beddings in the Ukrainian language.

• Created and made publicly available the
largest collection of pre-trained Ukrainian
word embeddings. The best models are avail-
able on the Hugging Face platform2, and oth-
ers upon request.

• Presented a new word analogy dataset for
1https://fasttext.cc/docs/en/crawl-vectors.

html
2https://huggingface.co/dchaplinsky/fasttext_

uk
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Ukrainian3.

• Provided the first formal analysis of Ukrainian
word vectors utilizing intrinsic and extrinsic
approaches.

The obtained results allow NLP practitioners
to reduce the computational resources and time
required to develop algorithms for solving applied
NLP tasks.

The rest of the paper is organized as follows.
Section 2 contains an overview of related work.
Section 3 presents the data collection and prepro-
cessing techniques. We describe the methodology
for learning word vectors and conducted experi-
ments in Section 4. Section 5 describes the evalu-
ation methods and obtained results. We conclude
and present future work in Section 6.

2 Related work

A standard approach (Miaschi and Dell’Orletta,
2020) for learning non-contextual word represen-
tations is to train a log-bilinear model based on
the continuous bag-of-words (cbow) or the skip-
gram architectures. An example of such a language
model is word2vec, described by Mikolov et al.
(2013a). It learns continuous representations of
words using a shallow neural net. Mikolov et al.
(2013b) showed that these representations capture
syntactic and semantic regularities in language de-
cently, and presented a novel method — word
analogies — for evaluating word embeddings based
on vector arithmetic.

Word2vec’s main drawback is that it ignores the
word’s internal structure that contains rich infor-
mation. This knowledge could be beneficial in
computing representations of uncommon or mis-
spelled words and for morphologically rich lan-
guages like Ukrainian. To address this issue, the
fastText method (Bojanowski et al., 2017) proposed
to take word morphology into account by represent-
ing each word as a bag of character n-grams. They
evaluated the fastText model on nine languages ex-
hibiting different morphologies, but Ukrainian was
omitted.

Grave et al. (2018) developed and released fast-
Text language models for 157 languages, including
Ukrainian, but they did not provide any evaluation
of the embeddings for this language. They used
Wikipedia, which is of limited diversity, and quite

3https://github.com/lang-uk/vecs/blob/master/
test/test_vocabulary.txt

noisy data from the Common Crawl (CC) project4

for learning their word vectors. Another shortcom-
ing is that they did not optimize subword size and
employed character n-grams of size 5–5 for all lan-
guages. Also, the authors concluded that the quality
of the obtained vectors for low-resource languages
is significantly worse than for high-resource ones.

Novotný et al. (2021) discovered that subword
sizes have a significant impact on the Accuracy of
fastText language models, and their optimization
enhanced the Accuracy on word analogy tasks by
up to 14%. The authors proposed a simple n-gram
coverage model and discovered the optimal sub-
word sizes on the English, German, Czech, Italian,
Spanish, French, Hindi, Turkish, and Russian word
analogy tasks. We utilized their findings for Czech
and Russian as they also belong to the Slavic lan-
guage group.

In the current study, we evaluate how the corpus
size, specific models, and set of hyperparameters
affect the quality of Ukrainian word embeddings
for different NLP tasks. Also, we conduct a proper
evaluation of the proposed by Grave et al. (2018)
word embeddings for Ukrainian and compare them
with our results.

3 Training Dataset

This section presents our datasets and preprocess-
ing techniques.

3.1 Corpus Selection

Currently available corpora for the Ukrainian lan-
guage include:

• Zvidusil5 corpus, which contains 2,8 billion
tokens. Around ten text sources of Zvidusil
are collected by the specialized parsers. The
rest is retrieved automatically using Spider-
Ling6;

• General Regionally Annotated Corpus of
Ukrainian (GRAC)7, collected by Shvedova
et al. (2017-2022). It consists of approxi-
mately 890 million tokens and has various
genre coverage, good general quality, and
unique texts;

• other corpora8 of a smaller size.

