
Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023), pages 241–250
May 5, 2023 ©2023 Association for Computational Linguistics

Zero-Shot Slot and Intent Detection in Low-Resource Languages

Sang Yun Kwon1,⋆ Gagan Bhatia 1,⋆ El Moatez Billah Nagoudi1

Alcides Alcoba Inciarte1 Muhammad Abdul-Mageed1,2

1Deep Learning & Natural Language Processing Group, The University of British Columbia
2Department of Natural Language Processing & Department of Machine Learning, MBZUAI

{skwon01@student.,gagan30@student.,moatez.nagoudi@,alcobaaj@mail.,muhammad.mageed@}ubc.ca

Abstract

Intent detection and slot filling are critical tasks
in spoken and natural language understanding
for task-oriented dialog systems. In this work
we describe our participation in the slot and
intent detection for low-resource language vari-
eties (SID4LR; Aepli et al. (2023)). We in-
vestigate the slot and intent detection (SID)
tasks using a wide range of models and set-
tings. Given the recent success of multitask-
prompted finetuning of large language models,
we also test the generalization capability of
the recent encoder-decoder model mT0 (Muen-
nighoff et al., 2022) on new tasks (i.e., SID) in
languages they have never intentionally seen.
We show that our best model outperforms the
baseline by a large margin (up to +30 F1 points)
in both SID tasks.

1 Introduction

Digital conversational assistants have become in-
creasingly pervasive. Examples of popular virtual
assistants include Siri, Alexa, and Google. A cru-
cial factor in the effectiveness of these systems is
their capacity to understand user input and respond
or act accordingly to fulfill particular requirements.
Most of these applications are voice-based and
hence need spoken language understanding (SLU).
SLU typically starts with automatic speech recog-
nition (ASR), taking the sound of spoken language
and transcribing it into text. Then, it handles natu-
ral language understanding (NLU) tasks to extract
semantic features from the text including question
answering, dialogue management, intent detection,
and slot filling.

The intent detection task aims to recognize the
speaker’s desired outcome from a given utterance.
And slot filling focuses on identifying the main
arguments or the spans of words in the utterance
that contain semantic information relevant to the
intent. Table 1 shows four utterances in different
languages: English, Swiss German (GSW), South

Lang. Annotation

EN Set an alarm for 6 am on Wed

GSW Du em Mittwuch e Wecker dry fürem sächsi em Morge .

ST Stell an Wecker firn Mittig af 6 in der friah

NAP Imposta ’na sveglia ’e 6 ’e matina ’e miercurì

Table 1: Examples of xSID annotations in our target
languages from the validation set with intents (alarm
/ set_alarm) and slots ( location , datetime ). EN: En-
glish, GSW:Swiss German ST: South Tyrolean, NAP:
Neapolitan

Tyrolean (ST), and Neapolitan (NAP). The English
example has the intent set_alarm and two individ-
ual spans Set an alarm and 6 am on Wed are labeled
with their slot tags location and datetime, respec-
tively, using the Inside, Outside, Beginning (IOB)
(Ramshaw and Marcus, 1995) tagging format.

In this work, we present our participation in the
slot and intent detection for low-resource language
varieties (SID4LR; Aepli et al. (2023)) shared task.
The shared task takes as its target three low re-
sources languages– Swiss German (GSW), South
Tyrolean (ST), and Neapolitan (NAP). The main
objective of the SID4LR shared task is to find the
most effective approach for transferring knowledge
to less commonly spoken languages that have lim-
ited resources and lack a standard writing system,
in the zero-shot setting (i.e., without use of any
training data). In the context of the shared task, we
target the following four main research questions:

Q1: Can successful models on English SID tasks
be generalizable to new unseen languages (i.e.,
the zero-shot setting)?

Q2: How do models trained on a language from the
given language family fare on a low-resource
variety from the same family under the zero-
shot setting (i.e., with no access to training
data from these low-resource varieties). For
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example, in our case, we ask how do models
trained on German perform on Swiss German
or South Tyrolean, and how do models trained
on Italian perform on Neapolitan.