4https://commoncrawl.org
5https://mova.institute/
6http://corpus.tools/wiki/SpiderLing
7http://uacorpus.org/
8http://uacorpus.org/Kyiv/ua/

other-ukrainian-corpora
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General corpora statistics are summarized in Ta-
ble 1.

Table 1: Statistical information on Zvidusil and GRAC
corpora.

Corpus Zvidusil GRAC
# of tokens 2,848,203,658 889,097,859
# of sentences 155,821,729 55,324,205
# of documents 6,936,227 113,569

Unfortunately, neither Zvidusil nor GRAC
datasets are open-source and available for direct
download.

Therefore, we decided to use other corpora —
UberText 1.09 and the developer preview of Uber-
Text 2.010. We summarize these datasets in Table 2.

UberText 1.0 is the smaller one and includes
11 news websites spanning 2006-2016, Ukrainian
Wikipedia as of 2016, and fiction. UberText 2.0 —
the bigger one, at the moment of the experiment,
consisted of 30 news websites spanning 2000-2021,
Ukrainian Wikipedia as of 2021, and a bigger sub-
corpus of fiction. The final version of the UberText
2.0 corpus is a subject of a separate paper (Chap-
lynskyi, 2023); here, we only cover the essential
aspects of its composition and preprocessing.

Table 2: Training datasets description. The # of words
indicates the vocabulary size of the models trained on
this dataset and equals to the number of unique tokens.

Corpus UberText 1.0 UberText 2.0
# of tokens 665,322,645 1,589,010,407
# of words 1,758,917 2,665,029
# of sentences 48,522,905 126,696,187
Size 8.4 GB 20.1 GB

Both datasets were collected using custom-
written spiders for the Scrapy11 framework to parse
publicly available sources of Ukrainian texts.

The selection of sources covers modern vocab-
ulary of the Ukrainian language and, therefore, is
helpful for the downstream tasks. All the texts were
converted from the HTML markup to Markdown

9https://lang.org.ua/static/downloads/corpora/
ubercorpus.txt.tokenized.noemptylines.no_
markdown.txt.bz2

10https://lang.org.ua/static/downloads/corpora/
ubertext.fiction_news_wikipedia.filter_rus+short.
tokens.txt.bz2

11https://scrapy.org

standard using html2text12 to maintain the basic
structure of headers and sub-headers.

In comparison to UberText 1.0, the second ver-
sion provides the following improvements:

• more sources of texts;

• texts that were added to the existing sources
since 2016;

• better internal structure and meta information
on texts (authorship, tags, images).

It was a deliberate decision not to include Common
Crawl or Oscar13 corpora data into UberText be-
cause of their aggregated nature and instead focus
on individual sources of texts rather than deal with
noisy input.

3.2 UberText Preprocessing

All the texts were preprocessed using the nlp-uk14

library, a wrapper for the LanguageTool15; the fol-
lowing techniques were applied:

1. cleansing — removal of Markdown tags,
fix for broken encodings, normalization of
the hyphens, apostrophes, fixes for mixed
Latin/Cyrillic texts, fixes for simple word
wraps;

2. rating for the number of used Ukrainian and
Russian dictionary words and characters spe-
cific to Ukrainian and Russian alphabets;

3. tokenization into paragraphs, sentences, and
words using the LanguageTool tokenizer for
the Ukrainian language;

4. removal of punctuation marks.

No changes were made to the word capitalization
in texts.

During the export of the texts, the following
filters were applied:

• Texts with a substantial amount of Russian
words (over 25%) were removed to exclude
articles wholly or partially written in Russian.

• Articles shorter than 100 characters were also
removed.

12https://pypi.org/project/html2text/
13https://oscar-corpus.com
14https://github.com/brown-uk/nlp_uk
15https://github.com/languagetool-org/

languagetool
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4 Embedding methods

While recent advances in NLP have been domi-
nated by transformer-based language models, there
is still a place for simpler models like continuous
bag-of-words (cbow) and skipgram (Mikolov et al.,
2013a) in certain scenarios. These models offer
several advantages over more complex ones, par-
ticularly in low-resource settings. For one, they
are computationally efficient and can be trained on
smaller datasets. Additionally, they offer greater
interpretability and transparency, making it easier
to understand how the model makes its predictions.