Q3: What impact does exploiting data augmenta-
tion techniques such as paraphrasing and ma-
chine translation have on the SID tasks in the
zero-shot context?

Q4: Are the existing large multilingual models,
trained using multitask-prompted fine-tuning,
able to achieve zero-shot generalization to
SID tasks in languages that they have never
intentionally seen?

The rest of this paper is organized as follows:
Section 2 is a literature review on intent and slot
detection tasks. The shared task, the source data
provided in SID4LR, and the external parallel data
we exploit to build our models are described in
Section 3. In Section 4, we provide information
about datasets, baselines, and data preprocessing.
The baseline, and multilingual pre-trained language
models we used are described in Section 5. We
present our experimental settings and our training
procedures in Section 6. Section 7 is an analysis
and discussion of our results. And we conclude in
Section 8.

2 Related Work

The problem of low-resource slot and intent detec-
tion for languages with limited training data has
been the focus of several recent research works. In
this section, we discuss some of the most relevant
and recent works, including datasets, benchmarks,
and models that aim to address this challenge.

2.1 SID Benchmarks and Corpus
The table below provides an overview of various
datasets used for NLU tasks. These datasets cover
a range of languages, domains, intents, and slots,
and are widely used to evaluate the performance
of NLU models. Some of the prominent datasets
include MASSIVE, SLURP, NLU Evaluation Data,
ATIS, MultiATIS++, Snips, TOP, MTOP, Cross-
lingual Multilingual Task-Oriented Dialog, Mi-
crosoft Dialog Challenge, and Fluent Speech Com-
mands. These datasets have been used for tasks
such as intent classification, slot filling, and seman-
tic parsing. Overall, these datasets provide a useful
resource for researchers to benchmark their models
and develop better NLU systems.

2.2 SID Approaches and Models

The are many works devoted to the SID tasks.
Most of these works are categorized into three ap-
proaches: (1) single model for intent detection, (2)
single model for slot filling, and (3) joint model.
(1) Single Model for Intent Detection refers to de-
veloping a single model that can identify the intent
behind a user’s spoken or written input. This ap-
proach involves training a neural network or other
machine learning model on a large dataset of la-
beled examples. Each example consists of user
input and its corresponding intent label. The model
then uses this training data to learn patterns and
features that can accurately predict the intent of
new user inputs. For instance, Ravuri and Stol-
cke (2015) proposed a recurrent neural network
and LSTM models for intent detection in spoken
language understanding. In this work, the authors
first discuss the limitations of traditional intent de-
tection approaches that rely on handcrafted fea-
tures and propose using deep learning models to
learn features directly from the data. Zhang et al.
(2021) investigate the robustness of pre-trained
transformers-based models such as BERT and
RoBERTa for intent classification in spoken lan-
guage understanding. They conduct experiments
on two datasets, ATIS (Upadhyay et al., 2018) and
SNIPS (Coucke et al., 2018), showing that pre-
trained transformers perform well on in-scope in-
tent detection.
(2) Single Model for Slot Filling is an approach
that aims to develop a single model capable of
identifying slots in spoken language understand-
ing. The model takes a sentence as input and
predicts the slot labels for each word in the sen-
tence. Various recurrent neural network (RNN)
architectures such as Elman-type (Mesnil et al.,
2015) and Jordan-type (Mesnil et al., 2015) net-
works and their variants have been explored to find
the most effective architecture for slot filling. In-
corporating word embeddings has also been stud-
ied and found to improve slot-filling performance
significantly. For example, Yao et al. (2014) use
LSTM networks with word embeddings for slot
filling on the ATIS (Upadhyay et al., 2018) dataset
and achieve state-of-the-art (SOTA) results at the
time. Goo et al. (2018) propose a bi-directional
LSTM (BLSTM) with an attention mechanism for
slot filling on the ATIS (Upadhyay et al., 2018) and
SNIPS (Coucke et al., 2018) datasets.
(3) Joint Model is an approach that aims to jointly
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Name # Langs Utt. per Lang (K) Domains Intents Slots