Given these advantages, we choose to use
cbow and skipgram methods for obtaining context-
independent word embeddings for our study.

Cbow model learns to predict a target word
based on its context, using the sum of the back-
ground vectors. A predefined window size sur-
rounding the target word represents the neighbor-
ing terms taken into account.

Skipgram is another architecture for creating
word embeddings. The model uses a target word
for predicting the context by summing the log prob-
abilities of the surrounding words to the left and
right of the target word.

For the study, we have chosen the fastText16 im-
plementation of these models, where morphology
is taken into account. Each word is represented as
a bag of character n-grams (i.e., subwords), and the
word vector is obtained by taking the sum of the
vectors of the character n-grams appearing in that
particular word (Bojanowski et al., 2017). While
being the golden implementation, it has two short-
comings that weren’t described in the project docu-
mentation:

• has a hyperparameter wordNgram that does
not impact the training;

• it lacks the implementation of the cbow al-
gorithm with positional weights, called cbow
weighted in what follows. Such an algorithm
was first described in the work of Grave et al.
(2018) and used to train reference word vec-
tors, available for 157 languages. To over-
come this issue, we have switched to an alter-
native implementation described in the para-
graph below.

Cbow with positional weights is a variation
of the cbow model that modifies the input vectors

16https://fasttext.cc/

of context words to better depict the relationship
between the target and context words based on
their relative positions (Novotný et al., 2022). The
authors noted that the positional model more than
doubles the training time since, for each gradient
update of an input vector, we also need to update
the weights of a positional vector. We utilized the
implementation of the positional weighted model
presented in the paper mentioned above.

4.1 Baseline

In order to compare learned embeddings, we
trained the fastText model on our dataset Uber-
Text 2.0 (20.1 GB) with default parameters, but the
vector dimension was fixed to 300 instead of 100.
We introduce this model as a "Baseline".

4.2 Hyperparameter tuning

We decided to add the following modifications to
the Baseline model for obtaining high-quality word
vectors:

1. more epochs for training; by default, the fast-
Text library trains for five epochs;

2. more negative samples; by default, it samples
five negative examples;

3. use different character n-grams size instead of
the default range of 3–6;

4. also utilize the cbow model for learning word
vectors; the default is the skipgram variant.

The increment in the number of the training
epochs and negative samples refers to the results of
Grave et al. (2018) experiments, which show that
although such adjustments increase training time,
they result in a significant increase in Accuracy.
Subword ranges were chosen based on Novotný
et al. (2021) reported accuracies on word analogies
for Czech and Russian, which are the most related
to Ukrainian among the studied languages.

In Table 3, we have collected all selected op-
tions for training fastText vectors for the current
study. To find the best setting, we explored 32
combinations of parameters for learning word rep-
resentations.

Since the cbow weighted model requires much
time to learn, we did not train it on all combinations
of parameters but used the best one according to
our previous evaluation on other models and their
performance on the word analogies. Therefore,
subword range 2-5 and 15 negative samples were
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Table 3: Selected parameters to study their impact on
Ukrainian vectors’ quality. Subword refers to the min
and max character n-gram.

Model Epochs Subword Negative
Sampling

cbow 10 2-5 10
skipgram 15 2-6 15

4-6
5-6

used. Also, following the Grave et al. (2018) exper-
iment setup, we trained word vectors with character
n-grams of length five only and ten negative sam-
ples. As mentioned in Novotný et al. (2022), the
positional model can benefit from a larger context
window. Therefore, we set it to 15, as the optimal
context window size defined by the authors.

To run the training on all the combinations of
hyperparameters, we wrote the software17 that can
be quickly deployed on any server with enough
RAM, effectively turning that server into a com-
putational node that picks the next available task
from the pool. That allowed us to quickly deploy it
to the farm of seven servers and parallelize the grid
search.

4.3 The impact of training data size

Another experiment was conducted to investigate
the result stated by Bojanowski et al. (2017) re-
garding the impact of training data size on the qual-
ity of produced vectors. They argued that high-
performing word embeddings can be constructed
on a corpus of a restricted size while still perform-
ing well on previously unseen data. For the purpose
of investigating this claim, we utilized the smaller
corpus UberText 1.0 (8.4 GB) and trained with opti-
mized parameters and hyperparameters on intrinsic
and extrinsic tasks. See more details in Sections
5.1.2 and 5.2.3.

4.4 Estimating the hyperparameter
significance

The quality of calculated word vectors was mea-
sured with the Accuracy and F1 score. Both met-
rics are continuous variables expressed in a range
from 0 to 1. Therefore we used a Beta regression
to regress the hyperparameters. It is assumed that
the model’s dependent variable is beta-distributed

17https://github.com/lang-uk/
fasttext-vectors-uk

and that its value is related to a set of indepen-
dent variables through a linear predictor with un-
known coefficients and a link function (logit in our
case). Calculations were made with betareg pack-
age (Zeileis et al., 2016) in the R environment for
statistical computing (R Core Team, 2013).

5 Evaluation

In this section, we describe various evaluation met-
rics on trained word vectors. Prior work on evalua-
tion of the embeddings can be divided into intrinsic
and extrinsic evaluation methods (Torregrossa et al.,
2021). We start with the intrinsic evaluation on the
word analogy task, then continue with named en-
tity recognition (NER) and part-of-speech (POS)
tagging for extrinsic estimation.

5.1 Intrinsic Evaluation
Intrinsic evaluators directly measure the syntac-
tic and semantic relationship between word vec-
tors. For this study, we intrinsically evaluated our
models on the word analogy task, also known as
analogical reasoning, introduced by Mikolov et al.
(2013b). In the test set, a triplet of words A, B, C
is given, and the goal is to find the fourth word
D, where A is to B as C to D. An example of such
an analogy question is Kyiv relates to Ukraine as
Madrid to prediction, where the correct answer
is Spain.

5.1.1 Word Analogy Dataset
We developed the word analogy dataset for
Ukrainian18, which includes 23,970 questions on
12 topics. More precisely, analogy questions are
represented by the relations shown in Table 4. To
create a dataset, the following methods were used:

• GraphQL requests to WikiData19 to obtain
information about countries, capitals, nation-
alities, regions, currencies, and relations be-
tween them;

• PyMorphy220 library with Ukrainian dictio-
naries21 installed to generate singular-plural,
opposite, comparative, adjective-adverb, su-
perlative, past tense-present, and verb-noun
pairs, inflecting the manually crafted list of
popular lemmas to generate a unique pair;

18https://github.com/lang-uk/vecs/blob/master/
test/test_vocabulary.txt

19https://www.wikidata.org/wiki/Wikidata:
Main_Page

20https://github.com/kmike/pymorphy2
21https://pypi.org/project/pymorphy2-dicts-uk/
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• the family relations were created manually.

Table 4: Word analogy dataset. Questions denote the
number of word pairs to compare, and unique pairs
denote the number of unique word pairs.

Relations # of questions # of unique
pairs

country : capital 4,271 137
country : region 2,038 117
country : nationality 10,359 2,732
country : currency 729 28
family relations 400 21
singular : plural 1,225 36
adjective : adverb 961 32
opposite 625 26
comparative 400 21
superlative 1,089 33
past tense : present 1,089 33
verb : noun 784 29

To evaluate the vector model, a separate library
was written22 to read the dataset, load vectors, and
run the intrinsic tests using gensim utilities 23. Ad-
ditional logic was added to the evaluation script to
make it case-insensitive. The word vector model is
tested on each topic separately and on all questions
to get the total analogy score. The answer is con-
sidered correct if it occurs in the first n predictions
(in our case, n = 4).

5.1.2 Results for Intrinsic Evaluation
Table 5 compares the Accuracy scores for the base-
line models with default hyperparameters and the
optimized models for different train datasets and
algorithms.