Airline Travel Information System (ATIS) (Price, 1990) 1 5.8 1 26 129
ATIS with Hindi and Turkish (Upadhyay et al., 2018) 3 1.3-5.8 1 26 129
Cross-lingual Multilingual Task Oriented Dialog (Schuster et al., 2019) 3 5.08-43.3 3 12 11
Fluent Speech Commands (FSC) (Lugosch et al., 2019) 1 30 - 31 -
MASSIVE (FitzGerald et al., 2022) 51 19.5 18 60 55
Microsoft Dialog Challenge (Li et al., 2018) 1 38.2 3 11 29
MultiATIS++ (Xu et al., 2020) 9 1.4-5.8 1 21-26 99-140
Multilingual Task-Oriented Semantic Parsing (MTOP) (Li et al., 2021) 6 15.1-22.2 11 104-113 72-75
NLU Evaluation Data (Liu et al., 2019) 1 25, 7 18 54 56
SLURP (Bastianelli et al., 2020) 1 16, 5 18 60 55
SNIPS (Coucke et al., 2018) 1 14.4 - 7 53
Task Oriented Parsing (TOP) (Gupta et al., 2018) 1 44.8 2 25 36
xSID (van der Goot et al., 2021) 13 10 7 16 33

Table 2: SID benchmark and datasets with the number of languages covered, number of utterances per language,
domain, intent count, and slot count.

model the intent detection and slot-filling tasks in
spoken language understanding. This approach
trains a single model to predict both the intent and
slot labels simultaneously. The model uses the con-
text of the input sentence to predict these labels.
Joint models have been shown to achieve SOTA
performance on several spoken language under-
standing datasets. Xu and Sarikaya (2013) propose
a joint convolutional neural network (CNN) and
RNN model for intent detection and slot filling on
the ATIS (Upadhyay et al., 2018) dataset. They
achieved SOTA results at the time. In the same con-
text, Liu and Lane (2016) proposed an attention-
based neural network for joint intent detection and
slot filling. The model uses an attention mecha-
nism to weigh the importance of different parts of
the input sentence for predicting the intent label
and slot labels. Chen et al. (2019) explore the use
of the BERT model for joint intent detection and
slot filling on ATIS (Upadhyay et al., 2018) and
SNIPS (Coucke et al., 2018). They report SOTA
results on both datasets.

3 SID4LR Shared Task

Task Formulation. Intent detection and slot-filling
are critical NLP tasks where, given an utterance, a
system is responsible for parsing the user’s intent
and extracting relevant information to act or reply
appropriately. While many neural-based models
have achieved SOTA performance for these tasks,
their success often depends on large amounts of la-
beled data. However, many real-world datasets are
limited to specific domains and are only available
in English or a few other languages. As a result, it
is important to reuse existing data in high-resource
languages to develop models for low-resource lan-

guages, especially since tasks like intent classifica-
tion and slot-filling require abundant labeled data.
Shared Task Problem Statement. This shared
task of SID aims to address the challenges of per-
forming SID for low-resource language varieties
for the following languages: Swiss German, South
Tyrolean, and Neapolitan. The training data pro-
vided consists of the Cross-lingual Slot and Intent
Detection (xSID0.4) corpus (van der Goot et al.,
2021), a cross-lingual spoken language understand-
ing dataset, covering 12 languages (Arabic, Chi-
nese, Dutch, Danish, English, German, Indonesian,
Italian, Japanese, Kazakh, Serbian, Turkish) from
six language families with English training. The
task allowed the use of pre-trained models and ex-
ternal data including data from the target language.
Evaluation Metric. The primary evaluation met-
ric for slot filling is the span F1 score, where both
span and label must match exactly, and accuracy
is used to evaluate intent detection where it is cal-
culated through the ratio of the number of correct
predictions of intent to the total number of sen-
tences. More details regarding the shared task can
be found in Aepli et al. (2023).

4 Data

Shared Task Data. The xSID0.4 (van der Goot
et al., 2021) corpus comprises cross-lingual SLU
evaluation datasets covering 13 languages from six
language families. The training dataset contains
43, 605 sentences, the development set contains
300 sentences, and the test set contains 500 sen-
tences. The corpus contains sentences from Snips
and Facebook, which were translated into all 13
target languages, resulting in a cross-lingual SLU
evaluation dataset. All examples are annotated with
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Language # Train # Valid # Test

ar 42, 157 300 500
da 43, 605 300 500
de 43, 605 300 500
en 43, 605 300 500
id 42, 157 300 500
it 43, 605 300 500
ja 29, 073 150 250
kk 42, 157 300 500
nl 43, 605 300 500
sr 43, 605 300 500
tr 43, 605 300 500
zh 42, 157 300 500

Table 3: Number of samples in the train, validation, and
test sets for each language in the multilingual dataset
xSID0.4, where the language codes are represented by
two-letter ISO codes. The dataset includes 12 languages:
Arabic (ar), Danish (da), German (de), English (en),
Indonesian (id), Italian (it), Japanese (ja), Kazakh (kk),
Dutch (nl), Serbian (sr), Turkish (tr), and Chinese (zh).

their intent and corresponding slots. Listing 1 pro-
vides examples of annotations with intent and slots.
We converted the dataset into a JSON format that
includes intents and slots. This JSON file was then
converted to HuggingFace Dataset format for easy
use with our transformer models. A sample of the
resulting JSON format is shown in Listing 2.

# text: show all reminders

# intent: reminder/show_reminders

# slots: 5:8:reminder/reference,

9:18:reminder/noun

1 show reminder/show_reminders O

2 all reminder/show_reminders B-reference

3 reminders reminder/show_reminders O

Listing 1: Example of the dataset format

{'text':'show all reminders',

'slots': 'reference:all',

'intent': 'reminder/show_reminders',

'__index_level_0__': 0}

Listing 2: Example of the preprocessed dataset

External Data. As mentioned, Swiss German,
South Tyrolean, and Neapolitan are low-resource
languages with limited available labeled data. To
address this challenge, we incorporate unlabeled

data from different sources to augment our training
data. We describe these external sources next.
SwissCrawl (Linder et al., 2020), a corpus of over
500, 000 Swiss German sentences gathered from
web crawling between September and November
2019. The sentences are representative of how na-
tive speakers write in forums and social media and
may contain slang and ascii emojis.
DiDi Corpus (Frey et al., 2016) is a multilingual
language corpus of 600, 000 tokens from Face-
book users in South Tyrol, Italy. It includes CMC
texts, socio-demographic data, and linguistic anno-
tations on thread, text, and token level. The corpus
is mainly German and Italian, with English also
present, and has been manually anonymized and
annotated.
OSCAR Corpus (Caswell et al., 2021) is a large
multilingual corpus created by scraping the web
and includes texts in more than 200 languages.
The OSCAR Corpus includes texts in Neapolitan,
which is a Romance language spoken in the south-
ern part of Italy, particularly in the region of Cam-
pania. The Neapolitan texts in the corpus consist
of around 4.4 million tokens, making it one of the
largest resources available for this language.

5 Pre-trained Language Models

In this study, we evaluate several popular multilin-
gual Transformer-based language models, includ-
ing mBERT, XLM-R, SBERT, LaBSE, LASER,
and mT0. These models are capable of effectively
capturing cross-lingual embeddings, enabling trans-
fer learning across multiple languages. Below we
provide a description of each model used in our
experiments on the training dataset.
mBERT. is the multilingual version of BERT (De-
vlin et al., 2019), which is an encoder model with
bidirectional representations from Transformers
trained with a denoising objective. mBERT is
trained on Wikipedia for 104 languages including
German and Italian.
XLM-R. (Conneau et al., 2020) is a transformer-
based multilingual masked language model pre-
trained on more than 2TB of filtered Common-
Crawl data in 100 languages, including languages
including German and Italian. XLM-R uses a
Transformer model (Vaswani et al., 2017) trained
with a multilingual masked language model XLM
(Conneau and Lample, 2019).
sBERT. Sentence-BERT (SBERT) (Reimers and
Gurevych, 2019), is a modification of the pretrained