Overall, it can be seen that the optimized skip-
gram model increases Accuracy by 7.1% compared
to the baseline model and by 6.4% compared to the
Grave et al. (2018) Ukrainian word embeddings.
Models with larger training data (UberText 2.0)
generally outperform models built with UberText
1.0. In terms of architecture selection, the skipgram
model shows better results than the cbow one for
the word analogy task. The same is supported by
the regression analysis. Table 8 (Appendix A) pro-
vides estimated coefficients and their significance.

22https://github.com/lang-uk/vecs
23https://radimrehurek.com/gensim/models/

keyedvectors.html#gensim.models.keyedvectors.
KeyedVectors.most_similar

The Accuracy significantly depends on the se-
lected model (skipgram is better) and the corpus
size. Also, results can be improved by increas-
ing the number of training epochs. The pseudo
R-squared for the regression model is 0.957.

5.2 Extrinsic Evaluation

Extrinsic evaluation measures the contribution of
the word vectors to a specific downstream task.
The comparison result depends on the nature of
these tasks and cannot be used as a metric for the
quality of embeddings. Nevertheless, comparing
performance across tasks may provide insight into
the information encoded by embeddings (Schnabel
et al., 2015).

We performed experiments on two sequence la-
beling models: NER and POS tagging. Named
entity recognition is a standard NLP task that can
identify entities discussed in a text document. Part-
of-speech tagging is the process of labeling a word
in the text with a particular part of speech based on
both its context and definition.

5.2.1 Data
The datasets for extrinsic evaluation were derived
from publicly available GitHub repositories:

NER. Ukrainian corpus for named entities recog-
nition24 comprises 238,927 tokens from 264 text
samples. The primary source of the data is the open
Brown Corpus of Ukrainian25, including texts of
different genres. The 6,751 entities are annotated
by four classes for recognizing locations (LOC) —
4,390 entities, persons (PERS) — 1,616, organiza-
tions (ORG) — 780, and miscellaneous (MISC) —
660. We exploit the standard division into dev/test
sets at 70%/30% for the training and validation of
our models.

POS tagging. Ukrainian Universal Dependen-
cies (UD) corpus26 was developed by a non-profit
organization Institute for Ukrainian27. The data fol-
lows the CoNLL-U format (Buchholz and Marsi,
2006). UD Ukrainian consists of 122K tokens in
7,000 sentences of different genres — fiction, news,
opinion articles, Wikipedia, legal documents, let-
ters, posts, and comments spanning the previous
15 years and the early twentieth century. The cur-
rent study utilized the proposed data split between

24https://github.com/lang-uk/ner-uk
25https://github.com/brown-uk/corpus
26https://github.com/UniversalDependencies/UD_

Ukrainian-IU
27https://mova.institute/
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Table 5: Evaluated the Accuracy of word embeddings trained with default and optimized hyperparameters. Top
Accuracy is marked in bold.

Training Model Subword Negative Epochs Intrinsic
Dataset Sampling Accuracy

Grave et al. (2018) Wikipedia+CC cbow weighted 5-5 10 10 0.579

Our baselines UberText 2.0 skipgram 3-6 5 5 0.575
UberText 2.0 cbow 3-6 5 5 0.449

Our optimized UberText 2.0 skipgram 2-5 15 15 0.616
UberText 1.0 skipgram 2-5 15 10 0.573
UberText 2.0 cbow 4-6 15 15 0.492
UberText 1.0 cbow 5-6 15 15 0.473

Table 6: F1 scores for NER task for word embeddings trained with default and optimized hyperparameters. The top
F1 score is marked in bold.

Training Model Subword Negative Epochs NER
Dataset Sampling SpaCy F1

Grave et al. (2018) Wikipedia+CC cbow weighted 5-5 10 10 0.792

Our baselines UberText 2.0 cbow 3-6 5 5 0.824
UberText 2.0 skipgram 3-6 5 5 0.816

Our optimized UberText 1.0 cbow 5-6 15 15 0.827
UberText 2.0 cbow 2-6 10 10 0.826
UberText 1.0 skipgram 2-5 15 15 0.824
UberText 2.0 skipgram 2-5 15 15 0.818

train/dev/test at 75%/10%/15% balanced in genre
and complexity.