244



BERT (Devlin et al., 2019) model that uses siamese
and triplet network structures to derive semanti-
cally meaningful sentence embeddings that can
be compared using cosine-similarity. As we work
under a multilingual context, we use the multilin-
gual versions from previously monolingual SBERT
models (Reimers and Gurevych, 2020) which is
trained for sentence embedding in 50+ languages
from various language families.
LaBSE. Language-agnostic BERT Sentence En-
coder (LaBSE) (Feng et al., 2020a) is a BERT-
based model trained to generate sentence embed-
dings in 109 different languages. The model’s
pre-training approach involves a combination of
masked language modeling and translation lan-
guage modeling. The pre-training process com-
bines masked language modeling with translation
language modeling. LaBSE is useful for producing
sentence embeddings in multiple languages and
performing bi-text retrieval.
LASER. Language-Agnostic Sentence Representa-
tions (LASER) (Feng et al., 2020b) is a contextual-
ized language model based on a BiLSTM encoder
trained on parallel data from OPUS website (Tiede-
mann, 2012) using a translation objective. The
LASER model can handle 200 different languages.
mT0. (Muennighoff et al., 2022) is a group of
sequence-to-sequence models that come with differ-
ent sizes from 300M to 13B parameters trained to
investigate the cross-lingual generalization through
multitask finetuning. mT0 can execute human in-
structions in many languages without any prior
training. The models are fine-tuned from pre-
existing mT5 (Xue et al., 2020) multilingual lan-
guage models using a cross-lingual task mixture
called xP3. These refined models are capable of
cross-lingual generalization to unseen languages.

6 Experiments and Settings

Training on English Data. As a baseline setting,
we train all the pre-trained models described in
Section 5 on the English part of the multilingual
dataset xSID0.4 (van der Goot et al., 2021) and
evaluate them on Swiss German, South Tyrolean,
and Neapolitan under a zero-shot setting.
Training on German/Italian Data. Our second
approach aims to train all the pre-trained models on
the language family of low-resource languages (i.e.,
German for Swiss German and South Tyrolean, and
Italian for Neapolitan, respectively) under the zero-
shot setting. So, we extract the German and Italian

SID data from xSID0.4, and then fine-tune all our
models on both datasets. Then, we evaluate the
German models on GSW and ST tasks and the
Italian models on the NAP task.

Training on Multilingual Dataset. Next, we ex-
plore a third training approach that involves the full
multilingual xSID0.4 dataset. To do so, we com-
bine all the 12 available languages in the xSID0.4

dataset and fine-tune our pre-trained models on this
combined dataset. We then evaluate each target us-
ing a zero-shot setting. This approach allows us to
train on larger and more diverse datasets. In total,
we generate 502, 936 training sentences across all
languages in the dataset.

Paraphrase and Machine Translation. To im-
prove the performance of our pretrained models,
we also explore the impact of data augmentation
techniques such as paraphrasing and machine trans-
lation. Specifically, we aime to examine how these
techniques can enhance the performance of our
models on cross-lingual SLU tasks. To this end, we
experiment with different data augmentation strate-
gies, including paraphrasing and machine transla-
tion. Paraphrasing is performed using the quality-
guided controlled paraphrase generation (QCPG)
model (Bandel et al., 2022), resulting in a total
of 130, 815 sentences in English. These sentences
are then translated into German and Italian using
the OPUS-MT model (Tiedemann and Thottingal,
2020), creating cross-lingual datasets for our exper-
iment.