5.2.2 Models
In order to conduct an extrinsic evaluation, we need
to load our learned word vectors as input features
into a blank model. In the current study, we exploit
spaCy28 and flair29 (Akbik et al., 2019) libraries as
they both support Ukrainian language and usage of
custom word embeddings.

spaCy is a free and open-source software library
that provides various practical tools for text pro-
cessing. We used it for training both NER and POS
tagging models. In spaCy, it is implemented by the
ner and morphologizer pipeline components.
The morphologizer aims to predict morphologi-
cal features and coarse-grained POS tags follow-
ing the Universal Dependencies grammar; we used
only part-of-speech predictions for our evaluation.

flair is a simple framework for state-of-the-art
NLP built directly on PyTorch. We trained a
BiLSTM-CRF sequence tagger using the flair for

28https://spacy.io/
29https://github.com/flairNLP/flair

the POS task. In contrast to spaCy, in flair, we can
use the ability of custom fastText embeddings to get
the representations for out-of-vocabulary (OOV)
words, loading word vectors in the .bin file that
contains the model parameters along with the vec-
tors for all n-grams.

All models were trained with the default hyper-
parameters using early stopping callback and eval-
uated on the test set. Metrics were F1 for the NER
model and the Accuracy for the POS taggers.

5.2.3 Results for Extrinsic Evaluation

We observed minor improvements in the quality of
the word embeddings for the NER task. Table 6
shows no significant advances, and the F1 scores
for different models are roughly the same.

This is confirmed by the regression analysis. The
estimated coefficients do not significantly differ
from zero (see Table 9, Appendix A).

Improvements in optimized models for POS tag-
ging tasks also can be considered modest. SpaCy
POS accuracy showed almost no increase with
model optimization, and the accuracy of flair POS
increased by only 2.8% compared to the cbow base-
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Table 7: Accuracy scores for POS tagging tasks performed with spaCy and flair. Top Accuracy is marked in bold.

Training Model Subword Negative Epochs POS SpaCy
Dataset Sampling Accuracy

Grave et al. (2018) Wikipedia+CC cbow 5-5 10 10 0.824
weighted

Our baselines UberText 2.0 cbow 3-6 5 5 0.825
UberText 2.0 skipgram 3-6 5 5 0.822

Our optimized UberText 2.0 cbow 2-6 10 10 0.827
UberText 2.0 skipgram 2-5 15 10 0.826
UberText 1.0 skipgram 2-5 15 10 0.823
UberText 1.0 cbow 2-6 10 10 0.823

Training Model Subword Negative Epochs POS Flair
Dataset Sampling Accuracy

Grave et al. (2018) Wikipedia+CC cbow 5-5 10 10 0.94
weighted

Our baselines UberText 2.0 cbow 3-6 5 5 0.893
UberText 2.0 skipgram 3-6 5 5 0.881

Our optimized UberText 2.0 cbow 2-6 15 15 0.918
UberText 2.0 skipgram 2-6 10 15 0.912
UberText 1.0 cbow 2-6 10 15 0.911
UberText 1.0 skipgram 2-5 10 15 0.899

line. Accuracy scores are presented in Table 7.
Pseudo R-squared is 0.110.

Nevertheless, regression models for the grid of
hyperparameters show that the flair POS model
Accuracy is better using cbow and cut down choos-
ing a high minimum subword number and the low
subword range (Table 10, Appendix A), and the
spaCy POS model can be improved by enlarging
the training dataset and shows the same tendency
for subwords like flair POS does (Table 11, Ap-
pendix A). The pseudo R-squared for both models
is 0.304 and 0.918, respectively.

We examined that the performance on down-
stream models is inconsistent across tasks and with
intrinsic evaluations, as was previously discovered
by Schnabel et al. (2015).