To further augment our training data for low-
resource languages, we leverage Meta AI’s No Lan-
guage Left Behind (NLLB), which provides open-
source models capable of high-quality translations
between 200 languages (including low-resource
languages (NLLB Team et al., 2022)). To create
our new training data using the NLLB model, we
first use FastText to detect the language codes of
our target languages. Next, we utilize NLLB mod-
els to translate the English training data into the pre-
dicted language codes. The language codes identi-
fied for our target languages are deu_latn for Swiss
German, est_latn for South Tyrolean, and ita_Latn
for Neapolitan. We generate 43, 605 sentences for
each of the three languages. It is worth noting that
we ensure that the labels for each sentence remain
the same throughout the paraphrasing and machine
translation process to maintain the integrity of the
data.

Training on External Data. Since the language
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models we employ do not have a strong represen-
tation of the low-resource languages used on the
task, we leverage large corpora of each of the low-
resource languages into the training process. By
incorporating external datasets, the models are ex-
posed to more comprehensive information about
the semantics of each low-resource language, en-
abling them to better capture the nuances and com-
plexities of the target languages.
Training MT0 As discussed in Section 5, the MT0
models share the same architecture as MT5/T5
models, i.e., they are encoder-decoder models.
Therefore, we train them for intent classification
and slot detection using the data preprocessing ap-
proach described in Section 4. We utilize the PEFT
library provided by Huggingface (Sourab Man-
grulkar, 2022) to train the mT0-small, mT0-Base,
and mt0-Large models. Our approach involves us-
ing LORA (Hu et al., 2021), which allows us to
achieve SOTA performance while consuming sig-
nificantly less memory. For the mT0-xxl models,
we utilize DeepSpeed (Rasley et al., 2020) with
CPU offloading to train a model with 13B parame-
ters on a 40GB A100 GPU.
Combining Models. In recent studies, joint learn-
ing techniques that combine multiple classification
approaches have produced promising results (Bilat
et al., 2020). These approaches involve concatenat-
ing the outputs of individual models and passing the
resulting output through multiple neural network
layers, allowing the resulting network to be trained
jointly. In this part of our experiments, we investi-
gate the effectiveness of this approach in zero-shot
settings by combining multilingual models. Specif-
ically, we combine LASER embeddings, from the
LASER model, with other multilingual models in-
cluding mBERT, sBERT, LaBSE and XLMR.

7 Results and Discussions

Evaluation on Validation Data. We present the
accuracy scores of all our models across various
settings. Table 4 presents the evaluation results
for the intent classification task on the validation
set. Our transformer-based models, with different
experimental settings, outperform the baseline on
all the target languages. For instance, mT0-base
outperforms the baseline (mBERT) with an aver-
age of +16.49, +22.93, +17.90 for GSW, ST, and
NAP, respectively. Notably, our best combination
was the mT0-xxl model under the multilingual set-
ting. It achieves the best results of 89.00, 94.00,

and 87.00, improving the baseline with +29.30,
+33.30, and +25.70 Accuracy point in the three
target languages.

The results of the slot filling task on the valida-
tion set are shown in Table 5. Our transformer-
based models perform better than the baseline
across all target languages when tested under dif-
ferent experimental settings. Our best-performing
model, mT0-large, achieves the most outstand-
ing results using the Multilingual settings with F1
scores of 60.30, 55.00, and 52.30 in the three tar-
get languages. These results represent a notable
improvement over the baseline, with an increase of
+30.88, +4.65, and +0.90 F1 points in the three
target languages.

Our results on the validation data suggest that
larger models generally achieve better performance,
implying that higher parameter counts result in bet-
ter cross-lingual and zero-shot setting performance.
Moreover, as the mT0 models are fine-tuned from
pre-existing mT5 multilingual language models,
they are capable of performing cross-lingual gen-
eralization on unseen languages. This capability
may be a possible reason for the mT0 models out-
performing other models in zero-shot settings.