6 Conclusions and Future work

In this paper, we reviewed various aspects of learn-
ing word embeddings, including the quality and
the quantity of the corpus texts, the choice of the
word embeddings algorithm, and its hyperparam-
eters. Those variations were tested on real-world
texts and NLP tasks, and the performance of the re-
sulting word embeddings was carefully measured.
During the research, more than forty variants of

word vectors were trained and evaluated using the
clean framework, which consists of one intrinsic
and three extrinsic tests.

The evaluation of the resulting word embeddings
has indicated that:

• The best hyperparameters based on intrinsic
evaluation are:

– 2-5 subword size, 15 negative samples
and epochs for the skipgram model30;

– 4-6 subword size, 15 negative samples
and epochs for the cbow model31.

• While the trained vectors have shown visibly
better performance on the intrinsic tests, this
performance does not correlate much with the
extrinsic evaluation results.

• The correlation between the hyperparameters
and the results of the extrinsic tests exists but
has no significant impact on the corresponding
metrics.

Additionally, we found that the reference imple-
mentation of the fastText algorithm misses a vital
part: the cbow weighted version, which makes it

30https://huggingface.co/dchaplinsky/fasttext_
uk

31https://huggingface.co/dchaplinsky/fasttext_
uk_cbow
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hard to reproduce the Grave et al. (2018) results on
our corpus.

In the paper, we suggest a methodology to build
and test word embeddings for low-resource lan-
guages, provide the code for training and evalua-
tion, and describe the required data. Such an ap-
proach allows conducting similar experiments for
other languages and sets a good performance base-
line for Ukrainian, allowing us to revisit the results
on an even bigger corpus.

Similar methods can be used to train other word
vectors, such as classical word2vec (Mikolov et al.,
2013a), GloVe (Pennington et al., 2014), or more
recent alternatives like LexVec32 or Floret33.

Limitations

During the research, we met some of the limitations
which might affect the reproducibility of the paper
results:

1. The need for a significantly large corpus of
good quality may affect reproducibility for
other low-resource languages. Researchers
might use one of the existing noisy corpora
(such as OSCAR34) and apply extensive fil-
tering, use Wikipedia, or collect their corpus
using web scraping.

2. As fastText word vectors can be trained only
on the CPU and require a lot of RAM, access
to the modern server time is needed. For this
paper, the farm of 7 servers was utilized for
training word vectors and running the evalua-
tion.

3. The implementation of the cbow with posi-
tional weights had an issue with the mem-
ory allocation for the random weights initial-
ization, so we patched the implementation
to make it work on a server with 128GB of
RAM.

4. The resulting embeddings for the Ukrainian
language require about 8 GB of disk storage;
therefore, training and evaluation of tens of
thousands of them imposes a visible require-
ment for data storage.

Ethics Statement

We acknowledge that there is a lack of papers in
the ACL Anthology that mention the Ukrainian

32https://github.com/alexandres/lexvec
33https://github.com/explosion/floret
34https://oscar-project.org/

language or are authored by researchers affiliated
with Ukrainian universities.

We believe our paper will increase the visibility
of the Ukrainian research community and will help
build connections with the ACL community.

Furthermore, we acknowledge the potential
broader impact of our research on other low-
resource, morphologically rich languages. We be-
lieve that our methods and findings are generaliz-
able and can be applied to benefit other languages
and communities.
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A Regression Analysis

Table 8: Beta regression coefficients for the model predicting the mean Accuracy for word analogy task.

component term estimate std.error statistic p.value

mean (Intercept) -0.2554787 0.0558844 -4.5715534 0.0000048
mean Cbow weighted -0.0217421 0.0333612 -0.6517183 0.5145829
mean Skipgram 0.4838693 0.0164096 29.4869395 0.0000000
mean Epochs 0.0053332 0.0023039 2.3148724 0.0206199
mean Subword 2-6 -0.0081295 0.0230823 -0.3521978 0.7246899
mean Subword 3-6 -0.0398978 0.0507995 -0.7853973 0.4322207
mean Subword 4-6 0.0035476 0.0237927 0.1491042 0.8814714
mean Subword 5-5 -0.0106454 0.0398361 -0.2672294 0.7892926
mean Subword 5-6 -0.0294700 0.0229863 -1.2820653 0.1998197
mean UberText 2.0 0.0640098 0.0207206 3.0891944 0.0020070
mean Negative sampling 0.0022902 0.0033095 0.6919969 0.4889393
precision (phi) 1528.2850428 305.5581464 5.0016177 0.0000006