Official Shared Task (Test) Results. Our find-
ings regarding the performance of larger models
are also observed in the test set. Table 6 presents
the evaluation results for both slot filling and in-
tent classification tasks across all three target lan-
guages. Our mT0 models strongly outperform the
baseline models. Specifically, our mT0 models
outperformed the baseline models in all target lan-
guages for the intent classification task, highlight-
ing the effectiveness of larger models for intent
classification. Moreover, our mT0 models also out-
perform the baseline models in two of the target
languages for slot filling task, further indicating
the superiority of larger models for sentence-level
classification tasks. The improvement in scores for
intent classification is more evident than for slot
filling. The larger improvement in scores for intent
classification may be correlated with the fact that
for our data augmentation experiment on paraphras-
ing and machine translation, we were only able to
augment data for intent classification, resulting in
a larger improvement in performance for this task
compared to slot filling.

It is worth noting that we use the validation set
for model selection, which resulted in higher scores
than those achieved on the test set. This is because
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Setting Lang. mBert LS LL LX mT0-small mT0-base mT0-large mT0-xxl

English
GSW 51.67 45.30 52.70 48.30 69.20 70.20 69.00 80.00
ST 61.00 58.00 66.70 61.70 74.50 76.20 79.10 89.00
NAP 61.00 55.30 56.00 67.0 71.30 72.00 75.00 76.33

German GSW 59.00 74.00 68.00 80.70 69.30 73.33 80.33 84.33
ST 59.70 55.70 59.00 51.00 83.33 88.33 84.66 92.00

Italian NAP 65.30 63.30 63.70 55.70 77.66 84.66 83.33 86.00

Multilingual
GSW 59.70 62.70 59.70 53.30 75.00 76.33 84.00 89.00
ST 60.70 54.70 58.00 56.30 88.33 85.66 90.66 94.00
NAP 61.30 55.70 59.00 60.30 82.66 84.66 86.00 87.00

Paraphrase+MT
GSW 45.30 37.30 58.00 64.00 79.00 83.00 84.33 91.00
ST 61.70 61.30 60.70 60.70 90.66 93.00 90.00 95.66
NAP 63.70 60.00 58.70 60.00 85.66 89.00 87.33 88.33

Table 4: Accuracy results for intent classification on the validation set. Baseline: mBERT (Devlin et al., 2019). LS:
LASER (Feng et al., 2020b)+sBERT (Reimers and Gurevych, 2019). LL: LASER+LaBSE (Feng et al., 2020a). LX:
LASER+XLM-R (Conneau and Lample, 2019). Underline: Best-performing models for each setting. Bold: Best
F1 score across all the experiments and settings.

Setting Lang. Baseline mt0-small mt0-base mt0-large

English
GSW 26.23 25.42 34.00 40.32
ST 44.61 32.40 44.00 54.30
NAP 48.01 42.20 47.90 49.00

Multi-langl
GSW 29.42 28.90 42.30 60.30
ST 50.35 43.40 53.40 55.00
NAP 51.40 49.00 50.30 52.30

Table 5: Slot-f1 results for Slot Filling on the validation
set. Bold entries are the best-performing models for
each experiment and setting.

Task Lang. Baseline mT0-large
ST 44.61 46.41

Slots GSW 26.23 27.39
NAP 48.01 38.82

ST 61.00 89.40
Intents GSW 51.67 81.60

NAP 61.00 85.40

Table 6: Results on the test set for both SID tasks. Bold
entries indicate the model’s performance compared to
the baseline model.

the validation data is similar to the data used during
training, while the test data is entirely new and un-
seen. As a result, the test scores may be lower due
to differences in the distribution of data between
the training and test sets. Nevertheless, our mT0
models consistently outperform the baseline mod-
els on the test set, providing further evidence for
the effectiveness of larger models in SID tasks.

8 Conclusion

We described our contribution to the
SID4LR (Aepli et al., 2023) shared tasks.

Our models target both the slot and intent sub-task
in three proposed low-resource languages, namely,
Swiss German, South Tyrolean, and Neapolitan.
We test the utility of existing pretrained language
models such as mT0 (Muennighoff et al., 2022)
on the intent detection and slot filling tasks. We
show that such models can lead to improving the
results of the baseline with an average of +27 F1
points. In the future, we intend to use mT0 to
jointly model the intent detection and slot filling
tasks for improving overall performance.
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