Table 9: Beta regression coefficients for the model predicting the mean F1 score for NER task.

component term estimate std.error statistic p.value

mean (Intercept) 1.6216440 0.0666023 24.3481651 0.0000000
mean Cbow weighted -0.0075895 0.0397626 -0.1908713 0.8486264
mean Skipgram -0.0178466 0.0195245 -0.9140592 0.3606857
mean Epochs 0.0029815 0.0027425 1.0871598 0.2769662
mean Subword 2-6 0.0371129 0.0275649 1.3463850 0.1781784
mean Subword 3-6 -0.0361289 0.0602330 -0.5998193 0.5486267
mean Subword 4-6 0.0002828 0.0282246 0.0100184 0.9920066
mean Subword 5-5 -0.0324346 0.0474000 -0.6842734 0.4938025
mean Subword 5-6 0.0102150 0.0273104 0.3740327 0.7083800
mean UberText 2.0 0.0108599 0.0246912 0.4398274 0.6600621
mean Negative sampling -0.0049084 0.0039411 -1.2454404 0.2129699
precision (phi) 1902.8778974 380.5287293 5.0006156 0.0000006

Table 10: Beta regression coefficients for the model predicting the mean Accuracy score for SpaCy POS tagging.

component term estimate std.error statistic p.value

mean (Intercept) 1.5293970 0.0138662 110.2966659 0.0000000
mean Cbow weighted -0.0051336 0.0083367 -0.6157876 0.5380347
mean Skipgram -0.0049324 0.0040683 -1.2123932 0.2253619
mean Epochs 0.0003477 0.0005735 0.6062589 0.5443429
mean Subword 2-6 -0.0118624 0.0057226 -2.0729047 0.0381811
mean Subword 3-6 -0.0080235 0.0126195 -0.6357997 0.5249070
mean Subword 4-6 -0.0099378 0.0058999 -1.6843804 0.0921082
mean Subword 5-5 -0.0066263 0.0099457 -0.6662503 0.5052511
mean Subword 5-6 -0.0081829 0.0057037 -1.4346837 0.1513773
mean UberText 2.0 0.0209113 0.0051287 4.0773230 0.0000456
mean Negative sampling -0.0002691 0.0008203 -0.3280957 0.7428393
precision (phi) 41970.9373563 8394.1353521 5.0000310 0.0000006
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Table 11: Beta regression coefficients for the model predicting the mean Accuracy score for Flair POS tagging.

component term estimate std.error statistic p.value

mean (Intercept) 2.3223858 0.0854556 27.1765257 0.0000000
mean Cbow weighted -0.2127466 0.0544897 -3.9043446 0.0000945
mean Skipgram -0.2372245 0.0246544 -9.6219977 0.0000000
mean Epochs 0.0001504 0.0035905 0.0418964 0.9665813
mean Subword 2-6 0.0017537 0.0383267 0.0457572 0.9635038
mean Subword 3-6 -0.1959644 0.0775663 -2.5264110 0.0115235
mean Subword 4-6 -0.5094930 0.0359537 -14.1708221 0.0000000
mean Subword 5-5 0.0316722 0.0640241 0.4946926 0.6208171
mean Subword 5-6 -0.5957699 0.0344968 -17.2702724 0.0000000
mean UberText 2.0 0.0246145 0.0320123 0.7689059 0.4419491
mean Negative sampling 0.0063355 0.0049368 1.2833240 0.1993786
precision (phi) 1631.2103337 326.2489973 4.9998938 0.0000006
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